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General-purpose microprocessor performance is sensitive to load-store order-

ing, memory bandwidth, and memory access latency. Memory access latency is one

of the primary bottlenecks in modern superscalar microprocessors. Reducing the

frequency at which an application accesses the memory hierarchy signi�cantly im-

proves performance (measured in instructions per cycle) and reduces power. This

thesis presents a characterization of the load and store behavior of C, C++, and

Java programs compiled for the SPARC architecture. This analysis corroborates

and expands on load/store dependency trends seen in other studies and instruction

set architectures. For many applications, 80-90% of stored values are transient, i.e.

local to the application. Additionally, a store to one address is often closely followed

by a load or store to the same address.

The rest of the thesis focuses on reducing the impact of these transient memory

requests. A store bu�er exists in many current processors to accomplish one or more

of the following: store access ordering, latency hiding, and data forwarding. Various

store bu�er issues are analyzed and the e�ect on performance is established. A

store entry removal policy along with store bu�er pipeline placement have signi�cant
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impact on the overall performance of a microprocessor. This thesis illustrates how

a well-designed store bu�er achieves comparable performance to a larger bu�er.

An alternative to forwarding data through the store bu�er is to create a sepa-

rate forwarding queue called the Virtual Store Queue (VSQ). The basic VSQ requires

no value or memory address speculation. Using limited resources, the VSQ provides

a signi�cant performance increase. High-level studies show that a small eight-entry

FIFO VSQ has the potential to eliminate 20.7% of load traÆc, while a 32-entry LRU

VSQ can eliminate 33.3% of load accesses on average. Using detailed simulation,

the average reduction in load traÆc to the L1 data cache is found to be 27.1%, and

the average reduction in port utilization is 16.9%. The VSQ is show to be a more

e�ective forwarding mechanism than the store bu�er.

Finally, this thesis investigates the potential of the VSQ in a future, 16 in-

struction wide microprocessor. Simulations indicate that the VSQ will provide an

overall performance increase of 7.2% for the benchmark suite studied. This perfor-

mance can be enhanced using load tokens. These tokens, which are stored in the

trace cache, orchestrate speculative data acquisition from the VSQ. The ability to

satisfy a load early in the pipeline can provide an additional overall performance

boost of 3.2%, leading to an overall performance improvement of 10.4% over the

base model.
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Chapter 1

Introduction

1.1 Background

The di�erence between the frequency of microprocessor cores and the speed

at which memory is accessed is increasing steadily [7, 21, 37, 44]. This memory gap

leads to an increased latency for o�-chip memory accesses. Even the access latency

for on-chip, �rst-level, and second-level caches has become less tolerable. High clock

frequencies and deeply pipelined machines result in multiple-cycle cache accesses

[1, 31]. Therefore, memory access operations consume more time and resources

than register to register operations, even when the requested piece of data is located

in the level-one cache.

Techniques exist to hide portions of the load and store latencies. Executing

instructions in an out-of-order manner allows useful work to occur in parallel with

memory accesses. Address translations are often done simultaneously with other op-

erations. Compilers assist the processor by performing load hoisting, placing a load

instruction well before its �rst dependent instruction. Prefetching data and instruc-

tions into the caches is an approach implemented in both hardware and software

to reduce the high-latency o�-chip memory accesses [9, 19, 28, 46]. Even though
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these and other techniques exist, memory access latency is still considered one of

the primary bottlenecks in processors today.

Memory latency is a performance issue only if the memory is accessed repeat-

edly. Ideally, a single-process program should load values from a memory address

only once as needed during the life of the program. Similarly, a store to a memory

address should only occur once, after the output of the program has been computed.

Despite the increase of on-chip resources and techniques like register renaming, re-

order bu�ers, heavy-duty compiler optimizations, and load forwarding, it is not

unusual for the dynamic instruction streams of modern workloads to consist of 25%

to 40% memory instructions.

Many of the load and store instructions are unnecessary. Reducing the number

of memory operations can both improve performance and reduce power by elimi-

nating o�-chip memory accesses. The abundance of spurious memory operations is

attributed to a lack of resources. Speci�cally, the small number of available archi-

tectural registers requires data to be temporarily stored in memory (register spills).

Additionally, the compiler often does not have enough information at compile time

to determine if two variables are truly unique due to ambiguous memory references.

Stacks designated in the instruction set architecture also lead to spurious memory

accesses. For example, Java and x86 programs refer to their architected stacks us-

ing memory references. If it is possible to capture these types of transient values

without the high cost associated with load and store instructions, then program

performance can be improved.

1.2 Solutions

Due to the memory access bottleneck, almost all modern processors allow dy-

namic ordering of load and store instructions. Some combination of non-blocking

caches and bu�ering structures such as write bu�ers, store bu�ers, store queues,
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miss status handling registers, and load queues is typically employed. Usually, there

are several pieces to the memory management puzzle. Although the performance

of a processor can be sensitive to the policies and implementations of these dy-

namic memory access structures, the strategies for these structures have not been

thoroughly investigated in the available literature.

This thesis studies three methods of reducing the negative impact of memory

accesses for transient values. The �rst two methods are low-resource methods that

�t into modern microprocessor architectures. The last method is targeted for future

wide-issue microprocessors.

� The �rst method leverages existing store bu�ers to increase the load forwarding

opportunities and reduce the latency of many memory reads. The design

policies of the store bu�er have not been analyzed thoroughly in the literature.

This work covers a large portion of the store bu�er design space, determines

the best policies, and presents the design tradeo�s.

� Another design presented for modern processors is the Virtual Store Queue

(VSQ). The VSQ is a dedicated forwarding bu�er for transient values. This

new structure is not subject to the same constraints as a store bu�er, and

can be �ne-tuned for this speci�c purpose. The bu�er is indexed using vir-

tual addresses, often eliminating the physical address translation step for load

instructions.

� The �nal proposal applies to wide-issue microprocessors equipped with a trace

cache. Load tokens are introduced to orchestrate speculative data acquisition

from the VSQ. Each token is associated with a load instruction and stored in

the trace cache between invocations of the instruction. When the speculation

is correct, load instructions are completed even earlier in the memory pipeline.
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1.3 Thesis Statement

Frequent load and store instructions are a performance bottleneck in mod-

ern dynamically scheduled microprocessors. Many of the data reads and writes to

memory are not necessary for the correct functionality of a program. The store

bu�er can be redesigned to decrease the load traÆc to the memory system while

improving overall performance. A virtual store queue can be implemented for the

exclusive purpose of forwarding data, reducing the burden on the store bu�er and

further improving performance. For future wide-issue microprocessors, more perfor-

mance can be reclaimed if the trace cache manages load tokens that enable accurate,

low-latency, speculative load forwarding.

1.4 Contributions

This thesis makes several contributions:

� The relationship between load and store instructions is characterized in detail.

This work corroborates and expands on previous memory dependence studies.

This analysis includes analysis of dynamic memory characteristics such as port

utilization, load forwarding, and store bu�er occupancy. An understanding of

the behavior of same address memory operations is also developed.

� The mechanisms discussed in this thesis are evaluated using a modern work-

load that is more diverse than comparable studies in the this area. The self-

developed simulation and experiment framework allows for detailed cycle-level

performance studies of Java and C++ workloads as well as the popular SPEC

integer C benchmarks.

� For the �rst time in published literature, store bu�er design policies are iden-

ti�ed, de�ned, and thoroughly analyzed. The analysis shows that a lazy store
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removal scheme can have a large impact on processor performance. Smaller,

well-designed store bu�ers can achieve comparable performance to larger, basic

store bu�ers.

� The Virtual Store Queue (VSQ) is described and evaluated. The VSQ pro-

vides marginal performance impact for a four-wide machine, but has an overall

performance increase of 7.2% for a 16-wide microprocessor. In the four-wide

con�guration, the average reduction in load traÆc to the L1 data cache is

27.1%, and the average reduction in port utilization is 16.9%.

� For future wide-issue microprocessors, this thesis presents a VSQ enhancement

to reduce the impact of memory operations. Load tokens are stored in the trace

cache, allowing accurate, speculative accesses to the VSQ. This speculation

increases the overall performance gain with a VSQ to 10.4% for a 16-wide

microprocessor con�guration.

1.5 Organization

This thesis begins with the current chapter (Chapter 1) which is an intro-

duction to the thesis problem, solutions, and contributions. The second chapter

discusses some of the store bu�er design points and the proposed microarchitecture

mechanism, the VSQ. Chapter 3 describes the experimental framework, methodol-

ogy, and benchmarks. Chapter 4 characterizes the memory operations in the studied

benchmarks. The relationship between load and store instructions is explored in de-

tail. The performance analysis of the store bu�er policies and VSQ is presented

in Chapter 5. Chapter 6 proposes load tokens, an enhancement to the VSQ for

next-generation microprocessors. The performance of the VSQ and load tokens are

analyzed in a wide-issue microprocessor environment. In Chapter 7, other works

in memory dependency analysis, data speculation, and store bu�ers are discussed.
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Chapter 8 concludes the thesis.
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Chapter 2

Designs to Improve Load Forwarding

2.1 Store Bu�er Design Policies

One under-analyzed structure within memory access management is the store

bu�er. The store bu�er is the mechanism within the microprocessor core that han-

dles the tasks of dynamically tracking stores, maintaining their order, and properly

synchronizing them with other memory accesses. This synchronization includes han-

dling disambiguation issues, releasing stores to the memory system, and performing

load forwarding. To maintain all these properties, each store is required to have its

own entry in the store bu�er throughout the life of the store.

The manner in which stores are handled within the store bu�er can impact

the performance of processors. In the absence of adequate literature discussing

this impact, this thesis examines several store bu�er issues, including size, store

removal, store retirement point, store priority shifting, and virtual store bu�ers. A

thorough study of these policies shows a potential for increased load forwarding

and decreased load latency with changes in policy [3]. The challenge is to achieve

the memory related performance gains without decreasing overall performance (e.g.

stalling the pipeline because of a saturated store bu�er).
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2.1.1 Store Retirement Point

The retirement point of a store refers to the point in the life of a store instruc-

tion when it attempts to write its data in memory. Most processors do not allow

this to happen until all previous instructions are complete. This helps insure that

the stores will be sent to memory in order and eases the exception handling process.

Once a store instruction has its address calculated, has its data, becomes

non-speculative, and is situated in the store bu�er, the store may retire. However,

there is no need to retire a store as soon as it is ready. Instead, store instructions

may accumulate in store bu�er entries and retire when a certain level of active store

entries1 is reached. This is similar to the concept of a highwater mark in write bu�er

design. Delaying retirement increases the opportunity for forwarding. However, it

can lead to more store bu�er stalls. The interaction with loads and the e�ects on

the L1 cache hit rates determine the e�ectiveness of this policy.

2.1.2 Store Removal

Once a store has retired, it may be removed from the bu�er, but this is not

always necessary. It might be bene�cial to keep the store data active in the store

bu�er for the purpose of load forwarding. The act of removing the active store bu�er

entry from the store bu�er will be referred to as store removal. Once removed, the

store bu�er entry can no longer be accessed by any loads, and one additional empty

slot is available in the store bu�er.

One positive e�ect of this policy is an increase in the average occupancy of

the store bu�er and therefore an increase in load forwarding. One problem with

having such a \lazy" removal policy is the potential of �lling the store bu�er. It

is necessary to indicate with tags which stores have retired but are still active in

1
active entry refers to any entry in the store bu�er that is in use and currently contains a store

in any state
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the store bu�er. Another problem with building up active entries is the possible

increase in disambiguation time.

2.1.3 Store Priority Switching

Cache contention arises when there are multiple available memory instructions

and a �nite amount of ports or gateways into the �rst level of memory. Typically

among loads, the oldest load that can access memory (i.e. address suÆciently cal-

culated) has the highest priority. Among stores, only the oldest store is permitted

to access the memory.

In a semi-aggressive memory model, loads can access memory out-of-order

with respect to other loads, loads can bypass older stores with some restrictions,

and stores are processed in-order. Typically among loads, the oldest load that is

ready to access memory (i.e. address suÆciently calculated,) has the highest priority.

Among stores, only the oldest store is permitted to access the memory given that it

is non-speculative, has its data, and the e�ective address is suÆciently calculated.

The policy for selecting among the stores and among the loads is clear, but

what happens if both a load and a store are ready to access memory in some given

clock cycle? There are three options: i) the load is given a higher priority, or loads

�rst, ii) the store is given priority, or stores �rst, or iii) the oldest instruction is

given priority, or oldest �rst.

Load instructions retrieve data for upcoming instructions. Therefore, choice

one is more attractive than choice two. If load forwarding exists, the time at which

stores submit their data to the cache is of less importance to the execution of sub-

sequent instructions. The third choice is a safe choice that would increase fairness

and decrease the chance of store bu�er stalls (i.e. not being able to issue a store

due to a full store bu�er).

There is also the option to change the priority scheme dynamically as imple-
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mented in the UltraSPARC-IIi. For instance, the default priority could be loads �rst.

Once the level is equal to or above some threshold level, the policy then switches

to stores �rst. The desired e�ect is to reduce the number of store bu�er stalls and

therefore improve the performance of the processor.

2.1.4 Virtual Store Bu�er

Conceptually, store bu�ers may be accessed by loads before or after the address

translation stage in processors. A virtual store bu�er is accessed before translation

using a virtual address. Therefore, to access a virtual store bu�er no address trans-

lation is required. A load can receive data from the store bu�er without having its

address translated.

