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Abstract 
There are two parts of the design process that can 

benefit from reduced, miniature benchmarks that behave 
like longer-running applications during simulation: 1) the 
early design phase before an implementation exists, and 
2) the later design phases when cycle-accurate functional 
models exist. In the early design phase, many hundreds or 
thousands of potential design tradeoffs must be evaluated 
rapidly at a high-level. In the later design phases, design 
changes are costly to undo, so potential changes need to 
be accurately evaluated using a performance model that 
has been validated against a functional model. 
Applications typically run too long to be executed 
completely for either early design tradeoffs or late 
performance model validation. 

 In this paper, we explore the potential for 
automatically synthesizing reduced miniature benchmarks 
from the execution characteristics of actual applications. 
We discuss the advantages and challenges of automatic 
synthesis and present evidence that miniature benchmarks 
can reproduce the machine behavior of much longer 
running applications. We present one approach to 
benchmark synthesis and show that IPC and many 
average characteristics of the executing synthetic 
benchmarks are similar to those of the applications that 
the synthetic benchmarks are derived from. We also show 
that an early design task like identifying performance 
trends due to design changes can be carried out while still 
reducing runtimes significantly. The synthetic benchmarks 
converge to results rapidly, enabling performance model 
validation. 
 
1. Introduction 
 

Over two decades ago, researchers used synthetic 
benchmarks like Whetstone[10] and Dhrystone[30] to 
approximate the performance of applications on their 
designs. However, the early synthetic benchmarks fell out 
of favor because they were difficult to maintain and 
upgrade in the face of ever-evolving languages, libraries 
and programming styles. In the early phases of the pre-
silicon design process, researchers turned to simulation of 

real applications, and some applications (like SPEC [26]) 
have became benchmarks of computer performance. 
However, long runtimes for the latest benchmarks make 
full program simulation for early design studies 
impractical [22] [33]. 

In the later phases of the pre-silicon design process, the 
validation of a performance model against a functional 
model or hardware is necessary at various times in order 
to minimize incorrect design decisions due to inaccurate 
performance models [5]. As functional models are 
improved, accurate performance models can pinpoint with 
increasing certainty the effects of particular design 
changes. This translates into higher confidence in late pre-
silicon or second-pass silicon design performance. 

Prior validation efforts have focused on handwritten 
microbenchmarks or short tests of random instructions [6] 
[27] [4] [18] [17] [16] [34]. Black and Shen describe tests 
of up to 100 randomly generated instructions [4], not 
enough to approximate many characteristics of 
applications. Desikan et al. use microbenchmarks to 
validate an Alpha 21267 simulator to 2% error [11], but 
the validated simulator still gives errors from 20% to 40% 
when executing the SPEC2000 benchmarks. 

Ideally, SPEC and other applications would be used 
for performance model validation, but, again, this is 
limited by their long runtimes on functional simulators 
[5]. In [36], only one billion simulated cycles per month 
are obtained. In [34], farms of machines provide many 
cycles in parallel, but individual tests on a 175 million-
transistor chip model execute orders of magnitude slower 
than the hardware emulator speeds of 2500 cycles per 
second.  

Sampling techniques such as SimPoint [22], SMARTS 
[33] and Intrinsic Checkpointing [35] can reduce 
application runtimes, making early design studies 
feasible, but it is still necessary to execute tens of millions 
of instructions. Statistical simulation creates 
representative synthetic traces with less than one million 
instructions [8] [19] [12], but traces are not useful for 
functional model validation.  

Sakamoto et al. combine a modified trace snippet with 
a memory image for execution on a specific machine and 
a logic simulator [21], but the method is machine-specific 



and there is no attempt to reduce the total number of 
simulated instructions. In [14], assembly programs are 
generated that have the same power consumption 
signature as applications. However, all workload 
characteristics are modeled as microarchitecture-
dependent characteristics, so the work is not useful for 
studies involving design trade-offs [13]. Wong and Morris 
[32] investigate synthesis for the LRU hit function to 
reduce simulation time, but no method of simultaneously 
incorporating other workload characteristics is developed. 
The research community recognizes the need for a general 
synthesis method [23], but none has been forthcoming. 

In this paper, we discuss the problem of synthesizing 
red

ction 
2 

2. Representative Miniature Benchmarks 

Automatic benchmark synthesis is most useful if the 

nthesized benchmark has the following two properties:  

execution characteristics of the application upon 

 
2) nverges to a result much faster 

than the original application.  
 

