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Abstract 
 

The latest high-performance IBM PowerPC 
microprocessor, the POWER5 chip, poses challenges 
for performance model validation. The current state-
of-the-art is to use simple hand-coded bandwidth and 
latency testcases, but these are not comprehensive for 
processors as complex as the POWER5 chip. 
Applications and benchmark suites such as SPEC CPU 
are difficult to set up or take too long to execute on 
functional models or even on detailed performance 
models.  

We present an automatic testcase synthesis 
methodology to address these concerns. By basing 
testcase synthesis on the workload characteristics of an 
application, source code is created that largely 
represents the performance of the application, but 
which executes in a fraction of the runtime. We 
synthesize representative PowerPC versions of the 
SPEC2000, STREAM, TPC-C and Java benchmarks, 
compile and execute them, and obtain an average IPC 
within 2.4% of the average IPC of the original 
benchmarks and with many similar average workload 
characteristics. The synthetic testcases often execute 
two orders of magnitude faster than the original 
applications, typically in less than 300K instructions, 
making performance model validation for today’s 
complex processors feasible. 

 
 
1. Introduction 
 

Modern high-performance microprocessors are 
quite complex. For example, the POWER4™ and 
POWER5™ chips are dual-core PowerPC® 
microprocessors used in IBM server systems [28][25]. 
The POWER4 chip is built from 1.5 million lines of 
VHDL and 174 million transistors [16], and the 

POWER5 chip contains 276 million transistors [25]. 
The designs drive detail and complexity into the 
performance models used for performance projections. 

For complex chips, it is important that the 
performance models be validated [7] against cycle-
accurate functional models during the design process in 
order to minimize incorrect design decisions due to 
inaccurate performance models. As complexity 
increases, the gap in accuracy can grow quickly, so 
validation is needed more frequently. Subtle instruction 
interactions in the POWER4 and POWER5 chips 
necessitate very accurate performance models.  

Prior validation efforts have focused on bandwidth 
and latency tests, resource limit tests, or micro-tests [8] 
[27][5][19][18][17][13]. These are usually hand-
written microbenchmarks that are too small to 
approximate the performance of many workloads [4]. 
Once validated using these tests, performance models 
still exhibit large errors on realistic workloads like 
SPEC [3][4]. Randomly generated tests are inefficient 
at representing real workloads [4]. 

Applications themselves cannot be used for 
performance model validation because of their 
impossibly long simulation runtimes [7]. In [24], only 
one billion functional model simulated cycles per 
month are obtained. In [16], farms of machines provide 
many simulated cycles in parallel, but individual tests 
on processor models may execute orders of magnitude 
slower than hardware emulator speeds of 2500 cycles 
per second. 

Trace sampling techniques such as SimPoint [23] 
and SMARTS [30] can reduce runtimes in simulators, 
but the executions still amount to tens of millions of 
instructions. Statistical simulation [9][20][10] can 
further reduce the necessary trace lengths, but 
executing traces on functional models or hardware is 
difficult. Sakamoto et al. present a method to create a 
binary image of a trace along with a memory dump and 
execute those on a specific machine and a logic 



simulator [22], but there is no attempt to reduce trace 
lengths. Hsieh and Pedram synthesize instructions for 
power estimation [11], but there is no attempt to 
maintain the machine-independent workload 
characteristics necessary to represent the original 
applications [1][10].  

Bell and John [2][5][4] synthesize C-code programs 
from reduced synthetic traces generated from the 
workload characteristics of executing applications, as 
in statistical simulation. The low-level workload 
characteristics of the original application are retained 
by instantiating individual operations as volatile asm 
calls. The synthetic testcases execute orders of 
magnitude faster than the original workloads while 
retaining good performance accuracy.  

In this work, the synthesis effort is broadened to 
support high-performance PowerPC processors such as 
the POWER5 chip. In addition, two performance 
model validation approaches and validation results are 
presented using testcases for a PowerPC processor. 

The rest of this paper is organized as follows. 
Section 2 presents the conceptual framework of the 
testcase synthesis method and some of its benefits. 
Section 3 describes the synthesis approach in detail. 
Section 4 presents experimental synthesis results for 
the POWER5 processor and Section 5 presents 
validation results for a follow-on PowerPC processor. 
 
2. Representing Complexity 
 

Representative testcase synthesis [3][4] is achieved 
using the workload characterization and statistical flow 
graph of statistical simulation [10][1]. A walk of the 
statistical flow graph produces a synthetic trace which, 
when combined with memory access and branching 
models, is instantiated as a C-code envelope around a 
sequence of asm calls - a simple but flexible testcase.  

When the synthetic is executed, the proportions of 
the instruction sequences are similar to the proportions 
of the same sequences in the original executing 
application, but the number of times the sequence is 
executed is significantly reduced, so that the total 
number of instructions executed and, therefore, overall 
runtime are much reduced. By repeating the execution 
of the sequences a small number of times, convergence 
of memory access and branching model behavior is 
assured, usually in less than 300K instructions [3][4]. 

