
Efficient Power Analysis using Synthetic Testcases

 Robert H. Bell, Jr. †‡ Lizy K. John ‡

 †IBM Systems and Technology Division ‡Department of Electrical and Computer Engineering
 Austin, Texas The University of Texas at Austin
 robbell@us.ibm.com ljohn@ece.utexas.edu

Abstract
Power dissipation has recently become an important

consideration for processor designs. Assessing power
using simulators is problematic given the long runtimes of
real applications. Researchers have responded with
techniques to reduce the total number of simulated
instructions while still maintaining representative
simulation behavior. Synthetic testcases have been shown
to reduce the number of necessary instructions
significantly while still achieving accurate performance
results for many workload characteristics.

In this study, we show that the synthetic testcases can
rapidly and accurately assess the dynamic power
dissipation of real programs. Synthetic versions of the
SPEC2000 and STREAM benchmarks can predict the
total power per cycle to within 6.8% error on average,
with a maximum of 15% error, and total power per
instruction to within 4.4% error. In addition, for many
design changes for which IPC and power change
significantly, the synthetic testcases show small errors,
many less than 5%. We also show that simulated power
dissipation for both applications and synthetics correlates
well with the IPCs of the real programs, often giving a
correlation coefficient greater than 0.9.

1. Introduction
Power dissipation has recently become an important

consideration in the design of processors [13]. As
frequencies have passed into the multiple gigahertz range
and the number of transistors integrated onto a single chip
has surpassed 100 million [27], the maximum power
dissipation for high-end processors has surpassed 100
watts [27][28]. The increases in power dissipation are of
significant impact to chip reliability and mobile system
battery life [4]. In an effort to study and alleviate
increases in on-chip power dissipation early in the design
process at the same time that design tradeoffs are being
studied, researchers have integrated microarchitectural
power estimators into processor simulation systems
[7][21][16].

Architectural level simulators, whether executing
traces in a trace-driven fashion [15], or executing binaries

in an execution-driven simulation [8][7], can obtain
accurate results in assessing computer performance and
power dissipation. Some applications like SPEC [26] have
become benchmarks of computer performance and power
dissipation. However, long runtimes for the latest
benchmarks such as SPEC2000 make full program
simulation for early design studies or performance model
validation impractical [6][12][24][3][30][25]. Hand-coded
microbenchmarks or testcases [18][5][6][10] can quickly
test specific features in a machine, but performance
models validated to within 2% using microbenchmarks
have been shown to still contain errors of 20% to 40% on
actual programs [10]. Randomly-generated testcases [6]
are inefficient at covering the spectrum of machine
responses of real programs.

Sampling techniques such as SimPoint [24], SMARTS
[30] and Intrinsic Checkpointing [22] can reduce
simulation runtimes, but they still require the execution of
tens of millions of instructions. Statistical simulation
[9][19][1][11] creates representative synthetic traces of
less than one million instructions and has successfully
analyzed power-performance trade-offs in a trace-driven
simulation system [12][11], but traces are not very
portable to many modern design platforms including
execution-driven simulators, RTL models, hardware
emulators, and hardware itself [3]. Execution-driven
simulators are useful for assessing the power dissipation
of more accurate simulation systems including operating
system effects [16]. RTL models and hardware emulators
are useful for performance model validation [3], and
performance monitor counters in hardware facilitate rapid
power dissipation studies [4].

There have been few attempts to synthesize portable
source code from traces. Sakamoto et al. combine a
modified trace snippet with a memory image for
execution on a specific machine and a logic simulator
[23], but there is no attempt to reduce the total number of
simulated instructions. In Hsieh and Pedram [14],
assembly programs are generated that have power
consumption signatures similar to applications. However,
all workload characteristics are modeled as
microarchitecture-dependent characteristics, so that work
is not applicable to studies involving design trade-offs

[12]. Wong and Morris [29] investigate synthesis of the
LRU hit function to reduce simulation time, but no
method for simultaneously incorporating other workload
characteristics is developed.

Bell and John [2][3] synthesize C-code programs from
red

he dynamic power dissipation
ch

 generated strictly
for

eful for the
rel

C and power
dis

 a good
cor

d
syn

 of Testcase Synthesis
 designed to

spe

uced synthetic traces generated from the workload
characteristics of executing applications, as in statistical
simulation. The low-level workload characteristics of the
original application are retained by instantiating
individual operations as volatile asm calls. The synthetic
testcases execute orders of magnitude faster than the
original workloads while retaining good accuracy. That
work shows an average IPC within 2.4% of the IPC of the
original applications, and prior work shows that IPC has a
good correlation to average power dissipation [16][4].
Even though power is not considered in the synthesis
process, since the synthetic benchmarks display good IPC
correlation with actual programs, it is natural to expect
that they can also be used to speed up power dissipation
analysis for the applications with low errors. It should be
noted that the synthetic workload cannot be used to
compare total energy usage since the dynamic instruction
count for the synthetic is significantly reduced from that
of the original application.

