
Automatic Testcase Synthesis and Performance Model Validation for High-
Performance PowerPC Processors

Robert H. Bell, Jr. †‡ Rajiv R. Bhatia†‡ Lizy K. John‡ Jeff Stuecheli†‡

John Griswell† Paul Tu† Louis Capps† Anton Blanchard† Ravel Thai‡
† IBM Systems and Technology Division ‡ Electrical and Computer Engineering

 Austin, Texas The University of Texas at Austin
robbell@us.ibm.com ljohn@ece.utexas.edu

Abstract

The latest high-performance IBM PowerPC
microprocessor, the POWER5 chip, poses challenges
for performance model validation. The current state-
of-the-art is to use simple hand-coded bandwidth and
latency testcases, but these are not comprehensive for
processors as complex as the POWER5 chip.
Applications and benchmark suites such as SPEC CPU
are difficult to set up or take too long to execute on
functional models or even on detailed performance
models.

We present an automatic testcase synthesis
methodology to address these concerns. By basing
testcase synthesis on the workload characteristics of an
application, source code is created that largely
represents the performance of the application, but
which executes in a fraction of the runtime. We
synthesize representative PowerPC versions of the
SPEC2000, STREAM, TPC-C and Java benchmarks,
compile and execute them, and obtain an average IPC
within 2.4% of the average IPC of the original
benchmarks and with many similar average workload
characteristics. The synthetic testcases often execute
two orders of magnitude faster than the original
applications, typically in less than 300K instructions,
making performance model validation for today’s
complex processors feasible.

1. Introduction

Modern high-performance microprocessors are
quite complex. For example, the POWER4™ and
POWER5™ chips are dual-core PowerPC®
microprocessors used in IBM server systems [28][25].
The POWER4 chip is built from 1.5 million lines of
VHDL and 174 million transistors [16], and the

POWER5 chip contains 276 million transistors [25].
The designs drive detail and complexity into the
performance models used for performance projections.

For complex chips, it is important that the
performance models be validated [7] against cycle-
accurate functional models during the design process in
order to minimize incorrect design decisions due to
inaccurate performance models. As complexity
increases, the gap in accuracy can grow quickly, so
validation is needed more frequently. Subtle instruction
interactions in the POWER4 and POWER5 chips
necessitate very accurate performance models.

Prior validation efforts have focused on bandwidth
and latency tests, resource limit tests, or micro-tests [8]
[27][5][19][18][17][13]. These are usually hand-
written microbenchmarks that are too small to
approximate the performance of many workloads [4].
Once validated using these tests, performance models
still exhibit large errors on realistic workloads like
SPEC [3][4]. Randomly generated tests are inefficient
at representing real workloads [4].

Applications themselves cannot be used for
performance model validation because of their
impossibly long simulation runtimes [7]. In [24], only
one billion functional model simulated cycles per
month are obtained. In [16], farms of machines provide
many simulated cycles in parallel, but individual tests
on processor models may execute orders of magnitude
slower than hardware emulator speeds of 2500 cycles
per second.

Trace sampling techniques such as SimPoint [23]
and SMARTS [30] can reduce runtimes in simulators,
but the executions still amount to tens of millions of
instructions. Statistical simulation [9][20][10] can
further reduce the necessary trace lengths, but
executing traces on functional models or hardware is
difficult. Sakamoto et al. present a method to create a
binary image of a trace along with a memory dump and
execute those on a specific machine and a logic

simulator [22], but there is no attempt to reduce trace
lengths. Hsieh and Pedram synthesize instructions for
power estimation [11], but there is no attempt to
maintain the machine-independent workload
characteristics necessary to represent the original
applications [1][10].

Bell and John [2][5][4] synthesize C-code programs
from reduced synthetic traces generated from the
workload characteristics of executing applications, as
in statistical simulation. The low-level workload
characteristics of the original application are retained
by instantiating individual operations as volatile asm
calls. The synthetic testcases execute orders of
magnitude faster than the original workloads while
retaining good performance accuracy.

In this work, the synthesis effort is broadened to
support high-performance PowerPC processors such as
the POWER5 chip. In addition, two performance
model validation approaches and validation results are
presented using testcases for a PowerPC processor.

The rest of this paper is organized as follows.
Section 2 presents the conceptual framework of the
testcase synthesis method and some of its benefits.
Section 3 describes the synthesis approach in detail.
Section 4 presents experimental synthesis results for
the POWER5 processor and Section 5 presents
validation results for a follow-on PowerPC processor.

2. Representing Complexity

Representative testcase synthesis [3][4] is achieved
using the workload characterization and statistical flow
graph of statistical simulation [10][1]. A walk of the
statistical flow graph produces a synthetic trace which,
when combined with memory access and branching
models, is instantiated as a C-code envelope around a
sequence of asm calls - a simple but flexible testcase.

When the synthetic is executed, the proportions of
the instruction sequences are similar to the proportions
of the same sequences in the original executing
application, but the number of times the sequence is
executed is significantly reduced, so that the total
number of instructions executed and, therefore, overall
runtime are much reduced. By repeating the execution
of the sequences a small number of times, convergence
of memory access and branching model behavior is
assured, usually in less than 300K instructions [3][4].

The relatively small number of instructions and the
flexibility of the source code make the synthetics useful
for accurate performance model validation [3][4]. In
the case of the POWER5 chip, executions of a cycle-
accurate model built directly from the functional
VHDL hardware description language model [29][16]

can be compared against the detailed M1 performance
model [14][13] used for performance projections. In
this work, we synthesize specifically for POWER5 chip
execution and then use the testcases to validate an
improved PowerPC processor.

2.1 Performance Model

The IBM PowerPC performance modeling

environment is trace-driven to reduce modeling and
simulation overhead [19][15][13]. The M1
performance model implements a detailed, cycle-
accurate core. Coupled with the M1 is a detailed model
of the L2, L3 and memory [13].