The relatively small number of instructions and the 
flexibility of the source code make the synthetics useful 
for accurate performance model validation [3][4]. In 
the case of the POWER5 chip, executions of a cycle-
accurate model built directly from the functional 
VHDL hardware description language model [29][16] 

can be compared against the detailed M1 performance 
model [14][13] used for performance projections. In 
this work, we synthesize specifically for POWER5 chip 
execution and then use the testcases to validate an 
improved PowerPC processor. 

 
2.1 Performance Model 

 
The IBM PowerPC performance modeling 

environment is trace-driven to reduce modeling and 
simulation overhead [19][15][13]. The M1 
performance model implements a detailed, cycle-
accurate core. Coupled with the M1 is a detailed model 
of the L2, L3 and memory [13]. 

Elements of a high-performance PowerPC model 
must capture the functional details of the processor. 
The POWER5 chip features out-of-order instruction 
execution, two fixed point and two floating point units, 
120 general purpose rename registers, 120 floating 
point rename registers, complex pipeline management, 
32-entry load and store reorder queues, on-board L2 
controller and 1.9-MB cache, L3 cache controller, 36-
MB off-chip victim L3, memory controller, SMP fabric 
bus interface, dynamic power management, and support 
for simultaneous multithreading [25]. Table 6 gives 
additional configuration parameters. 

 
2.2 Model Validation 

 
The POWER5 performance model was validated to 

within 1% for particular codes [13]. However, it is a 
difficult and time consuming proposition to validate a 
model for a large variety of programs. Automatic 
testcase synthesis addresses this concern by automating 
the synthesis process and by synthesizing high level 
codes that can target various platforms. In this work we 
target two platforms for validating the performance 
model: cycle-accurate RTL model simulation and 
simulation on a hardware emulator. 

 
2.2.1 Validation using RTL Simulation. Figure 1 
shows the RTL validation methodology. The synthetic 
testcase is compiled and converted to execute on a 
VHDL model using the standard IBM functional 
verification simulation methodology [29][16]. The 
converted code is then executed to completion on the 
VHDL model. The compiled testcase is also unrolled 
into a trace using a PowerPC instruction interpreter 
[19][15][6]. Only completed instructions are 
maintained in the trace. The trace is then executed to 
completion on the M1 performance model.  

Both VHDL and performance model executions 
generate information at the level of the instruction, 



including the cycle the instruction completes, address 
and opcode. The cycles at which an instruction 
completes in both the VHDL and performance models 
are not identical in an absolute sense because of how 
cycles are maintained and counted in the two 
simulators. However, the performance model is of 
sufficient detail such that the completion cycle of an 
instruction minus the completion cycle of the previous 
instruction, that is, the cycle difference between any 
two completing instructions, should be equivalent. The 
analysis relies on the fact that the methodology 
generates instructions for both models from a 
compilation of a single piece of code. Each and every 
instruction is executed on both the VHDL and M1 
models and completes in the same order in both. 
Instructions may complete in different completion 
buffers in the same cycle, but should complete in the 
same cycle. 

The instantaneous error, E, for each instruction is 
defined in terms of the difference in cycles between the 
completion time of the current instruction and the 
completion time of the previous instruction in both 
VHDL and M1 models. The instantaneous error for the 
ith instruction is defined as: 

                      )()()( iDiDiE PR −=  
where 

                      )1()()( −−= iCiCiD RRR  
and likewise 

                      )1()()( −−= iCiCiD PPP  
In these equations, CR(i) is the completion cycle of 

the ith instruction when executing the VHDL (RTL) 
model, and CP(i) is the completion cycle of the ith 
instruction when executing the M1 (Performance) 
model. The intuition behind the E calculation is that an 
instruction is using the same machine resources and 
completing in the same order, putatively in the same 
cycle, in both models, so differences between 
sequential instructions should be identical. A difference 
indicates that resource allocations or execution delays 

are not modeled similarly for instructions in the vicinity 
of the instruction that has an instantaneous error. 

Note that instruction dependences and resource 
usages using the same workload in both models will 
limit the instantaneous error and push it toward zero; 
there can be no large accumulation of error between 
any two related instructions. However, the completion 
time of an instruction that is modeled properly may be 
underestimated if an older instruction in program order 
fails to complete on time and the younger instruction is 
not dependent on the older but on a prior instruction 
and has been ready to complete for some time.  

The instantaneous errors can be categorized to 
narrow down the search for microarchitectural bugs in 
which a hardware feature was not implemented 
properly, and modeling, abstraction, and specification 
errors [5] in the performance model. Section 5 gives an 
example analysis. 