In this work, we study t
aracteristics of the synthetic benchmarks from [3]. We

take the synthetics and execute them on the Wattch
simulation framework [7]. We find that the synthetics
correlate to absolute power dissipation to within 6.8%
error on average, and relative power dissipation error for
many design changes is less than 5%. We also show that

the changes in power dissipation for design changes
correlate well with those in the actual applications. The
specific contributions of this work are:

i) We show that synthetic testcases
 performance purposes are also useful for analysis of

dynamic power dissipation, giving reasonable errors
while executing orders of magnitude faster.

ii) We show that the synthetics are also us
ative power analysis of design changes.
iii) We classify the results of the IP
sipation design changes to facilitate analysis.
iv) We confirm prior results that demonstrate
relation between IPC and dynamic power dissipation,

and we extend the results to design change correlations.
In the Section 2, we give an overview of our workloa
thesis system. In Section 3 we give qualitative reasons

why power dissipation is expected to correlate, and we
describe the benefits for power model validation. In
Section 4 we present the quantitative results of the power
analyses. In the final Sections we give the conclusions
and references.

2. Overview
The workload synthesis system in [3] is
ed up phase execution by focusing on the workload

characteristics that contribute significantly to the
performance of the machine while ignoring or
deemphasizing those characteristics that do not. Only the
instruction sequences that provoke machine responses

Trace

Synthetic
Pisa

Figure 1: Synthesis and Simulation Overview

Workload
Characterization

Graph
Analysis

Execution
Comparison

Register
Assignment

Code
Generation

Available
Machine
Registers

Machine
Instruction

Format

Synthetic
Alpha

Synthetic
PowerPC

Application

User parms:
instruction mix
factors, stream

treatment

Statistical
Simulation to
Verify Trace

Representativeness

1B Instructions 300K Instructions

most similar to those in the original workload are retained
in the synthetic. This focus ensures that the number of
instructions that must be executed to obtain representative
behavior can be significantly reduced. Detailed
descriptions of the process can be found in [2][3]. Here
we give an overview of the synthesis process.

Figure 1 gives a flow diagram of the synthesis process.
Th

he trace or
ex

m of the graph analysis
ph

blocks in the flow
dia

n is not one of the
ch

ameters can influence the
gra

fro

se, however, is strongly ISA
de

S thetic traces in
sta

e four phases of synthesis are workload
characterization, graph analysis, register assignment and
code generation. The system can take as input a trace or
program binary. A trace is taken from a workload
executing on hardware [15] and must be detailed enough
to contain the information necessary for synthesis as
described below. Note that most traces do not contain
mispredicted instructions after a branch, only completed
instructions, but prior work has achieved good results
without using them [1][11][3]. A binary is created by
simply compiling the application program.

Workload characterization analyzes t
ecutes the binary, collecting the same statistics

necessary to achieve an accurate statistical simulation
[1][11]. Both microarchitecture dependent and
independent characteristics are collected into a statistical
flow graph [1][11]: basic block sequences, instruction
mix, dependency distances, cache miss rates and branch
predictability. The instructions are abstracted into types
that exercise the functional units in the same way as the
original instructions. Figure 1 shows that a synthetic trace
generated from walking the flow graph can be executed in
statistical simulation to verify the representativeness of
the workload characterization.

Figure 2 gives a flow diagra
ase. The diagram represents the analysis carried out

during a pass through synthesis plus execution of the
resulting synthetic benchmark. Each diamond block
makes a decision regarding the quality of the synthesis
pass for one workload characteristic. If the value of that
characteristic is below a threshold relative to its value
when executing the original program, each rectangular
block perturbs the value of a synthesis parameter that
putatively affects that characteristic. Synthesis and
simulation are then restarted and the analysis is repeated.
A particular parameter is designed to affect only one
characteristic, but sometimes characteristics previously
analyzed are adversely affected and must be revisited, and

the process then takes longer to complete. Sometimes a
threshold cannot be satisfied, in which case we simply
retain the best-case synthesis result.

The details of the rectangular
gram of Figure 2 are given in [3]. The initial number of

basic blocks is based on a default I-cache size and
associativity. The workload characterization specifies the
initial values for the number of branches that are
configured to branch conditionally and the stride table
entries that will be accessed by each memory access
counter. In each synthesis pass, the average basic block
size and locality metrics for the synthetic are compared to
those of the original workload.

Note that power dissipatio
aracteristics used to assess the synthesis quality. The

reason is that power dissipation is an aggregate metric,
like IPC. All other characteristics of the synthetic
workload may impact power to some degree, so no small
set of thresholds can be assigned in the analysis phase to
accurately change only power.

Figure 1 shows that user par
ph analysis phase. This demonstrates one of the

benefits of synthesis using statistics, namely that
particular statistics can be modified to synthesize
variations on current workloads or even future workloads.

The register assignment phase of Figure 1 is separate
m the code generation phase because it can often be

performed without exact knowledge of the ISA. For
example, experiments have shown that about twenty
registers give good synthesis results for all three targets -
Pisa, PowerPC, and Alpha.

The code generation pha
pendent. The abstracted instruction operations in the

basic blocks obtained during workload characterization
are instantiated as volatile asm calls to instructions in the
target ISA that exercise the proper functional units based
on the abstracted instruction type.

3. Power Dissipation of Synthetic Testcases
and Power Model Validation
everal studies have shown that the syn

tistical simulation exhibit power dissipation similar to
cycle-accurate simulations [12][11]. The synthetic traces
contain specific basic block sequences that represent the

Init number of
basic blocks

based on
I-cache config

Synthesize,
execute, and

compare results

IL1 miss
rate within

1%?