Elements of a high-performance PowerPC model
must capture the functional details of the processor.
The POWER5 chip features out-of-order instruction
execution, two fixed point and two floating point units,
120 general purpose rename registers, 120 floating
point rename registers, complex pipeline management,
32-entry load and store reorder queues, on-board L2
controller and 1.9-MB cache, L3 cache controller, 36-
MB off-chip victim L3, memory controller, SMP fabric
bus interface, dynamic power management, and support
for simultaneous multithreading [25]. Table 6 gives
additional configuration parameters.

2.2 Model Validation

The POWER5 performance model was validated to

within 1% for particular codes [13]. However, it is a
difficult and time consuming proposition to validate a
model for a large variety of programs. Automatic
testcase synthesis addresses this concern by automating
the synthesis process and by synthesizing high level
codes that can target various platforms. In this work we
target two platforms for validating the performance
model: cycle-accurate RTL model simulation and
simulation on a hardware emulator.

2.2.1 Validation using RTL Simulation. Figure 1
shows the RTL validation methodology. The synthetic
testcase is compiled and converted to execute on a
VHDL model using the standard IBM functional
verification simulation methodology [29][16]. The
converted code is then executed to completion on the
VHDL model. The compiled testcase is also unrolled
into a trace using a PowerPC instruction interpreter
[19][15][6]. Only completed instructions are
maintained in the trace. The trace is then executed to
completion on the M1 performance model.

Both VHDL and performance model executions
generate information at the level of the instruction,

including the cycle the instruction completes, address
and opcode. The cycles at which an instruction
completes in both the VHDL and performance models
are not identical in an absolute sense because of how
cycles are maintained and counted in the two
simulators. However, the performance model is of
sufficient detail such that the completion cycle of an
instruction minus the completion cycle of the previous
instruction, that is, the cycle difference between any
two completing instructions, should be equivalent. The
analysis relies on the fact that the methodology
generates instructions for both models from a
compilation of a single piece of code. Each and every
instruction is executed on both the VHDL and M1
models and completes in the same order in both.
Instructions may complete in different completion
buffers in the same cycle, but should complete in the
same cycle.

The instantaneous error, E, for each instruction is
defined in terms of the difference in cycles between the
completion time of the current instruction and the
completion time of the previous instruction in both
VHDL and M1 models. The instantaneous error for the
ith instruction is defined as:

)()()(iDiDiE PR −=
where

)1()()(−−= iCiCiD RRR
and likewise

)1()()(−−= iCiCiD PPP
In these equations, CR(i) is the completion cycle of

the ith instruction when executing the VHDL (RTL)
model, and CP(i) is the completion cycle of the ith
instruction when executing the M1 (Performance)
model. The intuition behind the E calculation is that an
instruction is using the same machine resources and
completing in the same order, putatively in the same
cycle, in both models, so differences between
sequential instructions should be identical. A difference
indicates that resource allocations or execution delays

are not modeled similarly for instructions in the vicinity
of the instruction that has an instantaneous error.

Note that instruction dependences and resource
usages using the same workload in both models will
limit the instantaneous error and push it toward zero;
there can be no large accumulation of error between
any two related instructions. However, the completion
time of an instruction that is modeled properly may be
underestimated if an older instruction in program order
fails to complete on time and the younger instruction is
not dependent on the older but on a prior instruction
and has been ready to complete for some time.

The instantaneous errors can be categorized to
narrow down the search for microarchitectural bugs in
which a hardware feature was not implemented
properly, and modeling, abstraction, and specification
errors [5] in the performance model. Section 5 gives an
example analysis.

2.2.3 Validation using a Hardware Emulator. The
compiled synthetic testcases can also be input to an
RTL model executing on the AWAN hardware
accelerator [16]. AWAN is composed of programmable
gate arrays and can be configured to emulate a VHDL
model. The AWAN array supports very large chips.
The entire POWER4 chip, for example, can be
emulated at a rate of more than 2500 cycles per second
[16]. The cycle counts for a run are obtained from
AWAN registers and compared to the M1 performance
model cycle counts. Detailed workload execution
information can be obtained from the AWAN machine.
In Section 5, validation results using AWAN are
presented.

3. Synthesis for PowerPC

With reference to Figure 2, the four major phases of

synthesis: workload characterization; graph analysis;
register assignment and code generation. The
following paragraphs present only the changes to
synthesis to support the PowerPC instruction set and
high-performance processors. Additional synthesis
detail for each phase, as well as exact synthesis
parameters and algorithms for Pisa and Alpha code
targets, can be found in Bell and John [2][3][4].

3.1 Workload Characterization

The workload characterization is carried out at the

granularity of the basic block [2][3][4]. The floating-
point instruction abstraction is augmented to support
extremely long PowerPC fma instructions.

Figure 1. RTL Validation Methodology

Synthetic Benchmark
(PowerPC C-code)

Convert to
VHDL Input

Format

Completed
Instruction
Information

Interpret
into Trace of
Completed
Instructions

VHDL
Model

Execution

M1
Performance

Model
Execution

Completed
Instruction
Information

Instruction-by-
Instruction

Comparison

3.2 Graph Analysis

The statistical flow graph is analyzed and specific

memory access and branching models are constructed.

3.2.1 Instruction Miss Rate and I-cache Model. The
number of basic blocks are tuned to match the original
I-cache miss rate (IMR) [3]. Specific basic blocks are
chosen from a walk of the statistical flow graph [3].
The IMR sometimes changes after the branches are
configured in the branching model (Section 3.2.5). To
compensate, the branch jump granularity is adjusted to
change the number of basic blocks or instructions that a
configured branch jumps.

3.2.2 Instruction Dependences and Compatibility.
For each instruction, its dependences are assumed to be
the same as those chosen during statistical simulation.
The dependences are then made compatible with the
instruction by moving forward and backward from the
starting dependence through the list of instructions in
sequence order [2][3][4]. Table 1 shows the
compatibility of instructions for the PowerPC
instruction set. The Inputs column gives the assembly
instruction inputs that are being tested for
compatibility.

In our PowerPC experiments, some benchmarks had
high average numbers of moves away from the starting

dependence. To compensate, after 25 moves, a
compatible instruction is inserted into the basic block
near the starting dependence. The total number of
inserts for each benchmark is shown in the dependence
inserts column of Table 4. The highest numbers are
associated with mgrid and applu, which have the
largest average basic blocks sizes, at 125 and 115
respectively. Using the inserts, the average number of
moves per instruction input, shown in column
dependence moves, is generally small.