 
2.2.3 Validation using a Hardware Emulator. The 
compiled synthetic testcases can also be input to an 
RTL model executing on the AWAN hardware 
accelerator [16]. AWAN is composed of programmable 
gate arrays and can be configured to emulate a VHDL 
model. The AWAN array supports very large chips. 
The entire POWER4 chip, for example, can be 
emulated at a rate of more than 2500 cycles per second 
[16]. The cycle counts for a run are obtained from 
AWAN registers and compared to the M1 performance 
model cycle counts. Detailed workload execution 
information can be obtained from the AWAN machine. 
In Section 5, validation results using AWAN are 
presented. 

 
3. Synthesis for PowerPC 

 
With reference to Figure 2, the four major phases of 

synthesis: workload characterization; graph analysis; 
register assignment and code generation. The 
following paragraphs present only the changes to 
synthesis to support the PowerPC instruction set and 
high-performance processors. Additional synthesis 
detail for each phase, as well as exact synthesis 
parameters and algorithms for Pisa and Alpha code 
targets, can be found in Bell and John [2][3][4]. 

 
3.1 Workload Characterization 

 
The workload characterization is carried out at the 

granularity of the basic block [2][3][4]. The floating-
point instruction abstraction is augmented to support 
extremely long PowerPC fma instructions. 

 

Figure 1. RTL Validation Methodology
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3.2 Graph Analysis 
 
The statistical flow graph is analyzed and specific 

memory access and branching models are constructed. 
 

3.2.1 Instruction Miss Rate and I-cache Model. The 
number of basic blocks are tuned to match the original 
I-cache miss rate (IMR) [3]. Specific basic blocks are 
chosen from a walk of the statistical flow graph [3]. 
The IMR sometimes changes after the branches are 
configured in the branching model (Section 3.2.5). To 
compensate, the branch jump granularity is adjusted to 
change the number of basic blocks or instructions that a 
configured branch jumps.  

 
3.2.2 Instruction Dependences and Compatibility. 
For each instruction, its dependences are assumed to be 
the same as those chosen during statistical simulation. 
The dependences are then made compatible with the 
instruction by moving forward and backward from the 
starting dependence through the list of instructions in 
sequence order [2][3][4]. Table 1 shows the 
compatibility of instructions for the PowerPC 
instruction set. The Inputs column gives the assembly 
instruction inputs that are being tested for 
compatibility. 

In our PowerPC experiments, some benchmarks had 
high average numbers of moves away from the starting 

dependence. To compensate, after 25 moves, a 
compatible instruction is inserted into the basic block 
near the starting dependence. The total number of 
inserts for each benchmark is shown in the dependence 
inserts column of Table 4. The highest numbers are 
associated with mgrid and applu, which have the 
largest average basic blocks sizes, at 125 and 115 
respectively. Using the inserts, the average number of 
moves per instruction input, shown in column 
dependence moves, is generally small. 

In some cases, the dependence factor in Table 5 is 
used to multiply the synthetic dependences to more 
closely match the overall averages in the original 
application. The dependence adjustment for mgrid is 
necessary due to its large average basic block size and, 
therefore, small number of synthetic basic blocks. 

 
3.2.3 Loop Counters and Program Termination. 
The number of executed loops, loop iterations, is 
shown in Table 4. An mtspr instruction initializes the 
internal count register to the loop iterations, and the 
final branch checks for zero in the count register and 
decrements it. 
 
3.2.4 Memory Access Model. The stream access 
classes and associated strides [2][3] for the POWER5 
cache configurations are shown in Table 2. The first 
two rows are useful only for stores in store-through 
POWER machines. Stores in the L2 gather such that a 
simple walk through memory results in a 50% L2 hit 
rate. If the L1 hit rate is below 3.17%, the L2 hit rate is 
matched. The (non-zero) L1 Hit Rate is based on the 
line size of 128 bytes in the POWER5 chip: 

            4)128/(11 ⋅−= StrideL HitRate
 

where the stride is given in increments of 4 bytes. 
There can be a large error in stream behavior for 

two reasons. An actual L1 hit rate may fall between the 
hit rates in two rows [2][3], but for the PowerPC 
configuration this maximizes to only about 3% error. A 
larger error is associated with the lack of distinguishing 
L2 hit rate quanta. Since the L1 and L2 line sizes are 
the same in our PowerPC machine, it is difficult to get 
positive L2 hit rates with simple stride models. 