Avg, BB
size within

5%?

Branch
pred. within

5%?

DL1 miss
rate within

5%?

Adjust number
of basic blocks

Adjust large
basic blk factor

Adjust branch
pred. multiplier

Adjust stream factor
or miss rate estimate

No No No No

Yes YesYesYes

Figure 2: Flow Diagram of Graph Analysis Phase

major components of the performance of the workload.
The number of instructions is reduced because instruction
sequences that do not contribute to performance are not
included. Since the number of instructions is reduced, the
total energy for execution of the synthetic trace cannot be
compared to that of the original application.

The synthetic traces in [1][11] provide accurate power
an

scribed in [2][3] have
dy

urate at the
gra

alysis because the basic block sequences that provide
accurate performance results must also exercise the
machine such that the power dissipation is accurate. The
synthetic traces exhibit dynamic workload features similar
to those of the original applications, including instruction
mix, number and type of operands, instruction-level
parallelism, dependency distances, and memory access
and branching behavior. The workload similarities imply
that reorder buffer occupancies, pipeline throughput,
cache hierarchy access and miss rates, pipeline stalls, and
branch predictabilities will be similar. To a large extent,
these machine features determine the dynamic power
dissipation of the system [7][28][4]. As an example, the
abstracted instruction types used for synthesis use one,
two or three (for PowerPC) operands as in the original
workload, so the proper power dissipation with respect to
register port access is obtained.

The synthetic testcases de
namic workload characteristics similar to those of the

synthetic traces, except that the locality models are less
accurate [3]. Memory accesses are modeled as strides
through uninitialized data structures in order to match
miss rates for a default cache configuration. The overall
miss rates of the original application are obtained, but
particular miss rates at the granularity of individual loads
and stores may be quite different from those of the
original since integer stride values only generate
particular miss rate quanta, rather than a continuous
spectrum of miss rates [2]. Microarchitecture-independent
memory access models would seek to model more closely
the original workload access patterns [2][3].

The branching models are also not acc
nularity of individual branches. The overall application

predictability is matched by configuring a subset of
branches to jump past the next basic block 50% of the

time [3]. The synthetic testcases would benefit from an
exact analysis and configuration of particular branches in
the workload [2][3]. Other anomalies in the synthetic
testcases include the retargeting of integer instructions for
data structure access and testcase looping, and register
usage [3].

All of the above inaccuracies imply that instruction
dependencies, memory accesses and branch behavior are
different from the original workload, that the machine
responses to the workload will be correspondingly
different, and that the power dissipation results, in turn,
will contain inaccuracies. However, prior work has shown
that the performance errors are relatively small or, if
large, less relevant to the performance of the machine, so
we expect that the power dissipation errors will be
correspondingly low, as shown in the next section.

One of the benefits of the synthetic testcases is their
portability to multiple platforms [3]. Combined with
overall runtimes that are two or three orders of magnitude
faster than those of the original applications, the synthetic
testcases are ideal for performance model validations
using combinations of detailed execution-driven
simulators, system simulators, RTL model simulators,
hardware emulation systems, and hardware itself [3].

Likewise, the synthetic testcases are useful for power
model validation. Simulators that assess dynamic power
can be validated against slow RTL and circuit simulators
with greater assurance that the validated simulator will
give more accurate performance and power results for
longer runs.

The next section compares the absolute and relative
accuracy of the power dissipation of the synthetic
testcases to those of longer running programs.

4. Synthesis Results
In this section we present the power dissipation results

for the benchmark synthesis system described in the last
section.

4.1. Experimental Setup and Benchmarks
We start with the experimental system that exhibits

good statistical simulation correlation against actual
application simulations described in [3]. Our system is
derived from the statistical simulation system HLS
[19][20], which we updated with the statistical flow graph
to improve correlation [1][11]. SimpleScalar 3.0 [8] was
downloaded and sim-cache was modified to carry out the
workload characterization. To sim-outorder, we added the
event counters, the power.h includes, and cacti code from
Wattch [7]. Wattch models the power dissipation of
circuits and structures for a 0.35 micro, 600 MHz
machine. We present results for an aggressive clock
gating design with 10% leakage power [7].

Table 1: Default Simulation Configuration, Alpha ISA

Instruction Size (bytes) 4
L1/L2 Line Size (bytes) 32/64

Machine Width 4
Dispatch Window/LSQ/IFQ 16/8/4

Memory System 16K 4-way L1 D, 16K 1-way L1 I,
256K 4-way unified L2

L1/L2/Memory Latency+transfer
(cycles) 1/6/34

Functional Units 4 I-ALU, 1 I-MUL/DIV,
4 FP-ALU, 1 FP-MUL/DIV

Branch Predictor Bimodal 2K table,
3 cycle mispredict penalty

The twelve SPECint2000 and fourteen SPECfp2000
Alpha binaries were executed in sim-outorder on the first
reference dataset for the first billion instructions. Single-
precision versions of eight STREAM and STREAM2
benchmarks [17] with a ten million-loop limit were also
simulated. We use the default SimpleScalar configuration
given in Table 1, as in [19][21][3]. SimpleScalar does not
model an L3, but the memory latency used here estimates
a fast L3. While the machine configuration is relatively
small, in the experiments below we vary the window size
and other machine parameters significantly and still
obtain good power dissipation correlations as IPC
increases. Another consideration is that this machine
configuration is appropriate for use with the original
Wattch model [13][7][12]. It is also still a useful model
for smaller embedded or ASIC designs. The synthetic
benchmarks were executed to completion on an IBM
p270 (400 MHz).

