
Improved Automatic Testcase Synthesis for
Performance Model Validation

Robert H. Bell, Jr. †‡
† IBM Systems and Technology Division

Austin, Texas

robbell@us.ibm.com

Lizy K. John ‡
‡ Department of Electrical and Computer Engineering

The University of Texas at Austin

ljohn@ece.utexas.edu

ABSTRACT
Performance simulation tools must be validated during the
design process as functional models and early hardware are
developed, so that designers can be sure of the performance of
their designs as they implement changes. The current state-of-
the-art is to use simple hand-coded bandwidth and latency
testcases to assess early performance and to calibrate
performance models. Applications and benchmark suites such as
SPEC CPU are difficult to set up or take too long to execute on
functional models. Short trace snippets from applications can be
executed on performance and functional simulators, but not
without difficulty on hardware, and there is no guarantee that
hand-coded tests and short snippets cover the performance of
the original applications.

We present a new automatic testcase synthesis methodology to
address these concerns. By basing testcase synthesis on the
workload characteristics of an application, we create source
code that largely represents the performance of the application,
but which executes in a fraction of the runtime. We synthesize
representative versions of the SPEC2000 benchmarks, compile
and execute them, and obtain an average IPC within 2.4% of the
average IPC of the original benchmarks with similar average
workload characteristics. In addition, the changes in IPC due to
design changes are found to be proportional to the changes in
IPC for the original applications. The synthetic testcases execute
more than three orders of magnitude faster than the original
applications, typically in less than 300K instructions, making
performance model validation feasible.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Performance, Design, Verification

Keywords
Automatic Benchmark Synthesis, Synthetic Benchmarks,
Benchmarking, Performance Modeling

1. INTRODUCTION
The process of verifying that a performance model is

accurate with respect to a functional model or hardware is
known as performance model validation [5]. Validation is
necessary at various points during the design process to
minimize incorrect design decisions due to inaccurate
performance models. While the relative error of design changes
based on inaccurate performance models is often similar to the
relative error using accurate models [5][12], the correspondence
is not without limit. As functional models are improved in the
design phases, or when first pass hardware is obtained, accurate
performance models can pinpoint with more certainty the effects
of particular design changes.

Prior validation efforts have focused on bandwidth and
latency tests, resource limit tests, or micro-tests [6][27][3][18]
[17][16]. These tests are usually hand-written microbenchmarks
that validate the basic processor pipeline latencies, including
cycle counts of individual instructions, cache hit and miss
latencies, pipeline issue latencies for back-to-back dependent
operations, and pipeline bypassing. Black and Shen describe
automatic testcases created with up to 100 random instructions
[3], not enough to approximate many workload characteristics.
Desikan et al. use microbenchmarks to validate the Alpha 21267
to 2% error [11]. However, the validated simulator still gives
errors from 20% to 40% on the SPEC2000 applications.

Applications themselves cannot be used for performance
model validation because of their impossibly long simulation
runtimes [5]. Trace sampling techniques such as SimPoint [22]
and SMARTS [33] can reduce runtimes in simulators, but the
executions still amount to tens of millions of instructions.
Statistical simulation can further reduce the necessary trace
lengths [8][19][12], but executing traces on functional models or
hardware is difficult. Sakamoto et al. present a method to create
a binary image of a trace along with a memory dump and
execute those on a specific machine and a logic simulator [21],
but there is no attempt to reduce trace lengths. Hsieh and
Pedram synthesize instructions for power estimation [14], but
there is no attempt to maintain the machine-independent
workload characteristics necessary to represent the original
applications [1]. The design community recognizes the need for
an automatic way to generate relevant and flexible synthetic
benchmarks [23], but no such method has been forthcoming.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

The major contribution of this paper is a step toward such a
method. We synthesize testcases that are more representative of
applications than microbenchmarks and yet converge to results
quickly. We use the workload characterization of statistical
simulation to capture the dynamic features of the program,
adding memory access and branching models. A testcase is
generated as C-code, with low-level instructions instantiated as

ICS’05, June 20–22, Boston, MA, U.S.A.
Copyright © 2005 ACM 1-59593-167-8/06/2005…$5.00.

asm statements. When compiled and executed, the synthetic
code reproduces the dynamic workload characteristics of an
application, and it can be easily executed on a variety of
performance and functional simulators, emulators, and
hardware, with significantly reduced runtimes.

The rest of this paper is organized as follows. Section 2
presents the conceptual framework of the testcase synthesis
method and some of its benefits. Section 3 describes the
synthesis approach in detail. Section 4 presents experimental
results. Section 5 presents related work, and the last sections
present conclusions and references.

2. REPRESENTATIVE SYNTHETICS
 We achieve a degree of representativeness by synthesizing

a testcase from a workload characterization of the low-level
dynamic runtime characteristics of an application, the same
characterization used in statistical simulation [8][19][12][1]. We
make the following key observation: the statistical flow graph
[19][12][1] is a reduced representation of the control flow
instructions of the application – a compact representative
program. In addition, the synthetic trace from workload
characterization converges to an accurate result in a fraction of
the time of the original workload [19][12][1]. We combine the
representative trace with novel algorithms for locality structure
synthesis to automatically generate a simple but flexible
testcase. The testcase is a C-code envelope around a sequence of
asm calls that reproduce the behavior of low-level basic blocks.
The testcase is easily retargeted for use on machines with
similar ISAs. For example, transforming a C program with
Alpha asm calls to PowerPC asm calls is straightforward, since
both instruction sets follow the RISC philosophy.

Ideally, our testcases would be benchmark replacements,
but the memory and branching models used to create them
introduce errors (Section 3), making them a solution in the
“middle” between microbenchmarks and applications. Many of
the application characteristics are maintained (Section 4), but
there is much room for future work into more accurate models.

The synthetic traces in statistical simulation have been
shown to exhibit representative behavior when executed on
program phases [12][1]. Likewise, a testcase to represent an
entire program can be created by concatenating together
testcases synthesized from each phase. In this work, we
demonstrate testcase synthesis on a single phase.

