
The Case for Automatic Synthesis of Miniature Benchmarks

 Robert H. Bell, Jr. ‡† Lizy K. John †

 ‡IBM Systems and Technology Division †Department of Electrical and Computer Engineering
 Austin, Texas The University of Texas at Austin
 robbell@us.ibm.com ljohn@ece.utexas.edu

Abstract
There are two parts of the design process that can

benefit from reduced, miniature benchmarks that behave
like longer-running applications during simulation: 1) the
early design phase before an implementation exists, and
2) the later design phases when cycle-accurate functional
models exist. In the early design phase, many hundreds or
thousands of potential design tradeoffs must be evaluated
rapidly at a high-level. In the later design phases, design
changes are costly to undo, so potential changes need to
be accurately evaluated using a performance model that
has been validated against a functional model.
Applications typically run too long to be executed
completely for either early design tradeoffs or late
performance model validation.

 In this paper, we explore the potential for
automatically synthesizing reduced miniature benchmarks
from the execution characteristics of actual applications.
We discuss the advantages and challenges of automatic
synthesis and present evidence that miniature benchmarks
can reproduce the machine behavior of much longer
running applications. We present one approach to
benchmark synthesis and show that IPC and many
average characteristics of the executing synthetic
benchmarks are similar to those of the applications that
the synthetic benchmarks are derived from. We also show
that an early design task like identifying performance
trends due to design changes can be carried out while still
reducing runtimes significantly. The synthetic benchmarks
converge to results rapidly, enabling performance model
validation.

1. Introduction

Over two decades ago, researchers used synthetic
benchmarks like Whetstone[10] and Dhrystone[30] to
approximate the performance of applications on their
designs. However, the early synthetic benchmarks fell out
of favor because they were difficult to maintain and
upgrade in the face of ever-evolving languages, libraries
and programming styles. In the early phases of the pre-
silicon design process, researchers turned to simulation of

real applications, and some applications (like SPEC [26])
have became benchmarks of computer performance.
However, long runtimes for the latest benchmarks make
full program simulation for early design studies
impractical [22] [33].

In the later phases of the pre-silicon design process, the
validation of a performance model against a functional
model or hardware is necessary at various times in order
to minimize incorrect design decisions due to inaccurate
performance models [5]. As functional models are
improved, accurate performance models can pinpoint with
increasing certainty the effects of particular design
changes. This translates into higher confidence in late pre-
silicon or second-pass silicon design performance.

Prior validation efforts have focused on handwritten
microbenchmarks or short tests of random instructions [6]
[27] [4] [18] [17] [16] [34]. Black and Shen describe tests
of up to 100 randomly generated instructions [4], not
enough to approximate many characteristics of
applications. Desikan et al. use microbenchmarks to
validate an Alpha 21267 simulator to 2% error [11], but
the validated simulator still gives errors from 20% to 40%
when executing the SPEC2000 benchmarks.

Ideally, SPEC and other applications would be used
for performance model validation, but, again, this is
limited by their long runtimes on functional simulators
[5]. In [36], only one billion simulated cycles per month
are obtained. In [34], farms of machines provide many
cycles in parallel, but individual tests on a 175 million-
transistor chip model execute orders of magnitude slower
than the hardware emulator speeds of 2500 cycles per
second.

Sampling techniques such as SimPoint [22], SMARTS
[33] and Intrinsic Checkpointing [35] can reduce
application runtimes, making early design studies
feasible, but it is still necessary to execute tens of millions
of instructions. Statistical simulation creates
representative synthetic traces with less than one million
instructions [8] [19] [12], but traces are not useful for
functional model validation.

Sakamoto et al. combine a modified trace snippet with
a memory image for execution on a specific machine and
a logic simulator [21], but the method is machine-specific

and there is no attempt to reduce the total number of
simulated instructions. In [14], assembly programs are
generated that have the same power consumption
signature as applications. However, all workload
characteristics are modeled as microarchitecture-
dependent characteristics, so the work is not useful for
studies involving design trade-offs [13]. Wong and Morris
[32] investigate synthesis for the LRU hit function to
reduce simulation time, but no method of simultaneously
incorporating other workload characteristics is developed.
The research community recognizes the need for a general
synthesis method [23], but none has been forthcoming.

In this paper, we discuss the problem of synthesizing
red

ction
2

2. Representative Miniature Benchmarks

Automatic benchmark synthesis is most useful if the

nthesized benchmark has the following two properties:

execution characteristics of the application upon

2) nverges to a result much faster

than the original application.

If the ark is said to be
presentative of the original application, at least over

som

erties but over a
nar

uced, miniature benchmarks for early design studies
and performance validation. We describe an example
synthesis system that uses the workload characterization
and graph analysis of statistical simulation in combination
with specific memory access and branching models as in
[2][3]. A miniature benchmark is generated as C-code
with low-level instructions instantiated as asm statements.
When compiled and executed, the synthetic code
reproduces the dynamic workload characteristics of an
application, and yet it can be easily executed on a variety
of performance and functional simulators, emulators, and
hardware, and with significantly reduced runtimes.

The rest of this paper is organized as follows. Se
presents properties necessary for the miniature

benchmarks and some of their benefits. Sections 3 and 4
gives an overview of the synthesis approach and some
experimental results. Section 5 gives some discussion,
and the last sections present conclusions and references.

sy

1) The benchmark reproduces the machine

which it is based.