If the ark is said to be 
presentative of the original application, at least over 

som

erties but over a 
nar

uced, miniature benchmarks for early design studies 
and performance validation. We describe an example 
synthesis system that uses the workload characterization 
and graph analysis of statistical simulation in combination 
with specific memory access and branching models as in 
[2][3]. A miniature benchmark is generated as C-code 
with low-level instructions instantiated as asm statements. 
When compiled and executed, the synthetic code 
reproduces the dynamic workload characteristics of an 
application, and yet it can be easily executed on a variety 
of performance and functional simulators, emulators, and 
hardware, and with significantly reduced runtimes.  

The rest of this paper is organized as follows. Se
presents properties necessary for the miniature 

benchmarks and some of their benefits. Sections 3 and 4 
gives an overview of the synthesis approach and some 
experimental results. Section 5 gives some discussion, 
and the last sections present conclusions and references. 

 

 

sy
 
1) The benchmark reproduces the machine 

which it is based. 

The benchmark co

 first property holds, the benchm
re

e range of instructions or workload characteristics. 
The workload characteristics can be categorized into two 
classes [13]:  microarchitecture-independent metrics such 
as instruction mix, dependency distances, basic blocks, 
and temporal and spatial locality; and microarchitecture-
dependent metrics such as cache miss rates and branch 
predictability. If the second property does not hold to 
some degree, there is no good reason to use the synthetic 
benchmark over the original application. 

Prior work usually focuses on one of the properties at 
the expense of the other, or on both prop

row range. The hand-coded tests and automatic 
random tests in Black and Shen [4] converge quickly 
(property 2), but they provide limited or inefficient 
coverage of all the instruction interactions in a real 
application  (property 1). The reverse-tracer system [21] 
achieves accurate absolute performance for a short trace 
(property 1), but no runtime speedup is obtained. In [14], 
both properties are achieved, but workload characteristics 
that are important to performance, like the instruction 
sequences and the dependency distances [1], are not 
maintained. Intrinsic Checkpointing [35] achieves both 
properties but is only incrementally faster than SimPoint 
[22]. 
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Figure 1: Miniature Benchmark Synthesis and Simulation Overview
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In practice, achieving both properties for the 
representative phases of an entire workload is difficult, 
bu

will introduce errors because 
the

 toward automatically generating reduced, 
mi

ss at a high level. 
There are four major phases: workload characterization; 
gra

low. At a high 
lev

racterization 

stics of the target 
program are profiled using a functional simulator, cache 
sim

t in most cases it is not necessary. For validation 
purposes, a reduced synthetic benchmark need represent 
only specific application features of interest, not all 
features. For early design studies, many prominent 
workload features must be represented, but absolute 
accuracy [12] need not be high as long as performance 
trends from design changes are visible, i.e. relative 
accuracy [12] is high.  

Any miniature benchmark synthesis system that 
satisfies the two properties 

 application size, in terms of the numbers of 
instructions executed, has been scaled down in order to 
obtain a runtime speedup.  Ideally, the benchmark will be 
generated in a high-level language like C. Assuming that 
the errors can be kept at acceptable levels, such high-level 
benchmarks have several advantages over sampled traces. 
These include: portability to a variety of machines, 
emulators, and execution-driven simulators; and 
flexibility with respect to easier modification of the code 
to study changes in workload characteristics or future 
workloads. 

In the next section, we present a synthesis system that 
takes a step

niature benchmarks that can satisfy both properties 
simultaneously for many workload characteristics. We 
discuss the modeling abstractions and the errors that are 
introduced by the synthesis process. 

3. Example Synthesis System 
 
Figure 1 depicts the synthesis proce

ph analysis; register assignment and code generation. 
In this paper we give an overview of the synthesis process 
and philosophy. Additional detail, as well as exact 
synthesis parameters and algorithms for Pisa and Alpha 
code targets, can be found in [2] and [3].  

Figure 2 gives a step-by-step illustration of the 
synthesis process, which we describe be

el, we start with the statistical flow graph from 
statistical simulation [12][1], which is a reduced 
representation of the control flow instructions of the 
application. The graph is walked, giving a representative 
synthetic trace. We then apply algorithms to instantiate 
low-level instructions, specify branch behaviors and 
memory accesses, and generate code, yielding a simple 
but flexible program.  

