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Abstract 
Power dissipation has recently become an important 

consideration for processor designs. Assessing power 
using simulators is problematic given the long runtimes of 
real applications. Researchers have responded with 
techniques to reduce the total number of simulated 
instructions while still maintaining representative 
simulation behavior. Synthetic testcases have been shown 
to reduce the number of necessary instructions 
significantly while still achieving accurate performance 
results for many workload characteristics. 

In this study, we show that the synthetic testcases can 
rapidly and accurately assess the dynamic power 
dissipation of real programs. Synthetic versions of the 
SPEC2000 and STREAM benchmarks can predict the 
total power per cycle to within 6.8% error on average, 
with a maximum of 15% error, and total power per 
instruction to within 4.4% error. In addition, for many 
design changes for which IPC and power change 
significantly, the synthetic testcases show small errors, 
many less than 5%. We also show that simulated power 
dissipation for both applications and synthetics correlates 
well with the IPCs of the real programs, often giving a 
correlation coefficient greater than 0.9.  

1. Introduction 
Power dissipation has recently become an important 

consideration in the design of processors [13]. As 
frequencies have passed into the multiple gigahertz range 
and the number of transistors integrated onto a single chip 
has surpassed 100 million [27], the maximum power 
dissipation for high-end processors has surpassed 100 
watts [27][28]. The increases in power dissipation are of 
significant impact to chip reliability and mobile system 
battery life [4]. In an effort to study and alleviate 
increases in on-chip power dissipation early in the design 
process at the same time that design tradeoffs are being 
studied, researchers have integrated microarchitectural 
power estimators into processor simulation systems 
[7][21][16].  

Architectural level simulators, whether executing 
traces in a trace-driven fashion [15], or executing binaries 

in an execution-driven simulation [8][7], can obtain 
accurate results in assessing computer performance and 
power dissipation. Some applications like SPEC [26] have 
become benchmarks of computer performance and power 
dissipation. However, long runtimes for the latest 
benchmarks such as SPEC2000 make full program 
simulation for early design studies or performance model 
validation impractical [6][12][24][3][30][25]. Hand-coded 
microbenchmarks or testcases [18][5][6][10] can quickly 
test specific features in a machine, but performance 
models validated to within 2% using microbenchmarks 
have been shown to still contain errors of 20% to 40% on 
actual programs [10]. Randomly-generated testcases [6] 
are inefficient at covering the spectrum of machine 
responses of real programs. 

Sampling techniques such as SimPoint [24], SMARTS 
[30] and Intrinsic Checkpointing [22] can reduce 
simulation runtimes, but they still require the execution of 
tens of millions of instructions. Statistical simulation 
[9][19][1][11] creates representative synthetic traces of 
less than one million instructions and has successfully 
analyzed power-performance trade-offs in a trace-driven 
simulation system [12][11], but traces are not very 
portable to many modern design platforms including 
execution-driven simulators, RTL models, hardware 
emulators, and hardware itself [3]. Execution-driven 
simulators are useful for assessing the power dissipation 
of more accurate simulation systems including operating 
system effects [16]. RTL models and hardware emulators 
are useful for performance model validation [3], and 
performance monitor counters in hardware facilitate rapid 
power dissipation studies [4].  

There have been few attempts to synthesize portable 
source code from traces. Sakamoto et al. combine a 
modified trace snippet with a memory image for 
execution on a specific machine and a logic simulator 
[23], but there is no attempt to reduce the total number of 
simulated instructions. In Hsieh and Pedram [14], 
assembly programs are generated that have power 
consumption signatures similar to applications. However, 
all workload characteristics are modeled as 
microarchitecture-dependent characteristics, so that work 
is not applicable to studies involving design trade-offs 



[12]. Wong and Morris [29] investigate synthesis of the 
LRU hit function to reduce simulation time, but no 
method for simultaneously incorporating other workload 
characteristics is developed.  
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characteristics of executing applications, as in statistical 
simulation. The low-level workload characteristics of the 
original application are retained by instantiating 
individual operations as volatile asm calls. The synthetic 
testcases execute orders of magnitude faster than the 
original workloads while retaining good accuracy. That 
work shows an average IPC within 2.4% of the IPC of the 
original applications, and prior work shows that IPC has a 
good correlation to average power dissipation [16][4]. 
Even though power is not considered in the synthesis 
process, since the synthetic benchmarks display good IPC 
correlation with actual programs, it is natural to expect 
that they can also be used to speed up power dissipation 
analysis for the applications with low errors. It should be 
noted that the synthetic workload cannot be used to 
compare total energy usage since the dynamic instruction 
count for the synthetic is significantly reduced from that 
of the original application. 