The benchmark co

 first property holds, the benchm
re

e range of instructions or workload characteristics.
The workload characteristics can be categorized into two
classes [13]: microarchitecture-independent metrics such
as instruction mix, dependency distances, basic blocks,
and temporal and spatial locality; and microarchitecture-
dependent metrics such as cache miss rates and branch
predictability. If the second property does not hold to
some degree, there is no good reason to use the synthetic
benchmark over the original application.

Prior work usually focuses on one of the properties at
the expense of the other, or on both prop

row range. The hand-coded tests and automatic
random tests in Black and Shen [4] converge quickly
(property 2), but they provide limited or inefficient
coverage of all the instruction interactions in a real
application (property 1). The reverse-tracer system [21]
achieves accurate absolute performance for a short trace
(property 1), but no runtime speedup is obtained. In [14],
both properties are achieved, but workload characteristics
that are important to performance, like the instruction
sequences and the dependency distances [1], are not
maintained. Intrinsic Checkpointing [35] achieves both
properties but is only incrementally faster than SimPoint
[22].

Trace

Synthetic
Pisa

Figure 1: Miniature Benchmark Synthesis and Simulation Overview

Workload
Characterization

Graph
Analysis

Execution
Comparison

Register
Assignment

Code
Generation

Available
Machine
Registers

Machine
Instruction

Format

Synthetic
Alpha

Synthetic
PowerPC

Application

Start

A

CB

D

A

B

C

D

A

D

Br

Br

Br

Br

Br

Br

Ld

St

St

Int

Int

Data0

Data1

A

B

C

D

A

D

Br

Br

Br

Br

Br

Br

Ld

St

St

Int

Int

Data 0

Data 1

A

B

C

D

A

D

Br

Br

Br

Br

Br

Br

Ld

St

St

Int

Int

A

B

C

D

A

D

Br

Br

Br

Br

Br

Br

Ld

St

St

Int

Int

2a: Statistical
Flow Graph

2b: After Graph Walk
and Dependency
Assignment

2c: Program
Termination

2d: Data
Access Model 2e: Branching

Model

Int

Figure 2: Benchmark Synthesis Illustrated

Loop Counter Cmp

Int

Cmp

Int

Cmp

Int

In practice, achieving both properties for the
representative phases of an entire workload is difficult,
bu

will introduce errors because
the

 toward automatically generating reduced,
mi

ss at a high level.
There are four major phases: workload characterization;
gra

low. At a high
lev

racterization

stics of the target
program are profiled using a functional simulator, cache
sim

t in most cases it is not necessary. For validation
purposes, a reduced synthetic benchmark need represent
only specific application features of interest, not all
features. For early design studies, many prominent
workload features must be represented, but absolute
accuracy [12] need not be high as long as performance
trends from design changes are visible, i.e. relative
accuracy [12] is high.

Any miniature benchmark synthesis system that
satisfies the two properties

 application size, in terms of the numbers of
instructions executed, has been scaled down in order to
obtain a runtime speedup. Ideally, the benchmark will be
generated in a high-level language like C. Assuming that
the errors can be kept at acceptable levels, such high-level
benchmarks have several advantages over sampled traces.
These include: portability to a variety of machines,
emulators, and execution-driven simulators; and
flexibility with respect to easier modification of the code
to study changes in workload characteristics or future
workloads.

In the next section, we present a synthesis system that
takes a step

niature benchmarks that can satisfy both properties
simultaneously for many workload characteristics. We
discuss the modeling abstractions and the errors that are
introduced by the synthesis process.

3. Example Synthesis System

Figure 1 depicts the synthesis proce

ph analysis; register assignment and code generation.
In this paper we give an overview of the synthesis process
and philosophy. Additional detail, as well as exact
synthesis parameters and algorithms for Pisa and Alpha
code targets, can be found in [2] and [3].

Figure 2 gives a step-by-step illustration of the
synthesis process, which we describe be

el, we start with the statistical flow graph from
statistical simulation [12][1], which is a reduced
representation of the control flow instructions of the
application. The graph is walked, giving a representative
synthetic trace. We then apply algorithms to instantiate
low-level instructions, specify branch behaviors and
memory accesses, and generate code, yielding a simple
but flexible program.

3.1. Workload Cha

The dynamic workload characteri

ulator and branch predictor simulator as in [12][1].
The characterization system currently takes input from
fast functional simulation using SimpleScalar [7] or trace-
driven simulation in an IBM proprietary performance
simulator. We characterize the basic block instruction

sequences, the instruction dependencies, the branch
predictabilities, and the L1 and L2 I-cache and D-cache
miss rates at the granularity of the basic block.
Instructions are abstracted into five basic classes: integer,
floating-point, load, store, and branch. Long and short
execution times for integer and floating-point instructions
are distinguished. We also track the IPC of the original
workload to compare to the synthetic result.

The statistical flow graph [12][1] is assembled from
the workload characterization. An example is given in
Fig

 characterization to build the
pieces of the synthetic benchmark. The statistical flow
gra

(also Figure 2b). The starting dependence
for

that
be

it rate found for the
co

ces
ch

was necessary for correlation of the
be

ure 2a. Basic blocks A, B, C and D each has various
probabilities of branching to one or more basic blocks.

