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Abstract—Soft error reliability is increasingly becoming a
first-order design concern for microprocessors, as a result
of higher transistor counts, shrinking device geometries and
lowering of operating voltages. It is important for designers to
be able to validate whether the Soft Error Rate (SER) targets
of their design have been met, and help end users select the
processor best suited to their reliability goals. The knowledge of
the observable worst-case SER allows designers to select their
design point, and bound the worst-case vulnerability at that
design point. We highlight the lack of a methodology for evalu-
ation of the overall observable worst-case SER. Hence, there is
a clear need for a so called stressmark that can demonstrably
approach the observable worst-case SER. The worst-case thus
obtained can be used to identify reliability bottlenecks, validate
safety margins used for reliability design and identify inadequa-
cies in benchmark suites used to evaluate SER. Starting from a
comprehensive study about how microarchitecture-dependent
program characteristics affect soft errors, we derive the insights
needed to develop an automated and flexible methodology
for generating a stressmark that approaches the maximum
SER of an out-of-order processor. We demonstrate how our
methodology enables architects to quantify the impact of SER-
mitigation mechanisms on the worst-case SER of the processor.
The stressmark achieves 1.4× higher SER in the core, 2.5×
higher SER in DL1 and DTLB, and 1.5× higher SER in L2
as compared to the highest SER induced by SPEC CPU2006
and MiBench programs.

I. INTRODUCTION

Shrinking process geometries have enabled an exponential
increase in the number of transistors fabricated on a chip,
with each successive process generation. While this process
has enabled lower operating voltages and higher frequencies,
it has also made reliability of hardware an increasingly
important design criterion. Radiation induced faults are a
significant source of transient faults in hardware, and the
situation is expected to worsen with smaller feature sizes
[1], [2]. Borkar [3] states that the soft-error failure rate at
16 nm is expected to be 100 times higher than at 180 nm.

Additional hardware such as radiation-hardened circuitry
or error detection/recovery mechanisms may be required in
order to meet the target SER requirements. This additional
hardware has implications on area, power and performance,
and hence the design-point needs to be carefully selected,
to avoid over-designing or under-designing the processor. In
this work, we develop a methodology that can be used by

architects to estimate the observable worst-case SER on the
microarchitecture. The knowledge of this observable worst-
case SER allows architects to pick the appropriate design
point from an SER perspective for their microarchitecture,
and also validate the SER coverage of their workload suite.
Our methodology adapts to different microarchitectures and
underlying circuit-level fault-rates in an automated fashion in
order to produce an AVF stressmark, such that the observable
SER will approach the maximum.

Issues affecting SER benchmarking: Prior research [2],
[4] has shown that masking effects of program behavior
have a significant impact on the visibility of faults to
the user. Architected Vulnerability Factor (AVF) modeling,
which quantifies this masking effect, enables architects to
determine the highest per-structure SER observed while
running typical workloads. The observable SER of a work-
load is strongly dependent on the microarchitecture and
underlying circuit-level fault rates. Different programs stress
microarchitectural structures differently, and hence a change
in microarchitecture or underlying fault-rates alters their
observed SER by different proportions. A workload suite
that offers adequate coverage on one microarchitecture and
circuit-level fault-rate does not neccessarily do so when
either factor is changed.
There is no known methodology to select benchmarks such
that they cover the entire range of observable SER, from zero
to the worst-case observable SER. Therefore, architects run
a large number of programs in the hope that sufficient cover-
age is achieved. Architects choose the SER design objective
appropriate for the usage environment, such as design for the
average workload-induced SER, or for the highest workload-
induced SER. A safety margin is added to determine the
design point, to cover for the possibility of inadequate SER
coverage and representativeness of the workload suite. The
choice of this safety margin is largely based on designer
intuition, and it is difficult to know whether it is adequate.
Figure 1 represents two workload scenarios with different
SER coverages. The arrows represent the range of SER
observed while running programs in the workload suites.
The workload suite in scenario 1 has good SER coverage,
whereas the workload suite in scenario 2 does not. Suppose
that the architect is designing for the highest workload-
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Figure 1. Choice of the design point, under different SER coverage
scenarios

induced SER. As shown in Figure 1, the addition of the
safety margin to the highest workload-induced SER pushes
the design point well beyond the worst-case observable
SER, leading to over-design. On the other hand, the safety
margin for scenario 2 is insufficient to cover for the worst-
case. In the absence of a methodology for determining the
worst-case SER, it is impossible to know whether these
safety margins are excessive, or indequate. On similar lines,
the architect may choose to design for the average-case
workload. Consider Scenario 1 which has a relatively high
average SER. An aggressive safety margin over the average
case in Scenario 1 may push the design point close to,
or beyond the worst-case SER, leading to over-design. On
the other hand, an aggressive safety margin is required in
Scenario 2 to cover for its lack of adequate SER coverage.
The knowledge of the worst-case SER allows thus the
architect to rationalize about the amount of the safety margin
necessary, and define the design point relative to the worst-
case SER and the design objective. The knowledge of the
worst-case SER also indicates whether the workload suite
needs additional benchmarks to make up for its lack of SER
coverage. It is expected that designing for the worst-case
SER will increase in significance in future technologies, due
to elevated levels of SER as a result of aggressive lowering
of operating voltages to reduce power consumption.

Difficulties in determining the worst-case SER: We note
that it is impossible for every bit in the processor to simulta-
neously have 100% AVF while running a program: structures
in processors are typically over-designed to handle bursty
program behavior, and have interdependencies such that all
of them cannot contain useful program state simultaneously.
For example, the branch recovery checkpoint structure is not
accessed if the program does not experience branch mispre-
dictions. On the other hand, branch mispredictions reduce
the AVF of structures in the rest of core. This suggests that
the overall worst-case SER calculated by adding up circuit-
level fault rates of individual circuits, without considering
the masking effect of program behavior would lead to an
overly pessimistic design. For similar reasons, it would be
incorrect to estimate the worst-case by adding up the highest
per-structure SER calculated using AVF modeling.