Our C-code envelope increases portability to execution-
driven simulators, emulators and hardware. At synthesis-time,
user parameters can modify workload characteristics to study
predicted trends of future workloads. At runtime, parameters
can switch between sections of code, changing the mix of

program phases or modeling consolidated programs.
Because we synthesize from low-level workload statistics,

we avoid questions of high-level programming style, language,
or library routines that plagued the representativeness of the
early hand-coded synthetic benchmarks such as Whetstone [10]
and Dhrystone [30].

 Synthesis using statistics rather than actual source
effectively hides the functional meaning of the code and data,
and motivates increased code sharing between industry and
academia. Many vendors hesitate to share their proprietary
applications and data for research. This is particularly true in
database, embedded and systems software areas. Figure 1 shows
the proposed path to code sharing.

3. SYNTHESIS APPROACH
With reference to Figure 2, the following sections detail the

four major phases of synthesis: workload characterization;
graph analysis; register assignment and code generation.
3.1 Workload Characterization

A profile of the dynamic execution of an application
produces a set of workload characteristics. This is the same
analysis that gives good statistical simulation correlation
[12][1]. The most significant characteristics are the original
basic block instruction sequences and the instruction
dependencies [1], but we also characterize the branch
predictabilities and the L1 and L2 I-cache and D-cache miss
rates at the granularity of the basic block. Instructions are
abstracted into five classes plus sub-types: integer, floating-
point (short or long execution times), load (integer or float),
store (integer or float), and branch (on integer or float).

There is no separate input dataset for the synthetic
testcases. The input dataset manifests itself in the final workload
characteristics obtained from the execution profile. While
separate testcases must be synthesized for each possible dataset,
the automatic synthesis approach makes that feasible.

3.2 Graph Analysis
In the following sections, the analysis of the workload

characterization for code synthesis is described.
3.2.1 Instruction Miss Rate and I-cache Model

The number of basic blocks to be instantiated in the
synthetic testcase is estimated based on a default I-cache size
and configuration (16K entries, 32B blocks, 1-way
associativity). We then tune the number of synthetic basic
blocks to match the original I-cache miss-rate (IMR). Specific
basic blocks are chosen from a walk of the statistical flow
graph, as in [12][1]. Usually a small number of synthesis
iterations are necessary to match the IMR. The numbers of basic

Figure 1. Proprietary Code Sharing using Testcase Synthesis

Proprietary
Application

Testcase
Synthesis

System

Abstracted
Synthetic
Testcase

Vendor Researcher

Figure 2. Testcase Synthesis and Simulation Overview

Application
Workload

Characterization
using

SimpleScalar

Graph
Analysis

Synthetic
Testcase

SimpleScalar
Execution

Comparison

Register
Assignment

Code
Generation

Available
Machine
Registers

Machine
Instruction

Format

blocks and instructions synthesized for the Alpha versions of the
SPEC2000 and STREAM benchmarks are shown in Table 3.
3.2.2 Instruction Dependencies and Compatibility

All instruction input dependencies are assigned. The
starting dependence is exactly the dependent instruction chosen
as an input during statistical simulation. The issue then becomes
operand compatibility: if the dependency is not compatible with
the input type of the dependent instruction, then another
instruction must be chosen. The algorithm is to move forward
and backward from the starting dependency through the list of
instructions in sequence order until the dependency is
compatible. The average number of moves per instruction input
is shown in Table 3 for the SPEC2000 and STREAM in column
dependency moves, and is generally small. In the case of a store
or branch that is operating on external data for which no other
instruction in the program is compatible, an additional variable
of the correct data type is created.

 Table 1 shows the compatibility of instructions for the
Alpha instruction set. The Inputs column gives the assembly
instruction inputs that are being tested for compatibility. For
loads and stores, the memory access register must be an integer
type. When found, it is attributed as a memory access counter
(LSCNTR) for special processing during the code generation
phase.
3.2.3 Loop Counters and Program Termination

When all instructions have compatible dependencies, a
search is made for an additional integer instruction that is
attributed as the loop counter (BRCNTR). The branch in the last
basic block in the program checks the BRCNTR result to
determine when the program is complete. The number of
executed loops, loop iterations in Table 3, is chosen to be large
enough to assure IPC convergence. Conceptually, this means
that the number of loops must be larger than the longest memory

access stream pattern of any memory operation among the basic
blocks. In practice, the number of loops does not have to be very
large to characterize simple stream access patterns. Experiments
have shown that the product of the loop iterations and the
number of instructions must be around 300K to achieve low
branch predictabilities and good stream convergence. The loop
iterations are therefore approximately 300K/(number of
instructions). This can be tuned with a user parameter. An
additional integer instruction is converted to a cmple to compare
the BRCNTR to zero for the final branch test.
3.2.4 Memory Access Model

The LSCNTR instructions are assigned a stride based on
the D-cache hit rate found for their corresponding load and store
accesses during workload characterization. The memory
accesses for data are modeled using the 16 simple stream access
classes shown in Table 2. The stride for a memory access is
determined first by matching the L1 hit rate of the load or store
fed by the LSCNTR, after which the L2 hit rate for the stream is
predetermined. If the L1 hit rate is below 12.5%, the L2 hit rate
is matched. The table was generated based on an L1 line size of
32 bytes and an L2 line size of 64 bytes, and the corresponding
stride is shown in 4 byte increments.