3.2. Graph Analysis

We use the workload

ph is walked using the branching probabilities for each
basic block, and a linear chain of basic blocks is
assembled, as in Figure 2b. This chain will eventually be
emitted directly as the central operations of the synthetic
benchmark. The number of instantiated basic blocks is
equal to an estimate of how many blocks are needed to
match the I-cache miss rate of the application given a
default I-cache configuration [2][3]. We then tune the
number of synthetic basic blocks to match the I-cache
miss rate and instruction mix characteristics by iterating
through synthesis a small number of times. In practice,
anywhere from one to 1000 basic blocks may be
necessary to meet the I-cache miss rate of a particular
application. Typically less than 4000 instructions are
synthesized.

For each basic block, we assign instruction input
dependencies

 each instruction is taken from the average found for
the instruction during workload characterization. If the
dependency is not compatible with the input operand type
of the dependent instruction, then another instruction is

chosen. The algorithm is to move forward and backward
from the starting dependency through the list of
instructions until the dependency is compatible. In
practice, the average number of moves per instruction
input is small, usually less than one. For loads and stores,
the data address register must be of integer type. When
found, it is attributed as a memory access counter for
special processing during the code generation phase.

 When all instructions have compatible dependencies,
a search is made for an additional integer instruction

comes the loop counter (Figure 2c). The branch in the
last basic block in the program checks the loop counter to
determine when the program is complete. The number of
executed loops is chosen to be large enough to assure IPC
convergence given the memory accesses of the load and
store instructions in the benchmark. In practice, the
number of loops does not have to be very large to
characterize simple stream access patterns. Experiments
have shown that the product of the loop iterations and the
number of instructions must be around 300K to achieve
low branch predictabilities and good stream convergence.
The loop iterations are therefore approximately
300K/4000 for most benchmarks.

The data access counter instructions are assigned a
stride based on the D-cache h

rresponding load and store accesses during workload
characterization (Figure 2d). The memory accesses for
data are modeled using the sixteen simple stream access
classes shown in Table 1. The table was generated based
on a default cache configuration [2][3], and the stride is
shown in four byte increments. The stride for a memory
access is determined first by matching the L1 hit rate of
the load or store that is fed by the access counter, after
which the L2 hit rate for the stream is predetermined.

By treating all memory accesses as streams, the
memory access model is kept simple. This redu

anges to the instruction sequences and dependencies,
which have been shown to be critical for correlation with
the original workload [1]. On the other hand, there can be
a large error in stream behavior when an actual stream hit
rate falls between the hit rates in two rows of the table.
Section 4 shows that the simple model is responsible for
correlation error when the cache hierarchy changes from
the default. More complicated models might walk cache
congruence classes or pages (to model TLB misses), or
move, add, or convert instructions to implement specific
functions. Adding a few instructions to implement a more
complicated model will not impact instruction mix and
behavior in most cases. There are many models in the
literature that can be investigated as future work
[24][29][9][15].

In some cases, we found that additional manipulation
of the streams

nchmarks because of the cumulative errors in stream
selection. Parameters were added to adjust the basic block

Table 1: L1 and L2 Hit Rates versus Stride
L1 Hit Rate L2 Hit Rate Stride

0.0000 0.000 16
0.0000 0.0625 15
0.0000 0.1250 14
0.0000 0.1875 13
0.0000 0.2500 12
0.0000 0.3125 11
0.0000 0.3750 10
0.0000 0.4375 9
0.0000 0.5000 8
0.1250 0.5000 7
0.2500 0.5000 6
0.3750 0.5000 5
0.5000 0.5000 4
0.6250 0.5000 3
0.7500 0.5000 2
0.8750 0.5000 1
1.0000 N/A 0

and overall miss rates of the synthetic data accesses to
compensate. A small number of synthesis iterations is
usually necessary. Details are given in [2][3].

We superimpose a branch predictability model onto
the set of basic blocks that already represent the
ins

t be skipped over by a taken branch, or
loo

tained from the
wo

gister Assignment

usages in the synthetic
benchmark are assigned exactly during the register
ass

gister is reserved for
ea

is consolidates the least frequent pools together
un

d-robin fashion.

takes the representative
ins ions and the attributes from graph analysis and
reg

 to data access
va

 associated with the original graph walk
are

an be
fou

truction mix, dependencies and data access patterns of
the original workload (Figure 2e). A number of branches
in the trace are configured to branch past the next basic
block or a number of instructions based on the global
branch predictability of the original application. An
integer instruction that is not used as a data access counter
or a loop counter is converted into an invert instruction
that operates on a particular register every time it is
encountered. If the register is set, the branch jumps past
the next basic block. The invert mechanism causes a
branch to have a predictability of 50% for predictors that
use 2-bit saturating counters. Benchmarks like mgrid and
applu have average basic block sizes much longer than
other benchmarks. In those cases, parameters are used to
adjust the synthetic branch predictability. Details are
given in [2][3].

The configured branches, invert instruction, and loop
counter must no

p iterations may not converge, or the branch
predictability may be incorrect. Code regions containing
these instructions are carefully avoided.

In practice, there are many synthetic benchmarks that
more or less satisfy the metrics ob

rkload characterization and overall application IPC. As
mentioned in several places above, the usual course of
action is to iterate through synthesis a number of times
until the metric deltas are as small as desired. Usually less
than ten iterations are needed to obtain reasonably small
errors.