In a virtual store bu�er, the data and virtual address of a store are placed

in the previously allotted store bu�er entry. A load that has its virtual address

calculated may access the store bu�er and receive the data from a store with the

same address, if the data is available. A load can receive data from the store bu�er

without having its address translated, saving the address translation cycles. The

address would have been translated later, either prior to the cache access or in

parallel with the cache access. There are some other issues that must be addressed

when using virtual addresses. These are discussed in Section 6.

In the case of a physical store bu�er, both the load and the store must have

their addresses translated before a load can properly access the data available in the

store bu�er. In this design, it is bene�cial to have address translation take place as

soon as possible to eliminate a translation bottleneck near the cache access point.

The design complexity of using a physical store bu�er is reduced because physical

addresses are guaranteed to uniquely identify a piece of data.

The di�erences between the virtual and physical store bu�er are illustrated

in Figure 2.1. In this �gure and throughout the simulations, a physically indexed

10
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Figure 2.1: Comparison of a Virtual Store Bu�er and Physical Store Bu�er
PT/PI = Physically tagged, physically indexed.

and physically tagged cache is assumed. For a discussion of how the terms virtual

and physical apply to store bu�ers in the case of the virtually indexed, physically

tagged cache, see Section 6. The essential di�erence is that an entry in the virtual

store bu�er is considered ready before address translation.

2.2 Virtual Store Queue

Instead of burdening the store bu�er with data forwarding requirements as well

as memory ordering duties, a separate structure can be tailored for the forwarding

task. A virtual store queue (VSQ) is such a structures. The VSQ provides temporary

storage for the data associated with store instructions.This allows store instructions

to leave data in a fast, dedicated forwarding bu�er for future load instructions. Load

instructions may then obtain data from the VSQ early on in the pipeline, avoiding

a large portion of the memory pipeline.

The sole purpose of the VSQ is to provide eÆcient forwarding of data. On

the other hand, a store bu�er is responsible for maintaining the relative order of in-

11



ight stores and providing temporary storage until the store request can be released

to the data cache. More speci�cally, the virtual store queue di�ers conceptually

from a typical store bu�er in that it i) holds virtual addresses, ii) is not required

to maintain program order of the stores, iii) may hold data even after the store has

left the store bu�er, iv) does not need to contain every store, and v) does not stall

the processor when it is full.

The VSQ is an elegant and low-cost method for exploiting transient values

and attacking the memory bottleneck. It does not require speculation like previ-

ously proposed memory dependence mechanisms. However, the VSQ still provides

performance increases that rival these schemes in a modern microprocessor environ-

ment.

The VSQ adds and removes entries in a queue fashion, but is read and updated

in a content addressable and associative manner, much like a reorder bu�er. Each

entry contains a tag, a virtual address, a valid bit, information about the operands,

and the data. Data may be forwarded to load instructions that query the VSQ. A

matching address results in a VSQ hit, allowing a load to access its data from the

VSQ. This load instruction skips address disambiguation within the store bu�er,

address translation and data cache access.

Figure 2.2 depicts a portion of the instruction life for loads and stores. Loads

and stores are the only instructions with direct interaction with the VSQ. All stores

are placed in the VSQ after decode and then sent through the machine as usual, in-

cluding e�ective address calculation, address translation, waiting in the store bu�er,

and dispatch to the memory system. A store will be left in the VSQ after it has

been retired from the store bu�er and/or reorder bu�er (ROB).

Loads access the VSQ at two points as they ow through the machine. The

�rst point is immediately after decode, an early query. Although the address of the

load has not been calculated, it is possible to match the addresses successfully. The
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Figure 2.2: Virtual Store Queue (VSQ)

operands of a store instruction are stored in the VSQ in the form of an immediate,

a value, or as a data tag. If these �elds in the VSQ match the corresponding values

and tags for the load instruction, then the load instruction has the same e�ective

address as the store instruction. In this case, the data value or tag from the VSQ

entry is forwarded to the load. The load no longer has to calculate its e�ective

address or access the memory hierarchy.

If the load operation can not be completed early due to a lack of information, it

will access the VSQ upon calculating its address. At this point, the load once again

queries the VSQ. If a store with the correct relative age (oldest instruction younger

than the load) has a matching address, then the load is basically complete at this

point and is not sent to the memory controller and load queue. Another possible

implementation is for the loads to continuously query the store bu�er during every

pipeline stage. This option is not pursued due to the hardware complexity.

The VSQ is similar to a store bu�er, speci�cally the virtual store bu�er pre-

sented earlier. The VSQ studied in this thesis is implemented as a FIFO queue.
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However, this it not necessary. As shown in Chapter 5 the VSQ produces higher hit

rates using the least-recently used replacement policy and is open to other schemes

that may improve its eÆciency. The store bu�er traditionally maintains the order-

ing of store instructions and issues them correctly to memory. Therefore, it does

not have the exibility to be a high performance forwarding device. In addition,

abundant store data in the store bu�er leads to processor stalls instead of improved

instruction throughput.

Another di�erentiating factor between a store bu�er and VSQ is that store

addresses and the corresponding values may be maintained as long as the replace-

ment policy and resources dictate. If it is possible to identify multiple-load store

addresses, these VSQ entries can remain in the VSQ longer than less-frequently ac-

cessed store data. Once again, the store bu�er is restricted by the requirements to

retire stores sequentially and to remain partially empty. Consistency also prevents

the store bu�er from killing stores with similar addresses as can be done in the VSQ.

2.3 Issues for the Store Bu�er and VSQ

This section confronts general issues shared by both the store bu�er and VSQ.

Virtual address indexing, precise exceptions, misspeculation, and cache con�gura-

tion are discussed. Additional issues, such as coherence, varying data sizes, and

non-cacheable memory accesses must be handled as well. Snooping, tags, and de-

tection/recovery, respectively, are possible solutions.

2.3.1 Accessing with Virtual Indexes

Aliasing is an important issue when using virtual addresses to tag and access

the data. Aliasing results when two di�erent virtual addresses map to the same

physical address. This can lead to consistency problems. For example, if there is

a store to virtual address A and a load from virtual address B, the virtual store
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bu�er and VSQ would not forward the data of A to B. Unless aliasing exists, this

is normally correct behavior. With aliasing, the load from B will receive incorrect

data from elsewhere in the forwarding mechanism or from the memory system.

A di�erent issue arises when two instances of the same virtual address map to

di�erent physical addresses. In this case, a virtually tagged and indexed structure

may incorrectly forward data to a load. Sections of code with di�erent address

spaces or self-modifying code can cause this type of inconsistency.

These situations are infrequent, but they must be handled when using virtual

addresses. Issues with virtual addresses have been dealt with in virtually indexed

caches. Software and hardware solutions exist to guarantee correctness [11, 25, 59].

The UltraSPARC-IIi burdens the operating system with this responsibility, claiming

that \software handles aliasing" with respect to its virtually indexed cache. Aliasing

is common when two processes are sharing data.

Utilizing virtual addresses requires an easy method to distinguish unique pro-

cesses. A typical solution is to locate a unique address space identi�er or process

ID. This ID can be concatenated to the virtual address to create unique tags. This

is common in some of the 64-bit RISC processors, but quite a challenge in the x86

family of processors. Therefore, the Intel Pentium Pro MOB and the AMD K6 store

bu�er exclusively use physical addresses. Without the additional identi�cation in-

formation, one option is to ush virtually indexed structures on context switches,

for instances of self-modifying code, and on detection of multi-process data sharing.

This is an expensive process and certainly deteriorates performance.

Instead, this situation can be handled as follows. When a store from one

process is being placed in the VSQ or virtual store bu�er, it checks the page o�set

bits of each address with di�erent virtual tag bits and if any of those page o�sets

are equal to the page o�set of the current store, then that entry is invalidated.

Essentially, the store checks if stores from other address spaces could be mapped
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to the same page and potentially the same address. If this is discovered, the old

store is eliminated. This will eliminate more stores than necessary, but such aliasing

occurs extremely rarely and may not result in signi�cant performance loss.

2.3.2 Precise Exceptions

Another issue of interest is exception handling. It is important to be able to

recover from exceptions like misspeculations, interrupts, context switches, or traps.

When an exception occurs, the processor wishes to be able to start over at the

instruction that caused the exception without losing information. This requires

that all preceding instructions complete and properly modify the processor state.

With the store bu�er, this is especially critical. It is often the case that a store

instruction in the store bu�er is older than the oldest instruction in the ROB but has

not been sent to memory. If an exception happens at this point, critical information

could be lost. This is handled by ushing all the unreleased stores (older than the

instruction that cause the exception) to memory. In the above scenario, when the

exception returns, the store bu�er is empty. A load that could have obtained a value

from the store bu�er will be forced to request the data from memory instead. The

VSQ has an advantage dealing with this case. It does not need to ush its contents

to memory. As long as the virtual indexing issues are properly handled, data can

remain in the VSQ inde�nitely.

2.3.3 Misspeculation

Speculative stores can not be released to memory. However, speculative

stores can forward data from the store bu�er. If a speculative store becomes non-

speculative then nothing needs to change. If a speculative store needs to be squashed

due to an incorrect speculation, such as a branch prediction, then that store bu�er

entry needs to be invalidated. Since stores are placed in a store bu�er in a �rst-in,
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�rst-out manner, it is a trivial task to �nd the last non-speculative load and in-

validate the remainder of the entries. It is possible that a speculative store could

forward data to a load. This is also not a problem. Forwarding is only allowed

between a store and a younger load. Therefore, if the store is along a misspeculated

path, then the load will be also.

Speculative stores invalidated due to an inaccurate branch prediction should

not remain in the VSQ or store bu�er. The store bu�er and a FIFO VSQ can

selectively invalidate the misspeculated entries (similar to the ROB or store bu�er).

If the replacement policy of the VSQ allows for random ordering or store kills, then

it is very complicated to recover properly from a branch. In this case, it is easiest

to invalidate the entire VSQ.

2.3.4 Cache Con�guration

The con�guration of the cache plays a relevant role in the design of the

store bu�er. A machine with a virtually indexed and physically tagged cache

(UltraSPARC-IIi, Alpha 21264) requires an address translation to take place in

parallel with the cache access. This does not directly determine whether the store

bu�er is physical or virtual.

Each store has an entry in the store bu�er. This entry can contain the physical

address, the virtual address, either one or the other, or both. In general, it seems

that most store bu�ers contain physical tags and only allow forwarding if both the

load and related store have been translated. A load can look for data in the store

bu�er in parallel with accessing the cache or while waiting to be serviced by the

cache. This is the case with a physically indexed data cache which always performs

an address translation. Also, a virtually indexed data cache performs translations

early and aggressively to reduce translation costs.
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Chapter 3

Experiment Model

3.1 Simulation Tools Overview

The experiments in this thesis are performed using the SuperSim microar-

chitecture simulator. SuperSim is a self-made, execution-driven, cycle-level timing

simulator that models the pipeline stages and resource contentions of a speculative

out-of-order microprocessor core. SuperSim functionally executes any single-process

SPARC executable. Therefore, the simulator uses the SPARC instruction set ar-

chitecture [58] and handles the SPARC nuances in a proper fashion (e.g. register

windows, conditional instructions, condition code registers, delay slots). All exper-

iments are run on a Sun Solaris platform.

3.1.1 Functional Execution

The exibility of SuperSim is due in large part to Shade, a simulation tool

from Sun Microsystems [10]. Shade takes a SPARC executable as an input and

dynamically executes the entire program including library calls. No special compile-

time options or source code is necessary to create a Shade-readable executable. The

output from Shade represents the retired instruction stream. Shade is a customizable
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tool and allows the user to specify the exact instruction information to collect. The

information can be treated in any manner. Detailed information can be collected

dynamically for every instruction and opcode. SuperSim extracts data such as

the opcode �elds, program counter, branch targets, memory addresses, and other

relevant dynamic characteristics. Shade version 5.33A executes user and library

code, but does not analyze kernel code. In addition, this version of Shade does not

handle multi-threaded applications.

3.1.2 Resurrected Code

The use of software simulation to model modern high-performance micropro-

cessors is becoming increasingly challenging as microprocessors grow in complexity.

Accurate and meaningful performance analysis of an out-of-order, superscalar mi-

croprocessor is complicated by the fact that no component of the system is truly

independent from the rest of the system. At the same time, each component of the

system requires a �ne level of simulation. Therefore, there exists a tradeo� between

the accuracy of results and the amount of time necessary to create a simulation

environment and perform the simulations.

SuperSim utilizes a structure that can decrease the simulation time of mi-

croprocessor software simulators and improve the accuracy of simulation. This is

accomplished by exploiting static instructions that are executed many times dy-

namically. SuperSim recreates an approximate copy of the object code, called the

resurrected code, using instructions from the dynamic instruction stream of the

simulator [4]. The resurrected code decreases the time SuperSim spends decoding

instructions, which is a signi�cant amount of the simulation time.

Along with decreased simulation time, the resurrected code provides an im-

provement in accuracy for SuperSim, which does not have the entire program image

available for use. Instructions are fetched from the resurrected code structure after a
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mispredicted branch and then introduced into the simulated processor. This allows

for increased reality in the modeling of mispredicted path execution. In addition,

the structure provides an elegant method for gathering statistical information re-

garding the use of speci�c static instructions. The resurrected code also becomes an

easy means for quickly specifying internal simulator-speci�c hints and directions.

