
Runtime Identification of Microprocessor Energy Saving
Opportunities

W. L. Bircher, M. Valluri, J. Law, and L. K. John
Laboratory for Computer Architecture

Department of Electrical and Computer Engineering
The University of Texas at Austin

{bircher, valluri, law, ljohn}@ece.utexas.edu

ABSTRACT
High power consumption and low energy efficiency have become
significant impediments to future performance improvements in
modern microprocessors. This paper contributes to the solution
of these problems by presenting: linear regression models for
power consumption and a detailed study of energy efficiency in a
modern out-of-order superscalar microprocessor. These simple
(2-input) yet accurate (2.6% error) models provide a valuable tool
for identifying opportunities to apply power saving techniques
such as clock throttling and dynamic voltage scaling (DVS).
Also, future work in improving energy efficiency is motivated by
a detailed analysis of SPEC CPU 2000 workloads. The vast
majority of workloads are found to yield very low energy
efficiency due to the frequency of level two (L2) cache misses and
misspeculated instructions.

Categories and Subject Descriptors
C.0 [Computer Systems Organization]: General

General Terms
Measurement, Performance and Experimentation.

Keywords
power, modeling, energy efficiency, speculative microprocessors

1. INTRODUCTION
Microprocessor performance has been increasing exponentially
for the last three decades. Unfortunately, this impressive rate of
improvement seems to be slowing. Excessive power consumption
is reducing the rate of performance improvement. The four
primary issues are excessive cooling costs, low energy efficiency,
power supply limitations and reduced reliability. This paper
makes several important contributions to alleviate the power
bottleneck. We present a detailed characterization of the Pentium
4 processor, a representative modern superscalar processor. This
characterization is important because it sheds light on the areas of
the microprocessor cores that require further optimization for
power consumption. We then propose lightweight, linear

regression-based software power/energy models to predict run-
time power and energy efficiency. We first identify the most
representative performance metrics and show that an accurate
power model (97.5%) can be constructed using only two metrics.
Our models can be used to enable effective application of power
saving techniques. For example, power/energy models can be
used for program phase detection. Techniques such as clock
throttling could be applied in high power phases to limit peak
power consumption and consequently peak case temperature.
This allows for use of lower cost/complexity cooling mechanisms
and power supply circuits. Similarly, detecting phases of low
energy efficiency allows for the application of more aggressive
power saving techniques such as DVS.
Another important contribution of this paper is a detailed analysis
of processor energy efficiency for the SPEC CPU 2000
benchmark suite. We motivate the development and application
of further improvements in energy efficiency by showing that the
majority of workloads operate at a less than 50% of maximum
efficiency. We find efficiency to range from 5.04 to 133.55
Muops/Joule (Muops/Joule ≈ MIPS/Watt). We provide insight
into this observation by showing that like performance (MIPS),
energy efficiency (MIPS/Watt) is dominated by the effectiveness
of the L2 cache and the branch predictor.
In section 2 we compare and contrast related work. Section 3
describes our experimental methodology including power and
performance monitoring counter sampling and linear regression
modeling. Results for our power models are presented in Section
4. Section 5 presents a characterization of energy efficiency for
the SPEC 2000 suite. In section 6 we conclude by summarizing
our findings. Section 7 suggests future work.

2. RELATED WORK
Previous research suggests that microprocessor power
consumption is primarily determined by the number of
instructions retired per cycle (IPC). Li et al [8] present a simple
linear model for power consumption by operating system services.
The resultant models are a function of only IPC. Their modeling
only considers operating system routines and requires a separate
model for each operating system routine. Most importantly, their
model is simulation-based and consequently not representative of
real systems. In contrast, our model is based on real measurement
and shows that power depends more on fetched uop/cycle rather
than IPC. In addition, while their model was dominated by the
IPC component, ours is dominated by a constant component. We
show that our real processor has a minimum or constant power
consumption of about 36 Watts. Bellosa [2] uses synthetic
workloads to demonstrate a correlation between observable
performance events and power consumption. He shows that a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ISLPED’05, August 8–10, 2005, San Diego, California, USA.
Copyright 2005 ACM 1-59593-137-6/05/0008...$5.00.

