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ABSTRACT 
High power consumption and low energy efficiency have become 
significant impediments to future performance improvements in 
modern microprocessors.  This paper contributes to the solution 
of these problems by presenting: linear regression models for 
power consumption and a detailed study of energy efficiency in a 
modern out-of-order superscalar microprocessor.  These simple 
(2-input) yet accurate (2.6% error) models provide a valuable tool 
for identifying opportunities to apply power saving techniques 
such as clock throttling and dynamic voltage scaling (DVS).  
Also, future work in improving energy efficiency is motivated by 
a detailed analysis of SPEC CPU 2000 workloads.  The vast 
majority of workloads are found to yield very low energy 
efficiency due to the frequency of level two (L2) cache misses and 
misspeculated instructions.  

Categories and Subject Descriptors 
C.0 [Computer Systems Organization]: General 

General Terms 
Measurement, Performance and Experimentation. 

Keywords 
power, modeling, energy efficiency, speculative microprocessors 

1. INTRODUCTION 
Microprocessor performance has been increasing exponentially 
for the last three decades.  Unfortunately, this impressive rate of 
improvement seems to be slowing.  Excessive power consumption 
is reducing the rate of performance improvement.  The four 
primary issues are excessive cooling costs, low energy efficiency, 
power supply limitations and reduced reliability.  This paper 
makes several important contributions to alleviate the power 
bottleneck. We present a detailed characterization of the Pentium 
4 processor, a representative modern superscalar processor.  This 
characterization is important because it sheds light on the areas of 
the microprocessor cores that require further optimization for 
power consumption.  We then propose lightweight, linear 

regression-based software power/energy models to predict run-
time power and energy efficiency.  We first identify the most 
representative performance metrics and show that an accurate 
power model (97.5%) can be constructed using only two metrics.  
Our models can be used to enable effective application of power 
saving techniques. For example, power/energy models can be 
used for program phase detection.  Techniques such as clock 
throttling could be applied in high power phases to limit peak 
power consumption and consequently peak case temperature.  
This allows for use of lower cost/complexity cooling mechanisms 
and power supply circuits.  Similarly, detecting phases of low 
energy efficiency allows for the application of more aggressive 
power saving techniques such as DVS.   
Another important contribution of this paper is a detailed analysis 
of processor energy efficiency for the SPEC CPU 2000 
benchmark suite.  We motivate the development and application 
of further improvements in energy efficiency by showing that the 
majority of workloads operate at a less than 50% of maximum 
efficiency. We find efficiency to range from 5.04 to 133.55 
Muops/Joule (Muops/Joule ≈ MIPS/Watt).  We provide insight 
into this observation by showing that like performance (MIPS), 
energy efficiency (MIPS/Watt) is dominated by the effectiveness 
of the L2 cache and the branch predictor.     
In section 2 we compare and contrast related work.  Section 3 
describes our experimental methodology including power and 
performance monitoring counter sampling and linear regression 
modeling.  Results for our power models are presented in Section 
4.  Section 5 presents a characterization of energy efficiency for 
the SPEC 2000 suite.  In section 6 we conclude by summarizing 
our findings.  Section 7 suggests future work. 

2. RELATED WORK 
Previous research suggests that microprocessor power 
consumption is primarily determined by the number of 
instructions retired per cycle (IPC).  Li et al [8] present a simple 
linear model for power consumption by operating system services.  
The resultant models are a function of only IPC. Their modeling 
only considers operating system routines and requires a separate 
model for each operating system routine.  Most importantly, their 
model is simulation-based and consequently not representative of 
real systems. In contrast, our model is based on real measurement 
and shows that power depends more on fetched uop/cycle rather 
than IPC.  In addition, while their model was dominated by the 
IPC component, ours is dominated by a constant component.  We 
show that our real processor has a minimum or constant power 
consumption of about 36 Watts.  Bellosa [2] uses synthetic 
workloads to demonstrate a correlation between observable 
performance events and power consumption.  He shows that a 
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correlation exists for: uops/sec, fuops/sec, L2 accesses/sec and 
memory accesses/sec. Since only synthetic workloads are 
characterized, these results do not contain the effect of complex 
interactions between performance events in real workloads.  Isci 
et al [5] build a comprehensive power model based on utilization 
factors of the various components of the processor.  Using 22 
performance monitoring counters they are able to model average 
power consumption of SPEC2000 workloads within 5%.  Our 
model yields similar accuracy, yet with only 2 PMC metrics.   
Also, instead of explicitly modeling each component of the 
processor, our model combines the contributions of multiple 
components into just two combined with fixed minimum power 
consumption. 
Lee et al [6] uses a similar detailed model of power and extends it 
to predict processor case temperature.  Valluri et al [14] consider 
the effect of compiler optimization on power and energy 
consumption.  The analysis is performed using the Wattch [3] 
architectural simulator.  They found that power consumption was 
related to IPC while energy consumption is dominated by 
program execution time.  Seng et al [12] validate Valluri’s 
findings on real hardware.  They found that the energy 
consumption is determined by program execution time.  While 
these studies do offer a comparative study of energy efficiency in 
real user workloads, they do not suggest how efficient the 
processor is with respect to the maximum. 