Therefore, there is a need to determine the highest observ-

able SER in a holistic manner. We refer to such a program
as a stressmark, drawing an analogy with power or thermal
stressmarks (also called viruses), that are designed to max-
imize power and temperature of the processor, respectively.
Since every gate in the circuit cannot be toggling simulta-
neously, the power or thermal virus focusses on instructions
that maximize overall power dissipation or temperature.

We propose a comprehensive methodology that simul-
taneously increases the AVF of multiple structures in the
processor such that the observable SER approaches the
maximum. The search space for such a program is large
and complex. Starting from first principles, we derive a
set of microarchitecture dependent factors that affect the
occupancy of useful state in the processor, and use these
insights to develop a code generator that defines a feasible
search space. We then use a Genetic Algorithm (GA) to
explore this search space to to generate the stressmark.

The significant contributions of this work are as follows:
1) We develop a flexible and automated methodology to

generate an AVF stressmark. This AVF stressmark is
designed to approach the maximum observable SER
for a given microarchitecture.

2) We highlight deficiencies in current methodologies for
the estimation of the observable worst-case SER. We
also highlight the potential pitfalls of soft-error relia-
bility design without the knowledge of the observable
worst-case SER. The knowledge of the observable
worst-case SER enables designers to quantify design
trade-offs such that their SER design objectives can
be met efficiently.

Paper Outline: The remainder of this paper is or-
ganized as follows: Section II provides a background on
ACE analysis. Section III highlights the interdependence of
occupancy and hence AVF of structures in an OoO pro-
cessor, which ensures that the AVF of all structures cannot
be 100% simultaneously. This observation motivates our
research to create a stressmark that induces the observable
worst-case SER. We outline the methodology for creating a
code generator for the AVF stressmark in Section IV, derived
from a comprehensive study on microarchitecture-dependent
characteristics that influence occupancy of structures. Sec-
tion V outlines the framework and evaluation methodology
for generating an AVF stressmark using a Genetic Algorithm
(GA). We discuss results in Section VI. Section VII includes
a discussion on how architects can use our methodology to
identify reliability bottlenecks, and quantitatively measure
the impact of their SER mitigation mechanisms on the worst-
case SER.

II. BACKGROUND

Mukherjee et al. [2] define Architectural Vulnerability
Factor (AVF) as a measure of the probability that a radiation-
induced fault in a structure will be visible in the pro-
gram output. Mukherjee et al. formally define AVF of



Table I
BASELINE CONFIGURATION OF PROCESSOR

Parameter Baseline
Integer ALUs 4, 1 cycle latency, 64 bit wide
Integer Multiplier 1, 7 cycle latency, 64 bit wide
Fetch/slot/map/issue/commit 4/4/4/4/4 per cycle
Integer Issue Queue 20 entries, 32 bits/entry
ROB 80 entries, 76 bits/entry
Integer rename register file 80, 64 bits/register
LQ/SQ 32 entries each, 128 bits/entry
Branch Predictor Hybrid, 4K global, 2 level 1K local

4K choice
Branch Misprediction Penalty 7 cycles
L1 I-cache 64kB, 2-way, 64B line, 1 cycle latency
L1 D cache 64kB, 2-way, 64B line, 3 cycle latency
DTLB 256 entry, fully associative, 8kB page
L2 cache 1MB, direct mapped, 7 cycle latency

a structure of size N bits, as: AV Fstructure = 1
N ×

(
∑N

i=0(
ACE cycles for bit i

Total Cycles )i). AVF is the derating factor
on the raw fault rate of the underlying circuit, and captures
the masking effect of program execution on soft errors. This
derated failure rate is added for all structures on the chip,
to derive its overall SER.

Conversely, Mukherjee et al. [2] term bits that are not
critical to program correctness as un-ACE. These include bits
such as those in unused or invalid state, bits discarded as a
result of mis-speculation, or bits in predictor structures, and
bits corresponding to instructions such as NOPs, software
prefetches, predicated false instructions, and dynamically
dead instructions. Butts et al. [5] note that 3 - 16% of
instructions are dynamically dead. Since the values of these
instructions do not affect the output of the program, their
correctness is not critical.

Whether a bit is ACE or not in on-chip cache structures
depends on the nature of reads and writes to that structure.
Biswas et al. [6] introduce the concept of lifetime analysis
to determine the ACE-ness of a cache structure. Assuming a
writeback cache, a cache-line is ACE between Fill ⇒ Read,
Read ⇒ Read, Write⇒ Read and Write⇒ Evict. For CAM
arrays, assuming a single bit upset model, a corrupted entry
could be mistaken for another, if they differ in only one bit
position, or Hamming distance of one. Therefore, a per-bit
lifetime analysis is performed only on such bits.

In this work, we use ACE analysis to measure the AVF
and overall SER of the processor. We define worst-case SER
as the highest SER calculated using ACE analysis (AVF+
Sum of Failure Rates), assuming a fixed circuit-level fault
rate, i.e., all changes in SER are due to changes in AVF
alone.

III. INTERDEPENDENCE OF AVF OF PROCESSOR
STRUCTURES

Occupancy, and hence AVF of structures in an OoO pro-
cessor are not completely independent of one another. This
interdependence also ensures that all bits in the processor
cannot be ACE simultaneously. We use the example of

the Alpha 21264 microarchitecture to illustrate this point.
However, the idea is true of any other microarchitecture.