3.1.3 Simulated Microarchitecture

The base architecture model used in this thesis is based on a combination of the

Sun UltraSPARC-II microarchitecture and features from the popular SimpleScalar

sim-outorder default simulation model [6]. The model is a four-wide machine, i.e.

four instructions can be decoded, dispatched, and retired each cycle. The basic

architecture model is shown in Figure 3.1. The speci�c parameters may be found in

Table 3.1.

The execution core of the base model contains two basic integer ALUs with one

cycle latency and one cycle throughput (1-1), one integer multiply/divide unit (3-1

for multiply, 20-19 for divide), two basic oating point ALUs (2-1), one FP multiply-

divide-square root unit (3-1 for multiplies, 12-12 for divides, 24-24 for square root),

and two load-store units (1-1). Each of these units is supplied by a twelve entry,

content addressable, queue of reservation station entries. The load-store unit cal-

culates e�ective addresses and then dispatches the loads and stores to the proper

location - the load queue or the store bu�er. Branch target addresses are calculated

prior to execution when possible. The simulator uses a separate 64-entry reorder

bu�er (ROB) and register �le for oating point and integer instructions, as in the

UltraSPARC. Stores are allocated entries in the ROB.

The branch predictor uses the gshare branch prediction scheme as described

by McFarling [36]. The predictor contains 16k entries of two-bit counters and is

direct-mapped. The table is indexed by the program counter hashed with 16 global
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history bits. This predictor is accompanied by a 512-entry, direct-mapped branch

target bu�er (BTB) to predict target addresses for indirect branches.

Table 3.1: Simulated Architecture Parameters

Data memory

� L1 Data Cache: 4-way, 64KB, 1-cycle hit
� L2 Uni�ed cache: 4-way, 1MB, 8-cycle hit
� Non-blocking 8 MSHRs and 1 port
� DTLB 128-entry, 4-way, 1-cycle hit, 30-cycle miss
� Store bu�er: 16-entry w/load forwarding

loads access in 1-cycle
� Load Queue: 16-entry
� Main Memory In�nite, +22 cycles

Fetch Engine

� L1 Instr cache: 4-way, 64KB, 1-cycle hit
� Branch Predictor: 16k gshare predictor

3-cycle misprediction penalty
� Indirect BTB 512-entry, direct-mapped
� ITLB 128-entry, 1-cycle hit, 50-cycle miss

Execution Core

� Functional unit # exec. lat. issue lat.
Load/store 2 1 cycle 1 cycle
Simple Integer 2 1 1
Int. Mul/Div 1 3/20 1/19
Simple FP 2 3 1
FP Mul/Div/Sqrt 1 3/12/24 1/12/24

� Separate 64-entry FP and INT reorder bu�er
� 12 reservation station entries/func. unit
� Fetch width: 16 instructions
� Decode width: 4 instructions
� Issue width: 4 instructions
� Execute width: 4 instructions
� Retire width: 4 instructions

The L1 instruction cache and the L1 data cache are 64 KB, four-way set-

associative, write-through cache with a line size of 64 bytes, and a hit latency of

one cycle. They use the LRU replacement algorithm. The L2 cache is a uni�ed, 1

MB, four-way set-associative, write-back, write-allocate cache with a block size of

64 bytes, and a hit latency of eight cycles. It uses an LRU replacement scheme.

Address translations are given a constant latency of one cycle for TLB hits and 30

cycles for TLB misses. The TLBs and caches are non-blocking.
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Note that this thesis chooses to use an aggressive L1 data cache hit latency.

This one-cycle time period includes the lookup and read from a large, set-associative

cache. It is not uncommon for L1 cache accesses to take multiple cycles. As the

memory latency increases, the importance of techniques like load forwarding and

data speculation increases. Therefore, this aggressive con�guration will lead to

conservative gains from the proposed store bu�er enhancements, virtual store queue,

and the load tokens. Performance gains given a longer latency memory sub-system

are presented briey in Chapter 5.

The base store bu�er model has 32-entries. Stores are retired once all previous

instructions have completed. They are removed from the store bu�er upon comple-

tion of their memory access (no lazy removal). Loads are always given priority over

stores during memory interface contention. Loads may bypass stores while stores

are always in-order. Loads are permitted to perform out-of-order with respect to

each other. There is no VSQ in the base model.

Finally, the resurrected code is implemented as well. The resurrected code is

created beforehand to prevent the slight disadvantage that results from dynamic cre-

ation. When the simulator is executing along the mispredicted path and encounters

an instruction that is not in the resurrected code, no more instructions are fetched

from the resurrected code and a branch redirection is initiated.

3.1.4 Di�erences Between Simulation Runs

All of the microarchitecture parameters listed above apply to the characteriza-

tion experiments in Chapter 4 and the VSQ experiments in Chapter 5. The results

from the store bu�er experiments use slightly di�erent values for several parameters.

The indirect BTB is modeled as a perfect BTB in the store bu�er simulations. Main

memory latency is 30 cycles instead of 50 cycles. The number of MSHRs is two.

There is one fewer fetch stage. The ITLB is modeled as a perfect bu�er. The DTLB
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is direct-mapped instead of 4-way associative. Finally, and most importantly, the

default store bu�er is 32 entries instead of 16 entries.

The store bu�er version of the model performs better than the VSQ version,

but the VSQ version is a more realistic representation of processor hardware. The

store bu�er also tends to show larger performance changes because its idealistic fetch

pipeline is less likely to become a bottleneck. This enables more memory bandwidth

and latency optimizations to show up in the overall performance. Also, while the

main memory latency di�erence is not a major factor in overall performance for

these benchmarks, fewer MSHRs exacerbates the memory bottleneck. Therefore,

reductions in memory traÆc are welcome and serve to improve the situation.

3.2 Benchmarks

The SuperSim/Shade tools easily allow for simulation of benchmarks other

than easy to compile benchmarks in C and Fortran, like the SPEC benchmarks.

Object oriented programming has become a standard practice at all levels. C++ and

Java are the primary vehicles for this paradigm and have shown characteristics that

di�er from the SPEC benchmarks including more memory references and indirect

branches. Given the ability to simulate such workloads, this thesis includes a suite

of C++ benchmarks and a suite of Java benchmarks in addition to the SPEC integer

benchmarks. Descriptions of the benchmarks and the inputs used are in Table 3.2.

Simulation experiments are conducted on Sun UltraSPARC machines, using

three sets of benchmarks to analyzed to evaluate the proposed microarchitecture

schemes. The �rst group of benchmarks is the SPEC95 integer suite [55]. These

commonly used C benchmarks are well-understood and a good point of reference.

The second set of benchmarks is a C++ suite developed for the purpose of studying

object-oriented workloads, speci�cally the e�ects of virtual functions on performance

[8, 12]. These two suites of benchmarks are compiled with gcc 2.8.1. with full
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Table 3.2: Benchmark Descriptions

Program Description of Program Length

SPEC CINT95: C programs

compress95 Compresses large text �les 38.8M

gcc Compiles pre-processed source 267.1M

go Plays the game Go against itself 500.0M

ijpeg Performs jpeg image compression 500.0M

li Lisp interpreter 170.6M

m88ksim Simulates the Motorola 88100 processor 125.1M

perl Performs text and numeric manipulations 41.7M

vortex Builds, manipulates 3 interrelated databases 500.0M

Suite of C++ Programs

deltablue Incremental dataow constraint solver 41.1M

eqn Type-setting program for math. equations 48.2M

idl SunSofts IDL compiler 1.3 85.5M

ixx IDL parser generating C++ stubs 30.3M

richards Operating system simulation benchmark 67.8M

SPEC JVM98: Java Programs

compress A popular LZW compression program 500.0M

db IBM data management benchmarking software 81.7M

jack Real parser-generator from Sun Microsystems 500.0M

javac JDK Java compiler from Sun Microsystems 202.2M

jess NASA's CLIPS rule-based expert systems 263.2M

mpegaudio Core MPEG-3 audio decoding algorithm 500.0M

mtrt Dual-threaded ray tracing program 500.0M

Long running benchmarks are stopped after 500 million dynamic

instructions. The remaining benchmarks are run to completion.
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optimizations (-O4) and are statically linked. The �nal group of benchmarks is the

Java benchmarks from the SPECjvm98 suite [55]. The Java byte codes are executed

by the Sun Java Virtual Machine (JVM) version 1.1.3. All thread management is

handled by the JVM.
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Chapter 4

Characterization of Store/Load

Dependencies

4.1 Dynamic Memory Behavior

Characterizing and understanding the memory behavior of the workload is

critical to understanding the reasons behind changes in microprocessor performance.

The data presented in this section is collected using the base model con�guration

of SuperSim. Table 4.1 presents basic attributes of the store instructions in the

three benchmark suites. Stores account for 8.92% of all instructions on average

(Pct of Instr). In an out-of-order microprocessor with a memory hierarchy, the

latency to access the cache can vary. In this thesis, the cache accesses vary from

one cycle L1 hits to 58 cycles L2 misses. The L1 data cache hit rates (Hit Rate)

for store instructions include only the one cycle accesses. Store instructions have

good locality in these benchmarks. Only two programs show hit rates below 90%,

and only deltablue is below 80%.

The average number of cycles to complete a store to memory (Avg Latency)

is related to the hit rate, although they are not directly indicative of each other. For

example, db and idl both have hit rates around 96%, but the average store latency
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for idl is signi�cantly larger, 2.53 cycles versus 1.60 cycles. This can happen because

of two events. One, a L1 cache miss can result in either a L2 cache hit or a L2 cache

miss. Both factor into the L1 hit rate in the same way, but the L2 miss raises the

average store latency. Two, a previous instruction may have already initiated the

request for data that other instructions need. In this case, the second instruction

may have missed the L1 cache but does not have to wait for the entire L2 cache

latency because a prior instruction started a request to the same block of data.

Table 4.1: Characteristics of Store Instructions

Benchmark Pct of Instr Hit Rate Avg Latency SB Stall % Avg SB Size

compress95 15.17 87.56 2.69 0.00 6.44

gcc 10.14 97.42 1.25 0.00 2.52

go 7.41 99.56 1.02 0.12 1.99

ijpeg 6.54 98.80 1.12 0.00 3.22

li 10.16 98.54 1.19 0.17 3.36

m88ksim 8.70 93.53 4.42 0.00 4.21

perl 10.90 97.16 1.23 0.73 3.48

vortex 11.05 93.55 3.70 0.00 3.96

deltablue 6.29 76.11 4.64 0.97 2.50

eqn 9.62 99.58 1.04 0.08 2.60

idl 2.74 96.08 2.53 0.63 1.08

ixx 7.91 95.51 3.08 2.45 2.50

richards 8.44 99.92 1.00 0.01 3.59

compress 10.11 99.27 1.23 0.00 2.92

db 7.85 96.36 1.60 0.81 2.64

jack 9.76 98.88 1.11 0.22 2.74

javac 8.08 97.13 1.36 0.49 2.87

jess 8.52 97.48 1.27 0.38 3.25

mpegaudio 9.47 99.44 1.08 0.13 2.26

mtrt 9.51 98.08 1.13 0.31 3.67

Pct of Instr: percentage of all dynamic instructions that are stores. Hit Rate: L1 data cache hit rate for
store instructions. Avg Latency: Average number of clock cycles needed to complete a store to memory. SB
Stall: Percentage of cycles where a store bu�er stall is encountered. Avg SB Size: Average number of active
store bu�er entries each cycle.

The last two columns are characteristics of the store bu�er. The SB Stall

% represents the percentage of cycles in which a store bu�er stall occurs. In this

case, the issue stage is forced to stall on a store instruction because there are no

available entries in the store bu�er. This does not occur on a signi�cant number of

cycles for most benchmarks. Only ixx shows a strong tendency to back up the store
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bu�er. The last column is the average store bu�er occupancy or the average number

of active entries each cycle (Avg SB Size). On average, 3.09 of the 16 store bu�er

entries are active each cycle. Therefore, on average, each load has three candidates

from which it can forward its data.

The latency of load instructions is more critical to overall instruction through-

put than that of store instructions. This is because load instructions often start data

dependency chains in the dynamic instruction stream while store instructions do not.

If the instructions that depend on the load are close to the load in the instruction

stream, then providing a load instruction with its data as quickly as possible expe-

dites instruction ow. Table 4.2 has data similar to the previous table, but for the

load instructions.