By treating all memory accesses as streams and working
from a base cache configuration, the memory access model is
kept simple. This reduces the impact on the testcase instruction
sequences and dependencies, which have been shown to be
critical for correlation with the original workload [1]. On the

Table 1. Dependence Compatibility Chart
Dependent
Instruction Inputs Dependence

Compatibility Comment

Integer 0/1 Integer, Load-Integer
Float 0/1 Float, Load-Float
Load-
Integer/Float 0 Integer Memory access

counter input
Store-Integer 0 Integer, Load-Integer Data input
Store-Float 0 Float, Load-Float Data input
Store-
Integer/Float 1 Integer Memory access

counter input
Branch-Integer 0/1 Integer, Load-Integer
Branch-Float 0/1 Float, Load-Float

Table 2. L1 and L2 Hit Rates versus Stride
L1 Hit Rate L2 Hit Rate Stride

0.0000 0.000 16
0.0000 0.0625 15
0.0000 0.1250 14
0.0000 0.1875 13
0.0000 0.2500 12
0.0000 0.3125 11
0.0000 0.3750 10
0.0000 0.4375 9
0.0000 0.5000 8
0.1250 0.5000 7
0.2500 0.5000 6
0.3750 0.5000 5
0.5000 0.5000 4
0.6250 0.5000 3
0.7500 0.5000 2
0.8750 0.5000 1
1.0000 N/A 0

other hand, there can be a large error in stream behavior when
an actual stream hit rate falls between the hit rates in two rows,
and the simple model is responsible for correlation error when
the cache hierarchy changes (see Section 4.3). More
complicated models might walk cache congruence classes or
pages (to model TLB misses), or move, add, or convert
instructions to implement specific access functions. There are
many models in the literature that can be investigated as future
work, for example [24][29][9][15].

 In some cases, we found that additional manipulation of
the streams was necessary for correlation of the testcases
because of the cumulative errors in stream selection. In Table 3,
the stream factor multiplies the L1 hit rate taken from the table
during each lookup, and if the result is greater than the original
hit rate, the selected stream is chosen from the preceding row.
This has the effect of reducing overall hit rates for the first load
or store fed by an LSCNTR.

Because the dependency analysis may cause several
memory access operations to use the same LSCNTR, the overall
access rate at the granularity of the basic block may be
significantly in error. During synthesis, the overall miss rate for
the basic block is estimated as the number of LSCNTRs feeding
the block divided by the total number of loads and stores in the

block. The miss rate estimate factor in Table 3 modifies the
calculated miss rate estimate and causes the selected table row
for the LSCNTR to change accordingly. Smaller factors increase
the basic block miss rate while larger factors decrease it.
Usually a small number of synthesis iterations are needed to
find a combination of factors to model the overall access rates of
the application.
3.2.5 Branch Predictability Model

To model branch predictability, we calculate the branches
that will have taken-targets based on the global branch
predictability, BR, of the original application (assumed greater
than 50%). An integer instruction (attributed as the BPCNTR)
that is not used as a memory access counter or a loop counter is
converted into an invert instruction operating on a particular
register every time it is encountered. If the register is set, the
branch jumps past the next basic block in the default loop. The
invert mechanism causes a branch to have a predictability of
50% for 2-bit saturating counter predictors. The target BR is:

 NNFNFBR /))5.0()1((⋅⋅−+⋅=
where (1 - F) is the fraction of branches in the synthetic
benchmark that are configured to use the invert mechanism, and
N is the total number of synthesized branches. Solving for (1 -

Table 3. Synthetic Testcase Properties

Name Number of
Basic Blks

Number of
Instructions

Stream
Pools

Code
Regis

BP
Factor

Stream
Factor

Miss Rate
Est.

Factor

Loop
Iterations

Dependency
Moves

Actual
Runtime (s)

Synthetic
Runtime (s)

Runtime
Ratio

gcc 850 4585 9 8 1.15 1.07 1.00 51 0.943 6602.85 3.49 1891.93
gzip 408 4218 7 10 1.10 1.01 1.00 71 0.188 16695.06 3.88 4302.85

crafty 635 4896 9 8 1.15 1.00 1.00 54 0.363 6277.21 3.75 1673.92
eon 580 4394 9 8 1.15 1.00 1.00 50 1.209 67064.77 3.15 21290.40
gap 268 4193 9 8 1.15 1.00 1.00 62 0.477 5283.60 3.37 1567.83

bzip2 311 2515 9 8 1.15 1.00 1.00 109 0.147 10853.61 3.70 2933.41
vpr 550 4135 9 8 1.00 1.04 1.00 74 0.977 6470.38 4.32 1497.77
mcf 727 4189 9 8 1.05 1.00 1.00 61 0.374 18450.95 3.41 5410.84

parser 741 3949 9 8 1.10 1.05 1.00 71 0.567 6459.54 3.95 1635.33
perlbmk 606 4263 9 8 1.00 1.00 1.00 61 0.519 22269.29 3.36 6627.76
vortex 947 5006 9 8 1.10 1.00 1.00 47 0.466 5919.24 3.39 1746.09
twolf 739 4315 9 8 1.04 1.08 1.00 72 0.498 18976.74 4.26 4454.63
mgrid 30 3930 7 10 1.20 1.30 0.25 69 9.413 62918.27 3.81 16513.98
mesa 619 4292 9 8 1.05 1.00 1.00 64 0.867 56597.98 3.60 15721.66
art 450 3762 7 10 0.90 1.50 0.47 73 1.111 89628.10 5.74 15614.65

lucas 210 3359 7 10 1.00 1.00 1.00 164 0.691 14697.19 6.28 2340.32
ammp 715 4092 13 4 1.00 1.50 0.50 88 0.152 21799.12 9.34 2333.95
applu 19 3363 7 10 1.50 1.00 1.10 76 20.293 14149.28 4.00 3537.32
apsi 488 4379 7 10 1.00 1.00 0.30 64 7.195 61669.89 3.62 18693.34

equake 758 4328 7 8 1.00 1.00 1.00 65 1.468 17989.55 3.59 5011.02
galgel 273 3967 7 10 1.00 1.50 0.55 66 0.491 24391.40 4.80 5081.54
swim 131 3866 9 8 1.50 1.10 1.00 91 0.579 18347.04 4.97 3691.56