3. METHODOLOGY 
In this section, we describe our experimental approach including 
power sampling, performance monitoring counter sampling and 
issues surrounding construction of a linear-regression power 
model. 

3.1 Power Sampling 
For this study instantaneous processor power consumption was 
measured using a clamp-on current probe.  The probe, an Agilent 
1146A, reports the current passing through its sensor by detecting 
the magnitude and polarity of the electromagnetic field produced 
by the sampled current.  This type of measurement simplifies 
instrumentation since the observed conductors do not have to be 
cut to insert current sensing resistors.  The drawback of this 
approach is that only wire-type conductors can be sampled.  It is 
not possible to sample conductor embedded in the printed circuit 
board.  For our target system this restricts power measurement to 
the input conductors of the processor voltage regulator module 
(VRM).  As a result, a portion of the reported power consumption 
is actually attributed to the inefficiency of the VRM.  These 
modules have an efficiency of 85%-90%.  The reader should 
consider the 10%-15% loss when comparing results to 
manufacturer reported power consumption.  The voltage provided 
by the current probe is sampled at 10 KHz by a National 
Instruments AT-MIO-16E-2 data acquisition card.  The LabVIEW 
software tool can interpret the voltage trace or as in our case it is 
written to a binary file for offline processing. 

3.2 On-chip Counters 
The second source of data is the on-chip performance monitoring 
counters (PMC) provided by the Pentium 4 processor.  These 
counters provide a non-intrusive mechanism for observing a 
comprehensive set of metrics.  Compared to the previous 
generation PMCs that had a similar number of observable metrics, 

these PMCs allow the concurrent observation of up to 18 distinct 
metrics.  All of the events used in this analysis were of the 
aggregate type.  They report the aggregate count of the requested 
event between the assertion and deassertion of a software 
controlled enable flag.  Since configuration of the PMCs is 
restricted to operating system or privileged processes, a device 
driver is required for access by user-mode applications.  The 
device driver used in our experiments is provided with the 
Brink/Abyss toolset [13].  This toolset simplifies PMC 
configuration and data acquisition.  For our experiments, the 
selected PMCs are sampled and cleared at a rate of 100Hz and 
recorded by Brink/Abyss in ASCII file format.  The reader should 
note that the performance metric “uop” or micro-op is used 
throughout the paper.  For the Pentium 4 processor this is similar 
an instruction.  We will describe some of the finer distinctions in 
section 4.1.1. 

3.3 Linear Regression Model 
When using a simple linear model such as ours it is important to 
select representative inputs.  Since we cannot directly represent 
complex behaviors it is critical to select input data that does not 
only represent a subset of all behavior.  When combining the 
effects of numerous complex events, care must be taken in 
ensuring an equal representation of all events in the training data.  
To that end, we use a clustering approach demonstrated by 
Phansalkar et al [11].  They show that SPEC 2000 benchmarks 
can be clustered into groups of ten discernable behaviors.  
Programs with like behaviors are clustered together.  Ideally, the 
cluster member with the behavior most representative of the other 
cluster members could safely be used for exploring the behavior 
space of its cluster members.  Our approach was to use one 
member of each cluster for model validation.  The remaining 
cluster members were used for creation of the linear model. Table 
1 lists the validation workloads in bold and the model input 
workloads in normal text. Since clusters 2, 3 and 8 have only one 
member, those benchmarks were used in creating and validating 
the models.  Additionally, two synthetic benchmarks were used in 
building the model to explore the minimum (lowipc) and 
maximum (maxipc) power consumption behavior.  The resultant 
model power model takes the simple slope-intercept form.  We 
describe the components of this model in the form power= α0 + 
α1·metric1+...+αn·metricn 

Table 1. CPU 2000 Clustering 
Cluster Name 

1 galgel 
2 twolf 
3 lucas 
4 applu, mgrid 
5 gcc, crafty, parser, vortex, vpr 
6 gzip, bzip2 
7 equake, fma3d, art 
8 mcf 
9 apsi, swim, wupwise, ammp 

10 eon, mesa 



4. POWER MODELS 
4.1 Model Input Selection 
While past research [8][2] and intuition suggest that IPC should 
be a component of any power model, we chose to consider a 
larger array of metrics for building our models.  Correlation 
coefficients were calculated for all twenty-three observed PMCs.  
Initially, we attempted to find correlation across multiple sample 
points in a single workload trace.  However, we found that minor 
discrepancies in alignment of the power trace to the PMC trace 
could cause large variations in correlation.  Since we had such a 
large set of workloads we chose to use each workload as a single 
data point in our correlation calculation.  For each metric we 
found its average rate across each workload. For most, the metrics 
were converted to event/cycle form, but a few were in other forms 
such as hit rates.  Additional derived metrics were added such as 
completed uops/cycle (retired + cancelled uops).  A subset of the 
correlation results can be seen in Tables 2 and 3. 