Table 4.2: Characteristics of Load Instructions

Benchmark Pct of Instr Hit Rate Avg Latency Load Fwd Pct Avg LQ Size

compress95 17.91 98.05 1.29 11.25 1.24

gcc 18.97 98.90 1.10 7.84 0.56

go 21.75 99.91 1.00 5.51 0.61

ijpeg 17.19 99.69 1.02 1.56 0.99

li 22.28 96.10 1.43 7.56 0.62

m88ksim 15.61 99.81 1.04 19.60 0.28

perl 20.91 99.87 1.01 11.11 0.88

vortex 21.50 99.22 1.10 5.71 0.92

deltablue 25.71 86.70 2.20 2.56 0.91

eqn 17.73 99.90 1.01 5.88 0.56

idl 22.55 98.19 1.13 3.79 0.63

ixx 15.50 98.32 1.34 8.70 0.46

richards 28.39 99.99 1.00 8.29 1.33

compress 31.69 99.16 1.19 14.29 0.92

db 20.92 98.53 1.29 8.15 0.74

jack 28.85 99.41 1.09 12.89 0.81

javac 22.53 98.34 1.28 8.35 0.85

jess 23.67 98.07 1.26 8.59 0.94

mpegaudio 30.98 99.81 1.03 10.63 0.76

mtrt 26.03 99.23 1.11 9.82 1.11

Pct of Instr: percentage of all dynamic instructions that are loads. Hit Rate: L1 data cache hit rate for load
instructions. Avg Latency: Average number of clock cycles needed to complete a load from memory. Load
Fwd Pct: Percentage of all loads that have data forwarded from the store bu�er. Avg LQ Size: Average
number of active load queue entries each cycle.

Load instructions represent 21.3% of the dynamic instruction stream on aver-
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age, a signi�cantly higher percentage than store instructions. The hit rates for load

instructions are also better than store instructions. The higher hit rates have more

to do with the frequency of the load instructions than the locality. Per address, there

tend to be multiple loads for each store. Because the hit rates are higher, it is not

surprising that the Avg Latency is lower than for store instructions. This is good

since load instructions are critical to instruction ow. The benchmark deltablue

stands out as a program with a poor L1 data cache hit rate.

The next column, Load Fwd Pct, represents the percentage of all load instruc-

tions that receive their data from a store in the store bu�er. This varies greatly over

the benchmark suites. The SPECjvm programs have a higher forwarding rate due

to the stack-based nature of the Java byte codes. The C++ programs, on the other

hand, have a much lower load forwarding percentage. The SPECint programs are

program-speci�c, uctuating from 1.56% to 19.60% forwarded loads. Benchmarks

with a combination of a high percentage of loads, a high average load latency, and

a lower load forwarding percentage are the best candidates to be aided by the tech-

niques discussed in this thesis.

One component of the cache access latency is the arbitration for the memory

ports. Memory port stalls and utilization are determined by the bandwidth out of

the core as well as the tendency of the memory request to cluster in time. Table 4.3

has information related to the memory port of the base model.

A store instruction arbitrating for a memory port is denied sometimes be-

cause another memory operation is utilizing the port. The �rst column in the table

represents the percentage of cycles where this is happening (Store Port Stall %).

The second column represents a similar statistic for load instructions (Load Port

Stall %). The memory port is two-way, so returning data does not block mem-

ory requests. Therefore, the memory port is only occupied on the initial cycle of

a memory request. However, this results in roughly 50% port utilization for the
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benchmarks studied.

Table 4.3: Memory Port Contention

Benchmark Store Port Stall% Load Port Stall % Port Utilized %

gcc 12.04 6.05 42.21

compress95 22.24 9.04 50.93

go 8.65 8.10 43.12

ijpeg 8.35 12.35 43.02

li 17.92 6.85 53.78

m88ksim 8.22 2.76 33.59

perl 17.47 7.87 52.80

vortex 16.62 9.59 54.07

deltablue 6.267 7.70 31.70

eqn 14.86 7.00 46.69

idl 4.80 12.50 41.22

ixx 11.17 4.99 40.20

richards 7.736 16.81 49.74

compress 13.01 13.91 56.81

db 11.24 9.18 43.00

jack 12.87 10.56 53.75

javac 11.54 10.89 44.80

jess 12.08 11.60 45.78

mpegaudio 12.82 14.28 58.48

mtrt 16.92 14.91 56.26

Store Port Stall %: is the percentage of cycles where a store could not proceed to memory due to port
utilization. Load Port Stall %: is the percentage of cycles where a load could not proceed to memory due
to port utilization. Port Utilized %: is the percentage of cycles where the L1 data cache memory port is
utilized.

There are two important items to consider when viewing this table. First,

remember that store instructions account for 8.92% of the instruction stream while

load instructions account for 21.3%. Second, note that in the base model loads get

priority over store instructions in the base model. Although load instructions are

twice as frequent as store instructions, loads spend fewer cycles stalling on a utilized

port due to the arbitration policy. This is one of the primary reasons that the store

bu�er occupancy from Table 4.1 is much higher than the load queue occupancy.
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4.2 Same Address Memory Operations

To determine the potential e�ectiveness and implementation of the VSQ, it is

important to understand how dependent loads and stores interact with each other.

Similar analysis of memory access patterns has been done in the past. This thesis

is reporting results of programs compiled and run on a Sun UltraSPARC-II. This

experimental data is useful to motivate the thesis topic and verify that previous

results apply to the SPARC platform.

Table 4.4 presents characteristics of the dynamics reference sequence. The �st

column is the percentage of total dynamic instructions that are loads. The second

column is the percentage of total dynamic instructions that are stores. Note that

these values are di�erent that in Tables 4.1 and 4.2. The benchmarks below are run

for the entire length of the benchmark. Some of the benchmarks are not included

to the memory intensive nature of the characterization.

Table 4.4: Memory Characterization of Benchmarks

Benchmark % Loads % Stores % Addr No loads % Addr One Load

compress 17.72 15.01 61.15 10.16

gcc 18.57 9.93 12.87 34.5

go 21.08 6.87 1.465 78.14

ijpeg 17.28 6.56 33.05 34.37

li 21.72 9.90 7.995 2.604

m88ksim 16.46 16.90 47.02 28.63

perl 13.74 9.46 12.76 57.00

vortex 20.66 6.79 3.338 83.38

deltablue 25.41 6.22 14.61 33.81

eqn 17.36 9.42 20.29 28.06

idl 21.84 2.65 21.45 36.97

ixx 15.16 7.74 16.81 49.4

richards 27.48 8.18 5.00 68.5

The Java benchmarks are not included due to their lengthy run times and large memory requirements.

Column three is the percentage of unique virtual addresses that are written

to by a store instruction but are never read by a load. The �nal column is the

percentage of unique virtual addresses that are written and only read once before
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the program ends or the store is overwritten. The remainder of the unique memory

writes are read multiple times. Obviously, store addresses that have no subsequent

reads will not provide any bene�t to a load forwarding mechanism. Store addresses

with one or more loads can potentially forward data to a load depending on how

many cycles elapse between the two instructions.

In these benchmarks, compress does not look like a good candidate to bene�t

from the proposed mechanisms because over 60% of all stores have no dependent

load and an additional 10% of the store instructions only have one dependent load.

In contrast, a benchmark like li only 8% of the store instructions do not have a

dependent load, and 89,4% of the writes have multiple reads. The programs go,

vortex, and richards are unique in that they have a very large percentage of read

once addresses. Events such as register spills and stack accesses can result in read-

once writes. When this is the case, a large percentage of read-once writes leads to

substantial load forwarding.

Another interesting statistic is the the distance between a store and a subse-

quent loading of the stored data. The distance is measured in the number of total

stores to any address. This characterization has been presented by Moshovos and

Sohi [40]. This metric gives an indication of the e�ectiveness of potential VSQ bu�er

sizes.

The percentages presented in Table 4.5 are the percentage of loads that have a

dependent store within some store distance. For example, 39.2% of the load instruc-

tions in m88ksim could be satis�ed by one of the previous eight store instructions.

Figure 4.1 summarizes the store distance by benchmark suite. Across the bench-

marks, approximately 50% of stores are read within 1024 stores. This translates to a

potential 50% decrease in load traÆc for a 1024-entry VSQ. These results correlate

well to those presented by Moshovos and Sohi.

A similar metric is the store distance between writes to the same address.
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Table 4.6: Percentage of Same Address Stores Within a Store Distance

Distance in Number of Stores

Benchmark 2 4 8 16 32 64 128 256 512 1024

compress 5.49 19.9 21.5 42.2 45.5 48.3 49.7 54.6 54.6 54.6

gcc 4.06 6.67 13.9 22.5 32.5 38.7 44.2 49.7 71.5 83.9

go 8.64 16.2 22.8 29.7 38.8 48.8 58.2 68.1 76.9 83.6

ijpeg 4.27 4.81 6.97 8.41 9.86 18.6 27.9 38.5 40.2 42.2

li 16.2 20.5 28.0 36.5 44.7 50.7 55.8 58.0 59.1 60.4

m88ksim 14.8 48.1 51.8 52.7 53.3 56.2 73.2 74.6 75.5 76.1

perl 1.97 4.83 10.8 15.2 23.3 41.6 48.4 59.2 65.2 71.3

vortex 25.2 31.1 38.8 40.7 42.3 46.5 53.1 83.4 83.8 84.1

deltablue 3.21 5.14 6.5 16.6 23.1 24.7 35.1 52.2 55.9 56.2

eqn 3.53 9.99 12.4 15.8 25.7 44.1 67.1 72.3 75 77

idl 20.2 23.9 34.7 41.4 47.5 54 66.9 74.4 77.7 82.3

ixx 5.41 17.9 23.2 26.4 31 42.5 53.7 62.8 69.1 75.7

richards 11.6 19.9 33.5 47.1 63.9 74.5 83.8 92.6 98.5 99.9

This table corresponds to Figure 4.2. The Java benchmarks are not included due to their lengthy run times
and large memory requirements.
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Figure 4.3: Dynamic Load Forwarding Dependency Instruction Distance
The average of the percentages of the individual benchmarks is represented in each bar.
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forwarding stores are less than four or fewer instructions from a dependent load.

The percentage for SPECint is approximately 41%, and 25% for SPECjvm. Many

of these data dependencies are better communicated through registers than memory

addresses. However, the compiler can not always identify these cases due to memory

disambiguation uncertainties and unpredictable dynamic ows. Almost all of the

dynamic load forwarding is done within an instruction distance of 32 instructions for

all of the benchmarks. Since stores retire and are removed from the store bu�er, as

the instruction distance grows the store is less likely to be active in the store bu�er.

So large dynamic instruction distances are rare as a function of the realistic hardware

setting. Note that wrong path instructions due to branch mispredictions count as

part of the instruction distance and can lead to dependency distances greater than

ROB size.
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Chapter 5

Store Bu�er and VSQ Result Analysis

5.1 Store Bu�er Performance

A thorough set of experiments varying the individual store bu�er policies for

the base-line physical store bu�er are presented in this section. Pipeline placement

is found to have the greatest impact on the overall performance of the processor.

The lazy store removal policy has the greatest impact on memory traÆc. Priority

switching is found to have negligible impact at almost all thresholds. Finally, varying

store retirement policies provides some of the same bene�ts as a lazy store removal

policy, but with a higher penalty.

The optimal 32-entry store bu�er in the design space examined is a virtual

store bu�er with lazy store removal using a threshold of 24 active entries, no priority

switching, and the original store retirement policy. The next section provides more

details and analysis on how this con�guration is determined. Table 5.1 reviews

some of the basic characteristics of the benchmarks. The values in this table are

essential to understanding the performance impact of the store bu�er policies. Note

that some values are di�erent than those found in Tables 4.1 and TAB:LOADS in

Chapter 4. This is because of the di�erent con�gurations used for the experiments
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as noted in that Chapter.

Table 5.1: Performance of the Base Model

Benchmark IPC % Forw Lds Ld Hit Ratio St Hit Ratio SB Stall % Avg SB Addr Trans

compress95 1.90 14.60 98.1 93.2 13.14 11.05 13.2M

gcc 2.28 11.87 98.7 97.9 0.43 5.81 77.6M

go 1.61 8.02 99.9 99.5 0.03 2.71 196.3M

ijpeg 2.06 2.37 99.6 98.9 1.89 5.78 124.1M

li 2.38 11.13 95.9 98.9 0.12 6.88 52.3M

m88ksim 2.54 32.51 99.7 97.0 4.57 6.25 29.2M

vortex 2.55 8.59 98.9 98.0 1.76 7.58 138.4M

deltablue 1.28 3.92 86.4 78.3 0.84 3.97 12.9M

eqn 2.48 9.65 99.9 99.7 0.05 6.33 13.2M

idl 2.45 4.79 98.1 97.5 0.73 2.12 20.3M

ixx 2.33 13.18 98.3 97.2 3.53 5.93 7.1M

richards 1.87 12.83 99.9 99.9 0.01 5.90 23.1M

db 2.30 14.22 98.6 96.9 0.75 6.65 25.0M

jack 2.58 24.97 99.3 98.9 4.37 16.94 191.4M

javac 2.20 14.48 98.4 97.5 0.42 6.61 61.2M

jess 2.13 13.51 98.1 97.7 0.26 6.71 83.8M

mpegaudio 2.75 24.62 99.7 99.5 1.41 13.11 201.0M

mtrt 2.39 15.24 99.2 98.2 0.15 8.66 173.3M

IPC is instructions per cycle. % Forw Lds is the percentage of all loads that are forwarded. Ld Hit Ratio

is the L1 data cache hit ratio for load instructions. St Hit Ratio is the L1 data cache hit ratio for store
instructions. SB stall % is the percentage of all processor cycles with a store bu�er stall. Avg SB is the
average number of active entries in the store bu�er. Addr Trans is the total number of address translations.

5.1.1 Per Policy results

In Figure 5.1, the four policies and one combination are summarized based on

their variation in IPC from the base model. A virtual store bu�er policy (V) has

the most signi�cant impact on IPC followed by a lazy store removal policy (LR24)

and a late store retirement policy (RP16). Priority switching (P24) had little e�ect

in most cases. After examining di�erent thresholds for these individual policies in

prior simulations, these are the best. Combining the virtual store bu�er with lazy

store removal (LR24.V) provides the best overall performance and is represented in

the �gures.