3.3. Re

All architected register

ignment phase. Most ISAs specify dedicated registers
that should not be modified without saving and restoring.
In practice, not all registers need be used to achieve a
good synthesis result. In our experiments, only 20 or so
general-purpose registers divided between data access
counters and code use are necessary.

Data access streams are pooled according to their
stream access characteristics and a re

ch class. All data access counters in the same pool
increment the same register, so new stream data are
accessed similarly whether there are a lot of counters in
the pool and few loop iterations or few in the pool but
many iterations. The exact numbers of data access and
stream registers assigned for each benchmark are given in
[2][3].

For applications with large numbers of stream pools,
synthes

til the total number of registers is under the register use
limit. A roughly even split between code registers and
pool registers improves benchmark quality. High quality
is defined as a high correspondence between the
instructions in the compiled benchmark and the original
synthetic C-code instructions. With too few or too many
registers available for code use, the compiler may insert
stack operations into the binary. The machine
characteristics may not suffer from a few stack
operations, but for this study we chose to synthesize code
without them.

The available code registers are assigned to instruction
outputs in a roun

3.4. Code Generation

The code generator
truct
ister assignment and outputs a single module of C-

code that contains calls to assembly-language instructions
in the target language [2][3]. Figure 1 shows the three
targets currently supported. Each instruction in the
representative trace maps one-to-one to a single asm call
in the C-code. Ordinary C-code is emitted for functions
not related to the trace, as, for example, to instantiate and
initialize data structures and variables.

We emit a C-code main header and variable
declarations to link output registers

riables for the stream pools, the loop counter variable,
and the branching variable. Pointers to the correct
memory type for each stream pool are declared, and
Malloc calls for the stream data are generated with size
based on the number of loop iterations. Each stream pool
register is initialized to point to the head of its malloced
data structure.

The loop counter register initialization is emitted, and
the instructions

 emitted as volatile calls to assembly language
instructions. The data access counters are emitted as
integer additions of its output register value to the
associated stride for the stream. The loop counter is
emitted as an integer subtraction of one to its output
register. The basic blocks are analyzed and code is
generated to print out unconnected output registers
depending on a switch value. The switch is never set, but
the print statements guarantee that no code is eliminated
during compilation. Code to free the malloced memory is
generated, and, finally, a C-code footer is emitted.

Additional detailed synthesis information for the
SPEC95, SPEC2000 and STREAM benchmarks c

nd in [2] and [3].

4. Synthesis Results

he SPEC2000 results for the
benchmark synthesis system described in the last section.

hibits
go synthetic simulation correlation against actual
ap

ethods of Section 3. The
sy

 have an execution speed
advantage over the original applications. Most
sim

tions (283K on average) in order to
rep

In this section we present t

4.1. Experimental Setup and Benchmarks

We start with an experimental system that ex
od
plication simulations. Our system is derived from the

statistical simulation system HLS [19][20], which we
updated with the statistical flow graph to improve
correlation [1][12]. SimpleScalar 3.0 [7] was downloaded
and sim-cache was modified to carry out the workload
characterization. The twelve SPECint2000 and fourteen
SPECfp2000 Alpha binaries were executed in sim-
outorder on the first reference dataset for the first billion
instructions. Single-precision versions of eight STREAM
and STREAM2 benchmarks [16] with a ten million-loop
limit were also simulated. We use the default
SimpleScalar configuration in Table 2, as in [19].
SimpleScalar does not model an L3, but the memory
latency estimates a fast L3.

Code generation was enabled and C-code was
produced using the synthesis m

nthetic benchmarks were compiled using gcc with
optimization level –O2 and executed to completion in
SimpleScalar on an IBM p270 (400 MHz).

4.2. Synthesis Results

The synthetic benchmarks

ulations of the SPEC2000 synthetics take less than
four seconds to execute an average of 325K instructions,
compared to about 25K seconds for the original codes. On
average, the applications simulate 6000 times slower than
the synthetics [3].

The STREAM synthetics must also execute for a large
number of instruc

resent to be represent the data access patterns of the
original codes. As a result, the original codes of 10M
dynamic instructions execute only 35 times slower than
the synthetic codes. Dynamic executions of at least 300K

instructions provide data access convergence and also
limit the code overhead of the synthetic to less to 1% of
the total dynamic instructions.

Table 2: Default Simulation Configuration, Alpha ISA

 Table 3 compares the execution characteristics of the
synthetic benchmarks to those of the SPEC2000 and
STREAM codes. The average percent errors for all the
metrics are generally less than 15%, with most below
10%, although some of the maximum errors are high. The
error in IPC remains low because errors in the metrics
offset each other for particular benchmarks, or the
absolute values of the metrics are very low and have little
effect. As an example, the large percent error for the
mgrid L1 D-cache miss rate corresponds to a reduction
for the synthetic that is offset by a 0.3% increase in I-
cache miss rate and a 21.1% decrease in basic block size.
As another example, the 22.9% L1 I-cache miss rate error
for sixtrack is a decrease taken against a miss rate of just
1.1%, so the effect of the error is small. Also, the large
increase in L2 cache misses for applu is offset by a 31.5%
decrease in its L1 D-cache miss rate, to 6.5%. The various
errors in Table 3 are broken out for each benchmark in
[3].