In some cases, the dependence factor in Table 5 is
used to multiply the synthetic dependences to more
closely match the overall averages in the original
application. The dependence adjustment for mgrid is
necessary due to its large average basic block size and,
therefore, small number of synthetic basic blocks.

3.2.3 Loop Counters and Program Termination.
The number of executed loops, loop iterations, is
shown in Table 4. An mtspr instruction initializes the
internal count register to the loop iterations, and the
final branch checks for zero in the count register and
decrements it.

3.2.4 Memory Access Model. The stream access
classes and associated strides [2][3] for the POWER5
cache configurations are shown in Table 2. The first
two rows are useful only for stores in store-through
POWER machines. Stores in the L2 gather such that a
simple walk through memory results in a 50% L2 hit
rate. If the L1 hit rate is below 3.17%, the L2 hit rate is
matched. The (non-zero) L1 Hit Rate is based on the
line size of 128 bytes in the POWER5 chip:

 4)128/(11 ⋅−= StrideL HitRate

where the stride is given in increments of 4 bytes.
There can be a large error in stream behavior for

two reasons. An actual L1 hit rate may fall between the
hit rates in two rows [2][3], but for the PowerPC
configuration this maximizes to only about 3% error. A
larger error is associated with the lack of distinguishing
L2 hit rate quanta. Since the L1 and L2 line sizes are
the same in our PowerPC machine, it is difficult to get
positive L2 hit rates with simple stride models.

Consequently, we implement walks through
particular cache congruence classes. We call them
bounded streams to differentiate them from streams
that continually increment through memory. The
implementation makes use of the default 4-way set
associative L1 and 10-way set associative L2 in the
machines under study. The difference in associativity
means that walks through a class will hit in the L2 but
miss in the L1 to the extent that the entire class is
walked. If the L2 hit rate is greater than the L1 hit rate

Table 1. PowerPC Dependence Compatibility Chart
Dependent
Instruction

Inputs
Dependence

Compatibility
Comment

Integer 0/1 Integer, Load-Integer
Float 0/1/2 Float, Load-Float 3 Inputs for fma
Load-
Integer/Float 0 Integer Memory access

counter input
Store-Integer 0 Integer, Load-Integer Data input
Store-Float 0 Float, Load-Float Data input
Store-
Integer/Float 1 Integer Memory access

counter input
Branch 0/1 Integer, Load-Integer Condition Registers

Trace

Synthetic
Pisa

Figure 2: Synthesis and Simulation Overview

Workload
Characterization

Execution
Comparison

Synthetic
Alpha

Synthetic
PowerPC

Application

Statistical
Simulation to
Verify Trace
Representa-

tiveness

1B Instructions 300K Instructions

Code
Generation

Register
Assignment

Graph
Analysis

Machine
Instruction

Format

Available
Machine
Registers

User parms:
instruction mix
factors, stream

treatment

multiplied by the bounded factor in Table 5, then the
stream in the basic block is changed from a simple
stride stream (stream pools in Table 4) to a congruence
class walk (bounded stream pools in Table 4). To
achieve the particular L1 and L2 hit rates in a row of
Table 3, the instruction reset column gives the total
number of 8K accesses that are necessary before
repeating the same access sequence in the congruence
class.

Note that, for studies of cache size design changes,
congruence class walks essentially clamp the hit rates
to a particular level, since the rates will not change
unless the associativity changes. The ultimate effect of
the use of this factor is to adjust the ratio of the L1 and
L2 hit rates to more closely match that of the original
application.

 Because of accumulated errors in stream selection,
manipulation of the streams [3][4] was extended. In
Table 5, the stream factor multiplies the moving
average of the L1 hit rate taken from the table during
each lookup, and if the result is greater than the
original hit rate by (N·10%), the selected stream is

chosen from the preceding (N+1)st row. This has the
effect of reducing overall hit rates for the first load or
store fed by an LSCNTR. Similarly for the bounded
streams, the bounded stream factor in Table 5
multiplies the L1 hit rate.

 The load-store-offset factor changes the address
offset of loads and stores to a value from one to 8K
based on a uniform random variable. The factor value
usually has a proportional effect on cache miss rates
and IPC because of the random access but fewer load-
stores address collisions. The load-hit-store factor
changes the number of stores that have the same word
address offset as loads. The factor value has an
inversely proportional effect on IPC. We also
implemented a simple way to increase both L1 and L2
misses by configuring a fraction of non-bounded
streams to stride by a fraction of a 4KB page. Mcf
configures three streams to walk a page, and art and
java configure one stream to walk 0.8 and 0.6 of a
page, respectively. Future work will investigate
generating these factors directly from the workload
characterization.

3.2.5 Branch Predictability Model. Unlike the

Pisa and Alpha syntheses [2][3][4], the branch jump
granularity was not needed for mgrid and applu
because their PowerPC versions have very high branch
predictabilities, but it was used to tune the branch
predictability for several SPECint benchmarks such as
eon and twolf, which have relatively low branch
predictabilities. In those cases, the branch jumps past
one instruction of the next basic block.

Likewise, the capability to skew the length of the
basic block by choosing sized successors [3] was not
needed for mgrid and applu because of their high
branch predictabilities, but it was used to tune the
block sizes of various benchmarks. In Table 5, as the

Table 2. L1 and L2 Hit Rates versus Stride
L1 Hit Rate L2 Hit Rate Stride

0.0000 1.00 0 (store-through)
0.0000 0.50 1 (store-through)
0.0000 0.00 32
0.0313 0.00 31
0.0625 0.00 30
0.0942 0.00 29
0.1250 0.00 28
0.1563 0.00 27
0.1875 0.00 26
0.2188 0.00 25
0.2500 0.00 24
0.2813 0.00 23
0.3125 0.00 22
0.3438 0.00 21
0.3750 0.00 20
0.4063 0.00 19
0.4380 0.00 18
0.4688 0.00 17
0.5000 0.00 16
0.5313 0.00 15
0.5625 0.00 14
0.5938 0.00 13
0.6250 0.00 12
0.6563 0.00 11
0.6875 0.00 10
0.7188 0.00 9
0.7500 0.00 8
0.7813 0.00 7
0.8125 0.00 6
0.8438 0.00 5
0.8750 0.00 4
0.9063 0.00 3
0.9375 0.00 2
0.9688 0.00 1