Figure 5.2 summarizes how the con�gurations a�ect load traÆc to the L1 data
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cache. The single parameter with the greatest impact on load traÆc is lazy store

removal. Late store retirement does not provide as much load traÆc reduction. A

virtual store bu�er alone provides only a small improvement. When a lazy store

removal policy is added to a virtual store bu�er, it has a synergistic e�ect where the

combined improvement in IPC is more than the sum of the individual improvements.

A more in-depth analysis of these policies follow.
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Figure 5.1: E�ects of Store Bu�er Policies on IPC
P24 switches high priority from loads to stores at 24 active entries. RP16 is a store bu�er with store retirement
point of 16 active entries. LR24 is a store bu�er with lazy store removal at 24 active entries. V is a virtual
store bu�er. LR24.V is a virtual store bu�er with lazy store removal at 24 active entries.

Impact of Lazy Store Removal. The policy of lazy store removal alone has

an overall positive e�ect on the processor. Each benchmark analyzed has an in-

creased IPC, ranging from a negligible performance increase in m88ksim to 3.3%

IPC improvement in richards. The average store bu�er occupancy rises to about

23 entries. Another e�ect of this policy is a substantial increase in the amount of

load forwarding and therefore a reduction in load requests sent to memory. The
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amount of load traÆc is reduced by an average of 12.5%, ranging anywhere from

3.3% to 28.6%.
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Figure 5.2: E�ects of Store Bu�er Policies on L1 Load TraÆc
P24 switches high priority from loads to stores at 24 active entries. RP16 is a store bu�er with store retirement
point of 16 active entries. LR24 is a store bu�er with lazy store removal at 24 active entries. V is a virtual
store bu�er. LR24.V is a virtual store bu�er with lazy store removal at 24 active entries.

Unfortunately, all of these saved loads do not translate directly into perfor-

mance increase. Since the load operations must have the same address as a recent

store to perform load forwarding, almost all of the loads being forwarded would have

been hits in the level one cache (which has only one-cycle latency). Expensive loads,

like L1 misses, are not usually caught by the store bu�er. The simulated memory

system also provides two MSHRs to further hide access latencies. In addition, a

dynamically scheduled processor's ability to tolerate loads varies from load to load

and program to program [54]. It is possible that the loads that are avoided due to

increased load forwarding are ones that can tolerate latency.

It is interesting to note that the percentage of cycles with a store bu�er stall
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varies very little, if at all. Although the number of average entries in the store bu�er

has increased, many of them (especially the older ones) are stores that have already

been retired to memory. Therefore, they can be purged quickly if necessary.

Impact of Store Priority Switching. Switching priority from loads �rst to

stores �rst at a threshold of 24 does not have a signi�cant e�ect on performance in

store bu�ers. In most cases, it reduces the percentage of cycles with a store bu�er

stall, but it is common for the IPC to actually decrease compared to the base model.

For example, the Java program jack had a large percentage of store bu�er

stall cycles in the base model, 4.37%. Using the priority switching model, this is

reduced to 0.13%, but the IPC decreases by 0.05%. There are two probable reasons

for the performance decrease. One is that the amount of load forwarding has been

decreased, allowing more loads to access memory and incur a longer latency. The

other reason is that the reduction in cycles with a store bu�er stall is relatively

small. Raising the threshold at which the store priority switches to 24 active entries

also decreases performance, but by a lesser amount. The programs compress95 and

idl which also had signi�cant stall cycles due to the store bu�er did not see any

improvement in performance from this policy.

Store Retirement Point. We can see that modifying the store retirement point

results in a performance increase over the base model. The IPC is increased by an

average of 0.93%, including one case of an IPC decrease. Our studies show that the

average occupancy of the store bu�er increases from an average of less than eight in

the base model to an average of about 17. Therefore, increasing the store retirement

threshold improves the potential of load forwarding, but also increases store bu�er

stalls. We �nd that the store bu�er stalls degrade the performance gain from the

extra load forwarding.

There is also an e�ect similar to that of a lazy store removal policy, a large
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increase in load forwarding. The di�erence is that the percentage of cycles with a

store bu�er stall now increases more substantially. A store can not be considered

for removal until it has been retired. In the lazy removal case, stores are retired

early and are fully prepared to be purged from the store bu�er when the threshold

is reached. In the late retirement scenario, stores are less likely to be prepared for

removal as the store bu�er �lls with active entries.

These results show that allowing stores to contend for the memory interface

resources as soon as possible does not hurt performance. If there are several out-

standing stores, they can block the cache from performing important loads, but this

does not appear to be a critical issue to performance. It is more important to utilize

available L1 bus cycles.

Impact of Virtual Store Bu�er. Implementing a virtual store bu�er produces

the best performance increase of any single policy studied. The IPC for the bench-

marks increased by an average of 4.2%, ranging from a 0.13% increase to 18.77%

increase in richards. Reducing the address translation step is the primary reason

for the performance gain. The number of translations is reduced by an average of

5.82%, ranging from 0.96% to 10.89% since it is assumed that a process ID and a

virtual address are suÆcient to properly determine address dependencies.

For each load that is forwarded, the address translation latency is not incurred

(the model allows one cycle for TLB hits which occur 99% of the time). Load for-

warding increases slightly with a virtual store bu�er versus the base model, because

the load can access the store bu�er earlier.

Adding Lazy Store Removal to a Virtual Store Bu�er. Studying several

combinations of the discussed policies, the best processor performance for a processor

with a 32-entry store bu�er is achieved by making it virtual and implementing the

lazy store removal policy with a threshold of 24. Store retirement should remain at
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the point indicated in the base model, once all previous instructions are completed

and the store is non-speculative. Switching store priority does not need to occur for

performance reasons, although in the UltraSPARC-IIi it is used to avoid \lock-out

conditions."

Lazy store removal increases the number of forwarded loads, and virtual ac-

cessing reduces the number of address translations that can be saved. If the best

case (33.6% increase for richards) and the worse case (0.54% increase for m88ksim)

are ignored, we �nd that the performance increase available from combining a vir-

tual store bu�er with lazy removal ranges from 0.79% to 9.57%, and averages 5.11%.

The decrease in L1 load traÆc and address translations is substantial. The number

of loads that access memory is reduced by an average of 12.97%, while the num-

ber of address translations is reduced by 12.63%. The address translations include

translations for store instructions, so they do not reduce at exactly the same rate

as the load traÆc.

Load traÆc reduction is a direct result of increased load forwarding. By

implementing lazy store removal, the average number of active entries in the store

bu�er increases, improving the chances for load forwarding. Making the store bu�er

virtual accounts for the address translation reduction. For each forwarded load,

there need not be an address translation to complete the load.

5.1.2 Policies versus. Size

This section investigates the e�ects of store bu�er size with and without the

improvement from the optimal policies. Figure 5.3 compares an array of con�gura-

tions averaged over the three di�erent benchmark suites. In addition to the original

32-entry size, sizes of four, eight, and sixteen are simulated. Each of the new sizes

is optimized with the lazy store removal policy and then made virtual. The objec-

tive is to observe whether a smaller, smarter store bu�er can outperform the larger,
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naive store bu�er. This is important since it is often the case that access time due

to disambiguation is less for smaller store bu�ers, making these policies easier to

implement.
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Figure 5.3: E�ects of Store Bu�er Size and Policy on IPC
SX indicates the size of the store bu�er where X is the number of entries. LRX indicates the lazy store removal
threshold where X is the the threshold. V indicates a virtual store bu�er. These percentages are relative to
the 32-entry, physical store bu�er base model.

Figure 5.3 demonstrates that it is possible for smaller store bu�ers to approach

and, in fact, surpass the performance of a larger store bu�er. The �rst thing to note

from this �gure is that down-sizing to a 16-entry store bu�er (S16) results in little

performance degradation, about 1% overall and a maximum of 4%. The average

store bu�er size for the benchmarks is under eight active entries per cycle in the

base runs. Therefore, it is not surprising that a store bu�er of 16 is quite adept at

handling the stores when no other policies are applied.

When lazy store removal is added (S16.LR12), the overall IPC is within 0.33%

of the base model and six benchmarks actually improve over the base model as seen

in Figure 5.4. If this store bu�er is made virtual (S16.LR12.V), then all but one of
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the benchmarks (m88ksim) improves over the base model 32-entry store bu�er.
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Figure 5.4: Change in IPC for a 16-entry Store Bu�er
S16 is a 16-entry store bu�er. S16.LR12 is a 16-entry store bu�er with lazy store removal at a threshold of
12 entries. S16.V is a 16-entry virtual store bu�er. S16.LR12.V is a virtual 16-entry store bu�er with lazy
store removal at 12 active entries. These percentages are relative to the 32-entry, physical base model.

Figure 5.3 also shows that the enhanced four-entry and eight-entry store

bu�ers are not able to outperform larger store bu�ers on average. The four-entry

store bu�er shows a signi�cant performance drop versus the base model. This is the

result of the bu�er being too small. A store bu�er stall occurs in about one-third of

all cycles in this case. The average store bu�er occupancy per cycle is almost three

entries, which explains the ine�ectiveness of a lazy store removal threshold of two

(S4.LR2). Making the four-entry store bu�er virtual (S4.LR2.V) is a big improve-

ment, especially for the C programs, but does not really approach the performance

of a simple eight-entry bu�er (S8).

The optimal eight entry bu�er (S8.LR5.V), on the other hand, does approach

the performance of a naive 16-entry store bu�er (S16), despite the fact that its simple

con�guration (S8) is signi�cantly worse that that of the 16-entry store bu�er (S16).
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Figure 5.4 illustrates that six benchmarks perform better on the optimal eight-entry

bu�er than the naive 16-entry bu�er and four of those (go, ijpeg, deltablue,

richards) perform better than the base model.
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Figure 5.5: Change in Load traÆc for a 16-entry Store Bu�er
S16 is a 16-entry store bu�er. S16.LR12 is a 16-entry store bu�er with lazy store removal at a threshold of
12 entries. S16.V is a 16-entry virtual store bu�er. S16.LR12.V is a virtual 16-entry store bu�er with lazy
store removal at 12 active entries. These percentages are relative to the 32-entry, physical base model.

The IPC numbers indicate that the virtual aspect of the 16-entry store bu�er

increases performance more than lazy store removal. In Figure 5.5, it is apparent

that almost all of the improvement in load traÆc is the result of the lazy store

removal. So, the extra performance provided by virtual store bu�ers is strictly the

result of a lower latency for acquiring load data. The details of the best con�guration

are presented in Table 5.2.

In the table, all percentages are relative to the 32-entry, physical base model.

Column one shows the di�erence in IPC. In all but one case, this half-size store

bu�er outperforms the 32-entry base model. The next column shows the reduction

in load traÆc. Except with the Java compress program, all benchmarks show an
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improvement in load traÆc to the data cache. The virtual aspect allows for the

reduction in address translations (column three). The fact that, in column four,

most of the benchmarks show an increase in average occupancy versus a store bu�er

of twice the size emphasizes the ineÆciency of the straightforward base model. The

last column reports the percent change in store bu�er stall percentage. This simply

shows that even though the percentage of stall cycles increases, performance may

still be improved. The store bu�er stall percentage is often quite small to begin

with, so slight increases in the absolute value of store bu�er stall cycles will show a

large percentage increase.

Table 5.2: Virtual Store Bu�er of Size 16 with Store Removal Threshold of 12

Percent Change versus Base

Benchmark IPC Loads to L1 Addr Trans Avg SB SB stall %

compress95 1.07 -12.06 -9.90 10.77 46.54

gcc 1.92 -6.98 -8.07 96.55 502.30

go 6.91 -15.65 -14.65 274.48 924.49

ijpeg 4.70 -3.20 -2.50 97.92 98.32

li 3.64 -7.01 -7.31 64.43 1059.31

m88ksim -0.42 -9.86 -20.16 88.57 19.84

vortex 1.15 -3.44 -4.58 53.59 101.32

compress 0.88 0.68 -6.59 -6.91 405.45

db 3.37 -4.44 -6.39 73.85 245.27

deltablue 6.12 -8.75 -7.84 181.98 110.66

eqn 1.27 -16.83 -11.47 80.69 9692.08

idl 0.38 -11.11 -12.29 422.84 92.72

ixx 0.46 -8.39 -10.86 93.92 80.48

jack 1.67 -0.23 -7.10 -24.69 83.18

javac 3.87 -4.12 -6.13 73.27 349.14

jess 4.45 -3.81 -5.65 70.92 629.97

mpegaudio 1.19 -0.98 -9.73 -3.32 240.65

mtrt 6.16 -3.01 -5.37 40.12 2793.96

richards 29.59 -17.32 -19.39 88.60 160.15

All numbers are relative to the base model. IPC is the percent change in instructions per cycle. Loads to L1

is the percent change in load instructions that access the L1 data cache. Addr Trans is the percent change
in the number of address translations. Avg SB is the variation in the average number of active entries in
the store bu�er. SB stall % is the variation in the percentage of cycles with a store bu�er stall.