In this work, we study t
aracteristics of the synthetic benchmarks from [3]. We 

take the synthetics and execute them on the Wattch 
simulation framework [7].  We find that the synthetics 
correlate to absolute power dissipation to within 6.8% 
error on average, and relative power dissipation error for 
many design changes is less than 5%. We also show that 

the changes in power dissipation for design changes 
correlate well with those in the actual applications. The 
specific contributions of this work are: 

i) We show that synthetic testcases
 performance purposes are also useful for analysis of 

dynamic power dissipation, giving reasonable errors 
while executing orders of magnitude faster. 

ii) We show that the synthetics are also us
ative power analysis of design changes. 
iii) We classify the results of the IP
sipation design changes to facilitate analysis.  
iv) We confirm prior results that demonstrate
relation between IPC and dynamic power dissipation, 

and we extend the results to design change correlations. 
In the Section 2, we give an overview of our workloa
thesis system. In Section 3 we give qualitative reasons 

why power dissipation is expected to correlate, and we 
describe the benefits for power model validation. In 
Section 4 we present the quantitative results of the power 
analyses. In the final Sections we give the conclusions 
and references. 

2. Overview
The workload synthesis system in [3] is
ed up phase execution by focusing on the workload 

characteristics that contribute significantly to the 
performance of the machine while ignoring or 
deemphasizing those characteristics that do not. Only the 
instruction sequences that provoke machine responses 
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most similar to those in the original workload are retained 
in the synthetic. This focus ensures that the number of 
instructions that must be executed to obtain representative 
behavior can be significantly reduced. Detailed 
descriptions of the process can be found in [2][3]. Here 
we give an overview of the synthesis process. 

Figure 1 gives a flow diagram of the synthesis process. 
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e four phases of synthesis are workload 
characterization, graph analysis, register assignment and 
code generation. The system can take as input a trace or 
program binary. A trace is taken from a workload 
executing on hardware [15] and must be detailed enough 
to contain the information necessary for synthesis as 
described below. Note that most traces do not contain 
mispredicted instructions after a branch, only completed 
instructions, but prior work has achieved good results 
without using them [1][11][3]. A binary is created by 
simply compiling the application program.  

Workload characterization analyzes t
ecutes the binary, collecting the same statistics 

necessary to achieve an accurate statistical simulation 
[1][11]. Both microarchitecture dependent and 
independent characteristics are collected into a statistical 
flow graph [1][11]: basic block sequences, instruction 
mix, dependency distances, cache miss rates and branch 
predictability. The instructions are abstracted into types 
that exercise the functional units in the same way as the 
original instructions. Figure 1 shows that a synthetic trace 
generated from walking the flow graph can be executed in 
statistical simulation to verify the representativeness of 
the workload characterization.  

Figure 2 gives a flow diagra
ase. The diagram represents the analysis carried out 

during a pass through synthesis plus execution of the 
resulting synthetic benchmark. Each diamond block 
makes a decision regarding the quality of the synthesis 
pass for one workload characteristic.  If the value of that 
characteristic is below a threshold relative to its value 
when executing the original program, each rectangular 
block perturbs the value of a synthesis parameter that 
putatively affects that characteristic. Synthesis and 
simulation are then restarted and the analysis is repeated. 
A particular parameter is designed to affect only one 
characteristic, but sometimes characteristics previously 
analyzed are adversely affected and must be revisited, and 

the process then takes longer to complete. Sometimes a 
threshold cannot be satisfied, in which case we simply 
retain the best-case synthesis result. 