Consequently, we implement walks through 
particular cache congruence classes. We call them 
bounded streams to differentiate them from streams 
that continually increment through memory. The 
implementation makes use of the default 4-way set 
associative L1 and 10-way set associative L2 in the 
machines under study. The difference in associativity 
means that walks through a class will hit in the L2 but 
miss in the L1 to the extent that the entire class is 
walked. If the L2 hit rate is greater than the L1 hit rate 

Table 1. PowerPC Dependence Compatibility Chart 
Dependent 
Instruction 

Inputs 
Dependence 

Compatibility 
Comment 

Integer 0/1 Integer, Load-Integer  
Float 0/1/2 Float, Load-Float 3 Inputs for fma 
Load-
Integer/Float 0 Integer Memory access 

counter input 
Store-Integer 0 Integer, Load-Integer Data input 
Store-Float 0 Float, Load-Float Data input 
Store-
Integer/Float 1 Integer Memory access 

counter input 
Branch 0/1 Integer, Load-Integer Condition Registers 
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multiplied by the bounded factor in Table 5, then the 
stream in the basic block is changed from a simple 
stride stream (stream pools in Table 4) to a congruence 
class walk (bounded stream pools in Table 4). To 
achieve the particular L1 and L2 hit rates in a row of 
Table 3, the instruction reset column gives the total 
number of 8K accesses that are necessary before 
repeating the same access sequence in the congruence 
class.  

Note that, for studies of cache size design changes, 
congruence class walks essentially clamp the hit rates 
to a particular level, since the rates will not change 
unless the associativity changes. The ultimate effect of 
the use of this factor is to adjust the ratio of the L1 and 
L2 hit rates to more closely match that of the original 
application. 

 Because of accumulated errors in stream selection, 
manipulation of the streams [3][4] was extended. In 
Table 5, the stream factor multiplies the moving 
average of the L1 hit rate taken from the table during 
each lookup, and if the result is greater than the 
original hit rate by (N·10%), the selected stream is 

chosen from the preceding (N+1)st row. This has the 
effect of reducing overall hit rates for the first load or 
store fed by an LSCNTR. Similarly for the bounded 
streams, the bounded stream factor in Table 5 
multiplies the L1 hit rate.  

 The load-store-offset factor changes the address 
offset of loads and stores to a value from one to 8K 
based on a uniform random variable. The factor value 
usually has a proportional effect on cache miss rates 
and IPC because of the random access but fewer load-
stores address collisions. The load-hit-store factor 
changes the number of stores that have the same word 
address offset as loads. The factor value has an 
inversely proportional effect on IPC. We also 
implemented a simple way to increase both L1 and L2 
misses by configuring a fraction of non-bounded 
streams to stride by a fraction of a 4KB page. Mcf 
configures three streams to walk a page, and art and 
java configure one stream to walk 0.8 and 0.6 of a 
page, respectively. Future work will investigate 
generating these factors directly from the workload 
characterization. 

 
3.2.5 Branch Predictability Model. Unlike the 

Pisa and Alpha syntheses [2][3][4], the branch jump 
granularity was not needed for mgrid and applu 
because their PowerPC versions have very high branch 
predictabilities, but it was used to tune the branch 
predictability for several SPECint benchmarks such as 
eon and twolf, which have relatively low branch 
predictabilities. In those cases, the branch jumps past 
one instruction of the next basic block.  

Likewise, the capability to skew the length of the 
basic block by choosing sized successors [3] was not 
needed for mgrid and applu because of their high 
branch predictabilities, but it was used to tune the 
block sizes of various benchmarks. In Table 5, as the 

Table 2. L1 and L2 Hit Rates versus Stride 
L1 Hit Rate L2 Hit Rate Stride 

0.0000 1.00 0 (store-through) 
0.0000 0.50 1 (store-through) 
0.0000 0.00 32 
0.0313 0.00 31 
0.0625 0.00 30 
0.0942 0.00 29 
0.1250 0.00 28 
0.1563 0.00 27 
0.1875 0.00 26 
0.2188 0.00 25 
0.2500 0.00 24 
0.2813 0.00 23 
0.3125 0.00 22 
0.3438 0.00 21 
0.3750 0.00 20 
0.4063 0.00 19 
0.4380 0.00 18 
0.4688 0.00 17 
0.5000 0.00 16 
0.5313 0.00 15 
0.5625 0.00 14 
0.5938 0.00 13 
0.6250 0.00 12 
0.6563 0.00 11 
0.6875 0.00 10 
0.7188 0.00 9 
0.7500 0.00 8 
0.7813 0.00 7 
0.8125 0.00 6 
0.8438 0.00 5 
0.8750 0.00 4 
0.9063 0.00 3 
0.9375 0.00 2 
0.9688 0.00 1 

Table 3. L1 and L2 Hit Rates vs. Instruction Reset 
(Congruence Classes) 

L1 Hit Rate L2 Hit Rate Instruction Reset 
1.0000 1.0000 4 
0.6000 1.0000 5 
0.3333 1.0000 6 
0.1429 1.0000 7 
0.0000 1.0000 8 
0.0000 0.8182 11 
0.0000 0.6667 12 
0.0000 0.5385 13 
0.0000 0.4286 14 
0.0000 0.3333 15 
0.0000 0.2500 16 
0.0000 0.1765 17 
0.0000 0.1111 18 
0.0000 0.0526 19 
0.0000 0.0000 20 



basic block size factor is reduced from unity, the block 
size is skewed toward the basic block length value. 