 
3.1.  Workload Cha

 
The dynamic workload characteri

ulator and branch predictor simulator as in [12][1]. 
The characterization system currently takes input from 
fast functional simulation using SimpleScalar [7] or trace-
driven simulation in an IBM proprietary performance 
simulator. We characterize the basic block instruction 

   



sequences, the instruction dependencies, the branch 
predictabilities, and the L1 and L2 I-cache and D-cache 
miss rates at the granularity of the basic block. 
Instructions are abstracted into five basic classes: integer, 
floating-point, load, store, and branch. Long and short 
execution times for integer and floating-point instructions 
are distinguished. We also track the IPC of the original 
workload to compare to the synthetic result. 

The statistical flow graph [12][1] is assembled from 
the workload characterization. An example is given in 
Fig

 characterization to build the 
pieces of the synthetic benchmark. The statistical flow 
gra

(also Figure 2b). The starting dependence 
for

that 
be

it rate found for the 
co

ces 
ch

was necessary for correlation of the 
be

ure 2a. Basic blocks A, B, C and D each has various 
probabilities of branching to one or more basic blocks. 

 
3.2. Graph Analysis 

 
We use the workload

ph is walked using the branching probabilities for each 
basic block, and a linear chain of basic blocks is 
assembled, as in Figure 2b. This chain will eventually be 
emitted directly as the central operations of the synthetic 
benchmark. The number of instantiated basic blocks is 
equal to an estimate of how many blocks are needed to 
match the I-cache miss rate of the application given a 
default I-cache configuration [2][3]. We then tune the 
number of synthetic basic blocks to match the I-cache 
miss rate and instruction mix characteristics by iterating 
through synthesis a small number of times. In practice, 
anywhere from one to 1000 basic blocks may be 
necessary to meet the I-cache miss rate of a particular 
application. Typically less than 4000 instructions are 
synthesized.  

For each basic block, we assign instruction input 
dependencies 

 each instruction is taken from the average found for 
the instruction during workload characterization. If the 
dependency is not compatible with the input operand type 
of the dependent instruction, then another instruction is 

chosen. The algorithm is to move forward and backward 
from the starting dependency through the list of 
instructions until the dependency is compatible. In 
practice, the average number of moves per instruction 
input is small, usually less than one. For loads and stores, 
the data address register must be of integer type. When 
found, it is attributed as a memory access counter for 
special processing during the code generation phase.  

 When all instructions have compatible dependencies, 
a search is made for an additional integer instruction 

comes the loop counter (Figure 2c). The branch in the 
last basic block in the program checks the loop counter to 
determine when the program is complete. The number of 
executed loops is chosen to be large enough to assure IPC 
convergence given the memory accesses of the load and 
store instructions in the benchmark. In practice, the 
number of loops does not have to be very large to 
characterize simple stream access patterns. Experiments 
have shown that the product of the loop iterations and the 
number of instructions must be around 300K to achieve 
low branch predictabilities and good stream convergence. 
The loop iterations are therefore approximately 
300K/4000 for most benchmarks. 

The data access counter instructions are assigned a 
stride based on the D-cache h

rresponding load and store accesses during workload 
characterization (Figure 2d). The memory accesses for 
data are modeled using the sixteen simple stream access 
classes shown in Table 1. The table was generated based 
on a default cache configuration [2][3], and the stride is 
shown in four byte increments. The stride for a memory 
access is determined first by matching the L1 hit rate of 
the load or store that is fed by the access counter, after 
which the L2 hit rate for the stream is predetermined. 

By treating all memory accesses as streams, the 
memory access model is kept simple. This redu

anges to the instruction sequences and dependencies, 
which have been shown to be critical for correlation with 
the original workload [1]. On the other hand, there can be 
a large error in stream behavior when an actual stream hit 
rate falls between the hit rates in two rows of the table. 
Section 4 shows that the simple model is responsible for 
correlation error when the cache hierarchy changes from 
the default. More complicated models might walk cache 
congruence classes or pages (to model TLB misses), or 
move, add, or convert instructions to implement specific 
functions. Adding a few instructions to implement a more 
complicated model will not impact instruction mix and 
behavior in most cases. There are many models in the 
literature that can be investigated as future work 
[24][29][9][15]. 

In some cases, we found that additional manipulation 
of the streams 

nchmarks because of the cumulative errors in stream 
selection. Parameters were added to adjust the basic block 

Table 1: L1 and L2 Hit Rates versus Stride 
L1 Hit Rate L2 Hit Rate Stride 

0.0000 0.000 16 
0.0000 0.0625 15 
0.0000 0.1250 14 
0.0000 0.1875 13 
0.0000 0.2500 12 
0.0000 0.3125 11 
0.0000 0.3750 10 
0.0000 0.4375 9 
0.0000 0.5000 8 
0.1250 0.5000 7 
0.2500 0.5000 6 
0.3750 0.5000 5 
0.5000 0.5000 4 
0.6250 0.5000 3 
0.7500 0.5000 2 
0.8750 0.5000 1 
1.0000 N/A 0 

   



and overall miss rates of the synthetic data accesses to 
compensate. A small number of synthesis iterations is 
usually necessary. Details are given in [2][3]. 