Table 3. L1 and L2 Hit Rates vs. Instruction Reset
(Congruence Classes)

L1 Hit Rate L2 Hit Rate Instruction Reset
1.0000 1.0000 4
0.6000 1.0000 5
0.3333 1.0000 6
0.1429 1.0000 7
0.0000 1.0000 8
0.0000 0.8182 11
0.0000 0.6667 12
0.0000 0.5385 13
0.0000 0.4286 14
0.0000 0.3333 15
0.0000 0.2500 16
0.0000 0.1765 17
0.0000 0.1111 18
0.0000 0.0526 19
0.0000 0.0000 20

basic block size factor is reduced from unity, the block
size is skewed toward the basic block length value.

3.3 Register Assignment

For the codes under study, the number of registers

available for streams averages about 8 and for code use
about 12 (code registers and stream pools + bounded
stream pools, in Table 4). In the Pisa and Alpha
studies, pools are greedily consolidated by iteratively
combining the two least frequent pools until the limit is
reached [2][3][4]. For the PowerPC codes, the top most
frequent pools are never watered down with less
frequent pools; the last pool under the limit
consolidates all less frequent pools. In all cases, the
consolidated pools use the pool stride or reset value
that minimizes the hit rate. The stream pools and
bounded stream pools are consolidated separately.

3.4 Code Generation

The code generator of Figure 2 emits a single

module of C-code that contains calls to assembly-
language instructions in the PowerPC language. The
data access counters [2][3][4] are emitted as addi
instructions that add their associated stride to the
current register value. The loop counter is emitted as an
add of minus one to its register. Short latency floating-
point operations are generated using fadd., long latency
floating-point operations using fmul, and extremely-
long latency operations using fmadd. Loads use lwz or
lfs, depending on the type, and similarly for stores.
Branches use the bc with integer operands.

Tables 4 and 5 give the synthesis information for the
PowerPC SPEC2000 and STREAM codes as described
in this section and in [2][3]. The runtime ratio is the
user runtime of the original benchmark for one hundred
million instructions (1M for STREAM) divided by the
user runtime of the synthetic testcase on various

Table 4. Synthetic Testcase Properties (PowerPC)

Name
Number of
Basic Blks

Number of
Instructions

Loop
Iterations

Stream
Pools

Bounded
Stream
Pools

Code
Registers

Dependence
Moves

Dependence
Inserts

Runtime
Ratio

gcc 750 2524 80 5 3 12 6.093 60 437.58
gzip 840 3683 119 4 4 12 0.465 1 481.1
crafty 360 3699 56 5 3 12 0.797 4 718.11
eon 330 3879 41 3 5 12 3.113 40 1181.51
gap 510 3940 65 4 4 12 0.33 0 954
bzip2 300 1859 144 5 5 10 0.418 0 562.62
vpr 400 2855 121 7 3 10 0.648 13 1051.48
mcf 800 3561 71 7 3 10 0.649 0 495.19

parser 795 4013 54 8 2 10 0.833 0 1113.85
perlbmk 600 3834 55 9 1 10 1.95 0 998.11
vortex 500 2417 90 2 8 10 0.889 0 994.29
twolf 540 3952 71 3 7 10 0.596 1 1190.29
mgrid 30 4008 65 8 2 10 1.632 255 1050.13
mesa 400 3362 81 5 3 12 1.32 23 1123
art 200 4213 46 6 2 12 1.4 228 902.18
lucas 80 2367 141 3 5 12 1.915 0 872.08
ammp 200 1700 160 4 4 12 6.608 0 749.18
applu 30 3851 63 6 2 12 1.204 272 378.77
apsi 200 3208 70 8 0 12 4.585 0 345.54
equake 50 2459 71 7 1 12 9.499 0 700.57
galgel 120 3868 53 6 2 12 11.225 0 583.31
swim 70 3468 71 4 4 12 1.769 85 1079.23

sixtrack 150 2624 144 5 2 12 1.12 0 494.55
wupwise 200 2756 69 5 3 12 11.095 0 1258.9
facerec 200 2530 113 5 3 12 3.982 0 616.75
fma3d 150 3596 49 6 2 12 5.594 0 445.68
saxpy 1 8 33334 2 0 12 0 0 28.27
sdot 1 6 50001 2 0 12 0.125 0 71.85
sfill 1 3 100001 1 0 12 6.25 0 22.47
scopy 1 6 50001 2 0 12 0 0 61.75
ssum2 1 4 100001 1 0 12 0.2 0 18.67
sscale 1 7 50001 2 0 12 0 0 23.23
striad 1 9 33334 3 0 12 0 0 27.16
ssum1 1 9 33334 3 0 12 0 0 26.97
tpc-c 4500 23102 12 2 8 10 0.571 0 447.77
java 4750 23391 14 3 7 10 0.416 0 447.59

POWER3 and POWER4 workstations. Each pass
through the synthesis process takes less than five
minutes on an IBM p270 (400 MHz). The results show
a two or three order of magnitude speedup using the
synthetics.

In practice, there are multiple synthetic benchmarks
that more or less satisfy the metrics obtained from the
workload characterization and overall application
performance. Synthesis is carried out a number of times
[2][3][4] until the metric deltas versus the original
application are relatively small. Among the sets of
parameters that are obtained, the one that most closely
reproduces the original performance is preferred.
Usually multiple synthesis passes plus think time are
necessary to tune the synthesis parameters for each
testcase.

4. Synthesis Results

In this section, we present the results of simulation

experiments for the synthetic POWER5 testcases
obtained in the last section. In Section 5, we use these

testcases to validate the performance model of an
improved processor.