The overall average IPC error for the synthetic
benchmarks is 2.4%, with a maximum error of 8.0% for
facerec. The error in IPC expresses the average effect of
small or offsetting errors among the workload
characteristics of the synthetics as described below.

The average error in instruction frequencies over the
five classes of instructions for the synthetic benchmarks is
3.4% with a maximum of 7.3% for branches. The basic
block size varies per synthetic with an average error of
7.2% and a maximum error of 21.1% for mgrid. The
errors are caused by variations in the fractions of specific
basic block types in the synthetic benchmark with respect
to the original workload, which is a direct consequence of
selecting a limited number of basic blocks during
synthesis. For example, mgrid is synthesized with a total
of 30 basic blocks made up of only six different unique
block types. Applu is synthesized with 19 basic blocks but
18 unique block types.

The average I-cache miss rate error is 8.6% for
benchmarks with miss rates above 1%. However, the
number of synthetic instructions is within 2.8% of the
expected number given the I-cache configuration. The
errors are due to the process of choosing a small number
of basic blocks with specific block sizes to synthesize the

Instruction Size (bytes) 4
L1/L2 Line Size (bytes) 32/64

Machine Width 4
D ispatch Window/LSQ/IFQ 16/8/4

Memory System 16K 4-way L1 way L1 I,
256K 4- fied L2

 D, 16K 1-
way uni

L r 1/L2/Memory Latency+transfe
(cycles) 1/6/34

Functional Units

Table 3: Percent Execution Error, Synthetics vs. Applications
Metric Avg. %Error Max. %Error

IPC 2.4 8.0 (facerec)
Instruction Frequencies 3.4 7.3 (branches)
Dependency Distances 11.1 34.9 (integers)
Dispatch Occupancies 4.1 8.7 (floats)
Basic Block Sizes 7.2 21.1 (mgrid)
L1 I-cache Miss Rate (>1%) 8.6 22.9 (sixtrack)
L1 D-cache Miss Rate (>1%) 12.3 55.7 (mgrid)
L2 Cache Miss Rate (>15%) 18.4 61.2 (applu)
Branch Predictability 1.5 6.4 (art)

4
4 FP-ALU UL/DIV

 I-ALU, 1 I-MUL/DIV,
, 1 FP-M

Branch Predictor Bimodal 2K table,
3 cycle mispredict penalty

workload. For miss rates close to zero, a number of
instructions less than the maximum number that fits in the
default cache is typically used, up to the number needed
to give an appropriate instruction mix for the benchmark.
For the STREAM loops, only one basic block is needed to
meet the instruction mix and miss rate requirements. For
all synthetic benchmarks there is a small but non-zero
miss rate, versus an essentially zero miss rate for some of
the applications. This is because the synthetic benchmarks
are only executed for about 300K instructions, far fewer
than necessary to achieve a very small I-cache miss rate.
However, since the miss rates are small, the impact, when
combined with the miss penalty, is also small.

The average branch predictability error is 1.9%, with a
maximum error for art of 6.4%. Mgrid, with its large
basic block size error, has the third largest error at 4.9%.

For L1 data cache miss rates greater than 1%, the
average error is 12.3%. Despite this error, the trends in D-
cache miss rates generally correspond with those of the
original workloads [3]. There is some variation for
smaller miss rates, but, as with many I-cache miss rates,
the execution impact is also small.

The unified L2 miss rates have a large average error of
18.4%. The large error is due to the simple streaming
memory access model. However, the errors are often
mitigated by small L1 miss rates. A good example is gcc,
which has a 15% L2 miss rate but only a 2.6% L1 miss
rate. The 61.2% L2 miss rate error for applu is offset by I-

cache and L1 D-cache miss rates that are smaller than
those of the original workload. Art and ammp have large
L1 miss rates (41% and 44%), but their L2 miss rates are
offset by relatively larger I-cache miss rates and smaller
branch predictabilities. The main cause of the errors is the
fact that the current memory access model focuses on
matching the L1 hit rate, and the L2 hit rate is simply
predetermined as a consequence. A large L2 miss rate
error for ammp (46%) is explained by the fact that our
small data-footprint synthetic benchmarks have data-TLB
miss rates near zero, while the actual ammp benchmark
has a data-TLB miss rate closer to 13%. As a
consequence, the synthetic version does not correlate well
when the dispatch window is increased and tends to be
optimistic.

The average dependency distances have 11.1% error
on average. The largest components of error are the
integer dependencies (at 34.1%), caused by the
conversion of many integer instructions to data access
counters. A data access counter overrides the original
function of the integer instruction and causes dependency
relationships to change. Another source of error is the
movement of dependencies during the search for
compatible dependencies. The movement is usually less
than one instruction position, as mentioned earlier, but
mgrid and applu, the benchmarks with the largest average
block sizes at 100.1 and 93.4, respectively, show
significant movement. The branching model also
contributes errors to the integer instruction class.

 In spite of the dependency distance errors, the average
dispatch window occupancies are similar to those of the
original benchmarks with an average error of 4.1%.

