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ABSTRACT 
Performance simulation tools must be validated during the 
design process as functional models and early hardware are 
developed, so that designers can be sure of the performance of 
their designs as they implement changes. The current state-of-
the-art is to use simple hand-coded bandwidth and latency 
testcases to assess early performance and to calibrate 
performance models. Applications and benchmark suites such as 
SPEC CPU are difficult to set up or take too long to execute on 
functional models. Short trace snippets from applications can be 
executed on performance and functional simulators, but not 
without difficulty on hardware, and there is no guarantee that 
hand-coded tests and short snippets cover the performance of 
the original applications.  

We present a new automatic testcase synthesis methodology to 
address these concerns. By basing testcase synthesis on the 
workload characteristics of an application, we create source 
code that largely represents the performance of the application, 
but which executes in a fraction of the runtime. We synthesize 
representative versions of the SPEC2000 benchmarks, compile 
and execute them, and obtain an average IPC within 2.4% of the 
average IPC of the original benchmarks with similar average 
workload characteristics. In addition, the changes in IPC due to 
design changes are found to be proportional to the changes in 
IPC for the original applications. The synthetic testcases execute 
more than three orders of magnitude faster than the original 
applications, typically in less than 300K instructions, making 
performance model validation feasible. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Modeling techniques 

General Terms 
Performance, Design, Verification 

Keywords 
Automatic Benchmark Synthesis, Synthetic Benchmarks, 
Benchmarking, Performance Modeling 

1. INTRODUCTION 
The process of verifying that a performance model is 

accurate with respect to a functional model or hardware is 
known as performance model validation [5]. Validation is 
necessary at various points during the design process to 
minimize incorrect design decisions due to inaccurate 
performance models. While the relative error of design changes 
based on inaccurate performance models is often similar to the 
relative error using accurate models [5][12], the correspondence 
is not without limit. As functional models are improved in the 
design phases, or when first pass hardware is obtained, accurate 
performance models can pinpoint with more certainty the effects 
of particular design changes. 

Prior validation efforts have focused on bandwidth and 
latency tests, resource limit tests, or micro-tests [6][27][3][18] 
[17][16]. These tests are usually hand-written microbenchmarks 
that validate the basic processor pipeline latencies, including 
cycle counts of individual instructions, cache hit and miss 
latencies, pipeline issue latencies for back-to-back dependent 
operations, and pipeline bypassing. Black and Shen describe 
automatic testcases created with up to 100 random instructions 
[3], not enough to approximate many workload characteristics. 
Desikan et al. use microbenchmarks to validate the Alpha 21267 
to 2% error [11]. However, the validated simulator still gives 
errors from 20% to 40% on the SPEC2000 applications.  

Applications themselves cannot be used for performance 
model validation because of their impossibly long simulation 
runtimes [5]. Trace sampling techniques such as SimPoint [22] 
and SMARTS [33] can reduce runtimes in simulators, but the 
executions still amount to tens of millions of instructions. 
Statistical simulation can further reduce the necessary trace 
lengths [8][19][12], but executing traces on functional models or 
hardware is difficult. Sakamoto et al. present a method to create 
a binary image of a trace along with a memory dump and 
execute those on a specific machine and a logic simulator [21], 
but there is no attempt to reduce trace lengths. Hsieh and 
Pedram synthesize instructions for power estimation [14], but 
there is no attempt to maintain the machine-independent 
workload characteristics necessary to represent the original 
applications [1]. The design community recognizes the need for 
an automatic way to generate relevant and flexible synthetic 
benchmarks [23], but no such method has been forthcoming. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 

The major contribution of this paper is a step toward such a 
method. We synthesize testcases that are more representative of 
applications than microbenchmarks and yet converge to results 
quickly. We use the workload characterization of statistical 
simulation to capture the dynamic features of the program, 
adding memory access and branching models. A testcase is 
generated as C-code, with low-level instructions instantiated as 
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asm statements. When compiled and executed, the synthetic 
code reproduces the dynamic workload characteristics of an 
application, and it can be easily executed on a variety of 
performance and functional simulators, emulators, and 
hardware, with significantly reduced runtimes.  

The rest of this paper is organized as follows. Section 2 
presents the conceptual framework of the testcase synthesis 
method and some of its benefits. Section 3 describes the 
synthesis approach in detail. Section 4 presents experimental 
results. Section 5 presents related work, and the last sections 
present conclusions and references. 