correlation exists for: uops/sec, fuops/sec, L2 accesses/sec and
memory accesses/sec. Since only synthetic workloads are
characterized, these results do not contain the effect of complex
interactions between performance events in real workloads. Isci
et al [5] build a comprehensive power model based on utilization
factors of the various components of the processor. Using 22
performance monitoring counters they are able to model average
power consumption of SPEC2000 workloads within 5%. Our
model yields similar accuracy, yet with only 2 PMC metrics.
Also, instead of explicitly modeling each component of the
processor, our model combines the contributions of multiple
components into just two combined with fixed minimum power
consumption.
Lee et al [6] uses a similar detailed model of power and extends it
to predict processor case temperature. Valluri et al [14] consider
the effect of compiler optimization on power and energy
consumption. The analysis is performed using the Wattch [3]
architectural simulator. They found that power consumption was
related to IPC while energy consumption is dominated by
program execution time. Seng et al [12] validate Valluri’s
findings on real hardware. They found that the energy
consumption is determined by program execution time. While
these studies do offer a comparative study of energy efficiency in
real user workloads, they do not suggest how efficient the
processor is with respect to the maximum.

3. METHODOLOGY
In this section, we describe our experimental approach including
power sampling, performance monitoring counter sampling and
issues surrounding construction of a linear-regression power
model.

3.1 Power Sampling
For this study instantaneous processor power consumption was
measured using a clamp-on current probe. The probe, an Agilent
1146A, reports the current passing through its sensor by detecting
the magnitude and polarity of the electromagnetic field produced
by the sampled current. This type of measurement simplifies
instrumentation since the observed conductors do not have to be
cut to insert current sensing resistors. The drawback of this
approach is that only wire-type conductors can be sampled. It is
not possible to sample conductor embedded in the printed circuit
board. For our target system this restricts power measurement to
the input conductors of the processor voltage regulator module
(VRM). As a result, a portion of the reported power consumption
is actually attributed to the inefficiency of the VRM. These
modules have an efficiency of 85%-90%. The reader should
consider the 10%-15% loss when comparing results to
manufacturer reported power consumption. The voltage provided
by the current probe is sampled at 10 KHz by a National
Instruments AT-MIO-16E-2 data acquisition card. The LabVIEW
software tool can interpret the voltage trace or as in our case it is
written to a binary file for offline processing.

3.2 On-chip Counters
The second source of data is the on-chip performance monitoring
counters (PMC) provided by the Pentium 4 processor. These
counters provide a non-intrusive mechanism for observing a
comprehensive set of metrics. Compared to the previous
generation PMCs that had a similar number of observable metrics,

these PMCs allow the concurrent observation of up to 18 distinct
metrics. All of the events used in this analysis were of the
aggregate type. They report the aggregate count of the requested
event between the assertion and deassertion of a software
controlled enable flag. Since configuration of the PMCs is
restricted to operating system or privileged processes, a device
driver is required for access by user-mode applications. The
device driver used in our experiments is provided with the
Brink/Abyss toolset [13]. This toolset simplifies PMC
configuration and data acquisition. For our experiments, the
selected PMCs are sampled and cleared at a rate of 100Hz and
recorded by Brink/Abyss in ASCII file format. The reader should
note that the performance metric “uop” or micro-op is used
throughout the paper. For the Pentium 4 processor this is similar
an instruction. We will describe some of the finer distinctions in
section 4.1.1.