The details of the rectangular 
gram of Figure 2 are given in [3]. The initial number of 

basic blocks is based on a default I-cache size and 
associativity. The workload characterization specifies the 
initial values for the number of branches that are 
configured to branch conditionally and the stride table 
entries that will be accessed by each memory access 
counter. In each synthesis pass, the average basic block 
size and locality metrics for the synthetic are compared to 
those of the original workload.  

Note that power dissipatio
aracteristics used to assess the synthesis quality. The 

reason is that power dissipation is an aggregate metric, 
like IPC. All other characteristics of the synthetic 
workload may impact power to some degree, so no small 
set of thresholds can be assigned in the analysis phase to 
accurately change only power.  

Figure 1 shows that user par
ph analysis phase. This demonstrates one of the 

benefits of synthesis using statistics, namely that 
particular statistics can be modified to synthesize 
variations on current workloads or even future workloads.  

The register assignment phase of Figure 1 is separate 
m the code generation phase because it can often be 

performed without exact knowledge of the ISA. For 
example, experiments have shown that about twenty 
registers give good synthesis results for all three targets - 
Pisa, PowerPC, and Alpha. 

The code generation pha
pendent. The abstracted instruction operations in the 

basic blocks obtained during workload characterization 
are instantiated as volatile asm calls to instructions in the 
target ISA that exercise the proper functional units based 
on the abstracted instruction type.  

3. Power Dissipation of Synthetic Testcases 
and Power Model Validation 
everal studies have shown that the syn

tistical simulation exhibit power dissipation similar to 
cycle-accurate simulations [12][11]. The synthetic traces 
contain specific basic block sequences that represent the 
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major components of the performance of the workload. 
The number of instructions is reduced because instruction 
sequences that do not contribute to performance are not 
included. Since the number of instructions is reduced, the 
total energy for execution of the synthetic trace cannot be 
compared to that of the original application. 

The synthetic traces in [1][11] provide accurate power 
an

scribed in [2][3] have 
dy

urate at the 
gra

alysis because the basic block sequences that provide 
accurate performance results must also exercise the 
machine such that the power dissipation is accurate. The 
synthetic traces exhibit dynamic workload features similar 
to those of the original applications, including instruction 
mix, number and type of operands, instruction-level 
parallelism, dependency distances, and memory access 
and branching behavior. The workload similarities imply 
that reorder buffer occupancies, pipeline throughput, 
cache hierarchy access and miss rates, pipeline stalls, and 
branch predictabilities will be similar. To a large extent, 
these machine features determine the dynamic power 
dissipation of the system [7][28][4]. As an example, the 
abstracted instruction types used for synthesis use one, 
two or three (for PowerPC) operands as in the original 
workload, so the proper power dissipation with respect to 
register port access is obtained. 

The synthetic testcases de
namic workload characteristics similar to those of the 

synthetic traces, except that the locality models are less 
accurate [3]. Memory accesses are modeled as strides 
through uninitialized data structures in order to match 
miss rates for a default cache configuration. The overall 
miss rates of the original application are obtained, but 
particular miss rates at the granularity of individual loads 
and stores may be quite different from those of the 
original since integer stride values only generate 
particular miss rate quanta, rather than a continuous 
spectrum of miss rates [2]. Microarchitecture-independent 
memory access models would seek to model more closely 
the original workload access patterns [2][3]. 

The branching models are also not acc
nularity of individual branches. The overall application 

predictability is matched by configuring a subset of 
branches to jump past the next basic block 50% of the 

time [3]. The synthetic testcases would benefit from an 
exact analysis and configuration of particular branches in 
the workload [2][3]. Other anomalies in the synthetic 
testcases include the retargeting of integer instructions for 
data structure access and testcase looping, and register 
usage [3]. 

All of the above inaccuracies imply that instruction 
dependencies, memory accesses and branch behavior are 
different from the original workload, that the machine 
responses to the workload will be correspondingly 
different, and that the power dissipation results, in turn, 
will contain inaccuracies. However, prior work has shown 
that the performance errors are relatively small or, if 
large, less relevant to the performance of the machine, so 
we expect that the power dissipation errors will be 
correspondingly low, as shown in the next section.  