2. REPRESENTATIVE SYNTHETICS 
 We achieve a degree of representativeness by synthesizing 

a testcase from a workload characterization of the low-level 
dynamic runtime characteristics of an application, the same 
characterization used in statistical simulation [8][19][12][1]. We 
make the following key observation: the statistical flow graph 
[19][12][1] is a reduced representation of the control flow 
instructions of the application – a compact representative 
program. In addition, the synthetic trace from workload 
characterization converges to an accurate result in a fraction of 
the time of the original workload [19][12][1]. We combine the 
representative trace with novel algorithms for locality structure 
synthesis to automatically generate a simple but flexible 
testcase. The testcase is a C-code envelope around a sequence of 
asm calls that reproduce the behavior of low-level basic blocks. 
The testcase is easily retargeted for use on machines with 
similar ISAs. For example, transforming a C program with 
Alpha asm calls to PowerPC asm calls is straightforward, since 
both instruction sets follow the RISC philosophy. 

Ideally, our testcases would be benchmark replacements, 
but the memory and branching models used to create them 
introduce errors (Section 3), making them a solution in the 
“middle” between microbenchmarks and applications. Many of 
the application characteristics are maintained (Section 4), but 
there is much room for future work into more accurate models. 

The synthetic traces in statistical simulation have been 
shown to exhibit representative behavior when executed on 
program phases [12][1]. Likewise, a testcase to represent an 
entire program can be created by concatenating together 
testcases synthesized from each phase. In this work, we 
demonstrate testcase synthesis on a single phase.  

Our C-code envelope increases portability to execution-
driven simulators, emulators and hardware. At synthesis-time, 
user parameters can modify workload characteristics to study 
predicted trends of future workloads. At runtime, parameters 
can switch between sections of code, changing the mix of 

program phases or modeling consolidated programs.  
Because we synthesize from low-level workload statistics, 

we avoid questions of high-level programming style, language, 
or library routines that plagued the representativeness of the 
early hand-coded synthetic benchmarks such as Whetstone [10] 
and Dhrystone [30]. 

 Synthesis using statistics rather than actual source 
effectively hides the functional meaning of the code and data, 
and motivates increased code sharing between industry and 
academia. Many vendors hesitate to share their proprietary 
applications and data for research. This is particularly true in 
database, embedded and systems software areas. Figure 1 shows 
the proposed path to code sharing. 

3. SYNTHESIS APPROACH 
With reference to Figure 2, the following sections detail the 

four major phases of synthesis: workload characterization; 
graph analysis; register assignment and code generation.  
3.1 Workload Characterization 

A profile of the dynamic execution of an application 
produces a set of workload characteristics. This is the same 
analysis that gives good statistical simulation correlation 
[12][1]. The most significant characteristics are the original 
basic block instruction sequences and the instruction 
dependencies [1], but we also characterize the branch 
predictabilities and the L1 and L2 I-cache and D-cache miss 
rates at the granularity of the basic block. Instructions are 
abstracted into five classes plus sub-types: integer, floating-
point (short or long execution times), load (integer or float), 
store (integer or float), and branch (on integer or float).  

There is no separate input dataset for the synthetic 
testcases. The input dataset manifests itself in the final workload 
characteristics obtained from the execution profile. While 
separate testcases must be synthesized for each possible dataset, 
the automatic synthesis approach makes that feasible. 

3.2 Graph Analysis 
In the following sections, the analysis of the workload 

characterization for code synthesis is described. 
3.2.1 Instruction Miss Rate and I-cache Model 

The number of basic blocks to be instantiated in the 
synthetic testcase is estimated based on a default I-cache size 
and configuration (16K entries, 32B blocks, 1-way 
associativity). We then tune the number of synthetic basic 
blocks to match the original I-cache miss-rate (IMR). Specific 
basic blocks are chosen from a walk of the statistical flow 
graph, as in [12][1]. Usually a small number of synthesis 
iterations are necessary to match the IMR. The numbers of basic 
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Figure 2. Testcase Synthesis and Simulation Overview
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blocks and instructions synthesized for the Alpha versions of the 
SPEC2000 and STREAM benchmarks are shown in Table 3. 
3.2.2 Instruction Dependencies and Compatibility 

All instruction input dependencies are assigned. The 
starting dependence is exactly the dependent instruction chosen 
as an input during statistical simulation. The issue then becomes 
operand compatibility: if the dependency is not compatible with 
the input type of the dependent instruction, then another 
instruction must be chosen. The algorithm is to move forward 
and backward from the starting dependency through the list of 
instructions in sequence order until the dependency is 
compatible. The average number of moves per instruction input 
is shown in Table 3 for the SPEC2000 and STREAM in column 
dependency moves, and is generally small. In the case of a store 
or branch that is operating on external data for which no other 
instruction in the program is compatible, an additional variable 
of the correct data type is created. 