The details of the number of instructions executed and
runtime per benchmark are given in [3]. Typically the
synthetics exhibit less than 300K dynamic instructions
and execute two to three orders of magnitude faster than
the actual programs.

4.2. Base Power Dissipation Results
 Figure 3 shows the power dissipation per cycle in

Watts for the actual programs and the synthetics. The

average error is 6.8%, with a maximum error of 15% for
mcf. The SPECint synthetics exhibit larger average errors
than the SPECfp and STREAM, at 9.9% and 5.1%
respectively, as shown in Table 2. Individual machine
components generally show larger errors for SPECint,
especially for the L1 I-cache and D-cache, the result bus,
and the clock power. As mentioned in Section 3, the
explanation for the cache errors is that the more
complicated memory access behavior in SPECint is less
likely to be well modeled by the simple synthetic streams,
resulting in additional error in power dissipation in the I-
cache and D-cache. This occurs in spite of the fact that
IPC errors for synthetics with L1 cache miss rates above
1% are generally small [3] because the small miss rates
have little impact on performance or are offset by errors
in other parts of the memory subsystem [3]. However,
these results indicate that the SPECint could especially
benefit from more accurate microarchitecture-independent
memory access models.

 The synthetics also have relatively low clock power
dissipation versus the applications. A partial explanation
is the uniformly lower dispatch window occupancies for
the synthetics, which exhibit an average decrease in
occupancy error of 4.1% [3]. Additional errors for the
SPECint again point to the memory access model as a
major contributor to the overall clock and result bus
power dissipation errors. The large errors in many
features for mcf mirror its relatively large IPC error, 7.4%.

Table 2: Average Power %Error, Synthetics vs. Applications

Metric/Structure % Error %Error
SPECint

%Error
fp/STREAM Max. %Error

Power per Cycle 6.8 9.9 5.1 15.0 (mcf)
Power per Instruct 4.4 5.4 3.9 11.2 (twolf)
Rename 2.4 2.8 2.1 7.4 (mcf)
Branch Predictor 3.7 4.3 3.3 15.8 (apsi)
Dispatch Window 5.3 7.1 4.3 12.5 (wupw)
LSQ 2.8 2.5 3.0 15.2 (applu)
Register File 6.4 4.5 7.4 22.1 (wupw)
L1 I-cache 6.0 11.0 3.2 14.1 (mcf)
L1 D-cache 5.8 7.3 4.9 18.5 (applu)
L2 cache 2.3 2.6 2.2 11.8 (applu)
ALU 1.8 1.7 1.8 5.2 (facerec)
Result Bus 6.6 10.9 4.3 16.1 (gcc)
Global Clock 12.4 17.7 9.5 27.0 (mcf)
Fetch 3.4 6.0 2.1 9.7 (mcf)
Dispatch Logic 2.4 2.8 2.1 7.4 (mcf)
Issue Selection Lgc 3.6 4.9 2.9 8.2 (mcf)

Table 3: Correlation Coefficients of Power Dissipation vs. IPC
Metric/Structure Actual Synthetic

Power per Cycle 0.94 0.96
Power per Instruction -.84 -.84
Rename 0.99 0.99
Branch Predictor 0.65 0.62
Dispatch Window 0.96 0.97
LSQ 0.30 0.22
Register File 0.77 0.75
L1 I-cache 0.91 0.96
L1 D-cache 0.43 0.46
L2 cache 0.016 -0.033
ALU 0.83 0.81
Result Bus 0.90 0.94
Global Clock 0.91 0.95
Fetch 0.88 0.92
Dispatch Logic 0.99 0.99
Issue Selection Logic 0.90 0.90

Figure 4: Power per Cycle vs. IPC for Synthetics

0
5

10
15
20
25
30

0 0.5 1 1.5 2 2.5 3 3.5
IPC

P
ow

er
 (W

at
ts

)

0

5

10

15

20

25

30

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

k
vo

rte
x

tw
ol

f
m

gr
id

m
es

a
ar

t
lu

ca
s

am
m

p
ap

pl
u

ap
si

eq
ua

ke
ga

lg
el

sw
im

si
xt

ra
ck

w
up

w
i

fa
ce

re
c

fm
a3

d
sa

xp
y

sd
ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 3: Power Dissipation per Cycle

Po
w

er
 (W

at
ts

)

actual synthetic

Figure 5: Power per Instruction vs. IPC for Synthetics

0
5

10
15
20
25
30

0 0.5 1 1.5 2 2.5 3 3.5IPC

Po
w

er
 (W

at
ts

)

0

5

10

15

20

25

30

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

k
vo

rte
x

tw
ol

f
m

gr
id

m
es

a
ar

t
lu

ca
s

am
m

p
ap

pl
u

ap
si

eq
ua

ke
ga

lg
el

sw
im

si
xt

ra
ck

w
up

w
i

fa
ce

re
c

fm
a3

d
sa

xp
y

sd
ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Figure 6: Power Dissipation per Instruction

Po
w

er
 (W

at
ts

)

actual synthetic

Figure 4 is a scatter plot of the IPC versus the power
per cycle for the synthetics. The correlation is quite good,
with a Pearson correlation coefficient of 0.96. Table 3
gives correlation coefficients for the power dissipation
metrics and the various machine features for both the
actual programs and synthetics. The synthetic correlation
coefficients generally follow those of the actual programs.