The store bu�er stall �gure, Figure 5.6, shows the percent increase in store

bu�er stall percentage. The store bu�er stall percentage is the number of cycles

with a store bu�er stall divided by the total number of cycles, stallcycles

allcycles
. Most
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of the benchmarks expectedly increase their store bu�er stall percentage when the

store bu�er policies are enhanced. Note that eqn sees a reduction in store bu�er

stalls when increasing its store bu�er occupancy.
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Figure 5.6: Change in Store Bu�er Stalls for a 16-entry Store Bu�er

S16 is a 16-entry store bu�er. S16.LR12 is a 16-entry store bu�er with lazy store removal at a threshold of
12 entries. S16.V is a 16-entry virtual store bu�er. S16.LR12.V is a virtual 16-entry store bu�er with lazy
store removal at 12 active entries. These percentages are relative to the 32-entry, physical base model.

5.1.3 Best and Worst Behavior

This section briey discusses the benchmarks that exhibit the best and worst

performance increase in the optimal store bu�er scheme. The C++ program richards

achieves a 33.6% IPC increase with the lazy removal virtual store bu�er versus the

base model. One attribute that distinguishes richards from the other benchmarks

is that it has one of the highest percentage of load instructions, 28.20% . Therefore,

when the load traÆc to L1 is reduced by 27.5%, a larger percentage of the total

instructions in the program are being improved. Lazy store removal increases the
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average number of active entries in the store bu�er and the potential for a store

bu�er stall. If the memory accesses are ordered in such a way that store bu�er stalls

are rare, it only helps these policies. A low percentage of store bu�er stall cycles

(almost 0%) indicates that this may be the case with richards (Table 5.1).

The C program m88ksim is least a�ected by the store bu�er improvements.

The best IPC increase obtained is 0.54%. Tables 4.1 and 4.2 show that m88ksim

has the lowest percentage of load instructions and a high percentage of store bu�er

stall cycles in the base model. This is the opposite of richards. In addition, while

richards enjoys a 27% decrease in data cache load traÆc, m88ksim decreases this

traÆc by 11.9%.

5.2 Virtual Store Queue Analysis

5.2.1 Results from an Isolated VSQ

First, the VSQ is analyzed as a stand-alone component for initial studies.

These experiments are run independent of the entire microprocessor core driven by

memory references alone. Stores are placed in the VSQ using one of three methods:

least recently used (LRU), random, or �rst-in �rst-out (FIFO). Load instructions

examine the entire contents of the VSQ. If a virtual address of a store in the VSQ

matches the virtual address of the load, the load is considered to hit in the VSQ.

The LRU and random replacement methods are only tested with a 32-entry bu�er.

For the FIFO model, VSQ sizes of eight, 16, and 32 are considered.

Table 5.3 shows the percentage of loads that hit in the VSQ for the various

con�gurations. A small eight-entry FIFO virtual store queue can reduce the load

traÆc to the memory hierarchy by 20.7% on average. A store bu�er would have to

maintain an average occupancy of eight active entries to match this forwarding rate.

The improvement in hit rate due to increased bu�er size varies from application to
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application (e.g. compress versus m88ksim).

Table 5.3: Percentage of Loads Removed by VSQ

FIFO LRU RND

Benchmark 8-entry 16-entry 32-entry 32-entry 32-entry

compress95 24.22 35.44 43.63 51.07 41.59

gcc 17.02 24.02 31.24 34.89 28.44

go 18.95 26.13 34.48 36.17 31.43

ijpeg 4.96 5.69 7.10 7.26 8.27

li 16.44 21.84 25.61 27.07 24.30

m88ksim 38.93 40.27 41.52 41.69 42.14

perl 18.67 23.10 28.06 29.49 26.35

vortex 11.87 15.67 21.68 38.48 21.05

deltablue 11.77 16.15 19.22 20.99 17.90

eqn 22.20 27.85 32.63 37.68 32.31

idl 35.31 36.30 37.31 37.64 35.64

ixx 19.41 24.98 29.29 30.01 26.96

richards 27.92 37.65 46.90 57.43 46.36

compress 27.46 29.77 32.55 34.57 32.41

db 18.55 22.57 26.81 30.11 25.87

jack 26.27 28.15 33.93 34.66 33.20

javac 18.62 22.41 26.66 28.37 25.95

jess 17.12 21.66 25.98 28.23 24.98

mpegaudio 26.78 30.64 32.49 34.36 32.13

mtrt 15.48 20.92 24.89 26.32 24.49

Except in the case of mpegaudio, the LRU replacement scheme provides im-

provement over FIFO. This improvement varies from less than 1% for ixx to 17%

for vortex. A random replacement scheme provides worse performance than both

FIFO and LRU replacement schemes. The 32-entry LRU con�guration provides the

highest hit rate across the benchmarks, eliminating 33.3% of the load instructions

on average. In some cases, this mechanism has the potential to reduce load traÆc

to the L1 data cache by one-half.

5.2.2 Results for a Full Processor with a VSQ

The 32-entry VSQ is examined in the context of a full microprocessor to

evaluate its impact on instruction throughput and memory bandwidth. The VSQ

is implemented as a content-addressable FIFO queue.
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Figure 5.8: Percent Increase in IPC Using a 32-entry VSQ
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Chapter 6

Solution for Wide-Issue Processors

6.1 Load Tokens

The instruction trace cache has been shown to increase the instruction band-

width, allowing issue rates previously not attainable [43, 45, 49]. As instruction fetch

techniques improve, aggressive issue and execution techniques can be employed to

exploit the available instruction stream. Data speculation has been presented as

one method to increase processor throughput. Value prediction is a way to relax

some dataow restrictions [20, 32, 33, 50]. Through con�dence mechanisms, his-

tory tables and value bu�ers, many of these techniques are able to increase the

performance of out-of-order processors. Similar to some forms of value prediction,

memory renaming has also been shown to improve performance [30, 40, 57]. How-

ever, to achieve signi�cant performance, large, complex data structures and quick

recovery from misspeculation are required.

As an additional improvement to the VSQ, loads can access the VSQ specu-

latively. Unlike other speculation-based memory techniques, the decisions are gov-

erned by dynamically created load tokens supplied by the trace cache instead of a

series of tables and bu�ers. These relatively small load tokens determine the con-
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�dence levels per static instruction and pinpoint the location of useful data within

the VSQ.

6.1.1 Design of VSQ with Load Token Support

Each load is a candidate for a token. A load instruction whose e�ective address

matches an entry in the virtual store queue is given a token. The status of the token

could a�ect subsequent executions of the instruction when it is accessed from the

trace cache. In this study, the token is a two-bit, saturating con�dence counter and

a six-bit o�set. The counter is incremented each time a load instruction �nds its

data at the same VSQ o�set as the previous access. When the counter is zero, it is

always incremented on a VSQ hit. The counter is decremented when no hit occurs.

A load from the trace cache may speculatively access the VSQ at the o�set when

the counter is in its maximum state.

The o�set is the distance from the tail of the VSQ to the VSQ entry that

contains the matching virtual address. An o�set allows for a quick, direct mapped

access to the VSQ when the load requests this value. A correct speculation allows

future instructions that are dependent on the load to proceed when they otherwise

would not be able. Although this method of speculation does not predict all types

of load-store dependencies, it comes at a low hardware cost. The only enhancements

needed to add speculation to the VSQ are additional �ll unit logic and load tokens.

Tokens may be stored in a token table, separate from the trace cache, that

allows N tokens per trace cache line. This method also requires one bit per instruc-

tion in the trace cache line to indicate which instructions have tokens. A second

option is to provide each instruction slot in each trace cache entry with token stor-

age. The �rst option uses less area and number of transistors. On the other hand,

the second option does not restrict the number of loads that have tokens and allows

all instructions to receive tokens.
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6.1.2 Role of the Fill Unit

Figure 6.1 illustrates how the VSQ may �t into a trace cache environment.

When a static instruction is encountered for the �rst time, it must be fetched from

the instruction cache. As the instructions are issued, the �ll unit collects and formats

the instructions into trace cache lines. A trace cache line is held in the �ll unit until

all of the load instructions in the line compute their addresses. Each load informs

the �ll unit if it hit in the VSQ. If a hit occurs, the VSQ o�set is communicated as

well. At this point, the �ll unit can place the formatted line into the trace cache

(often times replacing the previous version of the line).

. . . . . . . . . . . . .

VSQ

I-Cache
Trace Cache

Fill Unit

Res. Stations/Func. Units

with hints

Others Loads Stores

Speculative

PID

Addr

Others Update Data

Stores Update VA

Loads Search

VirtData
Load Search Result

Stores allocate

Load
Access

Decode/Rename/Issue

Figure 6.1: A trace cache processor augmented with the virtual store queue

When a load instruction is fetched via the trace cache, the related token

information is passed to the �ll unit. The �ll unit can later combine the newest

information from the load instruction with the previous state to create a revised
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token with a new con�dence level and possibly a new o�set. The �ll unit may

then write the trace cache entry with the revised token into the trace cache. All

loads, including loads satis�ed speculatively by the VSQ, eventually calculate their

addresses and do a VSQ lookup.

The �ll unit may begin to overow if a load takes an extended number of cycles

to calculate its address, because in the meantime instructions are continuously being

issued. The �ll unit has the option to place the line in the trace cache with no tokens,

or to simply discard the line. This decision can be triggered by a \full" �ll-unit or

by a threshold on the time period. For simulation purposes, the �ll unit is permitted

to hold a line inde�nitely. Later, the requirements of such a �ll unit are analyzed.

6.1.3 Handling Incorrect VSQ Accesses

It is possible that a load speculatively acquires the wrong value from the vir-

tual store queue. Determining this requires checking the calculated address against

the address of the store entry that provided the data. When a load instruction

speculatively loads from the VSQ, the virtual address of the corresponding VSQ

entry is carried along with the load to a �eld in the reservation station entry of the

load/store units. If this address matches the actual address then speculation was

successful, otherwise the processor must recover.

There are two common strategies to recover from value misspeculations. In

the most straightforward approach, the processor can squash all instructions that

follow the o�ending load and then re-fetch and re-execute these instructions. This

is the same strategy used for branch mispredictions. Additional checkpoints must

be added for each load. Other than that, little additional hardware or data paths

are necessary.

Selective re-execution is another option. This requires a more complicated

hardware commitment but reduces the recovery time. In this scenario, only in-
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structions that are in the dependency chain of the misspeculated load should be

re-executed. Tyson and Austin found that only one-third of all instructions follow-

ing a misspeculated load depend on that value. The tradeo�s and implementation

of these two methods are further discussed in [32, 57].

6.2 Analyzing the Load Tokens

6.2.1 Wide-Issue Microprocessor Model

The trace cache implementation is based largely on the discussions in [43]. A

�ll unit collects instructions at issue time as in [43, 49]. Upon completing a trace

cache line (also called a trace cache entry), the �ll unit can then write the formatted

trace cache line into the trace cache. Several additions to this basic trace cache

architecture are required: the virtual store queue, load tokens, additional �ll unit

logic, and load speculation recovery.

Many trace cache studies work with unconstrained hardware resources, or op-

timistic resources such as 16 all-purpose functional units [15, 17, 43, 49]. Twenty spe-

cialized functional units are used. Their distribution is biased towards the integer-

dominated benchmarks.

The fetch engine is implemented in a very similar manner to [15]. The level

one instruction cache requires one more cycle to access than the trace cache. Fill

unit optimizations, branch promotion, trace packing, next-trace prediction, and

inactive issue are not implemented [14, 15, 24, 42, 43, 49]. The branch predictor is

a hybrid predictor consisting of a gshare predictor with 15-bit history and a two-bit

bimodal predictor [36]. All memory operations are allowed one cycle for memory

disambiguation and/or address translation. The physically addressed store bu�er

allows load forwarding upon disambiguation and address translation.
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Table 6.1: Simulated wide-issue architecture parameters

Data memory

� L1 Data Cache: 4-way, 64KB, 1-cycle access
� L2 Uni�ed cache: 4-way, 4MB, +9 cycles
� Non-blocking 4 MSHRs and 4 ports
� D-TLB 512-entry, 1-cycle hit, 30-cycle miss
� Store bu�er: 64-entry w/load forwarding

loads access in 1-cycle
� Main Memory In�nite, +20 cycles

Fetch Engine

� Trace cache: 4-way, 2K entry, 1-cycle hit
partial matching, no path assoc.

� L1 Instr cache: 4-way, 4KB, 2-cycle hit
one basic block per access

� Branch Predictor: 16k gshare/bimodal hybrid predictor
3-cycle misprediction penalty

� Branch target bu�er Perfect

Execution Core

� Functional unit # exec. lat. issue lat.
Load/store 4 1 cycle 1 cycle
Simple Integer 8 1 1
Int. Mul/Div 3 3/20 1/19
Simple FP 3 3 1
FP Mul/Div/Sqrt 2 3/12/24 1/12/24

� 256-entry reorder bu�er
� 12 reservation station entries/func. unit
� Fetch width: 16
� Decode width: 16
� Issue width: 16
� Execute width: 16
� Retire width: 16
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6.3 Load Token Results

6.3.1 Impact of Virtual Store Queue

The maximum potential performance of the 64-entry VSQ is presented in

Figure 6.2. This is called the ideal VSQ (Ideal64). This VSQ is able to identify all

loads that will hit in the VSQ and performs early load forwarding. This is equivalent

to full coverage on all VSQ hits and 100% speculation success. The overall potential

performance improvement of the 64-entry ideal VSQ is 15.2%, and is benchmark

speci�c, ranging from 0.2% to as much as 162.0%.
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Figure 6.2: Impact of virtual store queue
VSQ64 is the base model with a 64-entry VSQ. VSQ128 has a 128-entry VSQ. Ideal64 has a VSQ with full
coverage and perfect speculation for all VSQ hits.