3.3 Linear Regression Model
When using a simple linear model such as ours it is important to
select representative inputs. Since we cannot directly represent
complex behaviors it is critical to select input data that does not
only represent a subset of all behavior. When combining the
effects of numerous complex events, care must be taken in
ensuring an equal representation of all events in the training data.
To that end, we use a clustering approach demonstrated by
Phansalkar et al [11]. They show that SPEC 2000 benchmarks
can be clustered into groups of ten discernable behaviors.
Programs with like behaviors are clustered together. Ideally, the
cluster member with the behavior most representative of the other
cluster members could safely be used for exploring the behavior
space of its cluster members. Our approach was to use one
member of each cluster for model validation. The remaining
cluster members were used for creation of the linear model. Table
1 lists the validation workloads in bold and the model input
workloads in normal text. Since clusters 2, 3 and 8 have only one
member, those benchmarks were used in creating and validating
the models. Additionally, two synthetic benchmarks were used in
building the model to explore the minimum (lowipc) and
maximum (maxipc) power consumption behavior. The resultant
model power model takes the simple slope-intercept form. We
describe the components of this model in the form power= α0 +
α1·metric1+...+αn·metricn

Table 1. CPU 2000 Clustering
Cluster Name

1 galgel
2 twolf
3 lucas
4 applu, mgrid
5 gcc, crafty, parser, vortex, vpr
6 gzip, bzip2
7 equake, fma3d, art
8 mcf
9 apsi, swim, wupwise, ammp

10 eon, mesa

4. POWER MODELS
4.1 Model Input Selection
While past research [8][2] and intuition suggest that IPC should
be a component of any power model, we chose to consider a
larger array of metrics for building our models. Correlation
coefficients were calculated for all twenty-three observed PMCs.
Initially, we attempted to find correlation across multiple sample
points in a single workload trace. However, we found that minor
discrepancies in alignment of the power trace to the PMC trace
could cause large variations in correlation. Since we had such a
large set of workloads we chose to use each workload as a single
data point in our correlation calculation. For each metric we
found its average rate across each workload. For most, the metrics
were converted to event/cycle form, but a few were in other forms
such as hit rates. Additional derived metrics were added such as
completed uops/cycle (retired + cancelled uops). A subset of the
correlation results can be seen in Tables 2 and 3.

Table 2. High Correlation (>0.32)
Metric Correlation

Spec Del/Cycle 0.89
Fetched Uop/Cycle 0.84
Instr Total/Cycle 0.84
Completed Uop/Cycle 0.83
Load/Cycle 0.80
Uop/Cycle 0.79
Branch/Cycle 0.78
Stores/Cycle 0.64
Mispred Branch/Cycle 0.41
L2 Miss/Cycle -0.33
Cancelled Uop/Cycle 0.33

Table 3. Low Correlation (<0.32)
Metric Correlation

L2 Hit/Cycle 0.31
Bus Access/Cycle -0.31
TC Del/Cycle 0.32
Bus Util -0.31
Fp Op/Uop -0.22
Prefetch Rate 0.17
TC Build/Cycle -0.15
ITLB Hit/Cycle -0.09
TC Miss/Cycle -0.09
ITLB Miss/Cycle -0.04
L2 Hits/Cycle 0.03
L2 Access/Cycle -0.02

As expected the IPC-related metrics show strong correlation. One
of the more unexpected findings is the weak negative correlation
of floating instruction density (ratio of all dynamic instructions).
This is in contrast to past findings [2] that show a strong
correlation between floating point operations per second and
power. Later in section 4.1.2 we will give an explanation.
Another unexpected result was the lack of correlation to data
prefetch rate.

Our research shows that rather than considering just IPC, a more
accurate model can be constructed using a metric that
encompasses power consumed due to speculation. Figure 1
shows the average number of uops for the SPEC 2000
benchmarks that are fetched, completed and retired in each cycle.
Table 4 shows what portions of fetched uops complete or retire,
for each of the twenty-four benchmarks. The first bar in Figure 1
“Fetch” shows the number of uops that are fetched from the Trace
Cache in each cycle. The second bar “Complete” shows the sum
of uops that are either retired or cancelled each cycle. Cancelled
uops are due to branch misprediction. The third bar, “Retire”,
shows only uops that update the architectural state. This figure
shows that the processor fetches 21.9% more uops than are used
in performing useful work. Therefore, a more accurate power
model should use the number of uops fetched per cycle instead of
the number retired. Table 5 provides a comparison of linear
regression power models based on the three previously mentioned
metrics.