 Table 1 shows the compatibility of instructions for the 
Alpha instruction set. The Inputs column gives the assembly 
instruction inputs that are being tested for compatibility. For 
loads and stores, the memory access register must be an integer 
type. When found, it is attributed as a memory access counter 
(LSCNTR) for special processing during the code generation 
phase. 
3.2.3 Loop Counters and Program Termination 

When all instructions have compatible dependencies, a 
search is made for an additional integer instruction that is 
attributed as the loop counter (BRCNTR). The branch in the last 
basic block in the program checks the BRCNTR result to 
determine when the program is complete. The number of 
executed loops, loop iterations in Table 3, is chosen to be large 
enough to assure IPC convergence. Conceptually, this means 
that the number of loops must be larger than the longest memory 

access stream pattern of any memory operation among the basic 
blocks. In practice, the number of loops does not have to be very 
large to characterize simple stream access patterns. Experiments 
have shown that the product of the loop iterations and the 
number of instructions must be around 300K to achieve low 
branch predictabilities and good stream convergence. The loop 
iterations are therefore approximately 300K/(number of 
instructions). This can be tuned with a user parameter. An 
additional integer instruction is converted to a cmple to compare 
the BRCNTR to zero for the final branch test. 
3.2.4 Memory Access Model 

The LSCNTR instructions are assigned a stride based on 
the D-cache hit rate found for their corresponding load and store 
accesses during workload characterization. The memory 
accesses for data are modeled using the 16 simple stream access 
classes shown in Table 2. The stride for a memory access is 
determined first by matching the L1 hit rate of the load or store 
fed by the LSCNTR, after which the L2 hit rate for the stream is 
predetermined. If the L1 hit rate is below 12.5%, the L2 hit rate 
is matched. The table was generated based on an L1 line size of 
32 bytes and an L2 line size of 64 bytes, and the corresponding 
stride is shown in 4 byte increments.  

By treating all memory accesses as streams and working 
from a base cache configuration, the memory access model is 
kept simple. This reduces the impact on the testcase instruction 
sequences and dependencies, which have been shown to be 
critical for correlation with the original workload [1]. On the 

Table 1. Dependence Compatibility Chart 
Dependent 
Instruction Inputs Dependence 

Compatibility Comment 

Integer 0/1 Integer, Load-Integer  
Float 0/1 Float, Load-Float  
Load-
Integer/Float 0 Integer Memory access 

counter input 
Store-Integer 0 Integer, Load-Integer Data input 
Store-Float 0 Float, Load-Float Data input 
Store-
Integer/Float 1 Integer Memory access 

counter input 
Branch-Integer 0/1 Integer, Load-Integer  
Branch-Float 0/1 Float, Load-Float  

Table 2. L1 and L2 Hit Rates versus Stride 
L1 Hit Rate L2 Hit Rate Stride 

0.0000 0.000 16 
0.0000 0.0625 15 
0.0000 0.1250 14 
0.0000 0.1875 13 
0.0000 0.2500 12 
0.0000 0.3125 11 
0.0000 0.3750 10 
0.0000 0.4375 9 
0.0000 0.5000 8 
0.1250 0.5000 7 
0.2500 0.5000 6 
0.3750 0.5000 5 
0.5000 0.5000 4 
0.6250 0.5000 3 
0.7500 0.5000 2 
0.8750 0.5000 1 
1.0000 N/A 0 



other hand, there can be a large error in stream behavior when 
an actual stream hit rate falls between the hit rates in two rows, 
and the simple model is responsible for correlation error when 
the cache hierarchy changes (see Section 4.3). More 
complicated models might walk cache congruence classes or 
pages (to model TLB misses), or move, add, or convert 
instructions to implement specific access functions. There are 
many models in the literature that can be investigated as future 
work, for example [24][29][9][15]. 

 In some cases, we found that additional manipulation of 
the streams was necessary for correlation of the testcases 
because of the cumulative errors in stream selection. In Table 3, 
the stream factor multiplies the L1 hit rate taken from the table 
during each lookup, and if the result is greater than the original 
hit rate, the selected stream is chosen from the preceding row. 
This has the effect of reducing overall hit rates for the first load 
or store fed by an LSCNTR. 

Because the dependency analysis may cause several 
memory access operations to use the same LSCNTR, the overall 
access rate at the granularity of the basic block may be 
significantly in error. During synthesis, the overall miss rate for 
the basic block is estimated as the number of LSCNTRs feeding 
the block divided by the total number of loads and stores in the 

block. The miss rate estimate factor in Table 3 modifies the 
calculated miss rate estimate and causes the selected table row 
for the LSCNTR to change accordingly. Smaller factors increase 
the basic block miss rate while larger factors decrease it. 
Usually a small number of synthesis iterations are needed to 
find a combination of factors to model the overall access rates of 
the application. 
3.2.5 Branch Predictability Model 

To model branch predictability, we calculate the branches 
that will have taken-targets based on the global branch 
predictability, BR, of the original application (assumed greater 
than 50%). An integer instruction (attributed as the BPCNTR) 
that is not used as a memory access counter or a loop counter is 
converted into an invert instruction operating on a particular 
register every time it is encountered. If the register is set, the 
branch jumps past the next basic block in the default loop. The 
invert mechanism causes a branch to have a predictability of 
50% for 2-bit saturating counter predictors. The target BR is:   

           NNFNFBR /))5.0()1(( ⋅⋅−+⋅=  
where (1 - F) is the fraction of branches in the synthetic 
benchmark that are configured to use the invert mechanism, and 
N is the total number of synthesized branches. Solving for (1 - 

Table 3.  Synthetic Testcase Properties 

Name Number of 
Basic Blks 

Number of 
Instructions 

Stream 
Pools 

Code 
Regis 

BP 
Factor

Stream 
Factor

Miss Rate 
Est. 