 
3.3 Register Assignment 

 
For the codes under study, the number of registers 

available for streams averages about 8 and for code use 
about 12 (code registers and stream pools + bounded 
stream pools, in Table 4). In the Pisa and Alpha 
studies, pools are greedily consolidated by iteratively 
combining the two least frequent pools until the limit is 
reached [2][3][4]. For the PowerPC codes, the top most 
frequent pools are never watered down with less 
frequent pools; the last pool under the limit 
consolidates all less frequent pools. In all cases, the 
consolidated pools use the pool stride or reset value 
that minimizes the hit rate. The stream pools and 
bounded stream pools are consolidated separately. 

 

3.4 Code Generation 
 
The code generator of Figure 2 emits a single 

module of C-code that contains calls to assembly-
language instructions in the PowerPC language. The 
data access counters [2][3][4] are emitted as addi 
instructions that add their associated stride to the 
current register value. The loop counter is emitted as an 
add of minus one to its register. Short latency floating-
point operations are generated using fadd., long latency 
floating-point operations using fmul, and extremely-
long latency operations using fmadd. Loads use lwz or 
lfs, depending on the type, and similarly for stores. 
Branches use the bc with integer operands. 

Tables 4 and 5 give the synthesis information for the 
PowerPC SPEC2000 and STREAM codes as described 
in this section and in [2][3]. The runtime ratio is the 
user runtime of the original benchmark for one hundred 
million instructions (1M for STREAM) divided by the 
user runtime of the synthetic testcase on various 

Table 4. Synthetic Testcase Properties (PowerPC) 

Name 
Number of 
Basic Blks 

Number of 
Instructions 

Loop 
Iterations

Stream 
Pools 

Bounded 
Stream 
Pools 

Code 
Registers 

Dependence 
Moves 

Dependence 
Inserts 

Runtime 
Ratio 

gcc 750 2524 80 5 3 12 6.093 60 437.58 
gzip 840 3683 119 4 4 12 0.465 1 481.1 
crafty 360 3699 56 5 3 12 0.797 4 718.11 
eon 330 3879 41 3 5 12 3.113 40 1181.51 
gap 510 3940 65 4 4 12 0.33 0 954 
bzip2 300 1859 144 5 5 10 0.418 0 562.62 
vpr 400 2855 121 7 3 10 0.648 13 1051.48 
mcf 800 3561 71 7 3 10 0.649 0 495.19 

parser 795 4013 54 8 2 10 0.833 0 1113.85 
perlbmk 600 3834 55 9 1 10 1.95 0 998.11 
vortex 500 2417 90 2 8 10 0.889 0 994.29 
twolf 540 3952 71 3 7 10 0.596 1 1190.29 
mgrid 30 4008 65 8 2 10 1.632 255 1050.13 
mesa 400 3362 81 5 3 12 1.32 23 1123 
art 200 4213 46 6 2 12 1.4 228 902.18 
lucas 80 2367 141 3 5 12 1.915 0 872.08 
ammp 200 1700 160 4 4 12 6.608 0 749.18 
applu 30 3851 63 6 2 12 1.204 272 378.77 
apsi 200 3208 70 8 0 12 4.585 0 345.54 
equake 50 2459 71 7 1 12 9.499 0 700.57 
galgel 120 3868 53 6 2 12 11.225 0 583.31 
swim 70 3468 71 4 4 12 1.769 85 1079.23 

sixtrack 150 2624 144 5 2 12 1.12 0 494.55 
wupwise 200 2756 69 5 3 12 11.095 0 1258.9 
facerec 200 2530 113 5 3 12 3.982 0 616.75 
fma3d 150 3596 49 6 2 12 5.594 0 445.68 
saxpy 1 8 33334 2 0 12 0 0 28.27 
sdot 1 6 50001 2 0 12 0.125 0 71.85 
sfill 1 3 100001 1 0 12 6.25 0 22.47 
scopy 1 6 50001 2 0 12 0 0 61.75 
ssum2 1 4 100001 1 0 12 0.2 0 18.67 
sscale 1 7 50001 2 0 12 0 0 23.23 
striad 1 9 33334 3 0 12 0 0 27.16 
ssum1 1 9 33334 3 0 12 0 0 26.97 
tpc-c 4500 23102 12 2 8 10 0.571 0 447.77 
java 4750 23391 14 3 7 10 0.416 0 447.59 



POWER3 and POWER4 workstations. Each pass 
through the synthesis process takes less than five 
minutes on an IBM p270 (400 MHz). The results show 
a two or three order of magnitude speedup using the 
synthetics. 

In practice, there are multiple synthetic benchmarks 
that more or less satisfy the metrics obtained from the 
workload characterization and overall application 
performance. Synthesis is carried out a number of times 
[2][3][4] until the metric deltas versus the original 
application are relatively small. Among the sets of 
parameters that are obtained, the one that most closely 
reproduces the original performance is preferred. 
Usually multiple synthesis passes plus think time are 
necessary to tune the synthesis parameters for each 
testcase.  