sixtrack 621 4173 9 8 1.00 1.02 1.00 84 1.810 21028.38 4.55 4621.62
wupwise 176 3656 6 6 1.05 1.03 1.00 224 0.926 18306.39 8.56 2138.60
facerec 176 3126 9 8 1.10 0.95 1.05 89 4.622 17156.95 3.79 4526.90
fma3d 869 4377 6 8 1.03 1.00 1.00 147 0.149 32235.77 6.59 4891.62
saxpy 1 10 2 12 1.00 1.00 1.00 30000 0.000 150.78 3.95 38.17
sdot 1 10 2 12 1.00 1.00 1.00 30000 0.000 417.74 3.75 111.40
sfill 1 6 1 12 1.00 1.00 1.00 70000 0.333 202.00 3.65 55.34
scopy 1 8 2 12 1.00 1.00 1.00 30000 0.000 38.24 3.07 12.46
ssum2 1 6 1 12 1.00 1.00 1.00 30000 0.143 53.27 2.26 23.57
sscale 1 8 2 12 1.00 1.00 1.00 30000 0.000 38.37 3.10 12.38
striad 1 12 3 12 1.00 1.00 1.00 30000 0.000 57.16 4.51 12.67
ssum1 1 10 3 12 1.00 1.00 1.00 30000 0.000 91.49 4.24 21.58

F), the fraction of branches that must be configured is 2*(1 –
BR). A uniform random variable over this fraction is used to
pick which branches are configured.

The fraction BR is sometimes not sufficient to model the
branch predictability because of variabilities in the mix of
dynamic basic blocks used and the code size. To compensate,
the BP Factor in Table 3 multiplies BR to increase or decrease
the number of configured branches. Usually a small number of
synthesis iterations are needed to tune this factor.

 In an additional implementation, a branch jumps past a
user-defined number of basic blocks instead of just one, but this
did not result in improved branch predictability. In another
implementation, a branch jumps past a user-defined number of
instructions in the next basic block. This also did not improve
predictability except for mgrid and applu, which have large
average basic block sizes such that jumping past an entire basic
block significantly changes the instruction mix. In those cases,
the branch jumps past ten instructions of the next basic block.

During synthesis experiments, it was noticed that
benchmarks with large average basic block sizes and therefore
small numbers of basic blocks in the final synthetic code are
prone to have a skewed basic block mix that favors shorter basic
blocks. For mgrid and applu, during basic block selection, if a
uniform random variable is greater than an additional factor, set
to 0.5 and 0.9, respectively, then the successors of the previous
block that are on average longer than 50 instructions are
checked first to be included.

When configuring branches, the BRCNTR, cmple and
BPCNTR instructions must not be skipped over by a taken
branch, or loop iterations may not converge or the branch
predictability may be thrown off. Code regions containing these
attributed instructions are carefully avoided.

3.3 Register Assignment
All architected register usages in the synthetic testcase are

assigned exactly during the register assignment phase. Most
ISAs, including the Alpha ISA, specify dedicated registers that
should not be modified without saving and restoring. In practice,
not all registers need to be used to achieve a good synthesis
result. In our experiments, only 20 general-purpose registers
divided between memory access stream counters and code use
are necessary. For the benchmarks under study, the number of
registers available for streams averages about 8 and for code use
about 9 (stream pools and code registers in Table 3). Three
additional registers are reserved for the BRCNTR, cmple, and
BPCNTR functions.

Memory access streams are pooled according to their
stream access characteristics and a register is reserved for each
class (stream pools in Table 3). All LSCNTRs in the same pool
increment the same register, so new stream data are accessed
similarly whether there are a lot of LSCNTRs in the pool and
few loop iterations or few in the pool but many iterations. For
applications with large numbers of stream pools, synthesis
consolidates the least frequent pools together (using the most
frequent LSCNTR stride among them) until the total number of
registers is under the limit.

In practice, a roughly even split between code registers and
pool registers improves benchmark quality. High quality is
defined as a high correspondence between the instructions in the
compiled benchmark and the original synthetic C-code
instructions. With too few or too many registers available for

code use, the compiler may insert stack operations into the
binary. The machine characteristics may not suffer from a few
stack operations, but for this study we chose to synthesize code
without them.

The available code registers are assigned to instruction
outputs in a round-robin fashion.

3.4 Code Generation
 The code generator of Figure 2 takes the representative

instructions, the instruction attributes from graph analysis, and
the register assignments and outputs a single module of C-code
that contains calls to assembly-language instructions in the
Alpha language. Each instruction in the representative trace
maps one-to-one to a single volatile asm call in the C-code. The
steps are detailed in the following paragraphs.

 First, the C-code main header is generated. Then variable
declarations are generated to link output registers to memory
access variables for the stream pools, the loop counter variable
(BRCNTR), the branching variable (BPCNTR), and the cmple
variable. Pointers to the correct memory type for each stream
pool are also declared. Malloc calls for the stream data in
memory are generated with size based on the number of
iterations per program loop. Initializations are generated for
each stream pool output register to the head of the data.

The BRCNTR register is initialized to the number of times
the instructions will be executed. The instructions are then
generated as calls to assembly language instructions. Each call
is given an associated unique label. LSCNTRs are generated
using addi instructions to add the stride to its current register
value. The BRCNTR is generated as an add of minus one to its
register. Long latency floating-point operations are generated
using muls and short latency operations are generated using
adds. Loads use lwz or lds, depending on the type, and similarly
for stores. Branches use the beq type, and can have either
integer or float operands. The basic blocks are analyzed and
code is generated to print out unconnected output registers
depending on a switch value. The switch is never set, but the
print statements guarantee that no code is eliminated during
compilation. Code to free the malloced memory is generated,
and finally a C-code footer is generated.