Factor 

Loop 
Iterations

Dependency 
Moves 

Actual 
Runtime (s) 

Synthetic 
Runtime (s)

Runtime 
Ratio 

gcc 850 4585 9 8 1.15 1.07 1.00 51 0.943 6602.85 3.49 1891.93
gzip 408 4218 7 10 1.10 1.01 1.00 71 0.188 16695.06 3.88 4302.85

crafty 635 4896 9 8 1.15 1.00 1.00 54 0.363 6277.21 3.75 1673.92
eon 580 4394 9 8 1.15 1.00 1.00 50 1.209 67064.77 3.15 21290.40
gap 268 4193 9 8 1.15 1.00 1.00 62 0.477 5283.60 3.37 1567.83

bzip2 311 2515 9 8 1.15 1.00 1.00 109 0.147 10853.61 3.70 2933.41
vpr 550 4135 9 8 1.00 1.04 1.00 74 0.977 6470.38 4.32 1497.77
mcf 727 4189 9 8 1.05 1.00 1.00 61 0.374 18450.95 3.41 5410.84

parser 741 3949 9 8 1.10 1.05 1.00 71 0.567 6459.54 3.95 1635.33
perlbmk 606 4263 9 8 1.00 1.00 1.00 61 0.519 22269.29 3.36 6627.76
vortex 947 5006 9 8 1.10 1.00 1.00 47 0.466 5919.24 3.39 1746.09
twolf 739 4315 9 8 1.04 1.08 1.00 72 0.498 18976.74 4.26 4454.63
mgrid 30 3930 7 10 1.20 1.30 0.25 69 9.413 62918.27 3.81 16513.98
mesa 619 4292 9 8 1.05 1.00 1.00 64 0.867 56597.98 3.60 15721.66
art 450 3762 7 10 0.90 1.50 0.47 73 1.111 89628.10 5.74 15614.65

lucas 210 3359 7 10 1.00 1.00 1.00 164 0.691 14697.19 6.28 2340.32
ammp 715 4092 13 4 1.00 1.50 0.50 88 0.152 21799.12 9.34 2333.95
applu 19 3363 7 10 1.50 1.00 1.10 76 20.293 14149.28 4.00 3537.32
apsi 488 4379 7 10 1.00 1.00 0.30 64 7.195 61669.89 3.62 18693.34

equake 758 4328 7 8 1.00 1.00 1.00 65 1.468 17989.55 3.59 5011.02
galgel 273 3967 7 10 1.00 1.50 0.55 66 0.491 24391.40 4.80 5081.54
swim 131 3866 9 8 1.50 1.10 1.00 91 0.579 18347.04 4.97 3691.56

sixtrack 621 4173 9 8 1.00 1.02 1.00 84 1.810 21028.38 4.55 4621.62
wupwise 176 3656 6 6 1.05 1.03 1.00 224 0.926 18306.39 8.56 2138.60
facerec 176 3126 9 8 1.10 0.95 1.05 89 4.622 17156.95 3.79 4526.90
fma3d 869 4377 6 8 1.03 1.00 1.00 147 0.149 32235.77 6.59 4891.62
saxpy 1 10 2 12 1.00 1.00 1.00 30000 0.000 150.78 3.95 38.17 
sdot 1 10 2 12 1.00 1.00 1.00 30000 0.000 417.74 3.75 111.40 
sfill 1 6 1 12 1.00 1.00 1.00 70000 0.333 202.00 3.65 55.34 
scopy 1 8 2 12 1.00 1.00 1.00 30000 0.000 38.24 3.07 12.46 
ssum2 1 6 1 12 1.00 1.00 1.00 30000 0.143 53.27 2.26 23.57 
sscale 1 8 2 12 1.00 1.00 1.00 30000 0.000 38.37 3.10 12.38 
striad 1 12 3 12 1.00 1.00 1.00 30000 0.000 57.16 4.51 12.67 
ssum1 1 10 3 12 1.00 1.00 1.00 30000 0.000 91.49 4.24 21.58 



F), the fraction of branches that must be configured is 2*(1 – 
BR). A uniform random variable over this fraction is used to 
pick which branches are configured. 

The fraction BR is sometimes not sufficient to model the 
branch predictability because of variabilities in the mix of 
dynamic basic blocks used and the code size. To compensate, 
the BP Factor in Table 3 multiplies BR to increase or decrease 
the number of configured branches. Usually a small number of 
synthesis iterations are needed to tune this factor. 