One of the benefits of the synthetic testcases is their 
portability to multiple platforms [3]. Combined with 
overall runtimes that are two or three orders of magnitude 
faster than those of the original applications, the synthetic 
testcases are ideal for performance model validations 
using combinations of detailed execution-driven 
simulators, system simulators, RTL model simulators, 
hardware emulation systems, and hardware itself [3].  

Likewise, the synthetic testcases are useful for power 
model validation. Simulators that assess dynamic power 
can be validated against slow RTL and circuit simulators 
with greater assurance that the validated simulator will 
give more accurate performance and power results for 
longer runs.  

The next section compares the absolute and relative 
accuracy of the power dissipation of the synthetic 
testcases to those of longer running programs. 

4.  Synthesis Results 
In this section we present the power dissipation results 

for the benchmark synthesis system described in the last 
section. 

4.1. Experimental Setup and Benchmarks 
We start with the experimental system that exhibits 

good statistical simulation correlation against actual 
application simulations described in [3]. Our system is 
derived from the statistical simulation system HLS 
[19][20], which we updated with the statistical flow graph 
to improve correlation [1][11]. SimpleScalar 3.0 [8] was 
downloaded and sim-cache was modified to carry out  the 
workload characterization. To sim-outorder, we added the 
event counters, the power.h includes, and cacti code from 
Wattch [7]. Wattch models the power dissipation of 
circuits and structures for a 0.35 micro, 600 MHz 
machine. We present results for an aggressive clock 
gating design with 10% leakage power [7]. 

Table 1: Default  Simulation Configuration, Alpha ISA 

Instruction Size (bytes) 4 
L1/L2 Line Size (bytes) 32/64 

Machine Width 4 
Dispatch Window/LSQ/IFQ  16/8/4 

Memory System 16K 4-way L1 D, 16K 1-way L1 I, 
256K 4-way unified L2 

L1/L2/Memory Latency+transfer 
(cycles) 1/6/34 

Functional Units 4 I-ALU, 1 I-MUL/DIV,  
4 FP-ALU, 1 FP-MUL/DIV  

Branch Predictor Bimodal 2K table,  
3 cycle mispredict penalty 

   



The twelve SPECint2000 and fourteen SPECfp2000 
Alpha binaries were executed in sim-outorder on the first 
reference dataset for the first billion instructions. Single-
precision versions of eight STREAM and STREAM2 
benchmarks [17] with a ten million-loop limit were also 
simulated. We use the default SimpleScalar configuration 
given in Table 1, as in [19][21][3]. SimpleScalar does not 
model an L3, but the memory latency used here estimates 
a fast L3. While the machine configuration is relatively 
small, in the experiments below we vary the window size 
and other machine parameters significantly and still 
obtain good power dissipation correlations as IPC 
increases. Another consideration is that this machine 
configuration is appropriate for use with the original 
Wattch model [13][7][12]. It is also still a useful model 
for smaller embedded or ASIC designs. The synthetic 
benchmarks were executed to completion on an IBM 
p270 (400 MHz). 

The details of the number of instructions executed and 
runtime per benchmark are given in [3]. Typically the 
synthetics exhibit less than 300K dynamic instructions 
and execute two to three orders of magnitude faster than 
the actual programs. 

4.2. Base Power Dissipation Results 
 Figure 3 shows the power dissipation per cycle in 

Watts for the actual programs and the synthetics. The 

average error is 6.8%, with a maximum error of 15% for 
mcf. The SPECint synthetics exhibit larger average errors 
than the SPECfp and STREAM, at 9.9% and 5.1% 
respectively, as shown in Table 2. Individual machine 
components generally show larger errors for SPECint, 
especially for the L1 I-cache and D-cache, the result bus, 
and the clock power. As mentioned in Section 3, the 
explanation for the cache errors is that the more 
complicated memory access behavior in SPECint is less 
likely to be well modeled by the simple synthetic streams, 
resulting in additional error in power dissipation in the I-
cache and D-cache. This occurs in spite of the fact that  
IPC errors for synthetics with L1 cache miss rates above 
1% are generally small [3] because the small miss rates 
have little impact on performance or are offset by errors 
in other parts of the memory subsystem [3]. However, 
these results indicate that the SPECint could especially 
benefit from more accurate microarchitecture-independent 
memory access models. 