4.1 Experimental Setup and Benchmarks

We use a profiling system derived from the system

used in [3], which evolved from HLS [20][21]. The
POWER5 M1 performance model described in Section
2 was augmented with code to carry out the workload
characterization as in [10][1][3]. The 100M instruction
SPEC2000 [26] PowerPC traces used in [14][13] and
described in [6] were executed on the augmented M1.
We also add an internal DB2 instruction trace of TPC-
C [6][12] and a 100M instruction trace for SPECjbb
(java) [26]. In addition, single-precision versions of the
STREAM and STREAM2 benchmarks [17] with a one
million-loop limit were compiled on a PowerPC
machine. We use the default POWER5 configuration in
Table 6 [25].

A code generator for the PowerPC target was built
into the synthesis system, and C-code was produced
using the synthesis methods of Section 3. The synthetic

Table 5. Synthetic Testcase Memory Access and Branching Factors (PowerPC)

Name
Dependence

Factor
Bounded
Factor

Stream
Factor

Bounded
Stream Factor

Load-Hit-
Store Factor

Load-Store
Offset Factor

BP Factor
Basic Block
Size Factor

Basic Block
Length

gcc 1 1 1 1 0.58 0.24 1.01 0.95 4
gzip 1 1 1.2 1.2 1 1 0.65 1 -
crafty 1 1 0.9 0.9 0.15 0.97 1 0.8 10
eon 1 1 0.9 0.9 0.1 1 0.8 0.9 10
gap 1 1 1 1 0.28 0.98 1.03 1 -
bzip2 1 1 1 1 0.92 0.965 0.5 0.96 6
vpr 1 1.05 0.75 0.7 1 1 0.75 1 -
mcf 1 1 1 1 1 1 0.9 1 -

parser 1 1 1 1 1 1 1.02 0.9 5
perlbmk 1 1.05 1 1 0.85 0.998 1.05 0.95 5
vortex 1.5 0.01 1.1 0.1 0.01 1 1 0.9 5
twolf 1 1 1.05 1.1 1 1 0.8 1 -
mgrid 3.0 0.75 0.8 0.8 0.1 0.92 1 1 -
mesa 0.9 1 0.96 0.95 1 0.96 0.95 1 -
art 1 1.5 1.5 1.5 1 0.01 1 1 -
lucas 1 0.1 1 1 1 0.83 1 0.9 20
ammp 1 0.9 1.35 1 1 0.89 1 1 -
applu 1 1 1 1 1 0.7 1 1 -
apsi 1 1.05 1 1 0.53 0.93 1 1 -
equake 1 0.98 1.1 1.1 0.33 0.88 1 1 -
galgel 1 1.1 1 1.1 0.22 0.74 1 1 -
swim 1 1 1.05 1.2 0.98 0.99 1 1 -

sixtrack 1.5 1.1 0.9 0.9 0.08 0.78 1.03 1 -
wupwise 1 1 1 1 0.29 0.98 1.03 0.95 10
facerec 1 1 1 1 1 0.85 1 1 -
fma3d 1 1 1 1.02 0.25 1 0.93 0.98 20
saxpy 1 1 1 1 1 1 1 1 -
sdot 1 1 1 1 1 1 1 1 -
sfill 1 1 1 1 1 1 1 1 -
scopy 1 1 1 1 1 1 1 1 -
ssum2 1 1 1 1 1 1 1 1 -
sscale 1 1 1 1 1 1 1 1 -
striad 1 1 1 1 1 1 1 1 -
ssum1 1 1 1 1 1 1 1 1 -
tpc-c 2.0 1 1 1 0.3 1 1 0.93 5
java 1 1 1 1 1 1 1.05 0.95 5

testcases were compiled on a PowerPC machine using
gcc with optimization level –O2 and executed to
completion in the M1.

4.2 POWER5 Synthesis Results

The following figures show results either for the

synthetics normalized to the original application results
or for both the original applications, actual, and the
synthetic testcases, synthetic. Figure 3 shows the
normalized IPC for the testcases. The average IPC
prediction error [10] for the synthetic testcases is 2.4%,
with a maximum error of 9.0% for java. The other
commercial workload, tpc-c, gives 4.0% error. We
discuss the reasons for the errors in the context of the
figures below.

Figure 4 compares the average instruction
percentages over all benchmarks for each class of
instructions. The average prediction error for the
synthetic testcases is 1.8% with a maximum of 3.4%
for integers. Figure 5 shows that the basic block size
varies per benchmark with an average error of 5.2%
and a maximum of 18.0% for apsi. The largest absolute
errors by far are for mgrid and applu. The errors are

caused by variations in the fractions of specific basic
block types in the synthetic benchmark with respect to
the original workload, which is a consequence of
selecting a limited number of basic blocks during
synthesis. For example, mgrid is synthesized with a
total of 30 basic blocks made up of eight unique block
types. The top 90% of basic block frequencies in the
synthetic mgrid differ by 27.5% on average from the
basic block frequencies of the original workload. This
is in contrast to testcases with large numbers of basic
blocks such as gcc, which differ by only 3.5% for the

top 90% of blocks.

The POWER5 I-cache miss rates (normalized to the

maximum miss rate) are all accounted for in Figure 6,
but they are not very interesting because most are less
than 1%, and much less than the tpc-c and java miss
rates. The low miss rates are due to the effectiveness of
instruction prefetching in the POWER5 chip [25][28].
The results also support the common wisdom that the
SPEC do not sufficiently challenge modern I-cache
design points. The synthetic benchmarks do well on the
commercial workloads but still average 7% error.
These errors could probably be reduced by carrying out
more synthesis passes. In general, the synthetics have
larger miss rates than the applications because they are
executed for fewer instructions [3]. However, since the
miss rates are small, their impact on IPC when coupled
with the miss penalty is also small.