Average Uops / Cycle

0.0

0.2

0.4

0.6

0.8

1.0

U
op

s
/ C

yc
le

Fetch Complete Retire

Figure 1. Throughput Metrics

Table 4. Percent of Fetched Uops
Name %Complete %Retire Name %Complete %Retire

gzip 92.7 69.8 swim 99.9 99.7
vpr 85.3 60.0 mgrid 99.1 98.6
gcc 94.2 77.7 applu 98.7 96.6
mcf 63.0 31.5 equake 96.8 93.5

crafty 94.6 78.4 sixtrack 99.2 97.8
bzip2 92.0 72.1 mesa 92.1 75.2
vortex 98.0 95.0 art 84.9 77.5

gap 92.8 73.5 facerec 95.5 90.5
eon 91.7 81.5 ammp 94.8 88.5

parser 90.1 69.0 fma3d 97.0 94.3
twolf 85.2 55.2 lucas 99.9 95.9

wupwise 97.0 91.0 apsi 97.1 93.6

4.2 IPC Related Power Models
Twenty-three processor performance metrics were examined for
their correlation to power consumption. The most correlated
metrics were all similar to instructions per cycle (IPC). Using
this finding as a guide we constructed numerous linear models
using regression techniques. Power is calculated as the sum of a
positive constant α0 and the product of another positive constant

α1 and a performance metric metric1. Results for seven of the best
models are listed below in Tables 5,6 and 8. Tables 5 and 6
support our hypothesis regarding fetched uops as being the most
representative of IPC type metrics. The worst of these metrics
was the familiar Instructions Per Cycle. This is caused by the lack
of a one-to-one mapping of instructions to uops. Many x86
instructions map to a sequence of uops. For example, a single
ADD instruction that uses memory as its source and destination is
actually composed of three uops. The first uop loads a value from
memory, the second adds a register or immediate to the value
from memory and the third stores the result back to memory.
Alternatively, an ADD instruction that does not use memory as an
operand has a one-to-one mapping of instruction to uop.
Assuming all uops consume the same amount of power, the
instruction that uses memory would consume three times as much
power.
Of the uop-based models fetched uops is the most representative
metric for power consumption. This suggests that uops that do
not update the architected state of the machine still consume a
significant amount of power. For the case of cancelled uops, this
is not to surprising since these uops did complete execution but
were not retired. So, they would have traversed nearly the entire
processor pipeline consuming a similar power as retired uops.
More surprising is the effect of fetched uops on the power model.
Fetched uops includes retired and cancelled. It also includes the
remaining uops that were cancelled before completing execution.
Since fetched uops provides the most accurate model, cancelled
uops must be consuming a significant amount of power.

Table 5. Uop Linear Regression Model Comparison
 Retire

uop/cyc
Complete
uop/cyc

Fetch
uop/cyc

α0 α1 α0 α1 α0 α1 Coefficients
36.3 4.37 35.8 4.44 35.7 4.31

Avg Error 3.26% 2.8% 2.6%

Coefficient of
Determinatio
n

0.696 0.735 0.737

Table 6. Instruction Linear Regression Model Comparison
 Retire instr /cyc Complete instr/cyc

α0 α1 α0 α1 Coefficients
36.8 5.28 36.3 5.52

Avg Error 5.45% 4.92%

Coefficient of
Determination 0.679 0.745

These models generate minimum and maximum power values
(36W – 47W) similar to what [2] found on a Pentium 3 (31W-
48W) with similar uop/cycle ranges (0 – 2.6). The stated average
error values were found using the validation set described in
Table 1.