Consider the Alpha 21264 whose configuration is outlined
in Table I. Every instruction in the ReOrder Buffer (ROB)
must exist in either the Issue Queue (IQ), Load Queue (LQ)
or Store Queue (SQ), or have been executed in the Function
Units (FU). However, we see that the total number of entries
in the integer IQ, LQ and SQ alone is more than the size
of the ROB, implying that the ROB, IQ, LQ, SQ and FU
cannot simultaneously have 100% AVF.

The number of rename registers in use depends on the
number of instructions in flight, and hence the occupancy
of the ROB. Unlike architected registers, rename registers
cannot hold ACE data all the time. Many rename registers
hold values that are quickly consumed, and not read again.
The process of retiring, releasing, re-assigning and writing
to a rename register file takes multiple cycles, and hence
AVF of the physical register file is never 100%. Additionally,
stores and branch instructions do not write ACE data to a
rename register.

The interdependence in occupancy also implies that as-
suming that the instantaneous occupancy of ROB and IQ,
and the Instruction mix (I-mix) are known, the occu-
pancy/utilization of LQ, SQ, FU and rename RF can be
bounded, thereby bounding AVF. Additional information
about the proportion of ACE instructions in each type (load,
store, arithmetic) allows a tighter bound on AVF.

FU utilization is maximum when the processor can issue
arithmetic instructions at maximum bandwidth. However,
LQ and SQ occupancy will be lower, since the instruction
mix has fewer loads and stores.

The Alpha 21264 also allows only two memory instruc-
tions to issue per cycle, restricting the rate at which they can
be filled up, and hence the period of time for which the LQ
and SQ can have high AVF, in the shadow of an L2 miss.

It is clear from the above example that simply adding the
circuit-level fault rates of individual structures, or the highest
per-structure SER, to calculate worst-case SER would be
incorrect. We therefore need a methodology that addresses
the issue of quantifying the observable worst-case SER.

IV. CODE GENERATOR FOR THE AVF STRESSMARK

In this section, we describe the methodology used to build
a code generator for AVF stressmarks. This code generator
must be provided with knobs to control various parameters.
The knobs are used to interface the code generator with
a Genetic Algorithm (GA) tool, which then controls the
characteristics of the output program. Figure 2 outlines the
framework for stressmark creation. In the first step, the
Genetic Algorithm produces a set of knob values, that is used
by the code generator to create a candidate stressmark. In the
next step, this candidate stressmark is compiled and run on
a simulator for measuring AVF. In the next step, the output
of the simulator is evaluated by a fitness function, which
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Figure 2. Methodology for creation of an AVF stressmark.

evaluates whether the output has converged. The result is
fed back into the GA, and the above steps will be repeated
until convergence is achieved, or a maximum number of runs
are reached. Additionally, the code generator must ensure
that every instruction is ACE so that entries in the core and
cache are also ACE. In order to define the knobs for the
code generator, we study the microarchitecture-dependent
program characteristics that affect occupancy in cores and
caches.

We classify microarchitectural structures into Queueing
Structures (QS) and storage structures. For queueing struc-
tures such as the IQ, LQ, SQ, ROB and FU, AVF is
proportional to occupancy, if the proportion of ACE bits
in the program is kept fixed. This correlation between AVF
and occupancy has been utilized to predict AVF of such
structures [7], [8]. For storage structures, overall occupancy
does not necessarily correlate to AVF, since data in cache
lines may switch between being ACE and un-ACE, depend-
ing on access patterns. For caches, AVF is influenced by the
working set size [6] and coverage of cache locations.

A. AVF due to Microarchitecture-Dependent Behavior

We now look at the factors that affect the overall occu-
pancy of queuing structures, and liveness of caches. For the
discussion below, we assume that the instruction stream has
a constant proportion of ACE bits. We use this analysis to
determine the factors that are required to be controlled in a
code generator that increases AVF in a core.

1) Long-Latency Operations: A long-latency operation,
such as an L2 or DTLB miss, double-precision divide, or
square root may cause the processor to eventually stall (if
their latencies are not overlapped with another long latency
operation). Consider the example of an L2 miss. Typically,
in the shadow of an L2 miss, the ROB fills up completely,
and all FU activity ceases. The IQ contains instructions
dependent on the L2 miss. The LQ data array corresponding
to an issued load contains ACE bits only after the data has

been brought from the memory hierarchy; until then, only
the tag array holds ACE bits.

2) ILP and instruction latency: Low ILP and/or higher
instruction latency increases the occupancy of the IQ. Higher
instruction latency increases the occupancy of ROB, LQ and
SQ, provided that the IQ is not full. Since FUs have fixed
latencies, the only way to increase occupancy is through
maximum IPC (high bandwidth, per Little’s law).

3) Instruction Mix: As noted in Section III, dynamic
instructions get distributed among the FUs, LQ and SQ,
and an increase in one type of instruction will cause an
increase the average occupancy of its corresponding unit,
and a proportionate decrease in the occupancy of the others.
The size of operands used also affects the ACE-ness of
entries in the load queue, store queue and register file.
For instance, a 32-bit store instruction on a 64-bit machine
would have the other 32-bits as un-ACE, thereby lowering
its AVF [2]. Since LQ and SQ typically contain more bits
than function units, programs that have a greater proportion
of loads and stores will have more corruptible state in the
processor, all else being equal.

4) Front-End Misses: I-cache misses, I-TLB misses and
fetch inefficiency reduce AVF of all structures by reducing
the supply of useful instructions. In the case of a branch
misprediction, all instructions fetched along the wrong path
are un-ACE, and the subsequent pipeline flush reduces the
occupancy of the queues.

5) Cache Coverage and Working Set: The AVF of a cache
depends on the number of cache lines that contain ACE data,
and the duration for which the lines are ACE [6]. A high
number of accesses to a few cache lines will give a high hit
rate, but low AVF. On the other hand, a high miss rate could
also result in high AVF, if the evicted lines, and the filled
lines replacing them are ACE. The working set may also be
fragmented due to the cache line; a strided access pattern
may not use every memory location in the cache line, and
hence only a part of the line will contain ACE bits.