 
4. Synthesis Results 

 
In this section, we present the results of simulation 

experiments for the synthetic POWER5 testcases 
obtained in the last section. In Section 5, we use these 

testcases to validate the performance model of an 
improved processor. 

 
4.1 Experimental Setup and Benchmarks 

 
We use a profiling system derived from the system 

used in [3], which evolved from HLS [20][21]. The 
POWER5 M1 performance model described in Section 
2 was augmented with code to carry out the workload 
characterization as in [10][1][3]. The 100M instruction 
SPEC2000 [26] PowerPC traces used in [14][13] and 
described in [6] were executed on the augmented M1. 
We also add an internal DB2 instruction trace of TPC-
C [6][12] and a 100M instruction trace for SPECjbb 
(java) [26]. In addition, single-precision versions of the 
STREAM and STREAM2 benchmarks [17] with a one 
million-loop limit were compiled on a PowerPC 
machine. We use the default POWER5 configuration in 
Table 6 [25]. 

A code generator for the PowerPC target was built 
into the synthesis system, and C-code was produced 
using the synthesis methods of Section 3. The synthetic 

Table 5. Synthetic Testcase Memory Access and Branching Factors (PowerPC) 

Name 
Dependence 

Factor 
Bounded 
Factor 

Stream 
Factor 

Bounded 
Stream Factor

Load-Hit- 
Store Factor

Load-Store 
Offset Factor

BP Factor 
Basic Block 
Size Factor 

Basic Block 
Length 

gcc 1 1 1 1 0.58 0.24 1.01 0.95 4 
gzip 1 1 1.2 1.2 1 1 0.65 1 - 
crafty 1 1 0.9 0.9 0.15 0.97 1 0.8 10 
eon 1 1 0.9 0.9 0.1 1 0.8 0.9 10 
gap 1 1 1 1 0.28 0.98 1.03 1 - 
bzip2 1 1 1 1 0.92 0.965 0.5 0.96 6 
vpr 1 1.05 0.75 0.7 1 1 0.75 1 - 
mcf 1 1 1 1 1 1 0.9 1 - 

parser 1 1 1 1 1 1 1.02 0.9 5 
perlbmk 1 1.05 1 1 0.85 0.998 1.05 0.95 5 
vortex 1.5 0.01 1.1 0.1 0.01 1 1 0.9 5 
twolf 1 1 1.05 1.1 1 1 0.8 1 - 
mgrid 3.0 0.75 0.8 0.8 0.1 0.92 1 1 - 
mesa 0.9 1 0.96 0.95 1 0.96 0.95 1 - 
art 1 1.5 1.5 1.5 1 0.01 1 1 - 
lucas 1 0.1 1 1 1 0.83 1 0.9 20 
ammp 1 0.9 1.35 1 1 0.89 1 1 - 
applu 1 1 1 1 1 0.7 1 1 - 
apsi 1 1.05 1 1 0.53 0.93 1 1 - 
equake 1 0.98 1.1 1.1 0.33 0.88 1 1 - 
galgel 1 1.1 1 1.1 0.22 0.74 1 1 - 
swim 1 1 1.05 1.2 0.98 0.99 1 1 - 

sixtrack 1.5 1.1 0.9 0.9 0.08 0.78 1.03 1 - 
wupwise 1 1 1 1 0.29 0.98 1.03 0.95 10 
facerec 1 1 1 1 1 0.85 1 1 - 
fma3d 1 1 1 1.02 0.25 1 0.93 0.98 20 
saxpy 1 1 1 1 1 1 1 1 - 
sdot 1 1 1 1 1 1 1 1 - 
sfill 1 1 1 1 1 1 1 1 - 
scopy 1 1 1 1 1 1 1 1 - 
ssum2 1 1 1 1 1 1 1 1 - 
sscale 1 1 1 1 1 1 1 1 - 
striad 1 1 1 1 1 1 1 1 - 
ssum1 1 1 1 1 1 1 1 1 - 
tpc-c 2.0 1 1 1 0.3 1 1 0.93 5 
java 1 1 1 1 1 1 1.05 0.95 5 



testcases were compiled on a PowerPC machine using 
gcc with optimization level –O2 and executed to 
completion in the M1.  

 
4.2 POWER5 Synthesis Results 

 
The following figures show results either for the 

synthetics normalized to the original application results 
or for both the original applications, actual, and the 
synthetic testcases, synthetic. Figure 3 shows the 
normalized IPC for the testcases. The average IPC 
prediction error [10] for the synthetic testcases is 2.4%, 
with a maximum error of 9.0% for java. The other 
commercial workload, tpc-c, gives 4.0% error. We 
discuss the reasons for the errors in the context of the 
figures below.  