4.3 Micro ROM Related Power Models
The power models in Tables 5 and 6 perform best when applied to
workloads mostly composed of integer-type instructions (SPEC-
INT). However, larger errors result for workloads with high rates
of floating point instructions (SPEC-FP). Isci et al [5]

demonstrates that FP workloads such as equake use complex
microcode ROM delivered uops. While the complex instructions
execute, microcode ROM power consumption is high, but total
power consumption is reduced slightly. In order to determine if
this was the case for our traces, we wrote several synthetic
workloads dynamically composed almost entirely of complex
instructions. Each of the programs was composed of a single very
large loop that was repeated for approximately ten seconds. The
loop body was composed of numerous instances (30+) of only one
instruction. Since more than 90% of executed instructions were
identical, average power due an individual instruction can be
estimated.

Table 7. Instruction Power Consumption
 Power (Watts) Latency (Cycles) Throughput (Cycles)

fcos 30 180-280 130
fsin 31 160-200 130
fpta 25 240-300 170
imul 28 15-18 5
idiv 32 66-80 30

Table 7 [4] shows that high latency instructions such as floating
point type, consume less power than the 36W minimum predicted
by our models. One possible cause is greater opportunity for
clock gating. Since these instructions are guaranteed to take a
very long time to complete, more aggressive power saving
techniques may be performed. Further investigation will be
required to validate this hypothesis. Since Table 7 supports our
conclusion that high latency instructions consume less power, we
then proposed to improve our power model by including this
behavior. Our approach was to note that most high latency
instructions are composed of relatively long uop sequences
provided by the microcode ROM. Microcode ROM events can be
observed using the trace cache metric microrom uops. This metric
counts the number of uops delivered from the microcode ROM.
The resultant models are given in Table 8. As expected from our
observations about power consumption of microcode ROM
delivered instructions, the model’s microcode ROM component is
negative. This small correction allows our power model to extend
below 36W for workloads with high instances of complex
microcode ROM instructions.

Table 8. Uop Linear Regression Model Comparison
 Deliver, Microrom Deliver, Microrom, Build

α0 α1 α2 α0 α1 α2 α3
Coefficients

36.7 4.24 -
11.8 36.7 4.24 -

14.6
5.7
4

Avg Error 2.50% 2.55%

Coefficient of
Determination 0.844 0.850

5. ENERGY EFFICIENCY ANALYSIS
The power models of the previous section suggest that the
majority of power consumption is not directly related to the rate at
which useful work is performed. Energy consumption due to
useful work is a relatively small portion of total power. This
agrees with the findings of [10] in which they find that for the
Alpha 21264 only 26% percent of energy goes to useful work.

Similarly, given our power model with 36W consumption under
the minimum case of IPC = 0 and 47W for the maximum case of
IPC = 3, at most only 30.5% of power is directly attributable to
useful work. In order to better understand the cause of this low
efficiency operation, we now examine the dominant metrics that
effect efficiency. Note that energy efficiency results in this
section are presented in terms of Muops/Joule. This metric is
similar to the popular MIPS/Watt metric.

5.1 Effect of L2 Cache Misses
Like performance (MIPS), efficiency is greatly affected by high
latency cache misses. High latency misses, such as those in the
L2 cache, are often too long for the processor to hide using out-
of-order issue. Instruction streams with too little ILP and an
instruction window that is too small to identify additional
parallelism cause this [14]. Figure 2 shows the relation between
efficiency and L2 miss frequency (misses/uop). L2 miss
frequency is defined as the number of L2 cache misses per
dynamic uop. The right side of the graph represents workloads
that are more memory bound. The point in the upper left
represents the synthetic workload written to explore the range of
high processor utilization (upc = 2.25) not visible in the SPEC
2000 workloads. As predicted, the highest levels of efficiency are
obtained when processor utilization is maximized.