The average branch predictability error is 1.1%,
shown normalized in Figure 7. The largest errors are
bzip2 at 5.4% and equake at 4.7%. The L1 data cache
miss rates are shown normalized in Figure 8. The
average error is 4.3% with a maximum error of 31%
for eon. But eon has a very small miss rate, as do the

Table 6. Default Simulation Configuration, PowerPC ISA
Instruction Size (bytes) 4
L1/L2 Line Size (bytes) 128/128

Machine Width 8
Dispatch Window;LSQ;IFQ 120 GPRs, 120 FPRs; 32 LD, 32ST;64

Memory System 32KB 4-way L1 D, 64KB 2-way L1 I,
1.9M 10-way L2, 36MB 12-way L3

Functional Units 2 Fixed Point Units,
 2 Floating Point Units

Branch Predictor Combined 16K Tables, 12 cycle
misspredict penalty

0.8

0.85

0.9

0.95

1

1.05

1.1

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

k
vo

rte
x

tw
ol

f
m

gr
id

m
es

a
ar

t
lu

ca
s

am
m

p
ap

pl
u

ap
si

eq
ua

ke
ga

lg
el

sw
im

si
xt

ra
ck

w
up

w
i

fa
ce

re
c

fm
a3

d
sa

xp
y

sd
ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1
tp

c-
c

ja
va

Figure 3: IPC for Synthetics Normalized to Actual
Application IPCs

N
or

m
al

iz
ed

 IP
C

0

0.05

0.1

0.15

0.2

0.25

0.3

Integer Float Load Store Branch

Figure 4: Average Instruction Frequencies

In
st

ru
ct

io
n

Fr
eq

ue
nc

y

actual synthetic

0
20
40
60
80

100
120
140

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

k
vo

rte
x

tw
ol

f
m

gr
id

m
es

a
ar

t
lu

ca
s

am
m

p
ap

pl
u

ap
si

eq
ua

ke
ga

lg
el

sw
im

si
xt

ra
ck

w
up

w
i

fa
ce

re
c

fm
a3

d
sa

xp
y

sd
ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1
tp

c-
c

ja
va

Figure 5: Basic Block Sizes

A
ve

ra
ge

 S
iz

e

actual synthetic

0

0.2

0.4

0.6

0.8

1

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

k
vo

rte
x

tw
ol

f
m

gr
id

m
es

a
ar

t
lu

ca
s

am
m

p
ap

pl
u

ap
si

eq
ua

ke
ga

lg
el

sw
im

si
xt

ra
ck

w
up

w
is

e
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1
tp

cc
_6

2M ja
va

Figure 6: I-cache Miss Rate

I-c
ac

he
 M

is
s

R
at

e
N

or
m

al
iz

ed
 to

 M
ax

im
um

actual synthetic

other benchmarks with errors much greater than 4%, so
again the execution impact of their errors is also small.
Looking at the raw miss rates, the trends using the
synthetic testcases clearly correspond with those of the
original workloads. This can not be seen in the
normalized results.

For the unified L2 miss rates, the average error is
8.3% for those benchmarks with miss rates higher than
3%. For the others, errors can be large. Large errors
due to the simple streaming memory access model are
often mitigated by the small magnitude of the L1 and
L2 miss rates [3]. But problematic situations occur
when a large L2 miss rate error is offset by an L1 miss
rate that is smaller than that of the original application.
Still, for larger L2 miss rates, the trends in miss rates
using the synthetics clearly correspond to those of the
original applications. The L3 miss rates are also
generally very small and often not represented well by
the synthetics. As mentioned, research into more
accurate memory access models is needed to represent
all levels of the memory hierarchy.

Figure 9 shows the average dependence distances
for the input operands over all benchmarks. It shows a
7.5% error on average for the non-branch dependence
distances. For the branches, the M1 profiler classifies
certain PowerPC trap and interrupt operations as
unconditional jumps to the next basic block and their
dependences are not modeled. Also, the profiler
records particular condition registers as the
dependences for conditional branches, while synthesis
uses one specific condition register to implement the
branching model. The performance impact is small
compared to that of the branch predictability itself.

The integer dependence errors are caused by the
conversion of many integer instructions to LSCNTRs,

the memory access stride counters. A stride counter
overrides the original function of the integer instruction
and causes dependence relationships to change.
Another source of error is the movement of
dependences during the search for compatible
dependences in the synthesis process. The movement is
usually less than one position (Table 4), but several
benchmarks show significant movement. The
dependence insertion technique reduces errors for the
dependent instruction, but the inserted instruction may
itself contain dependence errors.

4.3 Design Change Case Study: Rename
Registers and Data Prefetching

We now study a set of design changes using the

same synthetic codes; that is, we take the same
testcases described in the last section, change the
machine parameters in the M1 model and re-execute
them. In this study, we increase by more than 2x the
number of rename registers available to the mapper for
GPRs, FPRs, condition registers, link/count registers,
FPSCRs, and XERs [28]. This effectively increases the
dispatch window of the machine. We also enable data
prefetching and execute in “real” mode, i.e. with
translation disabled. With these enhancements the
average increase in IPC for the applications for the full
100M instructions is 56.7%.

We execute the synthetic testcases using the same
machine configuration. The average change in IPC for
the synthetics is 53.5%. The raw IPC comparison again
clearly shows that the trends in the IPC changes for all
synthetics follow those of the original applications. The
average absolute IPC prediction error is 13.9%, much
less than half of the IPC change percentage, an
important consideration when deciding if the testcase
properly evaluates the design change [4].

The average relative error [10] for the change is
13.3%. The synthetic IPC change is generally lower
than that of the application. The effect is explained by
the use of bounded streams in PowerPC synthesis,
which clamps particular synthetic stream miss rates to
the base levels, as explained Section 3.

0

0.2

0.4

0.6

0.8

1

1.2

gc
c

gz
ip

cr
af
ty

eo
n

ga
p

bz
ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m
k

vo
rte

x
tw

ol
f

m
gr

id
m
es

a
ar

t
lu
ca

s
am

m
p

ap
pl
u

ap
si

eq
ua

ke
ga

lg
el

sw
im

si
xt
ra

ck
w
up

w
i

fa
ce

re
c

fm
a3

d
sa

xp
y

sd
ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st
ria

d
ss

um
1

tp
c-

c
ja
va

Figure 8: L1 D-cache Miss Rate

N
or

m
al
iz
ed

 L
1
D
 M

is
s
R
at

e

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

gc
c

gz
ip

cr
af
ty

eo
n

ga
p

bz
ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m
k

vo
rte

x
tw

ol
f

m
gr

id
m
es

a
ar

t
lu
ca

s
am

m
p

ap
pl
u

ap
si

eq
ua

ke
ga

lg
el

sw
im

si
xt
ra

ck
w
up

w
i

fa
ce

re
c

fm
a3

d
sa

xp
y

sd
ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st
ria

d
ss

um
1

tp
c-

c
ja
va

Figure 7: Branch Predictability

N
or

m
al
iz
ed

 B
r.