Table 4: Design Change Percent Error and Percent Relative Error

4.3. Using the Synthetic Benchmarks to Assess

Design Changes

We now study design changes using the same synthetic

benchmarks; that is, we take the benchmarks described in
the last section, change the machine parameters in
SimpleScalar and re-execute them. Table 4 gives the
average IPC prediction error and relative IPC error [12]
when executing various design changes on the
benchmarks synthesized from the default configuration. A
change in machine width implies that the decode width,
issue width and commit width all change by the same
amount from the base configuration in Table 2. When the
caches are increased or decreased by a factor, the number
of sets for the L1 I-cache, D-cache and L2 cache are
increased or decreased by that factor. Likewise, when the
bimodal branch predictor is multiplied by a factor, the
table size is multiplied by that factor from the default size.
The L1 D-cache 2x and L1 I-cache 2x specify a doubling
of the L1 D-cache (to 256 sets, 64B cache line, 8-way set
associativity), and a doubling of the L1 I-cache
configuration (to 1024 sets, 64B cache line, 2-way set

Synthetics vs. Applications
Design Change Avg. %Error Avg. %Rel. Err.

Dispatch Window 8, LSQ 4 2.8 2.4
Dispatch Window 32, LSQ 16 3.7 2.1
Dispatch Window 48, LSQ 24 4.9 3.8
Dispatch Window 64, LSQ 32 6.1 5.1
Dispatch Window 96, LSQ 48 8.3 7.5
Dispatch Window 128, LSQ 64 9.0 8.3
Machine Width 2 2.7 1.6
Machine Width 6 2.6 1.1
Machine Width 8 2.6 1.1
Machine Width 10 2.6 1.1
Issue Width 1 1.9 2.3
Issue Width 8 2.7 1.0
Commit Width 1 2.8 2.1
Commit Width 8 2.4 0.2
Instruction Fetch Queue 8 2.6 0.5
Instruction Fetch Queue 16 2.7 0.8
Instruction Fetch Queue 32 3.0 1.1
Caches 0.25x 20.1 19.4
Caches 0.5x 24.8 23.9
Caches 2x 4.1 3.3
Caches 4x 4.7 3.8
L1 I-cache 2x 3.0 1.3
L1 D-cache 2x 3.1 1.0
L1 D-cache Latency 8 9.5 9.7
BP Table 0.25x 2.5 1.1
BP Table 0.5x 2.3 0.3
BP Table 2x 2.3 0.3
BP Table 4x 2.3 0.4

associativity). The numbers here do not include ammp; as
explained in the last section, ammp tends to be optimistic
when the dispatch window changes because our small
data footprint benchmarks do not model data-TLB misses.

Looking at the Dispatch Window rows, when the
synthetics are executed on configurations close to the
default configuration, the average IPC prediction error
and average relative errors are below 5%. However, as the
configuration becomes less similar to the configuration
used to synthesize the benchmarks, the errors increase.
One conclusion is that the synthetics are most useful for
design studies and validations closer to the synthesis
configuration, and that the miniature benchmarks should
be resynthesized when the configuration strays farther
away - in this case, when the dispatch window rises to
four times the default size.

When the errors are small, the changes in IPC for the
applications and synthetics are very similar. If the IPC
changes are significantly larger than the errors in IPC due
to synthesis modeling, the changes using the synthetics
should be large enough to trigger additional studies using
a detailed cycle-accurate simulator. For early design
studies, chip designers are looking for cases in a large
design space in which a design change may improve or
worsen a design. Example analyses are given in [2][3].

The Machine Width results differ from the dispatch
window results in that the errors are small regardless of
the width change. For the dispatch studies, the absolute
change in IPC from the default configuration for both
synthetics and applications is greater than 17% for each
case (for a dispatch window of 128 the change is over
56%). Likewise, when the width is reduced to 2, the
absolute change in IPC is over 23%, which indicates that
the low average prediction error and relative error are
meaningful. But when the width increases to 6, 8 and 10,
the change is never more than 2.3%, which is on the order
of the IPC prediction errors of the synthetics versus the
applications. However, the fetch queue size did not
change from the default and it supplies too little ILP to
stress the wider machine width. These configurations
therefore cannot test the accuracy of the synthetics.

Similarly, the absolute IPC change from the default
IPC for the Issue Width 8 and Commit Width 8 rows never
gets greater than 1.4%, and likewise for the instruction
fetch queue and branch predictability rows, it never gets
greater than 1.6%. Simply changing the IFQ size, issue, or
commit width without addressing the other pipeline
bottlenecks does not improve performance, as expected.
Other workloads may be needed to stress the branch
predictor.

The remaining studies yield changes in IPC
significantly greater than the error of the synthetics versus
the applications, except for the Caches 0.25x and Caches
0.5x studies. The synthetics underestimate performance

when the cache is significantly reduced due to capacity
misses among the synthetic data access streams.

For the L1 D-cache latency study, the average absolute
IPC error is 9.5% and the relative error is 9.7%,
significantly less than the 22.1% change in IPC from the
default configuration. On further investigation, the error is
mostly due to the SPECint synthetics, with an average
relative error of 19.9%, versus 4.2% for the others.
Despite these errors, the IPC changes in the actual
benchmarks executing one billion instructions are still
visibly reflected in the synthetic benchmarks that run in
seconds [3].

Again, all of these runs use the same miniature
benchmarks synthesized from the initial SimpleScalar
configuration, not re-synthesized benchmarks.