 In an additional implementation, a branch jumps past a 
user-defined number of basic blocks instead of just one, but this 
did not result in improved branch predictability. In another 
implementation, a branch jumps past a user-defined number of 
instructions in the next basic block. This also did not improve 
predictability except for mgrid and applu, which have large 
average basic block sizes such that jumping past an entire basic 
block significantly changes the instruction mix. In those cases, 
the branch jumps past ten instructions of the next basic block.  

During synthesis experiments, it was noticed that 
benchmarks with large average basic block sizes and therefore 
small numbers of basic blocks in the final synthetic code are 
prone to have a skewed basic block mix that favors shorter basic 
blocks. For mgrid and applu, during basic block selection, if a 
uniform random variable is greater than an additional factor, set 
to 0.5 and 0.9, respectively, then the successors of the previous 
block that are on average longer than 50 instructions are 
checked first to be included. 

When configuring branches, the BRCNTR, cmple and 
BPCNTR instructions must not be skipped over by a taken 
branch, or loop iterations may not converge or the branch 
predictability may be thrown off. Code regions containing these 
attributed instructions are carefully avoided. 

3.3 Register Assignment 
All architected register usages in the synthetic testcase are 

assigned exactly during the register assignment phase. Most 
ISAs, including the Alpha ISA, specify dedicated registers that 
should not be modified without saving and restoring. In practice, 
not all registers need to be used to achieve a good synthesis 
result. In our experiments, only 20 general-purpose registers 
divided between memory access stream counters and code use 
are necessary. For the benchmarks under study, the number of 
registers available for streams averages about 8 and for code use 
about 9 (stream pools and code registers in Table 3). Three 
additional registers are reserved for the BRCNTR, cmple, and 
BPCNTR functions. 

Memory access streams are pooled according to their 
stream access characteristics and a register is reserved for each 
class (stream pools in Table 3). All LSCNTRs in the same pool 
increment the same register, so new stream data are accessed 
similarly whether there are a lot of LSCNTRs in the pool and 
few loop iterations or few in the pool but many iterations. For 
applications with large numbers of stream pools, synthesis 
consolidates the least frequent pools together (using the most 
frequent LSCNTR stride among them) until the total number of 
registers is under the limit. 

In practice, a roughly even split between code registers and 
pool registers improves benchmark quality. High quality is 
defined as a high correspondence between the instructions in the 
compiled benchmark and the original synthetic C-code 
instructions. With too few or too many registers available for 

code use, the compiler may insert stack operations into the 
binary. The machine characteristics may not suffer from a few 
stack operations, but for this study we chose to synthesize code 
without them. 

The available code registers are assigned to instruction 
outputs in a round-robin fashion. 

3.4 Code Generation 
 The code generator of Figure 2 takes the representative 

instructions, the instruction attributes from graph analysis, and 
the register assignments and outputs a single module of C-code 
that contains calls to assembly-language instructions in the 
Alpha language. Each instruction in the representative trace 
maps one-to-one to a single volatile asm call in the C-code. The 
steps are detailed in the following paragraphs. 

 First, the C-code main header is generated. Then variable 
declarations are generated to link output registers to memory 
access variables for the stream pools, the loop counter variable 
(BRCNTR), the branching variable (BPCNTR), and the cmple 
variable. Pointers to the correct memory type for each stream 
pool are also declared. Malloc calls for the stream data in 
memory are generated with size based on the number of 
iterations per program loop. Initializations are generated for 
each stream pool output register to the head of the data. 

The BRCNTR register is initialized to the number of times 
the instructions will be executed. The instructions are then 
generated as calls to assembly language instructions. Each call 
is given an associated unique label. LSCNTRs are generated 
using addi instructions to add the stride to its current register 
value. The BRCNTR is generated as an add of minus one to its 
register. Long latency floating-point operations are generated 
using muls and short latency operations are generated using 
adds. Loads use lwz or lds, depending on the type, and similarly 
for stores. Branches use the beq type, and can have either 
integer or float operands. The basic blocks are analyzed and 
code is generated to print out unconnected output registers 
depending on a switch value. The switch is never set, but the 
print statements guarantee that no code is eliminated during 
compilation. Code to free the malloced memory is generated, 
and finally a C-code footer is generated.  