We superimpose a branch predictability model onto 
the set of basic blocks that already represent the 
ins

t be skipped over by a taken branch, or 
loo

tained from the 
wo

gister Assignment 

usages in the synthetic 
benchmark are assigned exactly during the register 
ass

gister is reserved for 
ea

is consolidates the least frequent pools together 
un

d-robin fashion. 

takes the representative 
ins ions and the attributes from graph analysis and 
reg

 to data access 
va

 associated with the original graph walk 
are

an be 
fou

truction mix, dependencies and data access patterns of 
the original workload (Figure 2e). A number of branches 
in the trace are configured to branch past the next basic 
block or a number of instructions based on the global 
branch predictability of the original application. An 
integer instruction that is not used as a data access counter 
or a loop counter is converted into an invert instruction 
that operates on a particular register every time it is 
encountered. If the register is set, the branch jumps past 
the next basic block. The invert mechanism causes a 
branch to have a predictability of 50% for predictors that 
use 2-bit saturating counters. Benchmarks like mgrid and 
applu have average basic block sizes much longer than 
other benchmarks. In those cases, parameters are used to 
adjust the synthetic branch predictability. Details are 
given in [2][3]. 

The configured branches, invert instruction, and loop 
counter must no

p iterations may not converge, or the branch 
predictability may be incorrect. Code regions containing 
these instructions are carefully avoided. 

In practice, there are many synthetic benchmarks that 
more or less satisfy the metrics ob

rkload characterization and overall application IPC. As 
mentioned in several places above, the usual course of 
action is to iterate through synthesis a number of times 
until the metric deltas are as small as desired. Usually less 
than ten iterations are needed to obtain reasonably small 
errors. 

 
3.3.  Re

 
All architected register 

ignment phase. Most ISAs specify dedicated registers 
that should not be modified without saving and restoring. 
In practice, not all registers need be used to achieve a 
good synthesis result. In our experiments, only 20 or so 
general-purpose registers divided between data access 
counters and code use are necessary. 

Data access streams are pooled according to their 
stream access characteristics and a re

ch class. All data access counters in the same pool 
increment the same register, so new stream data are 
accessed similarly whether there are a lot of counters in 
the pool and few loop iterations or few in the pool but 
many iterations. The exact numbers of data access and 
stream registers assigned for each benchmark are given in 
[2][3]. 

For applications with large numbers of stream pools, 
synthes

til the total number of registers is under the register use 
limit. A roughly even split between code registers and 
pool registers improves benchmark quality. High quality 
is defined as a high correspondence between the 
instructions in the compiled benchmark and the original 
synthetic C-code instructions. With too few or too many 
registers available for code use, the compiler may insert 
stack operations into the binary. The machine 
characteristics may not suffer from a few stack 
operations, but for this study we chose to synthesize code 
without them. 

The available code registers are assigned to instruction 
outputs in a roun

 
3.4. Code Generation 

 
The code generator 
truct
ister assignment and outputs a single module of C-

code that contains calls to assembly-language instructions 
in the target language [2][3]. Figure 1 shows the three 
targets currently supported. Each instruction in the 
representative trace maps one-to-one to a single asm call 
in the C-code. Ordinary C-code is emitted for functions 
not related to the trace, as, for example, to instantiate and 
initialize data structures and variables. 

We emit a C-code main header and variable 
declarations to link output registers

riables for the stream pools, the loop counter variable, 
and the branching variable. Pointers to the correct 
memory type for each stream pool are declared, and 
Malloc calls for the stream data are generated with size 
based on the number of loop iterations. Each stream pool 
register is initialized to point to the head of its malloced 
data structure. 

The loop counter register initialization is emitted, and 
the instructions

 emitted as volatile calls to assembly language 
instructions. The data access counters are emitted as 
integer additions of its output register value to the 
associated stride for the stream. The loop counter is 
emitted as an integer subtraction of one to its output 
register. The basic blocks are analyzed and code is 
generated to print out unconnected output registers 
depending on a switch value. The switch is never set, but 
the print statements guarantee that no code is eliminated 
during compilation. Code to free the malloced memory is 
generated, and, finally, a C-code footer is emitted.  