5. Drawbacks and Discussion

The main drawback of the approach is that the

microarchitecture independent workload characteristics,
and thus the synthetic workload characteristics, are
dependent on the particular compiler technology used.
However, since the process is automatic, resynthesis
based on workload characterization from new compiler
technology is simplified. It also avoids questions of high-
level programming style, language, or library routines that
plagued the representativeness of the early hand-coded
synthetic benchmarks such as Whetstone [10] and
Dhrystone [30].

One objection is that the synthetics are comprised of
machine-specific assembly calls. However, use of low-
level operations are a simple way to achieve true
representativeness in a much shorter-running benchmark,
and the asm calls are easily retargeted to other ISAs that
follow the RISC philosophy.

Another drawback is that only features specifically
modeled among the workload characteristics appear in the
synthetic benchmark. This will be addressed over time as
researchers uncover additional features needed to
correlate with execution-driven simulation or hardware,
although the present state-of-the-art is quite good [12][1].
In the future, synthesis parameters could be used to
incorporate or not incorporate features as necessary.

One consequence of the present method is that dataset
information is assimilated into the final instruction
sequence of the synthetic benchmark. For applications
with multiple datasets, a family of synthetic benchmarks
must be created. The automatic process makes doing so
possible, but future research could seek to find the
workload features related to changes in the dataset and
model those changes as runtime parameters to the
synthetic benchmark.

Ideally, our miniature programs would be benchmark
replacements, but the memory and branching models used
in their creation introduce significant errors. This makes

them a solution in the “middle” between micro-
benchmarks and applications. However, as shown in
Section 4, many of the characteristics of the original
applications are maintained, and the synthesis approach
provides a framework for the investigation of advanced
cache access and branching models each independently of
the other.

Our benchmarks use a small number of instructions in
order to satisfy the I-cache miss rate. This small number
causes variations in workload characteristics, including
basic block size, with corresponding changes in
instruction mix, dependency relationships, and dispatch
window occupancies. One solution is to instantiate
additional basic blocks using replication [32]. Multiple
sections of representative synthetic code could be
synthesized and concatenated together into a single
benchmark. Each section would satisfy the I-cache miss
rate, but the number of basic blocks would increase
substantially to more closely duplicate the instruction
mix. Similarly, multiple sections of synthetic code, and
possibly initialization code, could be concatenated
together to recreate program phases [22]. Additionally,
phases from multiple benchmarks could be consolidated
together and configured at runtime through user
parameters.

6. Conclusions

In this paper we explore the possibility of

automatically synthesizing reduced, miniature
benchmarks from the dynamic workload characteristics of
executing applications. Two major uses of the miniature
benchmarks are for rapid early design studies and pre-
silicon performance validation. We discuss the
advantages and challenges of automatic synthesis and
describe an example system in which the target
application’s executable is analyzed in detail and
sequences of instructions are instantiated as in-line
assembly-language instructions inside C-code.

Unlike prior synthesis efforts, we focus on the low-
level workload characteristics of the executing binary to
create a workload that behaves like a real application
executing on the machine. Multiple synthetic benchmarks
are necessary if the application is executed on multiple
machines, significantly different ISAs, or multiple
datasets, but the automatic process minimizes the cost of
creating new benchmarks and enables consolidation of
multiple representative phases into a single small
benchmark. Other benefits include portability to various
platforms and flexibility with respect to benchmark
modification. Future work includes more accurate
memory access models and branching models.

Aknowledgements

The authors would like to thank Lieven Eeckhout,

Koen De Bosschere, and the anonymous reviewers for
their detailed comments. This research is supported by the
National Science Foundation under grant number
0429806, by the IBM Center for Advanced Studies
(CAS), and an IBM SUR grant.

References

[1] R. H. Bell, Jr., L. Eeckhout, L. K. John and K. De Bosschere,
“Deconstructing and Improving Statistical Simulation in HLS,”
Workshop on Debunking, Duplicating, and Deconstructing, June
20, 2004.

[2] R. H. Bell, Jr. and L. K. John, “Experiments in Automatic
Benchmark Synthesis,” Technical Report TR-040817-01,
Laboratory for Computer Architecture, University of Texas at
Austin, August 17, 2004.

[3] R. H. Bell, Jr. and L. K. John, “Improved Automatic
Testcase Synthesis for Performance Model Validation,” to
appear in the Proceedings of the ACM International Conference
on Supercomputing, June 2005.

[4] B. Black and J. P. Shen, “Calibration of Microprocessor
Performance Models,” IEEE Computer, May 1998, pp. 59-65.

[5] P. Bose and T. M. Conte, “Performance Analysis and Its
Impact on Design,” IEEE Computer, May 1998, pp. 41-49.

[6] P. Bose, “Architectural Timing Verification and Test for
Super-Scalar Processors,” Proceedings of the 24th Annual
International Symposium on Fault-Tolerant Computing, June
1994, pp. 256-265.

[7] D. C. Burger and T. M. Austin, "The SimpleScalar Toolset,"
Computer Architecture News, 1997.

[8] R. Carl and J. E. Smith, "Modeling Superscalar Processors
Via Statistical Simulation," Workshop on Performance Analysis
and Its Impact on Design, June 1998.

[9] T. Conte and W. Hwu, “Benchmark Characterization for
Experimental System Evaluation,” Proceedings of Hawaii
International Conference on System Science, 1990, pp. 6-18.