The results of Table 3 generally confirm the findings
in prior microarchitectural power simulations [16][4]. For
many features the correlation is greater than 0.90.
However, there are some important exceptions. The LSQ,
L1 D-cache, and L2 D-cache power dissipations appear
not to be correlated with IPC, at least over the instructions
executed. Also, the branch predictor, register file, and
ALU power dissipations are only weakly correlated. IPC
can generate a good rough estimate of overall power
dissipation, especially for the pipeline structures, but
additional analysis is necessary to estimate the power
dissipation for many machine structures, especially the
data cache hierarchy.

Figure 5 shows that the power dissipation per
instruction decreases as IPC increases. The power
dissipation of unused structures is 10% of maximum in
the conditional clocking scheme we use in Wattch, and as
IPC increases the unused structure overhead is amortized
over more instructions per cycle, but it never reaches
zero. In Table 3 we find a negative 0.84 correlation for
both actual programs and synthetics because the curve is
non-linear, and the minimum power appears to be
asymptotic to a line below 9 Watts as IPC increases in
Figure 5. This trend would extrapolate to a maximum
power of about 36 Watts for this four-issue machine.

Figure 6 breaks down the per instruction power
dissipation by benchmark. The average error from Table 2
is 4.4%, with a maximum error of 11.3% for twolf. At
5.4%, the error in power per instruction is more evenly
distributed for SPECint than is power per cycle, while
SPECfp and STREAM give 3.9% error.

4.3. Analysis of Design Changes
We now study the power dissipation for design

changes using the same synthetic benchmarks; that is, we
take the benchmarks described in the last section, change

the machine configurations in Wattch, re-execute them,
and compare the results to executions of the actual
programs on the same configurations.

Table 4 gives information for the absolute and relative
IPC prediction errors [11] and the absolute and relative
power dissipation prediction errors when executing
various design changes. We include here the IPC data
from [3] to ease discussion. The only differences with the
results in [3] are for the studies of machine width, issue
and commit width and IFQ size. For each of those we
changed the other parameters related to machine width to
16, instead of 4 in [3], to give larger changes in IPC as the
parameter changes.

In the table, Disp is the dispatch window size. A
change in Machine Width implies that the decode width,
issue width and commit width all change by the same
amount from the base configuration in Table 1. When the
caches are increased or decreased by a factor, the number
of sets for the L1 I-cache, D-cache and L2 cache are
increased or decreased by that factor. Likewise, when the
bimodal branch predictor is multiplied by a factor, the
table size is multiplied by that factor from the default size.
The L1 D-cache 2x and L1 I-cache 2x specify a doubling
of the L1 D-cache (to 256 sets, 64B cache line, 8-way set
associativity), and a doubling of the L1 I-cache
configuration (to 1024 sets, 64B cache line, 2-way set
associativity). The numbers here do not include ammp or
galgel. Those benchmarks tend to be optimistic when the
dispatch window changes because our small data footprint
benchmarks do not model data-TLB misses, and the
actual programs have large TLB miss rates, over 13%
each.

We also studied a commit width change from 4 to 1,
but the data for some actual programs was inconsistent, so
it is not used. Speculation is that there is a power
modeling error when the commit width is reduced to one.
Evidence that the modeling is incorrect is given in Table
5, where most correlation coefficients for IPC and power
dissipation are above 0.90, except when the commit width
equals one. We do not examine the commit width equal
one results further in this paper.

The other correlation coefficients in Table 5 indicate
that the power dissipation achieved by the synthetics for a

design change follows fairly well the IPC change for that
design change. Table 4 shows that the absolute and
relative IPC errors and power dissipation errors (%Error
and Rel. %Error) due to a design change for the
synthetics versus the actual programs is often below 5%
or 10%, except for the two cases in which the caches are
reduced in size. The synthetics underestimate
performance when the cache is significantly reduced due
to capacity misses among the synthetic data access
streams [2].

There are four classes of results in Table 4 that shed
light on the quality of the power dissipation analysis using
the synthetics and provide a starting point for discussion.
We are concerned about whether the synthetics properly
indicate power dissipation changes when the IPC changes
significantly:

Class 1: The change in IPC and the change in power
dissipation (%Change in Table 4) are greater than two
times (or more) their absolute or relative errors for the
design change.

Class 2: The change in IPC is greater than two times
its absolute or relative error, but the change in power
dissipation is not.

Class 3: The change in power dissipation is greater

than two times its absolute or relative error, but the
change in IPC is not.

Class 4: Neither the change in IPC nor the change in
power dissipation is greater than two times its error.

The classes for each design change are given in Table
5. The choice of threshold equal to 2x is ad hoc, but it
gives a good cushion between the average errors and the
average change that is being indicated. Evidence that that
is a good metric is given by the max absolute and relative
error columns (Max %Err and Max Rel. %Err) for the
design changes. Generally the max errors are less than or
not too far removed from the %Change.

The %Change is the minimum change for either the
actual or synthetic workload. For all cases the %Change
for either is close to that of the other.