Additional detailed synthesis information for the 
SPEC95, SPEC2000 and STREAM benchmarks c

nd in [2] and [3].  
 

 

   



4.  Synthesis Results 

he SPEC2000 results for the 
benchmark synthesis system described in the last section. 

hibits 
go  synthetic simulation correlation against actual 
ap

ethods of Section 3. The 
sy

 have an execution speed 
advantage over the original applications. Most 
sim

tions (283K on average) in order to 
rep

 
In this section we present t

 
4.1. Experimental Setup and Benchmarks 

 
We start with an experimental system that ex
od
plication simulations. Our system is derived from the 

statistical simulation system HLS [19][20], which we 
updated with the statistical flow graph to improve 
correlation [1][12]. SimpleScalar 3.0 [7] was downloaded 
and sim-cache was modified to carry out the workload 
characterization. The twelve SPECint2000 and fourteen 
SPECfp2000 Alpha binaries were executed in sim-
outorder on the first reference dataset for the first billion 
instructions. Single-precision versions of eight STREAM 
and STREAM2 benchmarks [16] with a ten million-loop 
limit were also simulated. We use the default 
SimpleScalar configuration in Table 2, as in [19]. 
SimpleScalar does not model an L3, but the memory 
latency estimates a fast L3.  

Code generation was enabled and C-code was 
produced using the synthesis m

nthetic benchmarks were compiled using gcc with 
optimization level –O2 and executed to completion in 
SimpleScalar on an IBM p270 (400 MHz). 

 
4.2. Synthesis Results 

 
The synthetic benchmarks

ulations of the SPEC2000 synthetics take less than 
four seconds to execute an average of 325K instructions, 
compared to about 25K seconds for the original codes. On 
average, the applications simulate 6000 times slower than 
the synthetics [3]. 

The STREAM synthetics must also execute for a large 
number of instruc

resent to be represent the data access patterns of the 
original codes. As a result, the original codes of 10M 
dynamic instructions execute only 35 times slower than 
the synthetic codes. Dynamic executions of at least 300K 

instructions provide data access convergence and also 
limit the code overhead of the synthetic to less to 1% of 
the total dynamic instructions. 

Table 2: Default  Simulation Configuration, Alpha ISA 

 Table 3 compares the execution characteristics of the 
synthetic benchmarks to those of the SPEC2000 and 
STREAM codes. The average percent errors for all the 
metrics are generally less than 15%, with most below 
10%, although some of the maximum errors are high. The 
error in IPC remains low because errors in the metrics 
offset each other for particular benchmarks, or the 
absolute values of the metrics are very low and have little 
effect. As an example, the large percent error for the 
mgrid L1 D-cache miss rate corresponds to a reduction 
for the synthetic that is offset by a 0.3% increase in I-
cache miss rate and a 21.1% decrease in basic block size. 
As another example, the 22.9% L1 I-cache miss rate error 
for sixtrack is a decrease taken against a miss rate of just 
1.1%, so the effect of the error is small. Also, the large 
increase in L2 cache misses for applu is offset by a 31.5% 
decrease in its L1 D-cache miss rate, to 6.5%. The various 
errors in Table 3 are broken out for each benchmark in 
[3]. 

The overall average IPC error for the synthetic 
benchmarks is 2.4%, with a maximum error of 8.0% for 
facerec. The error in IPC expresses the average effect of 
small or offsetting errors among the workload 
characteristics of the synthetics as described below. 

The average error in instruction frequencies over the 
five classes of instructions for the synthetic benchmarks is 
3.4% with a maximum of 7.3% for branches. The basic 
block size varies per synthetic with an average error of 
7.2% and a maximum error of 21.1% for mgrid. The 
errors are caused by variations in the fractions of specific 
basic block types in the synthetic benchmark with respect 
to the original workload, which is a direct consequence of 
selecting a limited number of basic blocks during 
synthesis. For example, mgrid is synthesized with a total 
of 30 basic blocks made up of only six different unique 
block types. Applu is synthesized with 19 basic blocks but 
18 unique block types. 