The �rst non-ideal VSQ con�guration examined in Figure 6.2 is the base model

with a 64-entry virtual store queue but no speculative token-based loading (VSQ64).

In this case, a VSQ hit saves the time required for address disambiguation in the

store bu�er and data cache access, but requires one cycle to access the VSQ. The
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addition of a 64-entry VSQ to the base model with no load tokens yields a 7.2%

overall performance gain. The performance gains stem from the ability to bypass the

memory system more often than in the base model. However, the exact amount of

improvement cannot be directly tied to any one characteristic, but to a combination

of several factors.

The percentage of load instructions in a program is the �rst important factor

from Table 6.2 (% Loads ). Programs with a large percentage of loads will be more

sensitive to the e�ects of the VSQ. For example, the two programs with the lowest

percentage of loads, m88ksim and ixx show very little performance gain, if any.

Table 6.2: Runtime characteristics of memory operations

Base Model Tokens, Rex3

Benchmark % Loads % Stores % Load forward VSQ Hit % VSQ Coverage % VSQ Pred %

compress95 17.7 15.0 25.9 47.78 17.25 90.52

gcc 18.6 9.9 16.4 34.40 11.48 92.86

go 21.2 7.2 12.1 42.86 7.46 90.75

ijpeg 17.0 6.5 3.7 15.00 5.88 97.76

m88ksim 15.2 8.5 35.4 43.29 36.12 99.40

perl 20.5 10.7 17.6 32.99 15.50 96.14

vortex 18.7 9.5 11.1 19.78 10.19 98.21

deltablue 25.4 6.2 6.5 21.08 17.65 99.58

eqn 17.3 9.4 23.1 39.28 20.12 94.97

idl 21.8 2.7 8.5 24.07 12.17 98.95

ixx 15.2 7.7 19.0 32.99 17.53 98.48

richards 27.5 8.2 11.5 44.09 21.08 98.01

compress 31.7 10.0 23.4 30.40 12.07 95.37

db 21.6 7.6 13.9 26.28 12.61 98.22

jack 28.8 9.7 22.9 30.11 15.23 98.75

javac 22.7 7.9 14.2 26.48 13.51 97.10

jess 23.8 8.3 13.5 26.19 11.21 96.52

mpegaudio 31.0 9.4 23.6 29.84 13.02 97.90

% Loads is the percentage of all instructions that are loads. % Stores is the percentage of all instructions
that are stores. % Loads forward is the percentage of loads that have their values forwarded from the store
bu�er. VSQ Hit % is the percentage of all decoded loads that hit in the VSQ upon calculating their address.
VSQ Coverage % is the percentage of all loads that load speculatively from the VSQ. VSQ Pred % is the
percentage of predicted loads that are predicted correctly.

Another factor is the amount of load forwarding present in the base model (%

Load forward in Table 6.2). Load forwarding from the store bu�er leads to many

of the same bene�ts as VSQ hits. If the load forwarding percentage is comparable
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to the percentage of loads that hit in the VSQ (VSQ Hit %), then the VSQ has not

served any additional purpose. For example, the program with the biggest di�erence,

richards, bene�ts most from the VSQ and the program with the smallest di�erence,

m88ksim, bene�ts the least.

Past research showed that load operations can be optimally satis�ed at varying

rates, i.e. some are more critical than others [54]. The VSQ may be eliminating

a large percentage of loads, but if these loads happen to be non-critical then the

impact will not be reected in the performance. This is probably the case in a

benchmark like idl which contains 21.8% loads and improves signi�cantly on the

load forwarding rate, yet does not respond well to the VSQ.

When the VSQ is doubled in size to 128 (VSQ128) entries, the additional

overall performance gain is less than 1.5%. Only a small percentage of additional

load instructions �nd their data in the VSQ.

6.3.2 Impact of Load Tokens

Although there is signi�cant performance improvement using the 64-entry

VSQ, only half of the ideal performance gain is reached. The remaining available

performance can be achieved through speculation. This thesis examines two con�g-

urations which allow for load token based speculative loads. In the �rst case, squash

recovery is used (Tokens, Sq8) and in the second case, selective re-execution is used

(Tokens, Rex3). The load token misspeculation penalty when using squash recov-

ery is eight cycles. The misspeculation penalty using selective re-execution is three

cycles. The performance impact using these policies is illustrated in Figure 6.3.

Adding speculation with squash recovery does not increase the performance

signi�cantly. In some of the benchmarks there is performance degradation versus the

non-speculative VSQ (VSQ64 in Figure 6.2) and even versus the base model in some

cases. Not surprisingly, speculation using the quicker selective recovery provides
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more improvement over a non-speculative VSQ implementation. With this method

of recovery, overall performance increases by 10.4% over the base model.
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Figure 6.3: Impact of load tokens
Tokens, Sq8 has a VSQ, load tokens, and an 8-cycle squash recovery. Tokens, Rex3 has a VSQ, load tokens,
and 3-cycle selective re-execution. Ideal64 has a VSQ with full coverage and perfect speculation for all VSQ
hits.

This is an improvement over the non-speculative VSQ implementation, but

does not reach the overall ideal performance of 15.2%. For speculation to be worth-

while, the cumulative rewards of correct speculation have to be far greater than the

penalties of misspeculation. Although it has been found that many correctly specu-

lated values may not directly enhance performance, as fetch bandwidth increases the

rewards for proper speculations should increase [17]. Furthermore, in a processor

with multiple stages between decode and execute, the reward for proper speculation

may be higher than with this short pipeline.

Table 6.2 and Figure 6.4 provide a more in-depth look at the VSQ and token-

based speculation. VSQ Hit % is the percentage of all decoded loads that �nd a
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matching store in the virtual store queue. On average, 31.3% of all load traÆc can

be eliminated using the VSQ. The next two columns concern speculation. The VSQ

Coverage % is the percentage of all loads that have enough con�dence to perform

a speculative VSQ access. The �nal column is the prediction rate of those loads

which do a speculative VSQ access.

The percentage of loads covered is approximately the percentage of loads that

hit in the VSQ. If a load does not hit in the VSQ at some point, it will never

speculatively load from the VSQ. Overall load coverage ranges from only 7.2% to

36.2%. This means most loads in the programs are left unspeculated. However,

of the loads that are speculated, a high percentage are speculated properly, over

90% in all cases and an average of 96.64%. Although the tokens do not allow for

many loads to be satis�ed speculatively from the VSQ, they cause relatively few

mispredictions.
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Non-VSQ are loads not a�ected by the VSQ. Unspeculated are VSQ hits that didn't speculate. Correct are
VSQ hits that properly speculated. Incorrect are loads that misspeculated.
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6.4 Other Design Issues

Table 6.3 provides some indication of the eÆciency and feasibility of the VSQ,

load tokens, and supporting logic. The �rst column shows the percentage of VSQ

entries that never satisfy a load during their lifetime in the VSQ. These can be

thought of as unused VSQ entries. On average, 44.87% of VSQ entries go unused. A

more judicious manner of adding stores to the queue could increase the performance

with the same amount of resources.

Table 6.3: Design issue analysis

Benchmark Unused VSQ Load Addr. Delay Delay TraÆc Lines w/tokens Tokens/Line

compress95 58.1 5.51 36.74 30.3 1.56

gcc 59.5 8.60 45.61 23.1 1.63

go 40.0 8.66 46.98 23.3 1.56

ijpeg 69.7 24.65 70.19 11.0 1.58

m88ksim 50.3 13.62 77.23 24.1 2.70

perl 53.3 9.04 55.40 30.7 1.37

vortex 80.5 6.94 46.76 19.0 1.35

deltablue 39.8 99.68 99.37 24.3 1.53

eqn 57.4 6.67 39.92 23.5 1.89

idl 46.5 10.37 69.20 20.1 1.31

ixx 53.5 10.04 54.74 19.3 1.40

richards 29.9 24.78 125.41 44.4 1.24

compress 17.9 23.74 100.87 49.1 1.33

db 40.0 17.97 77.67 27.6 1.35

jack 21.4 26.65 121.44 46.9 1.21

javac 37.6 21.82 85.30 31.3 1.32

jess 38.7 22.48 85.02 29.9 1.31

mpegaudio 13.5 16.55 88.14 39.4 1.62

Unused VSQ is the percentage of VSQ entries that never forward data to a load. Load Addr. Delay is the
average time in cycles that a load requires to calculate its address. Lines w/tokens is the percentage of
trace cache lines gathered that contain at least one token. Tokens/Line is the average number of tokens per
trace cache line for lines that have at least one token.

The next metric is the average number of cycles that a load requires to calcu-

late its address, or load address delay. This indicates the average number of cycles

the �ll unit requires to bu�er instructions before placing them in the trace cache.

The delay traÆc is the average number of instructions that are issued during the load

address delay. The �ll unit requires storage to bu�er instructions while it packages

them for trace cache placement. The delay traÆc shows the bu�er size magnitude

66



that may be needed. Further studies are required to �nd the best heuristics and

policies that balance performance and realistic �ll unit expectations.

Lines w/tokens is the percentage of trace cache entries collected in the �ll unit

that contain at least one token. For lines with tokens, the average number of tokens

per line is reected in the last column of the table. The percentage of lines with

tokens is important. Whenever a new token is written into a trace cache line, it is

best to place that line back into the trace cache no matter what. Normally, many

trace lines do not make it from the �ll unit to the trace cache because a similar line

is already present. Therefore, this metric shows the possibility for extra trace cache

write traÆc.

For the VSQ architecture, the last column is useful in the token storage im-

plementation decision. Since there are on average only 1.75 tokens per line, why

keep storage space for 16 tokens per line? The complimentary structure discussed

earlier, with N = 4, would suÆce.
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Chapter 7

Related Work

Previously, there has been extensive research targeting the same basic load-

store relationship. These works are similar in that they all take advantage of the

relationship between dependent memory access instructions located close together

in the dynamic instruction stream.

7.1 Basic Memory Techniques

Johnson provides an in-depth discussion of a store bu�er which holds stores

that conict with a load for a data cache interface [26]. The store bu�er maintains

the ordering of the stores and allows stores to be performed only after all previous

instructions (including loads) have been completed. Loads are allowed to bypass

stores and data forwarding is performed when appropriate. Data forwarding allows

a load instruction to \load" its data from a store instruction located in the store

bu�er. The alternative is to allow the store to complete and then load the value

from memory. Finally, loads are performed in order with respect to other loads, for

simplicity. Johnson's store bu�er is our base model. Additional work in memory

ordering has been performed by McKee et al. [38, 39].

A load instruction receiving data from a uncommitted store instruction is
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called load forwarding or data forwarding. Studies have found that due to conditions,

such as register spilling, stores are often closely followed by a load to the same

address as the store. Some research uses speculative methods to try to get maximum

use out of this relationship [30, 40, 57]. Other studies use a bu�er, much like a

store bu�er, to forward the store data[25, 34]. We will attempt to allow the store

bu�er to exploit this fact while maintaining its memory ordering and latency hiding

functionality.

Buffer
Load

Buffer
Store

L2 Cache

. . . . .

L1 Data
Cache

Load/Store Units

. . . . .. . . . .

. . . . .

Cache

L1 Data

Buffer

Write

Execution Core

L2 Cache

a. Store Bu�er from Thesis b. Write Bu�er from Literature

Figure 7.1: Write bu�er versus Store bu�er

One structure that is similar to the store bu�er is the write bu�er [35, 51, 53].

Our model is a store bu�er as in Figure 7.1.a while most of the write bu�er literature

assumes a structure similar to the one in Figure 7.1.b. These write bu�ers are

accessed in parallel with the on-chip cache and have the ability to combine several

stores with contiguous addresses or the same address. Skadron and Clark discuss

the issues and tradeo�s involved in such a write bu�er [53]. Martonosi and Shaw

did a study of the e�ect of compilation techniques on the performance of a write

bu�er [35]. Jouppi [29] and Bray [5] consider structures they call write caches with

similar properties. The issues addressed in these papers and similar papers focus on
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reducing the number of writes that are performed o�-chip and sometimes on-chip.

It is possible that mechanisms like the write bu�er can be referred to as a store

bu�er [51].

Of course, there are many works that encouraged and inuenced both my

study and the above studies. Johnson talks about data forwarding where load in-

structions can load from a store in the store bu�er instead of waiting for the store

to proceed and then loading from that address [26]. Austin and Sohi outlined an

early pipeline, fast-address calculation scheme, exploiting the use of a precomputed

base and immediate o�set to achieve the quick calculation [2]. Gallagher et al. [18]

and Franklin and Sohi [13] proposed methods for recovering from true memory-

dependencies when addresses are computed out-of-order. Lozano and Gao discuss

a data forwarding scheme to exploit the short life-span of many variables involving

compiler analysis and a simple architectural extension [34]. The study and exploita-

tion of memory access characteristics has also been published [27, 48], including a

selective bypassing of the data cache scheme by Tyson et al. [56].