Figure 4 compares the average instruction 
percentages over all benchmarks for each class of 
instructions. The average prediction error for the 
synthetic testcases is 1.8% with a maximum of 3.4% 
for integers. Figure 5 shows that the basic block size 
varies per benchmark with an average error of 5.2% 
and a maximum of 18.0% for apsi. The largest absolute 
errors by far are for mgrid and applu. The errors are 

caused by variations in the fractions of specific basic 
block types in the synthetic benchmark with respect to 
the original workload, which is a consequence of 
selecting a limited number of basic blocks during 
synthesis. For example, mgrid is synthesized with a 
total of 30 basic blocks made up of eight unique block 
types. The top 90% of basic block frequencies in the 
synthetic mgrid differ by 27.5% on average from the 
basic block frequencies of the original workload. This 
is in contrast to testcases with large numbers of basic 
blocks such as gcc, which differ by only 3.5% for the 

top 90% of blocks.  
 
The POWER5 I-cache miss rates (normalized to the 

maximum miss rate) are all accounted for in Figure 6, 
but they are not very interesting because most are less 
than 1%, and much less than the tpc-c and java miss 
rates. The low miss rates are due to the effectiveness of 
instruction prefetching in the POWER5 chip [25][28]. 
The results also support the common wisdom that the 
SPEC do not sufficiently challenge modern I-cache 
design points. The synthetic benchmarks do well on the 
commercial workloads but still average 7% error. 
These errors could probably be reduced by carrying out 
more synthesis passes. In general, the synthetics have 
larger miss rates than the applications because they are 
executed for fewer instructions [3]. However, since the 
miss rates are small, their impact on IPC when coupled 
with the miss penalty is also small.  

The average branch predictability error is 1.1%, 
shown normalized in Figure 7. The largest errors are 
bzip2 at 5.4% and equake at 4.7%. The L1 data cache 
miss rates are shown normalized in Figure 8. The 
average error is 4.3% with a maximum error of 31% 
for eon. But eon has a very small miss rate, as do the 

Table 6. Default  Simulation Configuration, PowerPC ISA 
Instruction Size (bytes) 4 
L1/L2 Line Size (bytes) 128/128 

Machine Width 8 
Dispatch Window;LSQ;IFQ 120 GPRs, 120 FPRs; 32 LD, 32ST;64 

Memory System 32KB 4-way L1 D, 64KB 2-way L1 I,  
1.9M 10-way L2, 36MB 12-way L3 

Functional Units 2 Fixed Point Units, 
 2 Floating Point Units 

Branch Predictor Combined 16K Tables, 12 cycle 
misspredict penalty 
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Figure 3: IPC for Synthetics Normalized to Actual 
Application IPCs
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Figure 5: Basic Block Sizes
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Figure 6: I-cache Miss Rate
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other benchmarks with errors much greater than 4%, so 
again the execution impact of their errors is also small. 
Looking at the raw miss rates, the trends using the 
synthetic testcases clearly correspond with those of the 
original workloads. This can not be seen in the 
normalized results.   

For the unified L2 miss rates, the average error is 
8.3% for those benchmarks with miss rates higher than 
3%. For the others, errors can be large. Large errors 
due to the simple streaming memory access model are 
often mitigated by the small magnitude of the L1 and 
L2 miss rates [3]. But problematic situations occur 
when a large L2 miss rate error is offset by an L1 miss 
rate that is smaller than that of the original application. 
Still, for larger L2 miss rates, the trends in miss rates 
using the synthetics clearly correspond to those of the 
original applications. The L3 miss rates are also 
generally very small and often not represented well by 
the synthetics. As mentioned, research into more 
accurate memory access models is needed to represent 
all levels of the memory hierarchy.  

Figure 9 shows the average dependence distances 
for the input operands over all benchmarks. It shows a 
7.5% error on average for the non-branch dependence 
distances. For the branches, the M1 profiler classifies 
certain PowerPC trap and interrupt operations as 
unconditional jumps to the next basic block and their 
dependences are not modeled. Also, the profiler 
records particular condition registers as the 
dependences for conditional branches, while synthesis 
uses one specific condition register to implement the 
branching model. The performance impact is small 
compared to that of the branch predictability itself. 

The integer dependence errors are caused by the 
conversion of many integer instructions to LSCNTRs, 

the memory access stride counters. A stride counter 
overrides the original function of the integer instruction 
and causes dependence relationships to change. 
Another source of error is the movement of 
dependences during the search for compatible 
dependences in the synthesis process. The movement is 
usually less than one position (Table 4), but several 
benchmarks show significant movement. The 
dependence insertion technique reduces errors for the 
dependent instruction, but the inserted instruction may 
itself contain dependence errors. 

 
4.3 Design Change Case Study: Rename 
Registers and Data Prefetching 

 
We now study a set of design changes using the 

same synthetic codes; that is, we take the same 
testcases described in the last section, change the 
machine parameters in the M1 model and re-execute 
them. In this study, we increase by more than 2x the 
number of rename registers available to the mapper for 
GPRs, FPRs, condition registers, link/count registers, 
FPSCRs, and XERs [28]. This effectively increases the 
dispatch window of the machine. We also enable data 
prefetching and execute in “real” mode, i.e. with 
translation disabled. With these enhancements the 
average increase in IPC for the applications for the full 
100M instructions is 56.7%. 