The average I-cache miss rate error is 8.6% for 
benchmarks with miss rates above 1%. However, the 
number of synthetic instructions is within 2.8% of the 
expected number given the I-cache configuration. The 
errors are due to the process of choosing a small number 
of basic blocks with specific block sizes to synthesize the 

Instruction Size (bytes) 4 
L1/L2 Line Size (bytes) 32/64 

Machine Width 4 
D   ispatch Window/LSQ/IFQ 16/8/4 

Memory System 16K 4-way L1 way L1 I, 
256K 4- fied L2 

 D, 16K 1-
way uni

L r 1/L2/Memory Latency+transfe
(cycles) 1/6/34 

Functional Units 

Table 3: Percent Execution Error, Synthetics vs. Applications 
Metric Avg. %Error Max. %Error 

IPC 2.4 8.0 (facerec) 
Instruction Frequencies 3.4 7.3 (branches) 
Dependency Distances 11.1 34.9 (integers) 
Dispatch Occupancies 4.1 8.7 (floats) 
Basic Block Sizes 7.2 21.1 (mgrid) 
L1 I-cache Miss Rate (>1%) 8.6 22.9 (sixtrack) 
L1 D-cache Miss Rate (>1%) 12.3 55.7 (mgrid) 
L2 Cache Miss Rate (>15%) 18.4 61.2 (applu) 
Branch Predictability 1.5 6.4 (art) 

4   
4 FP-ALU UL/DIV  

 I-ALU, 1 I-MUL/DIV,
, 1 FP-M

Branch Predictor Bimodal 2K table,  
3 cycle mispredict penalty 

   



workload. For miss rates close to zero, a number of 
instructions less than the maximum number that fits in the 
default cache is typically used, up to the number needed 
to give an appropriate instruction mix for the benchmark. 
For the STREAM loops, only one basic block is needed to 
meet the instruction mix and miss rate requirements. For 
all synthetic benchmarks there is a small but non-zero 
miss rate, versus an essentially zero miss rate for some of 
the applications. This is because the synthetic benchmarks 
are only executed for about 300K instructions, far fewer 
than necessary to achieve a very small I-cache miss rate. 
However, since the miss rates are small, the impact, when 
combined with the miss penalty, is also small.  

The average branch predictability error is 1.9%, with a 
maximum error for art of 6.4%. Mgrid, with its large 
basic block size error, has the third largest error at 4.9%. 

For L1 data cache miss rates greater than 1%, the 
average error is 12.3%. Despite this error, the trends in D-
cache miss rates generally correspond with those of the 
original workloads [3]. There is some variation for 
smaller miss rates, but, as with many I-cache miss rates, 
the execution impact is also small.  

The unified L2 miss rates have a large average error of 
18.4%. The large error is due to the simple streaming 
memory access model.  However, the errors are often 
mitigated by small L1 miss rates. A good example is gcc, 
which has a 15% L2 miss rate but only a 2.6% L1 miss 
rate. The 61.2% L2 miss rate error for applu is offset by I-

cache and L1 D-cache miss rates that are smaller than 
those of the original workload.  Art and ammp have large 
L1 miss rates (41% and 44%), but their L2 miss rates are 
offset by relatively larger I-cache miss rates and smaller 
branch predictabilities. The main cause of the errors is the 
fact that the current memory access model focuses on 
matching the L1 hit rate, and the L2 hit rate is simply 
predetermined as a consequence. A large L2 miss rate 
error for ammp (46%) is explained by the fact that our 
small data-footprint synthetic benchmarks have data-TLB 
miss rates near zero, while the actual ammp benchmark 
has a data-TLB miss rate closer to 13%. As a 
consequence, the synthetic version does not correlate well 
when the dispatch window is increased and tends to be 
optimistic.  

The average dependency distances have 11.1% error 
on average. The largest components of error are the 
integer dependencies (at 34.1%), caused by the 
conversion of many integer instructions to data access 
counters. A data access counter overrides the original 
function of the integer instruction and causes dependency 
relationships to change. Another source of error is the 
movement of dependencies during the search for 
compatible dependencies. The movement is usually less 
than one instruction position, as mentioned earlier, but 
mgrid and applu, the benchmarks with the largest average 
block sizes at 100.1 and 93.4, respectively, show 
significant movement. The branching model also 
contributes errors to the integer instruction class. 

 In spite of the dependency distance errors, the average 
dispatch window occupancies are similar to those of the 
original benchmarks with an average error of 4.1%.  