7.2 Memory Speculation

Studies have found that due to conditions such as register spilling, stores are

often closely followed by a load to the same address as the store. Some research uses

speculative methods to try to get maximum use out of this relationship [30, 40, 57].

Other studies use a bu�er, much like a store bu�er, to forward the store data [25, 34].

This thesis enables the store bu�er to exploit this fact via load forwarding while

maintaining its memory-ordering and latency-hiding functionality.

Moshovos and Sohi propose using data dependence prediction to link loads and

stores in the instruction stream [40]. They use data dependence identifying when a

load and store can communicate speculatively, eliminating the address calculation,

disambiguation, and data cache access, and also to identify when a load and store
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may be eliminated totally if they are encountered in the proper sequence. They also

present a Transient Value Cache (TVC) which stores intermediate memory addresses

and relies on the data dependence prediction for management. In their studies they

use a 256 entry fully-associative TVC. They do not indicate the resources required

for their assumption of \perfect dependence and dependence status prediction within

the 256 most recent stores." Also, they assume perfect memory disambiguation in

all cases. They report a potential performance increase ranging from 5% to 15%.

Tyson and Austin propose a technique called memory renaming, which is

similar to the above TVC [57]. Memory renaming combines dependence prediction

with value prediction. They use a store-load cache to store the speculative values

of the memory addresses, where tightly coupled loads and stores access the same

entry in the cache. All of their memory renaming experiments were performed with

a 1024 entry, 2-way set-associative store/load cache and a 512 entry value �le with

LRU replacement. They �nd that memory renaming can be applied to 30% to 50%

of all memory references resulting in a 41% improvement in execution time. The

memory renaming work is extended by the Loadmark Architecture. Reinman et

al. use pro�ling and compiler analysis to provide support to the memory renaming

architecture and �nd that the bene�ts of memory renaming can be further improved

[47].

Jourdan et al. [30] introduced a \one value, one location" approach where a

memory renamer and physical renamer are combined to provide uni�cation of data

value storage. They also suggest predicting values and addresses in an attempt

to eliminate identical data values from occupying more than one register. Their

research concentrates on the X86 architecture. Among the many optimizations sug-

gested in this paper, their speculative techniques also perform memory-dependency

collapsing. Finally, they suggest that a store bu�er is no longer required in such an

environment and that on average 32% of load memory traÆc can be eliminated in
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a 128-deep processor.

7.3 Commercial Implementations

Commercial processors have been implementing store bu�ers or similar ideas

for many years. Although in-depth analysis of performance tradeo�s are not readily

available, there are some indications of the type of policies that are being currently

implemented. Words in quotations indicate processor speci�c terminology.

The Alpha 21264 microprocessor has a 32-entry speculative store bu�er where

a store remains until it is \retired". A store must �rst enter the speculative store

bu�er before its data is sent to the level-one cache. Stores forward their data to

loads when they are in the speculative store bu�er [31].

The Sun UltraSPARC-IIi processor contains a load/store unit (LSU). The LSU

is responsible for calculating load and store virtual addresses as well as \decoupling"

loads and stores from the pipeline by using both a load bu�er and a store bu�er. The

pipelines are not fully decoupled so that the UltraSPARC-IIi can support precise

traps. Stores in the store bu�er normally have a lower priority than loads in the load

bu�er, but the CPU will eventually raise the priority when a \lock-out condition"

is reached. There is no mention of the ordering of the loads and stores or of the

possibility of load forwarding. Finally, the LSU allows stores to be combined if

they have been marked with a \write-gathering attribute," but this is not done

automatically (as it would be in a write bu�er) [41].

The Pentium III processor is said to have twelve store bu�ers, where each

store bu�er can temporarily hold a store to memory. This is essentially one twelve-

entry store bu�er. It allows other instructions to continue executing while the stores

are waiting to be eÆciently written to memory. These stores can forward data to

waiting reads. The P6 architecture contains a memory reorder bu�er (MOB) as

well. The MOB works with physical addresses and a�ects memory accesses that are
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going to the level-two cache [22, 23]. The AMD K6 has a store queue. Entries are

placed into the store queue with their physical address while a cache access is being

attempted [52].

7.4 Wide-Issue Memory Approaches

Using the �ll unit to improve the performance of trace cache lines is �rst

introduced by Friendly, Patel and Patt in [15]. This work focuses on compiler-

like optimizations that could be performed dynamically in the �ll-unit within a

trace cache entry. The �ll unit determines optimizations that can be performed

non-speculatively and then rearranges and/or rewrites the instructions accordingly.

These optimizations are not present in our simulated architecture, but could exist

in the VSQ architecture. Tokens could potentially aid these optimizations.

The memory renaming and data dependence prediction studies appeared con-

currently and are not trace cache related. They deal mainly with address memory

dependence speculation while the VSQ deals with non-speculative memory depen-

dences as well. Compared to the tokenized VSQ, they are larger, more complex, but

more robust methods for speculating on related memory operations. These methods

could be complimented or improved by the load tokens..

Another scheme that incorporates the trace cache to reduce the impact of

loads is a scheme from Gabbay and Mendelson [17]. They make the very interest-

ing discovery that the potential of value prediction can best be exploited in high

bandwidth instruction-fetch architectures. They propose a complicated but fast dis-

tribution network to communicate predicted values directly to the instructions in the

traces. This requires a highly-interleaved prediction table, a trace addresses bu�er,

an address router, a value distributer, a hybrid value predictor [16], and pipelined

access of the prediction table. This study takes liberties with the resources to prove

a very interesting point which we apply to a constrained resource environment.
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John et al. propose a code coalescing unit (CCU) that works in conjunction

with the SRRB [25]. The data and addresses from stores are bu�ered in the SRRB.

This bu�er then forwards the data to subsequent loads. This bu�er along with the

CCU facilitates the removal and/or renaming of loads and stores that are tightly

coupled. They report that 24% to 42% of all load operations could be eliminated

with these mechanisms in place. This study does not report any cycle-level, full-

processor simulation-based performance increase potential, although they suggest

that it can be signi�cant, especially in the register-limited X86 architecture. They

also suggest that the CCU in conjunction with a trace cache on an X86 proces-

sor should provide increasing performance gains. Though performance impact is

not studied, they suggest that for optimal performance the CCU should be used

to rewrite instructions non-speculatively into a trace cache with assistance from

compiler hints. This thesis opts for a hardware-only method with speculation.
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Chapter 8

Conclusion

This thesis makes contributions to the understanding of dependent store/load

pairs and potential designs to reduce their impact. Using an advanced simula-

tion environment, a wide variety of modern workloads are studied, including Java,

C++, and C programs. Characteristics of memory operations including dependent

store/load pairs and transient memory values are revisited and expanded upon.

Microarchitecture proposals for dynamically scheduled out-of-order microprocessors

based on these characterizations are evaluated. The proposed techniques include

advanced store bu�er design and virtual store queues for modern microprocessors.

For future wide-issue processors, the implementation of a speculative load token

method is described and studied. This work provides design insight and options for

microarchitects interested in reducing the negative impact on performance due to

transient memory values and corresponding store/load pairs.

8.1 Memory Characterization

Characterizing the behavior of workloads is important in understanding changes

in microprocessor performance. This thesis �rst studies general memory character-

istics. In addition to a basic characterization, dynamic memory metrics such as the
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average latency of memory operations, port utilization, store bu�er occupancy, and

store distances are analyzed.

Load instructions represent 21.3% of the dynamic instruction stream, sig-

ni�cantly more than store instructions. In general, there are twice as many load

instructions as store instructions. However, port utilization studies show that, due

to the arbitration policy, load instructions spend fewer cycles waiting for memory

resources.. An examination of store bu�er occupancy shows that, on average, 3.09

of the 16 store bu�er entries are active each cycle. This low occupancy leaves room

for improvement in load forwarding schemes.

Somewhat surprisingly, many store/load pairs are only a few instructions apart

in the dynamic instruction stream. About 50% of all forwarding stores in the C++

benchmarks are less than four instructions from a dependent load. This percentage

is approximately 41% for the SPECint benchmarks, and 25% for the SPECjvm

benchmarks. Also, 19.8% of stores write to memory but never have their data read

by a load instruction in the same program. Learning how to di�erentiate between

bad and good stores could improve performance of specialized memory dependence

mechanisms.

This analysis reveals that there is ample opportunity to reduce the latency of

load instructions. This is important because memory reads are critical to overall

instruction throughput. Chains of dependent instructions often start with the load-

ing of a value from memory. Therefore, reducing the latency of load instructions

enables groups of instructions to proceed more quickly.

8.2 Store Bu�er Design

Due to a lack of literature on the details of the store bu�er, the �rst portion

of this thesis delves into the issues involved in designing a store bu�er for a dynam-

ically scheduled, out-of-order processor. These store bu�er issues include size, store
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removal policy, store retirement point, store priority switching, and virtual store

bu�ers.

� Incorporating a lazy store removal policy alone substantially increases the

amount of load forwarding that takes place, yet does not greatly increase

the number of store bu�er stalls in a 32-entry store bu�er. This increase in

load forwarding reduces by 12% the number of load instructions that access

memory. This leads to a performance improvement (in IPC) ranging from

0.15% to 6.9%. A 16-entry store bu�er with this policy can approach and in

some cases surpass the performance of a 32-entry store bu�er. This policy has

less e�ect on store bu�ers of four and eight entries.

� Switching from the base model to a virtual store bu�er model improves perfor-

mance by reducing the number of address translations that take place before

useful memory access work can be performed. Forwarded loads now avoid the

address translation latency. The IPC increases by an average of 4.1% in this

case.

� By incorporating both lazy store removal and making the store bu�er virtual,

the IPC of the processor can increase by an average of 5.11% over all bench-

marks for a store bu�er of size 32 and by as much as 33% in speci�c cases.

On average, a 16-entry store bu�er with these policies outperforms a normal

32-entry store bu�er. Even an eight-entry store bu�er outperforms a 32-entry

store bu�er for certain benchmarks. Four- and eight-entry store bu�ers with

this implementation, on average, approach but do not exceed the next larger

size studied.

There are, of course, many combinations of policies, con�gurations, and pa-

rameters that were not explored due to time considerations. It is possible that some

other combination of store removal, store priorities, and/or the store retirement
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threshold could create slightly better performance. However, these results convey

that there are many store bu�er design decisions to make and the subsequent impact

on performance is not trivial.

8.3 Virtual Store Queue

This thesis proposes a low-resource, simple mechanism for exploiting the rel-

atively short memory dependence distance between a store to an address and a

load from that same address, the Virtual Store Queue (VSQ). The load-store access

characteristics of a benchmark suite are evaluated to determine the best approach

for implementing the VSQ. The results on the Sun UltraSPARC platform were very

similar to those found on other platforms. Many loads and stores are generated just

for the purpose of passing transient values. It is common for a store to be followed

by a load or a store to the same address. The VSQ is a mechanism to exploit the

former.

The implementation of the VSQ behaves like a forwarding bu�er, forward-

ing the data from a store to a load at the same address. When this happens,

there is no longer a need for address translation and memory access. The VSQ

is non-speculative unlike some other recently proposed schemes that approach this

phenomenon. Therefore, the resource requirements and logic are dramatically less

in the absence of large prediction tables. The bu�er uses virtual addresses to avoid

address translation and possible associated penalties. Techniques are discussed to

avoid the problems associated with using virtual addresses.

� A small eight-entry FIFO virtual store queue can reduce the load traÆc to

the memory hierarchy by 20.7% on average. A 32-entry LRU can eliminate

33.3% of the L1 load accesses. In some cases, this con�guration can reduce

load traÆc to the L1 data cache by one-half.
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� With a 32-entry VSQ, a relatively aggressive, out-of-order processor can reduce

load traÆc to the L1 data cache by 27.1% and reduce port utilization by 16.9%.

At the same time, the duty of handling load forwarding is taken on by the VSQ

instead of the store bu�er and memory control logic. This provides a marginal

improvement in IPC for a four-wide machine.

� While the performance of the VSQ falls slightly short of the performance of

some speculation-based methods for memory dependence collapsing, the non-

trivial performance increase and lower cost of implementation makes the VSQ

an attractive method.

8.4 Wide-Issue Solutions

By using the VSQ, the performance of a 16-wide trace cache processor can

be increased by 7.2% overall as a result of the bypassing of the data cache by load

instructions. To reduce the impact of data dependencies caused by load instructions,

load tokens trigger an early speculative access from the VSQ. This provides an

additional 3.2% overall performance improvement (a total of 10.4% improvement

over the base model) at the expense of some additional trace cache memory but

little new logic and no new structures.

In addition to the addressing of potential design issues of the trace cache

and �ll unit, the e�ects of recovery methods, VSQ size and data cache properties

are analyzed. Using load tokens with three-cycle, selective re-execution recovery

provides additional improvement to the VSQ, while eight-cycle squash recovery is

not suÆcient for implementing token-based speculative VSQ accesses. A 128-entry

VSQ does not provide signi�cant improvement over a 64-entry VSQ. A VSQ also

has a larger impact in a processor with a multiple-cycle data cache, achieving 10.5%

improvement versus 7.2% with a single-cycle data cache. Finally, although the
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techniques proposed are e�ective, they have still not exploited all the potential per-

formance gain of the ideal VSQ. Based on this analysis, the VSQ could have a large

impact on performance in deeply pipelined, high frequency trace cache processors

of the future.
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