 The synthetics also have relatively low clock power 
dissipation versus the applications. A partial explanation 
is the uniformly lower dispatch window occupancies for 
the synthetics, which exhibit an average decrease in 
occupancy error of 4.1% [3]. Additional errors for the 
SPECint again point to the memory access model as a 
major contributor to the overall clock and result bus 
power dissipation errors. The large errors in many 
features for mcf mirror its relatively large IPC error, 7.4%. 

Table 2: Average Power %Error, Synthetics vs. Applications 

Metric/Structure % Error %Error 
SPECint 

%Error 
fp/STREAM Max. %Error

Power per Cycle 6.8 9.9 5.1 15.0 (mcf) 
Power per Instruct 4.4 5.4 3.9 11.2 (twolf) 
Rename 2.4 2.8 2.1 7.4 (mcf) 
Branch Predictor 3.7 4.3 3.3 15.8 (apsi) 
Dispatch Window 5.3 7.1 4.3 12.5 (wupw) 
LSQ 2.8 2.5 3.0 15.2 (applu) 
Register File 6.4 4.5 7.4 22.1 (wupw) 
L1 I-cache 6.0 11.0 3.2 14.1 (mcf) 
L1 D-cache 5.8 7.3 4.9 18.5 (applu) 
L2 cache 2.3 2.6 2.2 11.8 (applu) 
ALU 1.8 1.7 1.8 5.2 (facerec) 
Result Bus 6.6 10.9 4.3 16.1 (gcc) 
Global Clock 12.4 17.7 9.5 27.0 (mcf) 
Fetch 3.4 6.0 2.1 9.7 (mcf) 
Dispatch Logic 2.4 2.8 2.1 7.4 (mcf) 
Issue Selection Lgc 3.6 4.9 2.9 8.2 (mcf) 

Table 3: Correlation Coefficients of Power Dissipation vs. IPC 
Metric/Structure Actual Synthetic 

Power per Cycle 0.94 0.96 
Power per Instruction -.84 -.84 
Rename 0.99 0.99 
Branch Predictor 0.65 0.62 
Dispatch Window 0.96 0.97 
LSQ 0.30 0.22 
Register File 0.77 0.75 
L1 I-cache 0.91 0.96 
L1 D-cache 0.43 0.46 
L2 cache 0.016 -0.033 
ALU 0.83 0.81 
Result Bus 0.90 0.94 
Global Clock 0.91 0.95 
Fetch 0.88 0.92 
Dispatch Logic 0.99 0.99 
Issue Selection Logic 0.90 0.90 

Figure 4: Power per Cycle vs. IPC for Synthetics
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Figure 5: Power per Instruction vs. IPC for Synthetics
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Figure 6: Power Dissipation per Instruction
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Figure 4 is a scatter plot of the IPC versus the power 
per cycle for the synthetics. The correlation is quite good, 
with a Pearson correlation coefficient of 0.96. Table 3 
gives correlation coefficients for the power dissipation 
metrics and the various machine features for both the 
actual programs and synthetics. The synthetic correlation 
coefficients generally follow those of the actual programs.  

The results of Table 3 generally confirm the findings 
in prior microarchitectural power simulations [16][4]. For 
many features the correlation is greater than 0.90. 
However, there are some important exceptions. The LSQ, 
L1 D-cache, and L2 D-cache power dissipations appear 
not to be correlated with IPC, at least over the instructions 
executed. Also, the branch predictor, register file, and 
ALU power dissipations are only weakly correlated. IPC 
can generate a good rough estimate of overall power 
dissipation, especially for the pipeline structures, but 
additional analysis is necessary to estimate the power 
dissipation for many machine structures, especially the 
data cache hierarchy. 

Figure 5 shows that the power dissipation per 
instruction decreases as IPC increases. The power 
dissipation of unused structures is 10% of maximum in 
the conditional clocking scheme we use in Wattch, and as 
IPC increases the unused structure overhead is amortized 
over more instructions per cycle, but it never reaches 
zero. In Table 3 we find a negative 0.84 correlation for 
both actual programs and synthetics because the curve is 
non-linear, and the minimum power appears to be 
asymptotic to a line below 9 Watts as IPC increases in 
Figure 5. This trend would extrapolate to a maximum 
power of about 36 Watts for this four-issue machine. 