Additionally, the compiler introduces un-ACE instructions
such as NOPs for alignment of loops to cache line bound-
aries, prefetches to reduce L2 miss penalty, and dynamically
dead instructions. AVF is sensitive to the compiler used,
and aggressiveness of compilation options. For an AVF
stressmark, we should eliminate all un-ACE instructions.

We thus note that occupancy, and hence AVF is super-
linear in the number of ACE instructions in flight. Intuitively,
any program that does not have a high proportion of branch
mispredictions, has a high proportion of loads and stores,
and a high miss rate in the cache would have high occupancy.
We use the above insights to derive a code generator.

B. Design of the Code Generator

We use the insights outlined in Section IV-A to derive
the knobs for the code generator. The code generator must
allocate a large enough memory region such that every
line in the data caches and DTLB are covered. High AVF
of caches is ensured by performing ACE loads and stores
such that every cache line is 100% ACE (other strategies
are possible). Simultaneously, high DTLB AVF is ensured
by requiring the loads and stores to cover every line in
the DTLB without evictions (read to evict is un-ACE).
We implement a code generator based on the framework
outlined in Figure 2. The code generator must be provided
with the size of the ROB, and the caches, of the particular
microarchitecture. We utilize a strided load in the inner
loop, that will miss in the L2 cache, and is dependent
on itself (pointer chasing). This avoids any Memory-Level
Parallelism for the L2 misses. Ideally, we expect that having
the size of the inner loop equal to the size of the ROB
minimizes the number of L2 misses in the ROB, while also
maximizing the number of instructions in the shadow of the
L2 miss. As the loop gets larger than the ROB size, fewer
instructions occur in the shadow of the L2 miss. We allow
the code generator to determine the size of the loop, but
restrict its maximum size to 1.2× the size of the ROB. We
separately implement another code generator framework in
which the L2 miss is converted into an L2 hit, keeping the
rest of the requirements the same. This models the case of
L2 miss-free behavior. The code generator then fills up the
inner loop (see Figure 2) with ACE instructions as specified
using parameterizable knobs derived from the characteristics
summarized under section IV-A, below:

1) I-mix: We specify the fraction of loads, stores and
arithmetic instructions. This determines the occupancy
of LQ, SQ and FU respectively.

2) Dependency distance: This knob controls the number
of instructions between two dependent instructions and
affects placement of instructions. Dependency distance
has been used as a microarchitecture-independent met-
ric for ILP [9], [10]. The code generator interleaves
dependence chains to meet this requirement.

3) Fraction of Long-Latency Arithmetic: This knob con-
trols the mix of long-latency and short-latency arith-
metic instructions. This affects the average latency of
each instruction and hence the issue rate.

4) Average Dependence Chain Length: This controls the
average length of the instruction chain dependent on a
load, leading up to a store. This knob affects the ILP.
We implement this by having a knob that specifies
the fraction of arithmetic instructions that are to be
transitively dependent on loads. These instructions are
distributed uniformly over all loads, and chain loads
to available stores.

5) Register Usage: This knob affects the proportion of
Reg-Reg vs. immediate instructions, and hence deter-
mines the number of register values that are ACE.

6) Instructions Dependent on L2 Miss: This knob con-
trols the number of instructions occupying the IQ in
the shadow of the L2 miss.

7) Random seed: This knob is passed to a random number
generator that randomizes the placement of long-
latency vs. short latency instructions in the code. This
is used to discover the best code schedule.

8) Code Generator Switch: This switches between the
code generators with and without L2 misses.

Every value that is loaded or produced must transitively
produce a value that is stored to memory, to ensure 100%
ACE-ness of instructions and data. We also ensure that
stored results are not overwritten before they are read. The
code generator produces code in C, with embedded Alpha
assembly instructions. Assembly instructions are used to
precisely control the output of some of the above knobs.

Unique Requirements of the Code Generator: The re-
quirement of 100% ACE instructions, and increasing suscep-
tible state in the processor are two factors that distinguish our
effort from typical functional verification, testing method-
ologies or power viruses. Functional verification or testing
emphasizes on bug or defect coverage without any regard
to ACE-ness or susceptible state resident in the processor.
Therefore, functional verification tools may not achieve as
high AVF as our methodology, or may require an unreason-
ably large number of random runs (if not directed) to achieve
such high AVF. There is no correlation between power
and state resident in the core. For example, long latency
stalls increase AVF, but provide opportunities to reduce core
power using clock and/or power gating. Power dissipation
is typically maximized when the processor is able to issue
multiple arithmetic instructions at full bandwidth, but this
typically implies that the occupancy of other queues are
less than 100%. Furthermore, un-ACE instructions consume
power but do not contribute to AVF. Thus, power viruses are
unlikely to be high AVF workloads, by design. By deriving
the properties that affect AVF from first principles, we
restrict the search space by disallowing infeasible solutions,
and allow a quick generation of a high-AVF stressmark.
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Figure 3. Comparison between the overall SER induced by the Stress-
mark and CPU2006 workloads on the core and caches for the Baseline
Configuration

V. FRAMEWORK FOR THE GENERATION OF THE AVF
STRESSMARK

The search space for an AVF stressmark, despite the
pruning performed while creating the code generator, re-
mains complex. As seen in our discussion in Section III,
the task of creating the optimal instruction schedule that
satisfies the constraints of a microarchitecture, while si-
multaneously increasing SER is non-trivial. We therefore
explore the search space defined above using a Genetic
Algorithm (GA). GA is an evolutionary machine-learning
methodology which is often used to find “approximately
optimal” solutions to complex optimization problems. The
GA initially starts from a set of random solutions. For each
solution, a fitness value is computed, and the best results
form the baseline for future generations. The GA applies
mutation, crossover and migration to these solutions, to
generate a new solution. Mutation involves random changes
to the solution, crossover involves swapping parts of existing
solutions to create offspring generations whereas migration
involves changing the population of the solution. When the
solutions in a generation converge, the GA introduces a
cataclysmic event, to completely change the population of
the best known solution and avoid being stuck in a local
maxima or minima. The GA continues with the process of
creating new generations until no further improvement is
reported.