Pr
ed

.

0

1

2

3

4

5

6

7

8

9

I0 I1 F0 F1 F2 L0 S0 S1 B0 B1

Figure 9: Dependency distances

Av
g.

 D
ep

en
de

nc
y

Di
st

an
ce

actual synthetic

5.0 Performance Model Validation Results

The synthetic testcases are used to validate the

performance model of a POWER5 follow-on
processor.

5.1 RTL Simulation

Several of the same traces used in Section 4 were

executed on the VHDL and M1 models of the new
processor using the process described in Section 2.2.
Figure 10 illustrates the kind of detailed analysis that
can be undertaken using the RTL validation
methodology. Information for each instruction in the
execution of 10K instructions of gcc is plotted,
normalized to the maximum cumulative error.

The instantaneous errors are plotted as individual
points either above or below the x-axis. If above the
axis, the error is positive, meaning that the execution of
the instruction in the VHDL model took longer than
execution in the M1 performance model. Ideally, the
performance model would execute at the same rate or
slower than the RTL model, so that designers do not
project overestimates of performance for their designs.
The cumulative sum of the instantaneous errors is also
plotted in Figure 10. It is clear that the M1 is providing
overly-optimistic projections for gcc after only 10K
instructions. The slope of the cumulative error later in
the testcase indicates the direction of the performance
model projections where positive is worse than flat or
negative. The error is more erratic at the beginning of
the execution because the early instructions are

associated with the header and initialization C-code,
not the body of the testcase, and they are not repeated.

The cumulative error plot also indicates repeating
sequences, or phases, of behavior at various scales of
analysis. The phases are related to specific code areas,
and theor identification can lead to rapid performance
model fixes. Viewed at one particular scale, for
example, a phase can be said to start after 2800
instructions and end at about 4000. Another phase
starts there and ends at 5200, and then the phases
repeat. Both phases together are about as long as the
body of the synthetic testcase.

To pinpoint the differences between VHDL and M1
model execution for gcc, we analyze the errors by
instruction class as in Figure 11. All classes show a
large percentage of errors (gcc has no floating point
instructions), but Figure 12 shows that average load
and store errors, whether calculated over all
instructions or just instructions with errors, have the
largest impact on performance.

Figure 13 breaks down the fractions of instructions
with errors into buckets of errors that are multiples of
25 cycles. The vast majority of ALU and Branch
operations with errors have errors that are less than 25
cycles, while 12.0% of loads and 6.8% of stores with
errors have errors that are higher than 100 cycles, deep
into the memory hierarchy.

Regardless of the accuracy of the memory access
models used to create the synthetic streams, the results
using them show that loads and stores are the least
likely instructions to be modeled correctly in the
performance model. This is valuable information to
feed back to the performance modeling team.

0

5

10

15

20

25

30

35

40

Alu Load Store Branch

Figure 12: Average Error per Class over All
Instructions and Error Instructions (gcc)

A
ve

ra
ge

 E
rr

or
 (C

yc
le

s)

All instructions Error Instructions

0

0.1

0.2

0.3

0.4

ALU Load Store Branch
Figure 13: Error Buckets Per Instruction Type

(25 Cycle Intervals)

Fr
ac

tio
n

of
 In

st
ru

ct
io

ns
w

ith
 In

st
an

ta
ne

ou
s

Er
ro

rs

100+
75-99
50-74
25-49
1-24

-1

-0.5

0

0.5

1

0 2000 4000 6000 8000

Figure 10: Instantaneous Error for Each Instruction and
Cumulative Error in Cycles for 10K Instructions (gcc)

N
or

m
al

iz
ed

 E
rr

or
 (C

yc
le

s)
Instantaneous Instruction Error Cumulative Error

0

0.2

0.4

0.6

0.8

1

Alu Float Load Store Branch

Figure 11: Fraction of Instructions with Errors
(gcc)

Fr
ac

tio
n

5.2 Hardware Emulator Validation

The same synthetic testcases are input to an AWAN

hardware emulator executing the PowerPC VHDL
models and to the M1 models used in the last section.
In this case the runtime to collect the data is many
times less than VHDL simulation [16]. Figure 14
shows the M1 IPC normalized to the AWAN results for
some of the testcases. Most of the errors are within
20%, but there are several outliers, including bzip2 and
galgel. The hardware emulator provides more rapid
VHDL simulation to speed model validation
investigations.

6.0 Conclusions

The complexity of modern processors drives

complexity into the performance models used to
project performance, and this complexity exacerbates
the problem of validating the performance models. We
synthesize representative PowerPC versions of the
SPEC2000, STREAM, TPC-C and Java benchmarks,
compile and execute them, and obtain an average IPC
within 2.4% of the average IPC of the original
benchmarks. The synthetic testcases often execute two
orders of magnitude faster than the original
applications, typically in less than 300K instructions,
making performance model validation for today’s
complex processors feasible. We also present the
application of the synthetic testcases to performance
model validation using RTL model simulation and
execution on a hardware emulator.

7.0 Acknowledgements

This research is partially supported by the National
Science Foundation under grant number 0429806, the
IBM Center for Advanced Studies (CAS), an IBM

SUR grant, the IBM Systems and Technology Division,
and Advanced Micro Devices.

8.0 References

[1] R. H. Bell, Jr., L. Eeckhout, L. K. John and K. De

Bosschere, “Deconstructing and Improving Statistical
Simulation in HLS,” Workshop on Debunking,
Duplicating, and Deconstructing, in conjunction with
ISCA-31, June 20, 2004.

[2] R. H. Bell, Jr. and L. K. John, “Experiments in Automatic
Benchmark Synthesis,” Technical Report TR-040817-01,
Laboratory for Computer Architecture, University of
Texas at Austin, August 17, 2004.