Figure 6 breaks down the per instruction power 
dissipation by benchmark. The average error from Table 2 
is 4.4%, with a maximum error of 11.3% for twolf. At 
5.4%, the error in power per instruction is more evenly 
distributed for SPECint than is power per cycle, while 
SPECfp and STREAM give 3.9% error.  

4.3. Analysis of Design Changes 
We now study the power dissipation for design 

changes using the same synthetic benchmarks; that is, we 
take the benchmarks described in the last section, change 

the machine configurations in Wattch, re-execute them, 
and compare the results to executions of the actual 
programs on the same configurations. 

Table 4 gives information for the absolute and relative 
IPC prediction errors [11] and the absolute and relative 
power dissipation prediction errors when executing 
various design changes. We include here the IPC data 
from [3] to ease discussion. The only differences with the 
results in [3] are for the studies of machine width, issue 
and commit width and IFQ size. For each of those we 
changed the other parameters related to machine width to 
16, instead of 4 in [3], to give larger changes in IPC as the 
parameter changes. 

In the table, Disp is the dispatch window size. A 
change in Machine Width implies that the decode width, 
issue width and commit width all change by the same 
amount from the base configuration in Table 1. When the 
caches are increased or decreased by a factor, the number 
of sets for the L1 I-cache, D-cache and L2 cache are 
increased or decreased by that factor. Likewise, when the 
bimodal branch predictor is multiplied by a factor, the 
table size is multiplied by that factor from the default size. 
The L1 D-cache 2x and L1 I-cache 2x specify a doubling 
of the L1 D-cache (to 256 sets, 64B cache line, 8-way set 
associativity), and a doubling of the L1 I-cache 
configuration (to 1024 sets, 64B cache line, 2-way set 
associativity). The numbers here do not include ammp or 
galgel. Those benchmarks tend to be optimistic when the 
dispatch window changes because our small data footprint 
benchmarks do not model data-TLB misses, and the 
actual programs have large TLB miss rates, over 13% 
each.  

We also studied a commit width change from 4 to 1, 
but the data for some actual programs was inconsistent, so 
it is not used. Speculation is that there is a power 
modeling error when the commit width is reduced to one. 
Evidence that the modeling is incorrect is given in Table 
5, where most correlation coefficients for IPC and power 
dissipation are above 0.90, except when the commit width 
equals one. We do not examine the commit width equal 
one results further in this paper. 

The other correlation coefficients in Table 5 indicate 
that the power dissipation achieved by the synthetics for a 

   



design change follows fairly well the IPC change for that 
design change. Table 4 shows that the absolute and 
relative IPC errors and power dissipation errors (%Error 
and Rel. %Error) due to a design change for the 
synthetics versus the actual programs is often below 5% 
or 10%, except for the two cases in which the caches are 
reduced in size. The synthetics underestimate 
performance when the cache is significantly reduced due 
to capacity misses among the synthetic data access 
streams [2].  

There are four classes of results in Table 4 that shed 
light on the quality of the power dissipation analysis using 
the synthetics and provide a starting point for discussion. 
We are concerned about whether the synthetics properly 
indicate power dissipation changes when the IPC changes 
significantly: 

Class 1: The change in IPC and the change in power 
dissipation (%Change in Table 4) are greater than two 
times (or more) their absolute or relative errors for the 
design change.  

Class 2: The change in IPC is greater than two times 
its absolute or relative error, but the change in power 
dissipation is not. 

Class 3: The change in power dissipation is greater 

than two times its absolute or relative error, but the 
change in IPC is not. 

Class 4: Neither the change in IPC nor the change in 
power dissipation is greater than two times its error. 

The classes for each design change are given in Table 
5. The choice of threshold equal to 2x is ad hoc, but it 
gives a good cushion between the average errors and the 
average change that is being indicated. Evidence that that 
is a good metric is given by the max absolute and relative 
error columns (Max %Err and Max Rel. %Err) for the 
design changes. Generally the max errors are less than or 
not too far removed from the %Change. 