Table 4: Design Change Percent Error and Percent Relative Error 

 
4.3. Using the Synthetic Benchmarks to Assess 

Design Changes 
 
We now study design changes using the same synthetic 

benchmarks; that is, we take the benchmarks described in 
the last section, change the machine parameters in 
SimpleScalar and re-execute them. Table 4 gives the 
average IPC prediction error and relative IPC error [12] 
when executing various design changes on the 
benchmarks synthesized from the default configuration. A 
change in machine width implies that the decode width, 
issue width and commit width all change by the same 
amount from the base configuration in Table 2. When the 
caches are increased or decreased by a factor, the number 
of sets for the L1 I-cache, D-cache and L2 cache are 
increased or decreased by that factor. Likewise, when the 
bimodal branch predictor is multiplied by a factor, the 
table size is multiplied by that factor from the default size. 
The L1 D-cache 2x and L1 I-cache 2x specify a doubling 
of the L1 D-cache (to 256 sets, 64B cache line, 8-way set 
associativity), and a doubling of the L1 I-cache 
configuration (to 1024 sets, 64B cache line, 2-way set 

Synthetics vs. Applications 
Design Change Avg. %Error Avg. %Rel. Err. 

Dispatch Window 8, LSQ 4 2.8 2.4 
Dispatch Window 32, LSQ 16 3.7 2.1 
Dispatch Window 48, LSQ 24 4.9 3.8 
Dispatch Window 64, LSQ 32 6.1 5.1 
Dispatch Window 96, LSQ 48 8.3 7.5 
Dispatch Window 128, LSQ 64 9.0 8.3 
Machine Width 2 2.7 1.6 
Machine Width 6 2.6 1.1 
Machine Width 8 2.6 1.1 
Machine Width 10 2.6 1.1 
Issue Width 1 1.9 2.3 
Issue Width 8 2.7 1.0 
Commit Width 1 2.8 2.1 
Commit Width 8 2.4 0.2 
Instruction Fetch Queue 8 2.6 0.5 
Instruction Fetch Queue 16 2.7 0.8 
Instruction Fetch Queue 32 3.0 1.1 
Caches 0.25x 20.1 19.4 
Caches 0.5x 24.8 23.9 
Caches 2x 4.1 3.3 
Caches 4x 4.7 3.8 
L1 I-cache 2x 3.0 1.3 
L1 D-cache 2x 3.1 1.0 
L1 D-cache Latency 8 9.5 9.7 
BP Table 0.25x 2.5 1.1 
BP Table 0.5x 2.3 0.3 
BP Table 2x 2.3 0.3 
BP Table 4x 2.3 0.4 

   



associativity). The numbers here do not include ammp; as 
explained in the last section, ammp tends to be optimistic 
when the dispatch window changes because our small 
data footprint benchmarks do not model data-TLB misses. 

Looking at the Dispatch Window rows, when the 
synthetics are executed on configurations close to the 
default configuration, the average IPC prediction error 
and average relative errors are below 5%. However, as the 
configuration becomes less similar to the configuration 
used to synthesize the benchmarks, the errors increase. 
One conclusion is that the synthetics are most useful for 
design studies and validations closer to the synthesis 
configuration, and that the miniature benchmarks should 
be resynthesized when the configuration strays farther 
away - in this case, when the dispatch window rises to 
four times the default size.  

When the errors are small, the changes in IPC for the 
applications and synthetics are very similar. If the IPC 
changes are significantly larger than the errors in IPC due 
to synthesis modeling, the changes using the synthetics 
should be large enough to trigger additional studies using 
a detailed cycle-accurate simulator. For early design 
studies, chip designers are looking for cases in a large 
design space in which a design change may improve or 
worsen a design. Example analyses are given in [2][3]. 

The Machine Width results differ from the dispatch 
window results in that the errors are small regardless of 
the width change. For the dispatch studies, the absolute 
change in IPC from the default configuration for both 
synthetics and applications is greater than 17% for each 
case (for a dispatch window of 128 the change is over 
56%). Likewise, when the width is reduced to 2, the 
absolute change in IPC is over 23%, which indicates that 
the low average prediction error and relative error are 
meaningful. But when the width increases to 6, 8 and 10, 
the change is never more than 2.3%, which is on the order 
of the IPC prediction errors of the synthetics versus the 
applications. However, the fetch queue size did not 
change from the default and it supplies too little ILP to 
stress the wider machine width. These configurations 
therefore cannot test the accuracy of the synthetics. 

Similarly, the absolute IPC change from the default 
IPC for the Issue Width 8 and Commit Width 8 rows never 
gets greater than 1.4%, and likewise for the instruction 
fetch queue and branch predictability rows, it never gets 
greater than 1.6%. Simply changing the IFQ size, issue, or 
commit width without addressing the other pipeline 
bottlenecks does not improve performance, as expected. 
Other workloads may be needed to stress the branch 
predictor. 