0

20

40

60

80

100

120

140

0.000 0.010 1.000 100.000

L2 Misses / 103 uops

10
6 u

op
s

/ J
ou

le

Figure 2. Efficiency vs. L2 Miss Density

0

20

40

60

80

100

120

140

0.100% 1.000% 10.000% 100.000%

% Unused Uops

10
6 u

op
s

/ J
ou

le

Figure 3. Efficiency vs. Unused Uop Rate

5.2 Effect of Speculative Execution
Another contributor to low efficiency is cancelled uops due to
branch speculation. As we showed in Figure 1, 20.9% of fetched
uops do not result in useful work. These unused uops consume
energy (fetch/cycle) without contributing to useful work
(uop/cycle). Figure 3 shows the effect these unused uops have on
energy efficiency. The outlying data points are synthetic
workloads: bottom left (lowipc) and upper middle (maxipc).
Similar to the relation of L2 misses to efficiency, branch
mispredictions have a clear linear relation to efficiency.

5.3 What are the Bounds of Efficiency?
Given the significant minimum power consumption predicted by
our model, maximum efficiency is coincident with maximum
power consumption. This is obvious since fetch rate and retire
rate (uop/cycle) are approximately equal and the α0 term has a
smaller effect as these rates increase. Using the maximum
sustained throughput of the Pentium 4 (3 uops/cycle) as an upper
bound, we project maximum efficiency to be 133.55 Muop/Joule
for our 2.2GHz processor. Minimum efficiency was assumed the
smallest observed efficiency for any workload. We found this
value to be 5.04 Muop/Joule for mcf. Given these bounds, we
explored the range of energy efficiencies for the SPEC CPU 2000
workloads. We found that the majority of workloads operate at
less than half of projected maximum efficiency. The average
efficiency was found to be 42.1 Muop/Joule. Twenty of the
workloads fell within one standard deviation of the mean. The
only workload with efficiency significantly higher than the mean
was the synthetic maxipc. These results are provided in Figure 4.

0
1
2
3
4
5
6
7
8
9

5 17 29 41 53 65 77 89 101 113 125

106 uop/Joule

N
o.

 o
f W

or
kl

oa
ds

Figure 4. Efficiency Metric W/E for SPEC 2000 workloads

5.4 How Efficiency can be Improved
Given the previous analysis of efficiency how can these results be
used to design and/or utilize microprocessors in a more efficient
manner? First, since minimum power consumption is so large
compared to scalable power consumption (uop/cycle dependent)
improving processor performance using techniques that don’t
increase incorrect speculation offers the best improvement. This
agrees with the findings of [14], which showed that efficiency
increases with increased micro-architecture utilization. In those
cases, improvements were made through utilizing improved static
optimizations (compile time).

Another approach would be to identify the inefficient phases of
programs and reduce the effect of the α0 term. Current
microprocessors already have facilities for scaling frequency and
voltage [9][1] in order to save power. Unfortunately, existing
power scaling policies guarantee safe operating conditions, not
optimum efficiency. Their approach is to keep case temperature
within a safe range. The result is application of voltage and
frequency scaling at the worst time from an energy efficiency
perspective. According to our power models, maximum power
and therefore maximum case temperature are coincident with
maximum processor utilization. Applying scaling when metric1 •
α1 is maximum reduces efficiency. A better approach would be to
apply scaling when metric1 • α1 is at a minimum. According to
Figures 2 and 3 scaling should be applied during program phases
with high frequencies of branch mispredictions and L2 misses. Li
et al [7] attempted a similar approach using L2 misses and
available ILP. Their approach used simulation for verification
and was not applicable to existing processors. Since it is possible
that efficiency is being affected by a combination of L2 miss rate,
branch misprediction rate and other more minor events, better
approach is to consider the resultant overall efficiency. Rather
than attempting to find the exact contribution of numerous
metrics, phases of low efficiency could be identified directly using
our model of efficiency. This software-only approach requires no
microarchitecture change and is not computationally demanding.
Unlike scaling only when the processor exceeds a specified
temperature, this approach improves energy efficiency and
reduces the likelihood of temperature emergencies. Since power
consumption is reduced during low efficiency phases, the case
temperature is lower when the processor enters high power
phases. Therefore, the processor is less likely to exceed thermal
limits.