The %Change is the minimum change for either the 
actual or synthetic workload. For all cases the %Change 
for either is close to that of the other.  

Most of the design changes are class 1 (or borderline 
class 3) and none of the design changes are class 2, which 
indicates that significant power dissipation changes can 
be assessed when the IPC changes significantly. The class 
3 and borderline class 3 design changes indicate that the 
correct power dissipation changes are reflected even 
though the IPC changes may not be significant. In these 
cases, the correlation coefficients between IPC and power 
dissipation are lower. 

Table 4: Average Absolute and Relative IPC and Power Dissipation Error 
 IPC Power Dissipation 

Design Change %Error Max 
%Err 

Rel. 
%Err 

Max 
Rel. 
%Err

%Change %Error Max 
%Err

Rel. 
%Err

Max 
Rel. 
%Err

%Change 
Max Avg. 
Structure 

%Err (strc)

Max %Err 
Structure 

(synthetic)
Disp 8 LSQ 4 3.1 16.1 2.3 7.5 23.8 4.9 10.9 2.5 6.6 16.8 9.2(clk) 21.2 (gap)
Disp 32 LSQ 16 3.7 9.9 2.2 9.4 16.1 8.5 18.5 1.8 8.8 18.5 14.3(clk) 28.9 (mcf)
Disp 48 LSQ 24 5.0 12.3 3.9 14.3 24.6 9.2 17.9 2.9 10.9 31.7 15.4(clk) 32.4(applu)
Disp 64 LSQ 32 6.1 18.1 5.2 20.8 31.0 9.5 18.4 3.6 13.7 41.5 16.0(clk) 36.6(applu)
Disp 96 LSQ 48 8.3 29.3 7.6 32.2 43.2 9.9 22.4 4.8 18.9 63.4 17.1(clk) 41.4(applu)
Disp 128 LSQ 64 9.1 34.0 8.5 37.0 52.0 10.0 23.3 5.2 22.7 82.8 17.7(clk) 43.4(applu)
Issue Width 1 1.5 5.3 1.9 6.5 53.6 1.6 3.2 5.9 14.9 38.2 5.8(rbus) 16.9(fma3d)
Issue Width 8 3.0 9.4 1.6 9.2 7.0 6.3 13.1 1.0 7.3 11.3 11.4(clk) 26.7(wupw)
Commit width 8 2.9 9.1 1.4 8.9 7.0 5.4 11.9 2.3 11.4 42.5 9.9(clk) 24.3(wupw)
Machine Width 2 2.8 7.6 2.0 6.5 23.5 5.4 10.9 1.7 5.6 17.6 10.4(regf) 26.8(wupw)
Machine Width 6 3.2 9.8 1.0 7.6 5.6 6.9 15.6 0.68 4.4 9.23 12.5(clk) 16.9(mcf) 
Machine Width 8 3.2 8.8 1.1 7.6 6.0 6.6 13.7 0.79 6.2 14.5 11.9(clk) 24.4(wupw)
Machine Width 10 3.1 9.2 1.5 9.1 6.5 6.0 12.5 1.2 8.1 20.1 11.1(clk) 24.7(wupw)
Machine Width 12 3.1 9.3 1.5 9.1 6.6 5.6 11.7 1.6 9.4 25.7 10.5(clk) 25.0(wupw)
Machine Width 14 3.1 9.4 1.5 9.2 6.6 5.2 11.6 2.0 10.8 30.2 9.8(clk) 25.3(wupw)
Machine Width 16 3.2 9.4 1.5 9.2 6.7 4.7 11.2 2.6 12.1 34.1 10.0(Icac) 26.7(wupw)
IFQ 8 3.0 9.3 1.2 7.7 5.4 4.6 10.8 2.6 11.5 33.2 8.9(clk) 25.5(wupw)
IFQ 16 3.2 9.4 1.5 9.2 6.7 4.8 11.2 2.5 12.1 34.2 10.0(regf) 26.7(wupw)
IFQ 32 3.3 9.0 1.3 8.9 7.4 5.0 11.3 2.2 11.8 34.9 9.7(Icac) 26.7(wupw)
Caches 0.25x 19.4 49.8 18.8 48.8 15.2 14.1 34.8 9.2 28.5 22.8 18.6(rbus) 45.0(wupw)
Caches 0.50x 23.9 46.7 23.1 47.0 7.0 17.6 33.2 11.9 26.7 13.2 23.0(wind) 45.5(fma3d)
Caches 2.0x 4.2 16.0 3.2 18.8 4.3 6.5 15.6 1.6 7.6 18.7 12.7(clk) 28.1(mcf) 
Caches 4.0x 4.9 17.8 3.9 12.6 6.2 9.2 19.0 3.1 8.4 40.5 15.8(clk) 32.1(twolf)
L1 I-cache 2.0x 3.0 10.7 1.3 5.9 7.0 8.1 18.6 2.0 6.9 36.5 14.5(clk) 35.1(sfill)
L1 D-cache 2.0x 3.2 14.3 1.2 12.8 2.2 7.5 16.6 1.1 4.1 30.9 13.3(clk) 31.0(mcf) 
L1 D-cache Lat 8 9.7 38.0 9.9 34.8 22.0 2.6 7.2 6.4 21.3 13.4 6.7(regf) 19.4(perlb)
BPred 0.25x 2.9 8.6 1.3 6.0 0.63 6.4 14.3 0.67 2.7 0.40 12.0(clk) 25.9(mcf) 
BPred 0.50x 2.5 8.6 0.60 3.0 0.18 6.7 15.4 0.31 1.4 0.22 12.2(clk) 26.7(mcf) 
BPred 2.0x 2.6 8.3 0.32 1.8 0.15 6.9 15.5 0.18 0.88 0.20 12.4(clk) 26.9(mcf) 
BPred 4.0X 2.5 8.0 0.40 2.0 0.22 6.9 15.2 0.21 0.87 0.52 12.4(clk) 26.7(mcf) 