Table 3 gives the synthesis information for the SPEC2000
and STREAM codes as described in this section. The runtime
ratio is the user runtime of the original benchmark for one
billion instructions (1M for STREAM) divided by the user
runtime of the synthetic testcase on various Power3 (400MHz)
and Power4 (1.2 GHz) workstations. Variations in runtime
reflect network traffic during the runs. Each pass through the
synthesis process takes about three minutes on an IBM p270

Table 4. Default Simulation Configuration, Alpha ISA
Instruction Size (bytes) 4
L1/L2 Line Size (bytes) 32/64

Machine Width 4
Dispatch Window/LSQ/IFQ 16/8/4

Memory System 16K 4-way L1 D, 16K 1-way L1 I,
256K 4-way unified L2

L1/L2/Memory
Latency+transfer (cycles) 1/6/34

Functional Units 4 I-ALU, 1 I-MUL/DIV,
4 FP-ALU, 1 FP-MUL/DIV

Branch Predictor Bimodal 2K table,
3 cycle misspredict penalty

0
0.5

1
1.5

2
2.5

3
gc

c
gz

ip
cr

af
ty

eo
n

ga
p

bz
ip

2
vp

r
m

cf
pa

rs
er

pe
rlb

m
vo

rte
x

tw
ol

f
m

gr
id

m
es

a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 3. Actual vs. Synthetic IPC

IP
C

actual synthetic

0

0.1

0.2

0.3

0.4

0.5

Integer Float Load Store Branch
Figure 4. Actual vs. Synthetic Instruction

Frequencies

In
st

ru
ct

io
n

Fr
eq

ue
nc

ie
s actual synthetic

0

0.01

0.02

0.03

0.04

0.05

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

vo
rte

x
tw

ol
f

m
gr

id
m

es
a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 6. Actual vs. Synthetic I-cache Miss Rate

M
is

s
R

at
e

actual synthetic

(400 MHz). An average of about ten passes plus think time were
necessary to tune the synthesis parameters for each testcase. All
the data in Table 3 took less than five workdays to generate.
4. SYNTHESIS RESULTS

In this section we present the results of the testcase
synthesis experiments.

4.1 Experimental Setup and Benchmarks
We use a system [1] modified from HLS [19][20].

SimpleScalar Release 3.0 [7] was downloaded and sim-cache
was modified to carry out the workload characterization as in
[12][1]. The SPEC2000 [26] Alpha binaries were executed in
sim-outorder on the first reference dataset for the first billion
instructions (corresponding to a single program phase [1]). In
addition, single-precision versions of the STREAM and
STREAM2 benchmarks [16] with a one million-loop limit were
compiled on an Alpha machine. We use the default
SimpleScalar configuration in Table 4, also used in [19].
SimpleScalar does not model an L3, so the memory latency used
here is an estimate of L3 latency.

A code generator was built into HLS, and C-code was
produced using the synthesis methods of Section 3. The
synthetic testcases were compiled on an Alpha machine using
gcc with optimization level –O2 and executed to completion in
SimpleScalar.
4.2 SPEC2000 Synthesis Results

The following figures show results for both the original
applications, actual, and the synthetic testcases, synthetic.
Figure 3 shows the IPC for the benchmarks. The average error
for the synthetic benchmarks is 2.4%, with a maximum error of
8.0% for facerec. We discuss the reasons for the errors in the

context of the figures below.
Figure 4 compares the average instruction percentages over

all benchmarks for each class of instructions. The average
prediction error for the synthetic testcases is 3.4% with a
maximum of 7.3% for branches. Figure 5 shows that the basic
block size varies per benchmark with an average error of 7.2%
and a maximum of 21% for mgrid. The errors are caused by
variations in the fractions of specific basic block types in the
synthetic benchmark with respect to the original workload,
which is a direct consequence of selecting a limited number of
basic blocks during synthesis. For example, mgrid is
synthesized with a total of 30 basic blocks made up of only six
different unique block types. Applu is synthesized with 19 basic
blocks but 18 unique block types. The basic block frequencies
in the synthetic mgrid differ by 33.6% on average (only 8.4%
for the top 40% of basic blocks) versus the basic block
frequencies of the original workload. This is in contrast to
testcases with large numbers of basic blocks such as gzip, which
differ by only 2.2%.

The I-cache miss rates are shown in Figure 6. They show
an error of 8.6% for benchmarks with IMRs above 1%, with a
maximum of 22.9% for sixtrack. The number of synthetic
instructions, however, is within 2.8% of the expected number
given the I-cache configuration. The errors are again due to the
process of choosing a small number of basic blocks with
specific block sizes to synthesize the workload. For miss rates
close to zero, a number of instructions less than 4096 is used, up
to the number needed to give an appropriate instruction mix for
the testcase. For the STREAM loops, only one basic block is
needed to meet both the IMR and the instruction mix
requirements. For the synthetic testcases, there appears to be a
small but non-zero IMR, versus an essentially zero miss rate for

0

22

44

66

88

110

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

vo
rte

x
tw

ol
f

m
gr

id
m

es
a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 5. Actual vs. Synthetic Basic Block Sizes

A
ve

ra
ge

 S
iz

e

actual synthetic

0

0.22

0.44

0.66

0.88

1.1
gc

c
gz

ip
cr

af
ty

eo
n

ga
p

bz
ip

2
vp

r
m

cf
pa

rs
er

pe
rlb

m
vo

rte
x

tw
ol

f
m

gr
id

m
es

a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 7. Branch Predictability

B
ra

nc
h

Pr
ed

ic
ta

bi
lit

y

actual synthetic

0
0.1
0.2
0.3
0.4
0.5

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

k
vo

rte
x

tw
ol

f
m

gr
id

m
es

a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 8. Actual vs. Synthetic DL1 Miss Rate

M
is

s
R

at
e

actual synthetic

some of the applications. This is because the synthetic testcases
are only executed for about 300K instructions, far fewer than
necessary to achieve a very small I-cache miss rate. However,
since the miss rates are small, their impact on IPC when coupled
with the miss penalty is also small.

The average branch predictability error is 1.9%, shown in
Figure 7. The largest error is art at 6.4%, and mgrid has the
third largest error at 4.9%. The L1 data cache miss rates are
shown in Figure 8. For miss rates greater than 1%, the error is
12.3%. For these miss rates, the trends using the synthetic
testcases clearly correspond with those of the original
workloads. Again, there is more variation for smaller miss rates,
but again the execution impact is also small.