Table 3 gives the synthesis information for the SPEC2000 
and STREAM codes as described in this section. The runtime 
ratio is the user runtime of the original benchmark for one 
billion instructions (1M for STREAM) divided by the user 
runtime of the synthetic testcase on various Power3 (400MHz) 
and Power4 (1.2 GHz) workstations. Variations in runtime 
reflect network traffic during the runs. Each pass through the 
synthesis process takes about three minutes on an IBM p270 

Table 4. Default  Simulation Configuration, Alpha ISA 
Instruction Size (bytes) 4 
L1/L2 Line Size (bytes) 32/64 

Machine Width 4 
Dispatch Window/LSQ/IFQ 16/8/4 

Memory System 16K 4-way L1 D, 16K 1-way L1 I,  
256K 4-way unified L2 

L1/L2/Memory 
Latency+transfer (cycles) 1/6/34 

Functional Units 4 I-ALU, 1 I-MUL/DIV,  
4 FP-ALU, 1 FP-MUL/DIV  

Branch Predictor Bimodal 2K table,  
3 cycle misspredict penalty 
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Figure 3.  Actual vs. Synthetic IPC
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Figure 6.  Actual vs. Synthetic I-cache Miss Rate
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(400 MHz). An average of about ten passes plus think time were 
necessary to tune the synthesis parameters for each testcase. All 
the data in Table 3 took less than five workdays to generate. 
4. SYNTHESIS RESULTS 

In this section we present the results of the testcase 
synthesis experiments. 

4.1 Experimental Setup and Benchmarks 
We use a system [1] modified from HLS [19][20]. 

SimpleScalar Release 3.0 [7] was downloaded and sim-cache 
was modified to carry out the workload characterization as in 
[12][1]. The SPEC2000 [26] Alpha binaries were executed in 
sim-outorder on the first reference dataset for the first billion 
instructions (corresponding to a single program phase [1]). In 
addition, single-precision versions of the STREAM and 
STREAM2 benchmarks [16] with a one million-loop limit were 
compiled on an Alpha machine. We use the default 
SimpleScalar configuration in Table 4, also used in [19]. 
SimpleScalar does not model an L3, so the memory latency used 
here is an estimate of L3 latency.  

A code generator was built into HLS, and C-code was 
produced using the synthesis methods of Section 3. The 
synthetic testcases were compiled on an Alpha machine using 
gcc with optimization level –O2 and executed to completion in 
SimpleScalar. 
4.2 SPEC2000 Synthesis Results 

The following figures show results for both the original 
applications, actual, and the synthetic testcases, synthetic. 
Figure 3 shows the IPC for the benchmarks. The average error 
for the synthetic benchmarks is 2.4%, with a maximum error of 
8.0% for facerec. We discuss the reasons for the errors in the 

context of the figures below.  
Figure 4 compares the average instruction percentages over 

all benchmarks for each class of instructions. The average 
prediction error for the synthetic testcases is 3.4% with a 
maximum of 7.3% for branches. Figure 5 shows that the basic 
block size varies per benchmark with an average error of 7.2% 
and a maximum of 21% for mgrid. The errors are caused by 
variations in the fractions of specific basic block types in the 
synthetic benchmark with respect to the original workload, 
which is a direct consequence of selecting a limited number of 
basic blocks during synthesis. For example, mgrid is 
synthesized with a total of 30 basic blocks made up of only six 
different unique block types. Applu is synthesized with 19 basic 
blocks but 18 unique block types. The basic block frequencies 
in the synthetic mgrid differ by 33.6% on average (only 8.4% 
for the top 40% of basic blocks) versus the basic block 
frequencies of the original workload. This is in contrast to 
testcases with large numbers of basic blocks such as gzip, which 
differ by only 2.2%. 

The I-cache miss rates are shown in Figure 6. They show 
an error of 8.6% for benchmarks with IMRs above 1%, with a 
maximum of 22.9% for sixtrack. The number of synthetic 
instructions, however, is within 2.8% of the expected number 
given the I-cache configuration. The errors are again due to the 
process of choosing a small number of basic blocks with 
specific block sizes to synthesize the workload. For miss rates 
close to zero, a number of instructions less than 4096 is used, up 
to the number needed to give an appropriate instruction mix for 
the testcase. For the STREAM loops, only one basic block is 
needed to meet both the IMR and the instruction mix 
requirements. For the synthetic testcases, there appears to be a 
small but non-zero IMR, versus an essentially zero miss rate for 
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Figure 5.  Actual vs. Synthetic Basic Block Sizes
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Figure 7.  Branch Predictability
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Figure 8.  Actual vs. Synthetic DL1 Miss Rate
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some of the applications. This is because the synthetic testcases 
are only executed for about 300K instructions, far fewer than 
necessary to achieve a very small I-cache miss rate. However, 
since the miss rates are small, their impact on IPC when coupled 
with the miss penalty is also small.  

The average branch predictability error is 1.9%, shown in 
Figure 7. The largest error is art at 6.4%, and mgrid has the 
third largest error at 4.9%. The L1 data cache miss rates are 
shown in Figure 8. For miss rates greater than 1%, the error is 
12.3%. For these miss rates, the trends using the synthetic 
testcases clearly correspond with those of the original 
workloads. Again, there is more variation for smaller miss rates, 
but again the execution impact is also small.  