Most of the design changes are class 1 (or borderline
class 3) and none of the design changes are class 2, which
indicates that significant power dissipation changes can
be assessed when the IPC changes significantly. The class
3 and borderline class 3 design changes indicate that the
correct power dissipation changes are reflected even
though the IPC changes may not be significant. In these
cases, the correlation coefficients between IPC and power
dissipation are lower.

Table 4: Average Absolute and Relative IPC and Power Dissipation Error
 IPC Power Dissipation

Design Change %Error Max
%Err

Rel.
%Err

Max
Rel.
%Err

%Change %Error Max
%Err

Rel.
%Err

Max
Rel.
%Err

%Change
Max Avg.
Structure

%Err (strc)

Max %Err
Structure

(synthetic)
Disp 8 LSQ 4 3.1 16.1 2.3 7.5 23.8 4.9 10.9 2.5 6.6 16.8 9.2(clk) 21.2 (gap)
Disp 32 LSQ 16 3.7 9.9 2.2 9.4 16.1 8.5 18.5 1.8 8.8 18.5 14.3(clk) 28.9 (mcf)
Disp 48 LSQ 24 5.0 12.3 3.9 14.3 24.6 9.2 17.9 2.9 10.9 31.7 15.4(clk) 32.4(applu)
Disp 64 LSQ 32 6.1 18.1 5.2 20.8 31.0 9.5 18.4 3.6 13.7 41.5 16.0(clk) 36.6(applu)
Disp 96 LSQ 48 8.3 29.3 7.6 32.2 43.2 9.9 22.4 4.8 18.9 63.4 17.1(clk) 41.4(applu)
Disp 128 LSQ 64 9.1 34.0 8.5 37.0 52.0 10.0 23.3 5.2 22.7 82.8 17.7(clk) 43.4(applu)
Issue Width 1 1.5 5.3 1.9 6.5 53.6 1.6 3.2 5.9 14.9 38.2 5.8(rbus) 16.9(fma3d)
Issue Width 8 3.0 9.4 1.6 9.2 7.0 6.3 13.1 1.0 7.3 11.3 11.4(clk) 26.7(wupw)
Commit width 8 2.9 9.1 1.4 8.9 7.0 5.4 11.9 2.3 11.4 42.5 9.9(clk) 24.3(wupw)
Machine Width 2 2.8 7.6 2.0 6.5 23.5 5.4 10.9 1.7 5.6 17.6 10.4(regf) 26.8(wupw)
Machine Width 6 3.2 9.8 1.0 7.6 5.6 6.9 15.6 0.68 4.4 9.23 12.5(clk) 16.9(mcf)
Machine Width 8 3.2 8.8 1.1 7.6 6.0 6.6 13.7 0.79 6.2 14.5 11.9(clk) 24.4(wupw)
Machine Width 10 3.1 9.2 1.5 9.1 6.5 6.0 12.5 1.2 8.1 20.1 11.1(clk) 24.7(wupw)
Machine Width 12 3.1 9.3 1.5 9.1 6.6 5.6 11.7 1.6 9.4 25.7 10.5(clk) 25.0(wupw)
Machine Width 14 3.1 9.4 1.5 9.2 6.6 5.2 11.6 2.0 10.8 30.2 9.8(clk) 25.3(wupw)
Machine Width 16 3.2 9.4 1.5 9.2 6.7 4.7 11.2 2.6 12.1 34.1 10.0(Icac) 26.7(wupw)
IFQ 8 3.0 9.3 1.2 7.7 5.4 4.6 10.8 2.6 11.5 33.2 8.9(clk) 25.5(wupw)
IFQ 16 3.2 9.4 1.5 9.2 6.7 4.8 11.2 2.5 12.1 34.2 10.0(regf) 26.7(wupw)
IFQ 32 3.3 9.0 1.3 8.9 7.4 5.0 11.3 2.2 11.8 34.9 9.7(Icac) 26.7(wupw)
Caches 0.25x 19.4 49.8 18.8 48.8 15.2 14.1 34.8 9.2 28.5 22.8 18.6(rbus) 45.0(wupw)
Caches 0.50x 23.9 46.7 23.1 47.0 7.0 17.6 33.2 11.9 26.7 13.2 23.0(wind) 45.5(fma3d)
Caches 2.0x 4.2 16.0 3.2 18.8 4.3 6.5 15.6 1.6 7.6 18.7 12.7(clk) 28.1(mcf)
Caches 4.0x 4.9 17.8 3.9 12.6 6.2 9.2 19.0 3.1 8.4 40.5 15.8(clk) 32.1(twolf)
L1 I-cache 2.0x 3.0 10.7 1.3 5.9 7.0 8.1 18.6 2.0 6.9 36.5 14.5(clk) 35.1(sfill)
L1 D-cache 2.0x 3.2 14.3 1.2 12.8 2.2 7.5 16.6 1.1 4.1 30.9 13.3(clk) 31.0(mcf)
L1 D-cache Lat 8 9.7 38.0 9.9 34.8 22.0 2.6 7.2 6.4 21.3 13.4 6.7(regf) 19.4(perlb)
BPred 0.25x 2.9 8.6 1.3 6.0 0.63 6.4 14.3 0.67 2.7 0.40 12.0(clk) 25.9(mcf)
BPred 0.50x 2.5 8.6 0.60 3.0 0.18 6.7 15.4 0.31 1.4 0.22 12.2(clk) 26.7(mcf)
BPred 2.0x 2.6 8.3 0.32 1.8 0.15 6.9 15.5 0.18 0.88 0.20 12.4(clk) 26.9(mcf)
BPred 4.0X 2.5 8.0 0.40 2.0 0.22 6.9 15.2 0.21 0.87 0.52 12.4(clk) 26.7(mcf)