In Figure 9, the unified L2 miss rates are shown. The large
errors due to the simple streaming memory access model are
often mitigated by small L1 miss rates. A good example is gcc,
which has only a 2.6% L1 miss rate, and even the small L2 miss
rate will not impact IPC significantly. Even though art and
ammp have large L1 miss rates, the smaller L2 miss rates are
offset by relatively larger I-cache miss rates and smaller branch

predictabilities. The main cause of these errors is the fact that
the current memory access model focuses on matching the L1
hit rate, and the L2 hit rate is simply predetermined as a
consequence. The large error for ammp is partially explained by
the fact that our small data-footprint synthetic testcases have
data-TLB miss rates near zero, while the actual ammp
benchmark has a data-TLB miss rate closer to 13%. As a
consequence, the synthetic version does not correlate well when
the dispatch window is increased and tends to be optimistic.

Figure 10 shows the average dependency distances, with
11.1% error on average. The largest components of error are the
integer dependencies, caused by the conversion of many integer
instructions to LSCNTRs, the memory access stride counters. A
stride counter overrides the original function of the integer
instruction and causes dependency relationships to change.
Another source of error is the movement of dependencies during
the search for compatible dependencies in the synthesis process.
The movement is usually less than one position (Table 3), but
mgrid and applu, the benchmarks with the largest average block
sizes at 100.07 and 93.42, respectively, show significant
movement. The branching model also contributes errors.

0
0.2
0.4
0.6
0.8

1

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

vo
rte

x
tw

ol
f

m
gr

id
m

es
a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 9. Actual vs. Synthetic UL2 Miss Rate

M
is

s
R

at
e

actual synthetic

0

2

4

6

8

I0 I1 F0 F1 L0 S0 S1 B0

Figure 10. Actual vs. Synthetic
 Dependency Distances

A
vg

. D
ep

en
de

nc
y

D
is

t. actual synthetic

0
0.5

1
1.5

2
2.5

3
3.5

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

vo
rte

x
tw

ol
f

m
gr

id
m

es
a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 12. IPC Dispatch Window 32

IP
C

actual synthetic

0
1
2
3
4
5
6

Integer Float Load Store Branch

Figure 11. Actual vs. Synthetic
Dispatch Window Occupancies

A
ve

ra
ge

 O
cc

up
an

cy

actual synthetic

0
0.5

1
1.5

2
2.5

3
3.5

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

k
vo

rte
x

tw
ol

f
m

gr
id

m
es

a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 13. IPC Dispatch Window 64

IP
C

actual synthetic

0

10

20

30

40

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

vo
rte

x
tw

ol
f

m
gr

id
m

es
a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 14. IPC Prediction Error for Dispatch
 Windows of 32 and 64

IP
C

 P
re

di
ct

on
 E

rr
or

 (%
) 32 64

0
0.1
0.2
0.3
0.4
0.5

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

vo
rte

x
tw

ol
f

m
gr

id
m

es
a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 15. Delta IPC as Dispatch Window
Increases from 16 to 32

D
el

ta
 IP

C

actual synthetic

0
0.1
0.2
0.3
0.4
0.5
0.6

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

vo
rte

x
tw

ol
f

m
gr

id
m

es
a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 16. Delta IPC as Dispatch Window
Increases from 16 to 64

D
el

ta
 IP

C

actual synthetic

 Despite the dependency distance errors, Figure 11 shows
that the average dispatch window occupancies are similar to
those of the original benchmarks with an average error of 4.1%.
4.3 Assessing Design Changes

We now study design changes using the same synthetic
testcases; that is, we take the testcases described in the last
section, change the machine parameters in SimpleScalar and re-
execute them. We test the accuracy of the synthetics by studying
design changes in which the change in IPC is significantly
greater than the average error between the synthetic and actual
workload. For example, the dispatch window studies change
IPC by more than 17% in each case.

Figures 12 and 13 show the absolute IPCs using a dispatch
window of 32 and 64 with average errors of 3.0% and 3.1%,
respectively. These numbers do not include ammp; as explained
in the last section, ammp tends to be optimistic when the
dispatch window changes because our small data footprint

testcases do not model data-TLB misses. Figure 14 graphs the
IPC prediction errors [12] for the dispatch windows. Most
errors, except for ammp, are below 5%.

 Figures 15 and 16 show the absolute change in IPC, delta
IPC, as the same benchmarks and testcases are executed first
with the default configuration (dispatch window of 16) and then
with the dispatch window sizes changed to 32 and 64
respectively. The average relative errors [12] are 1.3% and
1.5%, respectively. The graphs show that, when an application
change is large with respect to the changes in the other
applications, the synthetic testcase change is also large relative
to the change in the other synthetic testcases. These IPC
changes would be large enough to trigger additional studies
using a detailed cycle-accurate simulator, including an analysis
of ammp. Chip designers are looking for cases in a large design
space in which a design change may improve or worsen a
design. In the case of the dispatch window studies, the results

0

0.5

1

1.5

2

2.5

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

vo
rte

x
tw

ol
f

m
gr

id
m

es
a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 18. Delta IPC as Issue Width
Increases from 1 to 4

D
el

ta
 IP

C

actual synthetic

0
0.2
0.4
0.6
0.8

1
1.2

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

vo
rte

x
tw

ol
f

m
gr

id
m

es
a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 17. Delta IPC as L1 Data Latency
Increases from 1 to 8

D
el

ta
 IP

C

actual synthetic

would trigger further cycle-accurate studies of lucas, ammp,
swim,wupwise, fma3d and the STREAM benchmarks.
Alternatively, the designers might be curious why the change
did not help the SPECint testcases.

Figure 17 shows the delta IPC as the L1 D-cache latency is
increased from 1 to 8. The average absolute IPC error is 9.5%
and the relative error is 9.7%. The errors are high, but the larger
changes in the actual benchmarks over 1B instructions are
reflected in the synthetic testcases that run in seconds. However,
it is apparent that the memory access model is less accurate for
SPECint than for the other testcases. In fact, the average relative
error for SPECint is 19.9% versus 4.2% for the others.