[3] R. H. Bell, Jr. and L. K. John, “Improved Automatic
Testcase Synthesis for Performance Model Validation,”
International Conference on Supercomputing, June 20,
2005.

[4] R. H. Bell, Jr. and L. K. John, “Efficient Power Analysis
using Synthetic Testcases,” IEEE International
Symposium on Workload Characterization, October 7,
2005.

[5] B. Black and J. P. Shen, “Calibration of Microprocessor
Performance Models,” IEEE Computer, May 1998, pp.
59-65.

[6] J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla and S.
R. Kunkel, “A Multithreaded PowerPC Processor for
Commercial Servers,” IBM J. of Res. Dev., Vol. 44 No.
6, November 2000.

[7] P. Bose and T. M. Conte, “Performance Analysis and Its
Impact on Design,” IEEE Computer, May 1998, pp. 41-
49.

[8] P. Bose, “Architectural Timing Verification and Test for
Super-Scalar Processors,” IEEE International Symposium
on Fault-Tolerant Computing, June 1994, pp. 256-265.

[9] R. Carl and J. E. Smith, "Modeling Superscalar
Processors Via Statistical Simulation," Workshop on
Performance Analysis and Its Impact on Design, June
1998.

[10] L. Eeckhout, R. H. Bell, Jr., B. Stougie, L. K. John and
K. De Bosschere, “Control Flow Modeling in Statistical
Simulation for Accurate and Efficient Processor Design
Studies,” IEEE International Symposium on Computer
Architecture, June 2004.

[11] C. T. Hsieh and M. Pedram, "Microprocessor Power
Estimation using Profile-driven Program Synthesis,"
IEEE Transactions on Computer Aided Design of
Integrated Circuits and Systems, Vol. 17, No. 11, Nov.
1998, pp. 1080-1089.

[12] W. W. Hsu, A. J. Smith and H. C. Young,
“Characteristics of Production Database Workloads and
the TPC Benchmarks,” IBM Systems Journal, Vol. 40,
No. 3, 2001, pp. 781-802.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

pa
rs

er
pe

rlb
m

k
vo

rte
x

m
es

a
lu

ca
s

am
m

p
ap

pl
u

ap
si

ga
lg

el
sw

im
w

up
w

is
e

fa
ce

re
c

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

st
ria

d
ss

um
1

Figure 14: Normalized IPC for M1 versus AWAN using
Synthetic Testcases

N
or

m
al

iz
ed

 IP
C

[13] I. Hur and C. Lin, “Adaptive History-Based Memory
Schedulers,” Proceedings of the International
Symposium on Microarchitecture, 2004.

[14] H. Jacobson, P. Bose, Z. Hu, A. Buyuktosunoglu, V.
Zyuban, R. Eickemeyer, L. Eisen, J. Griswell, D. Logan,
B. Sinharoy and J. Tendler, “Stretching the Limits of
Clock-Gating Efficiency in Server-Class Processors,”
Proceedings of the International Symposium on High-
Performance Computer Architecture, February 2005.

[15] S. R. Kunkel, R. J. Eickemeyer, M. H. Lipasti, T. J.
Mullins, B. O’Krafka, H. Rosenberg, S. P. VanderWiel,
P. L. Vitale and L. D. Whitley, “A Performance
Methodology for Commercial Servers,” IBM J. Res. &
Dev. Vol. 44, No. 6, November 2000, pp. 851-872.

[16] J. M. Ludden, et al., “Functional Verification of the
POWER4 Microprocessor and the POWER4
Multiprocessor Systems,” IBM J. Res. Dev., Vol. 46,
No. 1, January 2002.

[17] J. D. McCalpin, “Memory Bandwidth and Machine
Balance in Current High Performance Computers,”
IEEE Technical Committee on Computer Architecture
newsletter, Dec. 1995.

[18] L. McVoy, “lmbench: Portable Tools for Performance
Analysis,” USENIX Technical Conference, Jan. 22-26,
1996, pp. 279-294.

[19] M. Moudgill, J. D. Wellman and J. H. Moreno,
“Environment for PowerPC Microarchitecture
Exploration,” IEEE Micro, May-June 1999, pp. 15-25.

[20] M. Oskin, F. T. Chong and M. Farrens, "HLS:
Combining Statistical and Symbolic Simulation to
Guide Microprocessor Design," IEEE International
Symposium on Computer Architecture, June 2000, pp.
71-82.

[21] http://www.cs.washington.edu/homes/oskin/tools.html

[22] M. Sakamoto, L. Brisson, A. Katsuno, A. Inoue and Y.
Kimura, “Reverse Tracer: A Software Tool for
Generating Realistic Performance Test Programs,” IEEE
Symposium on High-Performance Computing,” 2002.

[23] T. Sherwood, E. Perleman, H. Hamerly and B. Calder,
“Automatically characterizing large scale program
behavior,” IEEE Conference on Architected Support for
Programming Languages and Operating Systems,
October 2002.

[24] R. Singhal, et al., “Performance Analysis and Validation
of the Intel Pentium4 Processor on 90nm Technology,”
Intel Tech. J., Vol. 8, No. 1, 2004.

[25] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J.
Eickemeyer and J. B. Joyner, “POWER5 System
Microarchitecture,” IBM J. Res. & Dev. Vol. 49 No.
4/5, July/September 2005, pp. 505-521.

[26] http://www.spec.org
[27] S. Surya, P. Bose and J. A. Abraham, “Architectural

Performance Verification: PowerPC Processors,”
Proceedings of the IEEE International Conference on
Computer Design, 1999, pp. 344-347.

[28] J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le and
B. Sinharoy, "POWER4 System Microarchitecture,"
IBM J. of Res. and Dev., January 2002, pp. 5-25.

[29] D. W. Victor, et al., “Functional Verification of the
POWER5 Microprocessor and POWER5
Multiprocessor Systems,” IBM J. Res. & Dev., Vol. 49,
No. 4/5, July/September 2005, pp. 541-553.

[30] R. E. Wunderlich, T. F. Wenisch, B. Falsafi and J. C.
Hoe, “SMARTS: Accelerating Microarchitecture
Simulation via Rigorous Statistical Sampling,” IEEE
International Symposium on Computer Architecture,
June 2002.