The use of a machine learning algorithm such as GA re-
duces the dependence on a designer’s intimate knowledge of
the microarchitecture while creating the stressmark. We use
IBM SNAP genetic algorithm framework, obtained under
NDA for university research, to create the knob values for
the code generator, as outlined in Figure 2. The output of the
code generator is compiled and run on our AVF simulator
(outlined below). The results are used to calculate the fitness
metric (SER), which is fed back to the GA, to create future
generations.
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Figure 4. Comparison between the overall SER induced by the Stressmark
and MiBench workloads on the core and caches for the Baseline Processor
Configuration.

Evaluation Methodology: We evaluate our methodol-
ogy on our modified version of SimSoda [11], which com-
putes AVF using the ACE analysis methodology proposed
by Mukherjee et al. [2] and Biswas et al. [6]. Simsoda is
based on SimAlpha [12], which models an Alpha 21264
(EV6) in great detail. SimAlpha models the Integer IQ and
Floating Point IQ as separate structures. Our experiments
concentrate on the integer pipeline, for parity with SPEC
CPU2006 integer results. Our methodology, however, is
general enough to be trivially extended to include the FP
pipeline. In Figure 2, the GA generates knobs that are
provided as inputs to the code generator. The code generator
produces the corresponding output, and run on the SimSoda
simulator.

We allow the Genetic Algorithm (GA) to run for 50 gen-
erations, with 50 individuals per generation (a total of 2,500
runs), and the best result is is picked as the stressmark. The
stressmark is executed for 100M instructions. We compare
the stressmark with 11 CPU2006 Integer Workloads and 10
CPU2006 FP workloads. We were unable to compile the
entire CPU2006 suite due to compiler issues. We identify a
single simulation point of length 100M instructions using
the SimPoint methodology [13], and perform a detailed
simulation at this simulation point. We also compare our
stressmark results with 12 MiBench [14] programs, for
diversity of workloads in our workload suite. The stressmark
and all the benchmarks were compiled using gcc version
4.1 with the -O2 flag. We assign the probability of mutation
as 0.05 and a crossover rate of 0.73 in the GA, based on
recommended ranges from literature, such as Grefenstette
[15], and Srinivas and Patnaik [16].

VI. RESULTS

Figure 3 and Figure 4 represent the overall SER of the
architecture specified in Table I, which we call the Baseline
Configuration. We assume that the raw fault rate of the
underlying circuits is 1 unit/bit. This is an arbitrary unit,
since only the relative magnitude is of importance for our



Parameter Value

Loop Size 81

No. of loads 29

No. of stores 28
No. of Independent 

Arithmetic Instructions 5
No. of instructions 

dependent on L2 miss 7
Avg. Dependence Chain 

Length 2.14

Depencency Distance 6
Fraction of Long Latency 

Arithmetic 0.8
Fraction of Reg-Reg 

arithmetic instructions 0.93

(a) Knob settings of final GA so-
lution
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(b) Convergence of GA

Figure 5. Stressmark generated by the Genetic Algorithm for the Baseline
Processor Configuration.

methodology. We present the SER of Queuing Structures
(QS), Queuing Structures and the Register File (QS+RF),
DL1+DTLB, and L2 separately, since caches have signif-
icantly more bits than the core, and would dominate all
SER computation. We normalize the SER values reported
by dividing them by the total number of bits in that class of
structure, in the interest of clarity. For example, we divide
the SER computed for the Queuing Structures by the total
number of bits in them.

Analysis: Figure 5(a) shows the final parameters gener-
ated by the GA as the optimal solution. The generated code
utilizes every architected register, thereby maintaining high
ACE in the Architected RF, by utilizing the appropriate num-
ber of reg-reg instructions. The GA selects short dependence
chains to control ILP and hence occupancy of IQ, and a loop
size almost equal to the size of the ROB. Figure 5(b) shows
the convergence of Fitness Function for each generation,
averaged over the 50 individuals per generation. The abrupt
drop in the Average Fitness Function at generation 30 is due
to a cataclysm triggered by SNAP as a result of convergence
of solutions. The best solution from generation 29 is moved
into a new population of random mutations, and the process
is repeated. We see that, at the end of 50 generations (2,500
runs), the GA has converged. We execute 6 runs in parallel to
speed up the process. The overall execution time for creating
this stressmark is roughly 48 hours.
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(a) AVF of SPEC CPU2006 Integer Workloads
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(b) AVF of SPEC CPU2006 FP Workloads
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(c) AVF of MiBench Workloads

Figure 6. AVF of queuing and storage structures for SPEC CPU2006 and
MiBench workloads on the Baseline Processor Configuration.

The stressmark induces an SER of 0.797 units/bit, 0.997
units/bit and 0.931 units/bit in queues, DL1+DTLB and L2
respectively. Workload 403.gcc has the highest overall AVF
(core+cache) of all the workloads in Figure 3 and Figure 4.
Compared to this, we have over 2× higher SER in QS+RF,
and DL1+DTLB, and around 1.5× higher SER in L2.

The Alpha 21264 has a separate 2-issue FP pipeline,
in addition to the 4-issue integer pipeline. As FP pro-
grams are able to issue more instructions than integer
programs, we note that the SER of queuing structures in
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(a) SER for workloads on Configuration with Radiation Hardened Circuitry (RHC)
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(b) SER for workloads on Configuration with Error Detection and Recovery (EDR)

Figure 7. SER induced on Processor Configurations RHC and EDR, by workloads from SPEC CPU2006 and MiBench.