Figure 18 shows better results for the delta IPC as the issue
width increases from 1 to 4. The average absolute error is 1.9%,
and the relative error is 2.4%. Similar results for commit width
changes, doubling the L1 D-cache (to 256 sets, 64B cache line,
8-way set associative), and doubling the L1 I-cache
configuration (to 1024 sets, 64B cache line, 2-way set
associativity) are shown in Tables 5 and 6. We also reproduce
results from technical report [2] for the SPEC95 testcases
synthesized the same way but targeting the Pisa ISA.

In an additional study, a code generation target for the
PowerPC ISA was implemented, and an instruction trace for
TPC-C (described in [4]) was fed through the synthesis code.
The resulting testcase was then compiled and executed on a
detailed performance simulator for the IBM Power4 processor
[28] and compared to results for the original 62M instructions.
A 6.4% IPC error was obtained, demonstrating the flexibility
and retargetability of the synthesis approach.

5. RELATED SYNTHESIS WORK
Several ad-hoc techniques to synthesize workloads have

been developed [32][25][31]. In [32], a linear combination of
microbenchmarks is found that, when combined in a process
called replication and executed, duplicates the LRU hit function
of the target benchmark. There is no clear way to incorporate
other execution characteristics like instruction mix into the
technique.

 In [14], assembly programs are generated that have the
same power consumption signature as applications. However,
all workload characteristics are modeled as microarchitecture-
dependent characteristics, so the work is not useful for studies
involving design trade-offs [13]. In particular, the instruction
sequences and dependency relationships of the synthetic
programs are not representative of the original workload, unlike
in the present work. The cache access and branch predictor
models in [14] are useful as high-level ideas or starting points,

but the specific implementations in that work allow and rely on
modifications to the workload features shown to be required for
representative performance.

Sakamoto et al. [21] present a method to create a binary
image of a trace and memory dump and execute those on a
specific machine and a logic simulator, but the required binary
image and fixup code are complicated and not easily portable to
other systems and simulators. No attempt is made to create an
abstract trace from statistics in order to reduce runtimes.
6. CONCLUSIONS AND FUTURE WORK

We propose a method for synthesizing representative
testcases from the workload characteristics of an executing
application. The target application’s executable is analyzed in
detail and representative sequences of instructions are
instantiated as in-line assembly-language instructions inside
synthetic C-code.

Unlike prior synthesis efforts, we focus on the low-level
workload characteristics of the compiled and executing binary
to create workloads that are representative of the effects of the
application in the machine. Multiple synthetic testcases are
necessary if the application is executed on multiple machines,
significantly different ISAs, or multiple datasets, but the
automatic process minimizes the cost of creating new testcases
and enables consolidation of multiple representative phases into
a single small testcase. Other benefits include portability, future
workload generation, and code abstraction. Future work
includes more accurate memory access and branching models.

We use the method to synthesize representative testcases
for the SPEC2000 and STREAM Alpha benchmarks and find
that testcases can be synthesized to an average IPC within 2.4%
of the average IPC of the target applications with similar
average instruction mix, cache access characteristics, dispatch
window occupancies, and dependency characteristics, while
runtimes are often three orders of magnitude shorter, making
functional simulation and hardware simulation for performance
validation feasible. In addition, the changes in IPC for a
synthetic testcase due to design changes are found to be
proportional to the corresponding IPC changes for the original
application.

7. ACKNOWLEDGMENTS
The authors would like to thank Lieven Eeckhout, Koen De

Bosschere, and the anonymous reviewers for their detailed
comments. This research is supported by the National Science
Foundation under grant number 0429806, the IBM Center for
Advanced Studies (CAS), and an IBM SUR grant.

Table 5. Average Synthetic IPC Errors and Relative IPC Errors vs. Actual Applications

Commit Width 8 Commit Width 1 L1 D-cache (256:64:8) L1 I-cache (1024:64:2)Model
IPC Rel. IPC IPC Rel. IPC IPC Rel. IPC IPC Rel. IPC

SPEC95 (Perfect Branching) 3.7% 1.1% 2.8% 4.2% 4.3% 2.1% 9.8% 8.2%
SPEC95 (Branching Model) 2.6% 1.4% 3.2% 3.9% 3.2% 2.4% 8.7% 7.5%
SPEC2000 (Branching Model) 2.4% 0.2% 2.8% 2.7% 3.1% 1.0% 3.0% 1.3%

Table 6. Average Synthetic IPC Errors and Relative IPC Errors vs. Actual Applications
Dispatch Window

16 32 64
DL1

Latency 8
Issue

Width 1 Model
IPC IPC Rel. IPC IPC Rel. IPC IPC Rel. IPC IPC Rel. IPC

SPEC95 (Perfect Branching) 3.9% 3.2% 2.1% 3.1% 2.7% 8.9% 6.9% 2.6% 4.1%
SPEC95 (Branching Model) 2.4% 3.1% 2.2% 3.3% 2.4% 11.1% 10.4% 2.1% 2.2%
SPEC2000 (Branching Model) 2.4% 3.1% 1.3% 3.0% 1.5% 9.5% 9.7% 1.9% 2.3%

8. REFERENCES
[1] R. H. Bell, Jr., L. Eeckhout, L. K. John and K. De

Bosschere, “Deconstructing and Improving Statistical
Simulation in HLS,” Workshop on Debunking,
Duplicating, and Deconstructing, June 20, 2004.

[2] R. H. Bell, Jr. and L. K. John, “Experiments in Automatic
Benchmark Synthesis,” Technical Report TR-040817-01,
Laboratory for Computer Architecture, University of Texas
at Austin, August 17, 2004.

[3] B. Black and J. P. Shen, “Calibration of Microprocessor
Performance Models,” IEEE Computer, May 1998, pp. 59-
65.

[4] J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla and S.
R. Kunkel, “A Multithreaded PowerPC Processor for
Commercial Servers,” IBM J. of Res. Dev., Vol. 44 No. 6,
November 2000.

[5] P. Bose and T. M. Conte, “Performance Analysis and Its
Impact on Design,” IEEE Computer, May 1998, pp. 41-49.