[10] H. J. Curnow and B.A. Wichman, "A Synthetic
Benchmark," Computer Journal, vol. 19, No. 1, February 1976,
pp, 43-49.

[11] R. Desikan, D. Burger and S. Keckler, “Measuring
Experimental Error in Microprocessor Simulation,” International
Symposium on Computer Architecture, 2001.

[12] L. Eeckhout, R. H. Bell, Jr., B. Stougie, L. K. John and K.
De Bosschere, “Control Flow Modeling in Statistical Simulation
for Accurate and Efficient Processor Design Studies,”
International Symposium on Computer Architecture, June 2004.

[13] L. Eeckhout, Accurate Statistical Workload Modeling,
Ph.D. Thesis, Universiteit Gent, 2003.

[14] C. T. Hsieh and M. Pedram, "Microprocessor power

estimation using profile-driven program synthesis," IEEE
Transactions on Computer Aided Design of Integrated Circuits
and Systems, Vol. 17, No. 11, November 1998, pp. 1080-1089.

[15] T. Lafage and A. Seznec, “Choosing Representative Slices
of Program Execution for Microarchitecture Simulations,” IEEE
Workshop on Workload Characterization, 2000.

[16] J. D. McCalpin, “Memory bandwidth and machine balance
in current high performance computers,” IEEE Technical
Committee on Computer Architecture newsletter, December
1995.

[17] L. McVoy, “lmbench: Portable Tools for Performance
Analysis,” USENIX Technical Conference, Jan. 22-26, 1996,
pp. 279-294.

[18] M. Moudgill, J. D. Wellman and J. H. Moreno,
“Environment for PowerPC Microarchitecture Exploration,”
IEEE Micro, May-June 1999, pp. 15-25.

[19] M. Oskin, F. T. Chong and M. Farrens, "HLS: Combining
Statistical and Symbolic Simulation to Guide Microprocessor
Design," Proceedings of the 27th Annual International
Symposium on Computer Architecture, June 2000, pp. 71-82.

[20] http://www.cs.washington.edu/homes/oskin/tools.html

[21] M. Sakamoto, L. Brisson, A. Katsuno, A. Inoue and Y.
Kimura, “Reverse Tracer: A Software Tool for Generating
Realistic Performance Test Programs,” IEEE Symposium on
High-Performance Computing,” 2002.

[22] T. Sherwood, E. Perleman, H. Hamerly and B. Calder,
“Automatically characterizing large scale program behavior,”
Proceedings of the International Conference on Architected
Support for Programming Languages and Operating Systems,
October 2002.

[23] K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J.
Lilja and V. S. Pai, “Challenges in Computer Architecture
Evaluation,” IEEE Computer, August 2003, pp. 30-36.

[24] E. S. Sorenson and J. K. Flanagan, “Evaluating Synthetic
Trace Models Using Locality Surfaces,” IEEE International
Workshop on Workload Characterization,” Nov. 2002, pp. 23-
33.

[25] K. Sreenivasan and A.J. Kleinman, “On the Construction of
a Representative Synthetic Workload,” Communications of the
ACM, March 1974, pp.127-133.

[26] http://www.spec.org

[27] S. Surya, P. Bose and J. A. Abraham, “Architectural
Performance Verification: PowerPC Processors,” Proceedings of
the IEEE International Conference on Computer Design, 1999,
pp. 344-347.

[28] J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le and B.
Sinharoy, "POWER4 System Microarchitecture," IBM Journal
of Research and Development, January 2002, pp. 5-25.

[29] D. Thiebaut, “On the Fractal Dimension of Computer
Programs and its Application to the Prediction of the Cache
Miss Ratio,” IEEE Transaction on Computers, Vol. 38, No. 7,
July 1989, pp. 1012-1026.

[30] R. P. Weiker, "Dhrystone: A Synthetic Systems
Programming Benchmark," Communications of the ACM,
October 1984, pp. 1013-1030.

[31] J. N. Williams, “The Construction and Use of a General
Purpose Synthetic Program for an Interactive Benchmark for on
Demand Paged Systems,” Communications of the ACM, 1976,
pp.459-465.

[32] W. S. Wong and R. J. T. Morris, "Benchmark Synthesis
Using the LRU Cache Hit Function," IEEE Transactions on
Computers, Vol. 37, No. 6, June 1988, pp. 637-645.

[33] R. E. Wunderlich, T. F. Wenisch, B. Falsafi and J. C. Hoe,
“SMARTS: Accelerating Microarchitecture Simulation via
Rigorous Statistical Sampling,” The International Symposium
on Computer Architecture, June 2002.

[34] J. M. Ludden, et al., “Functional Verification of the Power4
Microprocessor and the Power4 Multiprocessor Systems,” IBM
J. Res. Dev., Vol. 46, No. 1, January 2002.

[35] J. Ringenberg, C. Pelosi, D. Oehmke and T. Mudge,
“Intrinsic Checkpointing: A Methodology for Decreasing
Simulation Time Through Binary Modification,” International
Symposium on Performance and Simulation Systems, March
2005, pp. 78-88.

[36] R. Singhal, et al., “Performance Analysis and Validation of
the Intel Pentium4 Processor on 90nm Technology,” Intel Tech.
J., Vol. 8, No. 1, 2004.