The remaining studies yield changes in IPC 
significantly greater than the error of the synthetics versus 
the applications, except for the Caches 0.25x and Caches 
0.5x studies. The synthetics underestimate performance 

when the cache is significantly reduced due to capacity 
misses among the synthetic data access streams. 

For the L1 D-cache latency study, the average absolute 
IPC error is 9.5% and the relative error is 9.7%, 
significantly less than the 22.1% change in IPC from the 
default configuration. On further investigation, the error is 
mostly due to the SPECint synthetics, with an average 
relative error of 19.9%, versus 4.2% for the others. 
Despite these errors, the IPC changes in the actual 
benchmarks executing one billion instructions are still 
visibly reflected in the synthetic benchmarks that run in 
seconds [3]. 

Again, all of these runs use the same miniature 
benchmarks synthesized from the initial SimpleScalar 
configuration, not re-synthesized benchmarks.  
 
5. Drawbacks and Discussion 

 
The main drawback of the approach is that the 

microarchitecture independent workload characteristics, 
and thus the synthetic workload characteristics, are 
dependent on the particular compiler technology used. 
However, since the process is automatic, resynthesis 
based on workload characterization from new compiler 
technology is simplified. It also avoids questions of high-
level programming style, language, or library routines that 
plagued the representativeness of the early hand-coded 
synthetic benchmarks such as Whetstone [10] and 
Dhrystone [30]. 

One objection is that the synthetics are comprised of 
machine-specific assembly calls. However, use of low-
level operations are a simple way to achieve true 
representativeness in a much shorter-running benchmark, 
and the asm calls are easily retargeted to other ISAs that 
follow the RISC philosophy.  

Another drawback is that only features specifically 
modeled among the workload characteristics appear in the 
synthetic benchmark. This will be addressed over time as 
researchers uncover additional features needed to 
correlate with execution-driven simulation or hardware, 
although the present state-of-the-art is quite good [12][1]. 
In the future, synthesis parameters could be used to 
incorporate or not incorporate features as necessary. 

One consequence of the present method is that dataset 
information is assimilated into the final instruction 
sequence of the synthetic benchmark. For applications 
with multiple datasets, a family of synthetic benchmarks 
must be created. The automatic process makes doing so 
possible, but future research could seek to find the 
workload features related to changes in the dataset and 
model those changes as runtime parameters to the 
synthetic benchmark. 

Ideally, our miniature programs would be benchmark 
replacements, but the memory and branching models used 
in their creation introduce significant errors. This makes 

   



them a solution in the “middle” between micro-
benchmarks and applications. However, as shown in 
Section 4, many of the characteristics of the original 
applications are maintained, and the synthesis approach 
provides a framework for the investigation of advanced 
cache access and branching models each independently of 
the other. 

Our benchmarks use a small number of instructions in 
order to satisfy the I-cache miss rate. This small number 
causes variations in workload characteristics, including 
basic block size, with corresponding changes in 
instruction mix, dependency relationships, and dispatch 
window occupancies. One solution is to instantiate 
additional basic blocks using replication [32]. Multiple 
sections of representative synthetic code could be 
synthesized and concatenated together into a single 
benchmark. Each section would satisfy the I-cache miss 
rate, but the number of basic blocks would increase 
substantially to more closely duplicate the instruction 
mix. Similarly, multiple sections of synthetic code, and 
possibly initialization code, could be concatenated 
together to recreate program phases [22]. Additionally, 
phases from multiple benchmarks could be consolidated 
together and configured at runtime through user 
parameters. 

 
6. Conclusions 

 
In this paper we explore the possibility of 

automatically synthesizing reduced, miniature 
benchmarks from the dynamic workload characteristics of 
executing applications. Two major uses of the miniature 
benchmarks are for rapid early design studies and pre-
silicon performance validation. We discuss the 
advantages and challenges of automatic synthesis and 
describe an example system in which the target 
application’s executable is analyzed in detail and 
sequences of instructions are instantiated as in-line 
assembly-language instructions inside C-code. 

Unlike prior synthesis efforts, we focus on the low-
level workload characteristics of the executing binary to 
create a workload that behaves like a real application 
executing on the machine. Multiple synthetic benchmarks 
are necessary if the application is executed on multiple 
machines, significantly different ISAs, or multiple 
datasets, but the automatic process minimizes the cost of 
creating new benchmarks and enables consolidation of 
multiple representative phases into a single small 
benchmark. Other benefits include portability to various 
platforms and flexibility with respect to benchmark 
modification. Future work includes more accurate 
memory access models and branching models. 
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