We execute the synthetic testcases using the same 
machine configuration. The average change in IPC for 
the synthetics is 53.5%. The raw IPC comparison again 
clearly shows that the trends in the IPC changes for all 
synthetics follow those of the original applications. The 
average absolute IPC prediction error is 13.9%, much 
less than half of the IPC change percentage, an 
important consideration when deciding if the testcase 
properly evaluates the design change [4].  

The average relative error [10] for the change is 
13.3%. The synthetic IPC change is generally lower 
than that of the application. The effect is explained by 
the use of bounded streams in PowerPC synthesis, 
which clamps particular synthetic stream miss rates to 
the base levels, as explained Section 3. 
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Figure 8: L1 D-cache Miss Rate
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Figure 7: Branch Predictability
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5.0 Performance Model Validation Results 
 
The synthetic testcases are used to validate the 

performance model of a POWER5 follow-on 
processor. 

 
5.1 RTL Simulation 

 
Several of the same traces used in Section 4 were 

executed on the VHDL and M1 models of the new 
processor using the process described in Section 2.2. 
Figure 10 illustrates the kind of detailed analysis that 
can be undertaken using the RTL validation 
methodology. Information for each instruction in the 
execution of 10K instructions of gcc is plotted, 
normalized to the maximum cumulative error. 

The instantaneous errors are plotted as individual 
points either above or below the x-axis. If above the 
axis, the error is positive, meaning that the execution of 
the instruction in the VHDL model took longer than 
execution in the M1 performance model. Ideally, the 
performance model would execute at the same rate or 
slower than the RTL model, so that designers do not 
project overestimates of performance for their designs. 
The cumulative sum of the instantaneous errors is also 
plotted in Figure 10. It is clear that the M1 is providing 
overly-optimistic projections for gcc after only 10K 
instructions. The slope of the cumulative error later in 
the testcase indicates the direction of the performance 
model projections where positive is worse than flat or 
negative. The error is more erratic at the beginning of 
the execution because the early instructions are 

associated with the header and initialization C-code, 
not the body of the testcase, and they are not repeated.  

The cumulative error plot also indicates repeating 
sequences, or phases, of behavior at various scales of 
analysis.  The phases are related to specific code areas, 
and theor identification can lead to rapid performance 
model fixes. Viewed at one particular scale, for 
example, a phase can be said to start after 2800 
instructions and end at about 4000. Another phase 
starts there and ends at 5200, and then the phases 
repeat. Both phases together are about as long as the 
body of the synthetic testcase.  

To pinpoint the differences between VHDL and M1 
model execution for gcc, we analyze the errors by 
instruction class as in Figure 11. All classes show a 
large percentage of errors (gcc has no floating point 
instructions), but Figure 12 shows that average load 
and store errors, whether calculated over all 
instructions or just instructions with errors, have the 
largest impact on performance. 

Figure 13 breaks down the fractions of instructions 
with errors into buckets of errors that are multiples of 
25 cycles. The vast majority of ALU and Branch 
operations with errors have errors that are less than 25 
cycles, while 12.0% of loads and 6.8% of stores with 
errors have errors that are higher than 100 cycles, deep 
into the memory hierarchy.  

Regardless of the accuracy of the memory access 
models used to create the synthetic streams, the results 
using them show that loads and stores are the least 
likely instructions to be modeled correctly in the 
performance model. This is valuable information to 
feed back to the performance modeling team.  
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5.2 Hardware Emulator Validation 

 
The same synthetic testcases are input to an AWAN 

hardware emulator executing the PowerPC VHDL 
models and to the M1 models used in the last section. 
In this case the runtime to collect the data is many 
times less than VHDL simulation [16]. Figure 14 
shows the M1 IPC normalized to the AWAN results for 
some of the testcases. Most of the errors are within 
20%, but there are several outliers, including bzip2 and 
galgel. The hardware emulator provides more rapid 
VHDL simulation to speed model validation 
investigations.  

 
6.0 Conclusions 

 
The complexity of modern processors drives 

complexity into the performance models used to 
project performance, and this complexity exacerbates 
the problem of validating the performance models. We 
synthesize representative PowerPC versions of the 
SPEC2000, STREAM, TPC-C and Java benchmarks, 
compile and execute them, and obtain an average IPC 
within 2.4% of the average IPC of the original 
benchmarks. The synthetic testcases often execute two 
orders of magnitude faster than the original 
applications, typically in less than 300K instructions, 
making performance model validation for today’s 
complex processors feasible. We also present the 
application of the synthetic testcases to performance 
model validation using RTL model simulation and 
execution on a hardware emulator. 
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