In Figure 9, the unified L2 miss rates are shown. The large 
errors due to the simple streaming memory access model are 
often mitigated by small L1 miss rates. A good example is gcc, 
which has only a 2.6% L1 miss rate, and even the small L2 miss 
rate will not impact IPC significantly. Even though art and 
ammp have large L1 miss rates, the smaller L2 miss rates are 
offset by relatively larger I-cache miss rates and smaller branch 

predictabilities. The main cause of these errors is the fact that 
the current memory access model focuses on matching the L1 
hit rate, and the L2 hit rate is simply predetermined as a 
consequence. The large error for ammp is partially explained by 
the fact that our small data-footprint synthetic testcases have 
data-TLB miss rates near zero, while the actual ammp 
benchmark has a data-TLB miss rate closer to 13%. As a 
consequence, the synthetic version does not correlate well when 
the dispatch window is increased and tends to be optimistic.  

Figure 10 shows the average dependency distances, with 
11.1% error on average. The largest components of error are the 
integer dependencies, caused by the conversion of many integer 
instructions to LSCNTRs, the memory access stride counters. A 
stride counter overrides the original function of the integer 
instruction and causes dependency relationships to change. 
Another source of error is the movement of dependencies during 
the search for compatible dependencies in the synthesis process. 
The movement is usually less than one position (Table 3), but 
mgrid and applu, the benchmarks with the largest average block 
sizes at 100.07 and 93.42, respectively, show significant 
movement. The branching model also contributes errors. 
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Figure 9.  Actual vs. Synthetic UL2 Miss Rate
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Figure 10. Actual vs. Synthetic
 Dependency Distances

A
vg

. D
ep

en
de

nc
y 

D
is

t. actual synthetic

0
0.5

1
1.5

2
2.5

3
3.5

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

vo
rte

x
tw

ol
f

m
gr

id
m

es
a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 12. IPC Dispatch Window 32 
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Figure 13. IPC Dispatch Window 64 
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Figure 14. IPC Prediction Error for Dispatch
 Windows of 32 and 64 
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Figure 15. Delta IPC as Dispatch Window 
Increases from 16 to 32 
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Figure 16. Delta IPC as Dispatch Window 
Increases from 16 to 64 
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 Despite the dependency distance errors, Figure 11 shows 
that the average dispatch window occupancies are similar to 
those of the original benchmarks with an average error of 4.1%. 
4.3 Assessing Design Changes 

We now study design changes using the same synthetic 
testcases; that is, we take the testcases described in the last 
section, change the machine parameters in SimpleScalar and re-
execute them. We test the accuracy of the synthetics by studying 
design changes in which the change in IPC is significantly 
greater than the average error between the synthetic and actual 
workload. For example, the dispatch window studies change 
IPC by more than 17% in each case. 

Figures 12 and 13 show the absolute IPCs using a dispatch 
window of 32 and 64 with average errors of 3.0% and 3.1%, 
respectively. These numbers do not include ammp; as explained 
in the last section, ammp tends to be optimistic when the 
dispatch window changes because our small data footprint 

testcases do not model data-TLB misses. Figure 14 graphs the 
IPC prediction errors [12] for the dispatch windows. Most 
errors, except for ammp, are below 5%.  

 Figures 15 and 16 show the absolute change in IPC, delta 
IPC, as the same benchmarks and testcases are executed first 
with the default configuration (dispatch window of 16) and then 
with the dispatch window sizes changed to 32 and 64 
respectively. The average relative errors [12] are 1.3% and 
1.5%, respectively. The graphs show that, when an application 
change is large with respect to the changes in the other 
applications, the synthetic testcase change is also large relative 
to the change in the other synthetic testcases. These IPC 
changes would be large enough to trigger additional studies 
using a detailed cycle-accurate simulator, including an analysis 
of ammp. Chip designers are looking for cases in a large design 
space in which a design change may improve or worsen a 
design. In the case of the dispatch window studies, the results 
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Figure 18. Delta IPC as Issue Width 
Increases from 1 to 4 
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Figure 17. Delta IPC as L1 Data Latency 
Increases from 1 to 8 
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would trigger further cycle-accurate studies of lucas, ammp, 
swim,wupwise, fma3d and the STREAM benchmarks. 
Alternatively, the designers might be curious why the change 
did not help the SPECint testcases.  

Figure 17 shows the delta IPC as the L1 D-cache latency is 
increased from 1 to 8. The average absolute IPC error is 9.5% 
and the relative error is 9.7%. The errors are high, but the larger 
changes in the actual benchmarks over 1B instructions are 
reflected in the synthetic testcases that run in seconds. However, 
it is apparent that the memory access model is less accurate for 
SPECint than for the other testcases. In fact, the average relative 
error for SPECint is 19.9% versus 4.2% for the others.  