[6] P. Bose, “Architectural Timing Verification and Test for
Super-Scalar Processors,” IEEE International Symposium
on Fault-Tolerant Computing, June 1994, pp. 256-265.

[7] D. C. Burger and T. M. Austin, "The SimpleScalar
Toolset," Computer Architecture News, 1997.

[8] R. Carl and J. E. Smith, "Modeling Superscalar Processors
Via Statistical Simulation," Workshop on Performance
Analysis and Its Impact on Design, June 1998.

[9] T. Conte and W. Hwu, “Benchmark Characterization for
Experimental System Evaluation,” Hawaii International
Conference on System Science, 1990, pp. 6-18.

[10] H. J. Curnow and B.A. Wichman, "A Synthetic
Benchmark," Computer Journal, Vol. 19, No. 1, February
1976, pp. 43-49.

[11] R. Desikan, D. Burger and S. Keckler, “Measuring
Experimental Error in Microprocessor Simulation,” IEEE
International Symposium on Computer Architecture, 2001.

[12] L. Eeckhout, R. H. Bell, Jr., B. Stougie, L. K. John and K.
De Bosschere, “Control Flow Modeling in Statistical
Simulation for Accurate and Efficient Processor Design
Studies,” IEEE International Symposium on Computer
Architecture, June 2004.

[13] L. Eeckhout, Accurate Statistical Workload Modeling,
Ph.D. Thesis, Universiteit Gent, 2003.

[14] C. T. Hsieh and M. Pedram, "Microprocessor power
estimation using profile-driven program synthesis," IEEE
Transactions on Computer Aided Design of Integrated
Circuits and Systems, Vol. 17, No. 11, Nov. 1998, pp.
1080-1089.

[15] T. Lafage and A. Seznec, “Choosing Representative Slices
of Program Execution for Microarchitecture Simulations,”
IEEE Workshop on Workload Characterization, 2000.

[16] J. D. McCalpin, “Memory bandwidth and machine balance
in current high performance computers,” IEEE Technical
Committee on Computer Architecture newsletter, Dec.
1995.

[17] L. McVoy, “lmbench: Portable Tools for Performance
Analysis,” USENIX Technical Conference, Jan. 22-26,
1996, pp. 279-294.

[18] M. Moudgill, J. D. Wellman and J. H. Moreno,
“Environment for PowerPC Microarchitecture
Exploration,” IEEE Micro, May-June 1999, pp. 15-25.

[19] M. Oskin, F. T. Chong and M. Farrens, "HLS: Combining
Statistical and Symbolic Simulation to Guide
Microprocessor Design," IEEE International Symposium
on Computer Architecture, June 2000, pp. 71-82.

[20] http://www.cs.washington.edu/homes/oskin/tools.html
[21] M. Sakamoto, L. Brisson, A. Katsuno, A. Inoue and Y.

Kimura, “Reverse Tracer: A Software Tool for Generating
Realistic Performance Test Programs,” IEEE Symposium
on High-Performance Computing,” 2002.

[22] T. Sherwood, E. Perleman, H. Hamerly and B. Calder,
“Automatically characterizing large scale program
behavior,” IEEE Conference on Architected Support for
Programming Languages and Operating Systems, October
2002.

[23] K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J.
Lilja and V. S. Pai, “Challenges in Computer Architecture
Evaluation,” IEEE Computer, August 2003, pp. 30-36.

[24] E. S. Sorenson and J. K. Flanagan, “Evaluating Synthetic
Trace Models Using Locality Surfaces,” IEEE Workshop
on Workload Characterization,” Nov. 2002, pp. 23-33.

[25] K. Sreenivasan and A.J. Kleinman, “On the Construction of
a Representative Synthetic Workload,” Communications of
the ACM, March 1974, pp.127-133.

[26] http://www.spec.org
[27] S. Surya, P. Bose and J. A. Abraham, “Architectural

Performance Verification: PowerPC Processors,”
Proceedings of the IEEE International Conference on
Computer Design, 1999, pp. 344-347.

[28] J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le and B.
Sinharoy, "POWER4 System Microarchitecture," IBM J. of
Res. and Dev., January 2002, pp. 5-25.

[29] D. Thiebaut, “On the Fractal Dimension of Computer
Programs and its Application to the Prediction of the Cache
Miss Ratio,” IEEE Transactions on Computers, Vol. 38,
No. 7, July 1989, pp. 1012-1026.

[30] R. P. Weiker, "Dhrystone: A Synthetic Systems
Programming Benchmark," Communications of the ACM,
October 1984, pp. 1013-1030.

[31] J. N. Williams, “The Construction and Use of a General
Purpose Synthetic Program for an Interactive Benchmark
for on Demand Paged Systems,” Communications of the
ACM, 1976, pp.459-465.

[32] W. S. Wong and R. J. T. Morris, "Benchmark Synthesis
Using the LRU Cache Hit Function," IEEE Transactions on
Computers, Vol. 37, No. 6, June 1988, pp. 637-645.

[33] R. E. Wunderlich, T. F. Wenisch, B. Falsafi and J. C. Hoe,
“SMARTS: Accelerating Microarchitecture Simulation via
Rigorous Statistical Sampling,” IEEE International
Symposium on Computer Architecture, June 2002.

	1. INTRODUCTION
	2. REPRESENTATIVE SYNTHETICS
	3. SYNTHESIS APPROACH
	3.1 Workload Characterization
	3.2 Graph Analysis
	3.2.1 Instruction Miss Rate and I-cache Model
	3.2.2 Instruction Dependencies and Compatibility
	3.2.3 Loop Counters and Program Termination
	3.2.4 Memory Access Model
	3.2.5 Branch Predictability Model

	3.3 Register Assignment
	3.4 Code Generation
	4. SYNTHESIS RESULTS
	4.1 Experimental Setup and Benchmarks
	4.2 SPEC2000 Synthesis Results
	4.3 Assessing Design Changes

	5. RELATED SYNTHESIS WORK
	6. CONCLUSIONS AND FUTURE WORK
	7. ACKNOWLEDGMENTS
	8. REFERENCES