SPEC CPU2006 FP workloads is relatively high, com-
pared to SPEC CPU2006 integer workloads. Our stressmark
has much higher vulnerable bits than 459.GemsFDTD or
434.zeusmp, in the core or caches. The SER induced by
MiBench workloads is low.

The highest instantaneous SER in the core would occur
when the 80 entries in the ROB are distributed as 32
entries in each of the LQ and SQ, and 16 in the IQ. At
this instant, AVF of FU would be 0%. We calculate the
instantaneous worst-case occupancy for queuing structures,
in the shadow of an L2 miss as 0.899 units/bit (as compared
to 0.797 units/bit for the stressmark). Since RF AVF depends
on the duration between production and consumption, it
is difficult to estimate its AVF this way. Any processor
making forward progress will have decreased occupancy just
after the blocking L2 miss retires, and the ROB filling up
completely in the shadow of the next L2 miss. Constraints
such as the restriction on the number of loads and stores per
cycle, and the load latency, and data dependencies required
to maintain ACE-ness affect overall occupancy of a real
program. We thus find that our stressmark achieves AVF
that is close to the theoretical and unsustainable maximum.
It is impossible to positively prove that our stressmark
induces the absolute, sustainable maximum SER (A problem
shared with power and thermal viruses). It is for this reason

that we leverage the ability of the GA to optimize for
such a complex solution space. The convergence of the
GA, and low difference between an idealized, “back of the
envelope” calculation of instantaneous maximum SER and
the stressmark-induced SER gives us confidence that the
SER induced by the stressmark is very near the maximum.

Figures 6 presents the AVF of SPEC CPU2006 and
MiBench benchmarks on our baseline configuration, on
individual structures. In contrast with SPEC CPU2006, our
AVF stressmark for this microarchitecture achieves much
higher AVF on all the structures, with the exception of FUs
and in some cases, RF.

A. Stressmark generation for different circuit-level fault
rates

The task of manually generating a stressmark when the
circuit-level fault rates are not the same is even more
challenging. For the GA, however, it is only a matter of
changing the fitness function to reflect the new values. In
this section, we generate stressmarks for two configurations
for the same microarchitecture in Table I but different
underlying fault-rates outlined in Figure 8(a). We assume
unchanged fault rates in DL1, DTLB and L2. We consider
the case in which the ROB, LQ and SQ are protected
using Radiation-Hardened Circuitry (RHC), and a case in
which these structures are protected using Error Detection



RHC EDR

ROB 0.25 0
IQ 1 1
FU 1 1
RF 1 1
LQ Tag 0.4 0
LQ Data 0.4 0
SQ Tag 0.35 0
SQ Data 0.35 0

Structure

Circuit-level 
Fault Rate 
(Units/bit)

(a) Intrinsic fault rate of struc-
tures
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(b) AVF of queuing structures

Fitness

35.61

46.90

54.75 Parameter Value

57.90 Loop Size 81

58.68 No. of loads 29

58.72 No. of stores 28

58.88 No. of Independent Arithmetic Instructions5

59.02 No. of instructions dependent on L2 miss7

59.06 Avg. Dependence Chain Length2.14

59.04 Depencency Distance 6  

59.06 Fraction of Long Latency Arithmetic0.8

59.04 Fraction of Reg-Reg arithmetic instructions0.93

59.02

59.04

59.02

59.06

59.08

59.16

59.28 Parameter Value Config B

59.44 Loop Size 74 52

59.44 No. of loads 20 1

59.40 No. of stores 20 4

59.56

No. of Independent 

Arithmetic Instructions 11 13

59.54

No. of instructions 

dependent on L2 miss 4 0

59.72

Avg. Dependence 

Chain Length 2.7 15

59.78 Depencency Distance 1 1

59.76

Fraction of Long 

Latency Arithmetic 0.7

59.74

Fraction of Reg-Reg 

arithmetic instructions 0.52

59.86

36.51

44.04

53.24 Parameter Value

57.82 Loop Size 91

(c) Knob Settings for Con-
fig RHC

Parameter Value

Loop Size 54

No. of loads 2

No. of stores 6
No. of Independent 

Arithmetic 

Instructions 5
No. of instructions 

dependent on L2 hit 15
Avg. Dependence 

Chain Length 6.5

Depencency Distance 1
Fraction of Long 

Latency Arithmetic 0.9

Fraction of Reg-Reg 

arithmetic instructions 0.4

(d) Knob Setting for Con-
fig EDR

Figure 8. Results of AVF Stressmark Methodology on different circuit-level fault rates.

and Recovery (EDR). Circuit-level fault rates of structures
are not publicly available, so the failure rates assumed are
arbitrary. These assumed failure rates are still useful for
demonstrating the effectiveness of our methodology.

Configuration RHC: In the case of Config RHC, the
IQ and RF are more vulnerable than the ROB, LQ and
SQ. Our methodology compensates by trading off some
AVF in the less vulnerable units, to drive up the AVF of
IQ and RF, and hence overall SER. The GA thus attempts
to find a point where all trade-offs put together maximize
the fitness function. This comparison is presented in Figure
8(b). Comparing Figure 8(c) to Figure 5(a), we see that the
GA chooses fewer loads and stores, very short dependency
distance and longer average dependence chain length. This
reduces ILP and increases the occupancy of the IQ. Since
this setting uses more arithmetic instructions, the fraction of
reg-reg instructions required to use all architected registers
is reduced. The GA selects an instruction schedule such
that the overall SER for this new configuration approaches
the maximum. Figure 7(a) presents the SER of the core
of SPEC CPU2006 and MiBench programs. We find the
AVF stressmark induces a significantly higher SER than any
SPEC CPU2006 or MiBench programs.