6. CONCLUSION
In this paper we presented simple power/energy models that could
be used to address the critical issues of high power consumption
and low energy efficiency. We also motivated further work in this
area through a detailed analysis of energy efficiency for SPEC
CPU 2000 workloads. We showed that an accurate power
prediction could be made using a simple, PMC-based linear
regression model. IPC-related metrics were shown to be the most
representative. Of these metrics, uops fetched per cycle was the
most accurate. Accuracy was improved further by utilizing a two-
input, trace cache-based model that considered the effect of
microcode ROM delivered uops. Additionally, we presented an
efficiency analysis of the SPEC CPU 2000 benchmark suite. The
majority of workloads yielded low energy efficiency. The cause
of the poor efficiency was attributed to level 2 cache misses and
branch mispredictions. We also compared our finding to existing
PMC-based power modeling research. Our results showed that
the simulation-based model of [8] was not representative of real
systems. In addition, an accurate power model can be created
using considerably fewer PMC metrics than [5].

7. FUTURE WORK
Our primary objective for future work is to apply our runtime
efficiency model to detecting opportunities for energy savings on
a real system. We plan to detect efficiency phases using a
periodic system service and make voltage and frequency scaling
decisions based on the results. In order to make the most effective

use of scaling, a characterization of typical efficiency phase
duration will be required. Finally, our models could be improved
by controlling for processor die temperature during the training
workloads to reduce underestimation of lengthy workloads.

8. REFERENCES
[1] AMD Corporation. PowerNOW! Technology White Paper,

November 2000.
[2] Bellosa, F. The Benefits of Event-Driven Energy Accounting

in Power-Sensitive Systems. Proceedings of 9th ACM
SIGOPS European Workshop, (September 17-20, 2000).

[3] Brooks, D., Tiwari, V., and Martonosi, M. Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations. International Symposium on Computer
Architecture, (June 12-14, 2000).

[4] Intel Corporation. IA-32 Architecture Optimization
Reference Manual. 2004.

[5] Isci, C. and Martonosi, M. Runtime Power Monitoring in
High-End Processors: Methodology and Empirical Data.
International Symposium on Microarchitecture, (December
3-5, 2003).

[6] Lee, K. and Skadron, K. Using Performance Counters for
Runtime Temperature Sensing in High-Performance
Processors. High-Performance, Power-Aware Computing,
(April 4, 2005).

[7] Li, H., Cher, C., Vijaykumar, T. N., and Roy, K. VSV: L2-
Miss-Driven Variable Supply-Voltage Scaling for Low
Power. International Symposium on Microarchitecture,
(December 3-5, 2003), 19-28.

[8] Li, T. and John, L. Run-Time Modeling and Estimation of
Operating System Power Consumption. Conference on
Measurement and Modeling of Computer Systems, (June 10-
14, 2003).

[9] Meijer, M., Pessolano, F., and Gyvez, J. Technology
exploration for adaptive power and frequency scaling in
90nm CMOS. International Symposium on Low Power
Electronics and Design (August 9-11, 2004).

[10] Natarajan, K., Hanson, H., Keckler, S., Moore, C. and
Burger, D. Microprocessor Pipeline Energy Analysis.
International Symposium on Low Power Electronics and
Design. (August 25-27, 2003).

[11] Phansalkar, A., Joshi, A., Eeckhout, L., and John, L.
Measuring Program Similarity. Proceedings of the Intl
Symposium on Performance of Systems and Software,
(March 20-22, 2005).

[12] Seng, J. and Tullsen, D. The Effect of Compiler
Optimizations on Pentium 4 Power Consumption. Workshop
on Interaction Between Compilers and Computer
Architectures, (February 8, 2003).

[13] Sprunt, B. Brink and Abyss: Pentium 4 Performance Counter
Tools for Linux, Oct. 2003.
http://www.eg.bucknell.edu/~bsprunt/

[14] Valluri, M. and John, L. Is Compiling for Performance ==
Compiling for Power? Proceedings of the 5th Annual
Workshop on Interaction between Compilers and Computer
Architectures. (January 21, 2001).