The class 4 design changes indicate that the changes in
IPC and power were not much different from the errors in
the synthetics themselves. As mentioned, the reduced
cache sizes put pressure on the memory access streams
used in the synthetics, causing large percent errors. For
the branch predictor studies, the percent errors are small,
but the increase or decrease in the bimodal predictor table
causes little change in performance (%Change), whether
for the actual or synthetic workloads. A different
predictor configuration is needed to assess the quality of
predictor design changes for the synthetics.

Table 4 also gives the maximum average percent
power dissipation error from among all the structures
listed in Table 3 for each design change (Max Avg.
Structure %Err). Similar to the absolute structure errors
in the last section, the most prominent error is the global
clock (clk), but the errors average only 12.5%, and for the
strong class 1 design changes they are well below the
average change in power dissipation.

The table also shows the maximum error found among
all the synthetics for any particular structure for the
design change (Max %Err Structure Synthetic). This is
usually the global clock structure. Since these are much
larger than the average structure errors (Max Avg.
Structure %Err), these particular points are outliers. The

results indicate that the synthetics for mcf, applu, and
wupwise should be examined to understand why their
predicted power dissipations are more variable than those
of many others when the design changes. This analysis
drives change back into the synthesis process itself.

5. Conclusions
In this study, we show that synthetic testcases can

rapidly and accurately assess the power dissipation of real
programs. Synthetic versions of the SPEC2000 and
STREAM benchmarks can predict the total power per
cycle to within 6.8% error on average, with a maximum
of 15% error, and total power per instruction to within
4.4% error. Since the testcases execute orders of
magnitude fewer instructions while maintaining accuracy,
performance and power model validations using more
realistic tests are feasible.

In addition, for many design changes for which IPC
and power change significantly, the synthetic workloads
show small errors, many less than 5%. We also show that
simulated power dissipation for both applications and
synthetics correlates well with the IPCs of real programs,
often giving a correlation coefficient greater than 0.9.
This confirms prior results that demonstrate a good
correlation between IPC and power dissipation for
simulated processors and hardware performance counters,
and it verifies that the synthetic testcases produce similar
results.

Aknowledgements
The authors would like to thank the anonymous

reviewers for their detailed comments. This research is
partially supported by the National Science Foundation
under grant number 0429806, the IBM Center for
Advanced Studies (CAS), an IBM SUR grant, the IBM
Systems and Technology Division, and Advanced Micro
Devices.

References
[1] R. H. Bell, Jr., L. Eeckhout, L. K. John and K. De Bosschere,
“Deconstructing and Improving Statistical Simulation in HLS,”
Workshop on Debunking, Duplicating, and Deconstructing, in
conjunction with ISCA ’04, June 20, 2004.

[2] R. H. Bell, Jr. and L. K. John, “The Case for Automatic
Synthesis of Miniature Benchmarks,” Workshop on Modeling,
Benchmarking, and Simulation, in conjunction with ISCA ‘05,
June 4, 2005.

[3] R. H. Bell, Jr. and L. K. John, “Improved Automatic
Testcase Synthesis for Performance Model Validation,”
International Conference on Supercomputing, June 20, 2005.

[4] W. L. Bircher, M. Valluri, J. Law and L. K. John, “Runtime
Identification of Microprocessor Energy Saving Opportunities,”
International Symposium on Low Power Electronics and
Design, August 2005.

Table 5: Correlation Coefficients of Power vs. IPC for Design
Changes and Quality of Assessing Power Dissipation Changes

Design Change Actual Synthetic Class
Disp 8 LSQ 4 0.95 0.97 1
Disp 32 LSQ 16 0.92 0.95 1
Disp 48 LSQ 24 0.91 0.94 1
Disp 64 LSQ 32 0.90 0.93 1
Disp 96 LSQ 48 0.92 0.93 1
Disp 128 LSQ 64 0.93 0.94 1
Issue Width 1 0.87 0.91 1
Issue Width 8 0.95 0.97 1
Commit Width 1* -0.27 0.74 N/A
Commit width 8 0.95 0.95 1
Machine Width 2 0.92 0.94 1 (borderline 3)
Machine Width 6 0.95 0.97 1 (borderline 3)
Machine Width 8 0.95 0.97 1
Machine Width 10 0.95 0.97 1
Machine Width 12 0.95 0.96 1
Machine Width 14 0.95 0.96 1
Machine Width 16 0.95 0.95 1
IFQ 8 0.95 0.95 1 (borderline 3)
IFQ 16 0.95 0.95 1 (borderline 3)
IFQ 32 0.95 0.95 1 (borderline 3)
Caches 0.25x 0.98 0.99 4
Caches 0.50x 0.96 0.99 4
Caches 2.0x 0.92 0.96 3
Caches 4.0x 0.89 0.95 3
L1 I-cache 2.0x 0.94 0.98 1
L1 D-cache 2.0x 0.82 0.89 3
L1 D-cache Lat 8 0.97 0.97 1
BPred 0.25x 0.94 0.96 4
BPred 0.50x 0.94 0.96 4
BPred 2.0x 0.94 0.96 4
BPred 4.0X 0.94 0.96 4

[5] B. Black and J. P. Shen, “Calibration of Microprocessor
Performance Models,” IEEE Computer, May 1998, pp. 59-65.