Figure 18 shows better results for the delta IPC as the issue  
width increases from 1 to 4. The average absolute error is 1.9%,  
and the relative error is 2.4%. Similar results for commit width 
changes, doubling the L1 D-cache (to 256 sets, 64B cache line, 
8-way set associative), and doubling the L1 I-cache 
configuration (to 1024 sets, 64B cache line, 2-way set 
associativity) are shown in Tables 5 and 6. We also reproduce 
results from technical report [2] for the SPEC95 testcases 
synthesized the same way but targeting the Pisa ISA. 

In an additional study, a code generation target for the 
PowerPC ISA was implemented, and an instruction trace for 
TPC-C (described in [4]) was fed through the synthesis code.  
The resulting testcase was then compiled and executed on a 
detailed performance simulator for the IBM Power4 processor 
[28] and compared to results for the original 62M instructions. 
A 6.4% IPC error was obtained, demonstrating the flexibility 
and retargetability of the synthesis approach. 

5. RELATED SYNTHESIS WORK 
Several ad-hoc techniques to synthesize workloads have 

been developed [32][25][31]. In [32], a linear combination of 
microbenchmarks is found that, when combined in a process 
called replication and executed, duplicates the LRU hit function 
of the target benchmark. There is no clear way to incorporate 
other execution characteristics like instruction mix into the 
technique. 

 In [14], assembly programs are generated that have the 
same power consumption signature as applications. However, 
all workload characteristics are modeled as microarchitecture-
dependent characteristics, so the work is not useful for studies 
involving design trade-offs [13]. In particular, the instruction 
sequences and dependency relationships of the synthetic 
programs are not representative of the original workload, unlike 
in the present work. The cache access and branch predictor 
models in [14] are useful as high-level ideas or starting points, 

but the specific implementations in that work allow and rely on 
modifications to the workload features shown to be required for 
representative performance. 

Sakamoto et al. [21] present a method to create a binary 
image of a trace and memory dump and execute those on a 
specific machine and a logic simulator, but the required binary 
image and fixup code are complicated and not easily portable to 
other systems and simulators. No attempt is made to create an 
abstract trace from statistics in order to reduce runtimes. 
6. CONCLUSIONS AND FUTURE WORK 

We propose a method for synthesizing representative 
testcases from the workload characteristics of an executing 
application. The target application’s executable is analyzed in 
detail and representative sequences of instructions are 
instantiated as in-line assembly-language instructions inside 
synthetic C-code. 

Unlike prior synthesis efforts, we focus on the low-level 
workload characteristics of the compiled and executing binary 
to create workloads that are representative of the effects of the 
application in the machine. Multiple synthetic testcases are 
necessary if the application is executed on multiple machines, 
significantly different ISAs, or multiple datasets, but the 
automatic process minimizes the cost of creating new testcases 
and enables consolidation of multiple representative phases into 
a single small testcase. Other benefits include portability, future 
workload generation, and code abstraction. Future work 
includes more accurate memory access and branching models. 

We use the method to synthesize representative testcases 
for the SPEC2000 and STREAM Alpha benchmarks and find 
that testcases can be synthesized to an average IPC within 2.4% 
of the average IPC of the target applications with similar 
average instruction mix, cache access characteristics, dispatch 
window occupancies, and dependency characteristics, while 
runtimes are often three orders of magnitude shorter, making 
functional simulation and hardware simulation for performance 
validation feasible. In addition, the changes in IPC for a 
synthetic testcase due to design changes are found to be 
proportional to the corresponding IPC changes for the original 
application. 
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Table 5.  Average Synthetic IPC Errors and Relative IPC Errors vs. Actual Applications 

Commit Width 8 Commit Width 1 L1 D-cache (256:64:8) L1 I-cache (1024:64:2)Model 
IPC Rel. IPC IPC Rel.  IPC IPC Rel.  IPC IPC Rel.  IPC 

SPEC95  (Perfect Branching) 3.7% 1.1% 2.8% 4.2% 4.3% 2.1% 9.8% 8.2% 
SPEC95 (Branching Model) 2.6% 1.4% 3.2% 3.9% 3.2% 2.4% 8.7% 7.5% 
SPEC2000 (Branching Model) 2.4% 0.2% 2.8% 2.7% 3.1% 1.0% 3.0% 1.3% 

Table 6.  Average Synthetic IPC Errors and Relative IPC Errors vs. Actual Applications 
Dispatch Window 

16 32 64 
DL1 

Latency 8 
Issue 

Width 1 Model 
IPC IPC Rel.  IPC IPC Rel.  IPC IPC Rel. IPC IPC Rel.  IPC 

SPEC95 (Perfect Branching) 3.9% 3.2% 2.1% 3.1% 2.7% 8.9% 6.9% 2.6% 4.1% 
SPEC95 (Branching Model) 2.4% 3.1% 2.2% 3.3% 2.4% 11.1% 10.4% 2.1% 2.2% 
SPEC2000 (Branching Model) 2.4% 3.1% 1.3% 3.0% 1.5% 9.5% 9.7% 1.9% 2.3% 
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