Configuration EDR: Since the AVF of the ROB, LQ
and SQ are zero, the observable SER in the shadow of an
L2 miss is relatively low. The GA therefore switches to the
L2 miss-free case. Loads and stores are still required, since
we need to maintain AVF of the caches. Since there are
no long-latency stalls, IPC is higher and hence FU AVF
is higher. The turn-around time between releasing and re-
assigning a renamed register is significantly decreased and
hence RF AVF is higher. Simultaneously, the AVF of the IQ
is also increased through longer dependence chains. Figure
8(b) represents the results of running Configuration EDR.
As expected, AVF of FU and RF are driven high, at the
cost of LQ and SQ occupancy. Figure 7(b) presents the SER
induced by our workload suite on Configuration EDR. In this

case too, the SER induced by the AVF stressmark exceeds
that of any other program in the workload suite. We thus
demonstrate the the code-generator and GA methodology is
flexible enough to adapt to such that overall error rate is
increased.

B. Stressmark generation for a different microarchitecture

For completeness, we create Stressmark:Config A for a
4-issue OoO processor with a larger IQ, ROB and rename
register file in the core, and a larger DTLB and L2 cache
and latency (Configuration A), outlined in Table II. Figure
9 details the overall SER of Configurations Baseline and A,
in which all structures are assumed to have the same circuit-
level fault rate of 1 unit/bit. Further, we assume that the sizes
of each entry in the Queuing Structures of Config A are
the same as the Baseline Configuration. In order to increase
the AVF of the relatively larger IQ, the GA picks a shorter
dependency distance, and much more instructions dependent
on the L2 miss. The RF AVF is relatively lower, because the
size of the architected register stays the same, but the number
of rename registers increases. We thus demonstrate that our
methodology is flexible enough to automatically adapt to
different microarchitectures.

VII. IMPLICATIONS OF THE AVF STRESSMARK
METHODOLOGY ON DESIGN

The stressmark methodology can be used by architects to
evaluate the impact of design choices for reducing SER of
their design. We will restrict the following discussion to the
core (Queueing structures + Register File), since we clearly
achieve very high AVF on the caches. The overall SER
induced in the core by the stressmark for the Baseline, RHC
and EDR configurations is presented in Table III. Using
this information, the architect can study the area, power and
performance penalty of the SER-mitigation techniques under
consideration, and make appropriate trade-offs. A significant
advantage of our technique is its adaptiveness. When the
circuit-level fault rate of one or more structures are reduced,



Table II
ALTERNATE CONFIGURATION FOR EVALUATING THE STRESSMARK

CREATION METHODOLOGY

Parameter Configuration A
Integer ALUs 4, 1 cycle latency
Integer Multiplier 4, 7 cycle latency
Fetch/slot/map/issue/commit 4/4/4/4/4 per cycle
Issue queue 32 entries
ROB 96 entries
Integer rename register file 96
LQ/SQ size 32 entries
Branch Predictor Hybrid, 4K global, 2 level 1K local,

4K choice
L1 I cache 64kB, 2-way, 64B line, 1 cycle latency
L1 D cache 64kB, 4-way, 64B line, 3 cycle latency
D TLB 512 entry, fully associative
L2 cache 2MB, 8 way, 12 cycle latency
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(a) AVF of queuing structures

Parameter Value

Loop Size 91

No. of loads 29

No. of stores 29
No. of Independent 

Arithmetic Instructions 5
No. of instructions 

dependent on L2 miss 14
Avg. Dependence Chain 

Length 2.14

Depencency Distance 1
Fraction of Long Latency 

Arithmetic 0.6
Fraction of Reg-Reg 

arithmetic instructions 0.96

(b) Knobs for final GA solution

Figure 9. AVF of queueing and storage structures for Configuration A.

the framework automatically stresses other structures such
that the overall SER approaches the maximum. The architect
can thus pick candidate structures for protection from soft
errors, that demonstrably have a significant impact on the
overall SER.

Comparison with Other Possible Methodologies: In the
absence of an AVF stressmark, it is impossible to know
whether our set of 33 workloads offers sufficient AVF
coverage. Table III shows the worst SER observed on our
set of workloads. Our stressmark induces increased SER of
37%, 29% and 33% over the highest SER-inducing programs
for the Baseline Configuration, Configuration RHC, and
Configuration EDR, respectively. Clearly, a safety margin
that does not account for this lack of SER coverage may

Table III
COMPARISON OF WORST-CASE SER ESTIMATION METHODOLOGIES IN

THE CORE USING SPEC CPU2006 AND MIBENCH

Configuration Stressmark Best Individual Sum of Highest
Program SER per-structure SER

(units/bit) (units/bit) (units/bit)
Baseline 0.63 0.46 (447.dealII) 0.58

RHC 0.31 0.24 (459.gemsFDTD) 0.3
EDR 0.2 0.15 (susan) 0.17

result in under-design. Conversely, an aggressive safety
margin could result in over-design.

Table III also presents the worst-case SER estimated by
picking the highest SER on a per-structure basis, and adding
them together, which is referred to as “Sum of highest per-
structure SER”. This methodology results in an error of 8%,
3%, and 17%, relative to the stressmark, for the Baseline
Configuration, Configuration RHC, and Configuration EDR,
respectively. For the selected workloads, our stressmark
induces higher AVF. This is not necessarily the case, since
one could write programs that drive individual structures to
100% AVF. This methodology produces variable results, and
is fundamentally unsound. The worst-case SERs calculated
by adding the raw circuit-level SER for individual circuits
would be 1 unit/bit for the Baseline, 0.59 units/bit for Con-
figuration RHC and 0.39 units/bit for configuration EDR.
This is an over-estimation, and will lead to an extremely
pessimistic design. This, in turn, will impact performance,
power and design effort of the processor.