[6] P. Bose and T. M. Conte, “Performance Analysis and Its
Impact on Design,” IEEE Computer, May 1998, pp. 41-49.

[7] D. Brooks, V. Tiwari and M. Martonosi, “Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations,” International Symposium on Computer
Architecture, June 2000.

[8] D. C. Burger and T. M. Austin, "The SimpleScalar Toolset,"
Computer Architecture News, 1997.

[9] R. Carl and J. E. Smith, "Modeling Superscalar Processors
Via Statistical Simulation," Workshop on Performance Analysis
and Its Impact on Design, June 1998.

[10] R. Desikan, D. Burger and S. Keckler, “Measuring
Experimental Error in Microprocessor Simulation,” International
Symposium on Computer Architecture, 2001.

[11] L. Eeckhout, R. H. Bell, Jr., B. Stougie, L. K. John and K.
De Bosschere, “Control Flow Modeling in Statistical Simulation
for Accurate and Efficient Processor Design Studies,”
International Symposium on Computer Architecture, June 2004.

[12] L. Eeckhout and K. De Bosschere, “Early design Phase
Power/Performance Modeling Through Statistical Simulation,”
International Symposium on Performance Analysis of Systems
and Software, November 2001, pp. 10-17.

[13] M. K. Gowan, C. Polychronopoulos and G. Stamoulis,
“Power Considerations in the Design of the Alpha 21264
Microprocessor,” Design Automation Conference, 1998, pp.
726-731.

[14] C. T. Hsieh and M. Pedram, "Microprocessor Power
Estimation Using Profile-driven Program Synthesis," IEEE
Transactions on Computer Aided Design of Integrated Circuits
and Systems, Vol. 17, No. 11, November 1998, pp. 1080-1089.

[15] S. R. Kunkel, R. J. Eickemeyer, M. H. Lipasti, T. J.
Mullins, B. O’Krafka, H. Rosenberg, S. P. VanderWiel, P. L.
Vitale and L. D. Whitley, “A Performance Methodology for
Commercial Servers,” IBM J. Res. Develp., Vol. 44 No. 6,
November 2000.

[16] T. Li and L. John, “Run-Time Modeling and Estimation of
Operating System Power Consumption,” International
Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS), June 10-14, 2003.

[17] J. D. McCalpin, “Memory Bandwidth and Machine Balance
in Current High Performance Computers,” IEEE Technical
Committee on Computer Architecture newsletter, December
1995.

[18] L. McVoy, “lmbench: Portable Tools for Performance
Analysis,” USENIX Technical Conference, Jan. 22-26, 1996,
pp. 279-294.

[19] M. Oskin, F. T. Chong and M. Farrens, "HLS: Combining
Statistical and Symbolic Simulation to Guide Microprocessor
Design," Proceedings of the 27th Annual International
Symposium on Computer Architecture, June 2000, pp. 71-82.

[20] http://www.cs.washington.edu/homes/oskin/tools.html

[21] R. Rao, M. Oskin, F. T. Chong, “HLSpower: Hybrid
Statostical Modeling of the Superscalar Power-Performance
Design Space,” International conference on High Performance
computing (HiPC), December, 2002.

[22] J. Ringenberg, C. Pelosi, D. Oehmke and T. Mudge,
“Intrinsic Checkpointing: A Methodology for Decreasing
Simulation Time Through Binary Modification,” International
Symposium on Performance and Simulation Systems, March
2005, pp. 78-88.

[23] M. Sakamoto, L. Brisson, A. Katsuno, A. Inoue and Y.
Kimura, “Reverse Tracer: A Software Tool for Generating
Realistic Performance Test Programs,” Symposium on High-
Performance Computing,” 2002.

[24] T. Sherwood, E. Perleman, G. Hamerly and B. Calder,
“Automatically characterizing large scale program behavior,”
Proceedings of the International Conference on Architected
Support for Programming Languages and Operating Systems,
October 2002.

[25] R. Singhal, et al., “Performance Analysis and Validation of
the Intel Pentium4 Processor on 90nm Technology,” Intel Tech.
J., Vol. 8, No. 1, 2004.

[26] http://www.spec.org

[27] J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le and B.
Sinharoy, "POWER4 System Microarchitecture," IBM Journal
of Research and Development, January 2002, pp. 5-25.

[28] M. Valluri and L. John, “Is Compiling for Performance ==
Compiling for Power?” Workshop on the Interaction Between
Compilers and Computer Architectures (INTERACT-5), 2001.

[29] W. S. Wong and R. J. T. Morris, "Benchmark Synthesis
Using the LRU Cache Hit Function," IEEE Transactions on
Computers, Vol. 37, No. 6, June 1988, pp. 637-645.

[30] R. E. Wunderlich, T. F. Wenisch, B. Falsafi and J. C. Hoe,
“SMARTS: Accelerating Microarchitecture Simulation via
Rigorous Statistical Sampling,” The International Symposium
on Computer Architecture, June 2002.