   



The class 4 design changes indicate that the changes in 
IPC and power were not much different from the errors in 
the synthetics themselves. As mentioned, the reduced 
cache sizes put pressure on the memory access streams 
used in the synthetics, causing large percent errors. For 
the branch predictor studies, the percent errors are small, 
but the increase or decrease in the bimodal predictor table 
causes little change in performance (%Change), whether 
for the actual or synthetic workloads. A different 
predictor configuration is needed to assess the quality of 
predictor design changes for the synthetics. 

Table 4 also gives the maximum average percent 
power dissipation error from among all the structures 
listed in Table 3 for each design change (Max Avg. 
Structure %Err). Similar to the absolute structure errors 
in the last section, the most prominent error is the global 
clock (clk), but the errors average only 12.5%, and for the 
strong class 1 design changes they are well below the 
average change in power dissipation. 

The table also shows the maximum error found among 
all the synthetics for any particular structure for the 
design change (Max %Err Structure Synthetic). This is 
usually the global clock structure. Since these are much 
larger than the average structure errors (Max Avg. 
Structure %Err), these particular points are outliers. The 

results indicate that the synthetics for mcf, applu, and 
wupwise should be examined to understand why their 
predicted power dissipations are more variable than those 
of many others when the design changes. This analysis 
drives change back into the synthesis process itself. 

5. Conclusions 
In this study, we show that synthetic testcases can 

rapidly and accurately assess the power dissipation of real 
programs. Synthetic versions of the SPEC2000 and 
STREAM benchmarks can predict the total power per 
cycle to within 6.8% error on average, with a maximum 
of 15% error, and total power per instruction to within 
4.4% error. Since the testcases execute orders of 
magnitude fewer instructions while maintaining accuracy, 
performance and power model validations using more 
realistic tests are feasible. 

In addition, for many design changes for which IPC 
and power change significantly, the synthetic workloads 
show small errors, many less than 5%. We also show that 
simulated power dissipation for both applications and 
synthetics correlates well with the IPCs of real programs, 
often giving a correlation coefficient greater than 0.9. 
This confirms prior results that demonstrate a good 
correlation between IPC and power dissipation for 
simulated processors and hardware performance counters, 
and it verifies that the synthetic testcases produce similar 
results. 
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