Utilizing the Stressmark Methodology: The knowledge
of the observable worst-case SER allows us to evaluate the
robustness of the SER evaluation workload suite in use. In
our case, the worst-case SER induced by an individual pro-
gram in our workload suite of 33 programs is significantly
less than the stressmark. This suggests that, at least for
the microarchitecture under consideration, SPEC CPU2006
and MiBench may not be varied enough. The workload
suite is lacking in programs that occupy the upper end of
SER range. The stressmark reveals “SER bottlenecks” in the
processor, and can be used to identify programs that may
target these structures to induce high AVF. This, however,
motivates the need for a rigourous methodology for selecting
workloads for that achieve sufficient AVF/SER coverage,
and are representative of user workloads, for SER evaluation.

Extending the Stressmark to Include Other Structures:
Our code generator is currently designed to target the parts
of the processor that contain the most state, and hence
the highest sources of SER. However, our methodology is
general enough to be extended to other structures, with or
without modification. For example, fetch and decode queues
are always maintained at 100% AVF as the stressmark never
incurs any branch mispredictions. FP instructions can be
trivially incorporated into the same framework as integer
instructions. However, if all these large structures are pro-



tected with error detection and recovery, the SER bottleneck
will shift to other parts of the microarchitecture. This will
potentially require the design of a different code generator,
that stresses these smaller structures. A study similar to ours
will be required, that identifies microarchitecture-dependent
characteristics, and utilizes these to create a code generator.
Restricting the search space of the GA is important to allow
it to converge in a reasonable amount of time. We believe
that our work is a significant first step towards defining a
methodology for SER benchmarking and evaluation.

VIII. RELATED WORK

There has been some prior work on attempting to increase
the visibility of radiation induced faults at the program
output. Kellington et al. [17] and Sanda et al. [18] study
the soft-error tolerance of the IBM POWER6 processor
under a radiation beam. They use a proprietary validation
software called Architectural Verification Program (AVP)
which injects random instructions into the core, and detects
errors on the fly. They report that AVP injects roughly 20%
un-ACE bits, and mainly exercises the core and not the
caches. Due to the proprietary set-up of AVP, we are unaware
of the extent to which it exercises the core, but we expect
that completely random injection of instructions, even if they
were all ACE, would likely not maximize the corruptable
state resident in the processor. It would be unlikely for it to
arrive at the characteristics outlined in our work, randomly.
A machine learning technique can be incorporated, but we
expect that our solution still helps the GA converge much
faster and with more confidence in the result. Circuit level
techniques have been proposed, such as work by Sanyal
et al [19], [20], [21]. However, this does not consider the
masking effect of program execution, and cannot be used
during the early design stage.

Recent work by Sridharan et al. [22] introduces the
concept of Hardware Vulnerability Factor (HVF), which can
be used to bound the AVF on a structure while running
a program. They show that HVF correlates strongly with
occupancy, although not exactly equivalent. Whereas HVF
may be used to estimate the highest possible SER while
running a workload suite, it still cannot be used to determine
the worst-case observable SER due to its dependence on
workloads, and their coverage. It thus shares the same
limitation of ACE analysis, for determining the observable
worst-case SER. Sridharan et al. [23] use a microarchitecture
independent metric Program Vulnerability Factor (PVF) to
study the AVF of register files. They use PVF to study the
effect of compiler flags on vulnerability of the Architected
Register File, and report inconsistent effects of the compiler
on AVF of the register file. Sridharan et al [24] study the
potential benefit of techniques that rely on mitigating AVF
in the shadow of long-latency stalls, such as those presented
in [25], [26], and report that almost 60% of the AVF of

queueing structures is accounted for in the shadow of a long
latency miss.

Joshi et al. [27] and Ganesan et al. [28] utilize genetic
algorithms to develop stressmarks for power and thermal
stressmarks. Their methodology cannot be directly used for
AVF, since it has no means of capturing ACE and core
or cache occupancy. Furthermore, they rely on microarchi-
tecture independent program characteristics, which are not
not useful, since AVF is strongly dependent on microar-
chitecture. Our methodology creates a code generator that
is expressly designed for generating an AVF stressmark,
by working from first principles. Consequently, most of
the knobs used, and the nature of the code generator, are
significantly different.

Although we use ACE analysis to develop our stressmark,
other methodologies such as SoftArch [29] can be used.
However, SoftArch cannot be used to determine the worst-
case SER without our methodology, and is not a substitute
for this work. Li et al. [30] report that ACE analysis
(AVF+Sum of Failure Rates) may not accurately estimate
MTTF in the presence of a large number of processors or
very high fault rates and long running workloads. This does
not affect our work, since our objective is to increase the
overall susceptible state in the processor, and not measure
actual MTTF. ACE analysis is still a useful tool in guaging
the susceptibility of a processor to soft-errors.

IX. CONCLUSION

In this work, we highlight the lack of a deterministic
methodology for evaluating the highest observable SER.
We demonstrate that methodologies that ignore the inter-
actions between structures within a processor may incur
significant errors while estimating the highest SER under
program influence. We therefore propose an automated and
flexible methodology, derived from a comprehensive study
of interactions between structures in an OoO processor, that
generates an stressmark that approaches the maximum SER
observable while running a program. We demonstrate how
our methodology can enable architects to make quantifi-
able decisions regarding the effect of various SER mitiga-
tion mechanisms on overall highest SER. This knowledge
enables better informed trade-offs between performance,
power, area and SER reliability. The stressmark achieves
1.4×, 2.5×, and 1.5× higher SER in core, DL1+DTLB and
L2 respectively, as compared to the highest SER induced by
SPEC CPU2006 and MiBench programs.
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