Table 2. High Correlation (>0.32) 
Metric Correlation 

Spec Del/Cycle 0.89 
Fetched Uop/Cycle 0.84 
Instr Total/Cycle 0.84 
Completed Uop/Cycle 0.83 
Load/Cycle 0.80 
Uop/Cycle 0.79 
Branch/Cycle 0.78 
Stores/Cycle 0.64 
Mispred Branch/Cycle 0.41 
L2 Miss/Cycle -0.33 
Cancelled Uop/Cycle 0.33 

Table 3. Low Correlation (<0.32) 
Metric Correlation 

L2 Hit/Cycle 0.31 
Bus Access/Cycle -0.31 
TC Del/Cycle 0.32 
Bus Util -0.31 
Fp Op/Uop -0.22 
Prefetch Rate 0.17 
TC Build/Cycle -0.15 
ITLB Hit/Cycle -0.09 
TC Miss/Cycle -0.09 
ITLB Miss/Cycle -0.04 
L2 Hits/Cycle 0.03 
L2 Access/Cycle -0.02 

 
As expected the IPC-related metrics show strong correlation.  One 
of the more unexpected findings is the weak negative correlation 
of floating instruction density (ratio of all dynamic instructions).  
This is in contrast to past findings [2] that show a strong 
correlation between floating point operations per second and 
power.  Later in section 4.1.2 we will give an explanation.  
Another unexpected result was the lack of correlation to data 
prefetch rate. 

Our research shows that rather than considering just IPC, a more 
accurate model can be constructed using a metric that 
encompasses power consumed due to speculation.  Figure 1 
shows the average number of uops for the SPEC 2000 
benchmarks that are fetched, completed and retired in each cycle.  
Table 4 shows what portions of fetched uops complete or retire, 
for each of the twenty-four benchmarks.  The first bar in Figure 1 
“Fetch” shows the number of uops that are fetched from the Trace 
Cache in each cycle.  The second bar “Complete” shows the sum 
of uops that are either retired or cancelled each cycle.  Cancelled 
uops are due to branch misprediction.  The third bar, “Retire”, 
shows only uops that update the architectural state.  This figure 
shows that the processor fetches 21.9% more uops than are used 
in performing useful work.  Therefore, a more accurate power 
model should use the number of uops fetched per cycle instead of 
the number retired.  Table 5 provides a comparison of linear 
regression power models based on the three previously mentioned 
metrics.  
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Figure 1. Throughput Metrics 

Table 4. Percent of Fetched Uops 
Name %Complete %Retire Name %Complete %Retire 

gzip 92.7 69.8 swim 99.9 99.7 
vpr 85.3 60.0 mgrid 99.1 98.6 
gcc 94.2 77.7 applu 98.7 96.6 
mcf 63.0 31.5 equake 96.8 93.5 

crafty 94.6 78.4 sixtrack 99.2 97.8 
bzip2 92.0 72.1 mesa 92.1 75.2 
vortex 98.0 95.0 art 84.9 77.5 

gap 92.8 73.5 facerec 95.5 90.5 
eon 91.7 81.5 ammp 94.8 88.5 

parser 90.1 69.0 fma3d 97.0 94.3 
twolf 85.2 55.2 lucas 99.9 95.9 

wupwise 97.0 91.0 apsi 97.1 93.6 

4.2 IPC Related Power Models 
Twenty-three processor performance metrics were examined for 
their correlation to power consumption.  The most correlated 
metrics were all similar to instructions per cycle (IPC).   Using 
this finding as a guide we constructed numerous linear models 
using regression techniques.  Power is calculated as the sum of a 
positive constant α0 and the product of another positive constant 



α1 and a performance metric metric1.  Results for seven of the best 
models are listed below in Tables 5,6 and 8.  Tables 5 and 6 
support our hypothesis regarding fetched uops as being the most 
representative of IPC type metrics.  The worst of these metrics 
was the familiar Instructions Per Cycle.  This is caused by the lack 
of a one-to-one mapping of instructions to uops.  Many x86 
instructions map to a sequence of uops.  For example, a single 
ADD instruction that uses memory as its source and destination is 
actually composed of three uops.  The first uop loads a value from 
memory, the second adds a register or immediate to the value 
from memory and the third stores the result back to memory.  
Alternatively, an ADD instruction that does not use memory as an 
operand has a one-to-one mapping of instruction to uop.  
Assuming all uops consume the same amount of power, the 
instruction that uses memory would consume three times as much 
power. 
Of the uop-based models fetched uops is the most representative 
metric for power consumption.  This suggests that uops that do 
not update the architected state of the machine still consume a 
significant amount of power.  For the case of cancelled uops, this 
is not to surprising since these uops did complete execution but 
were not retired.  So, they would have traversed nearly the entire 
processor pipeline consuming a similar power as retired uops.  
More surprising is the effect of fetched uops on the power model.  
Fetched uops includes retired and cancelled.  It also includes the 
remaining uops that were cancelled before completing execution.  
Since fetched uops provides the most accurate model, cancelled 
uops must be consuming a significant amount of power.  

Table 5. Uop Linear Regression Model Comparison 
 Retire  

uop/cyc 
Complete 
uop/cyc 

Fetch 
uop/cyc 

α0 α1 α0 α1 α0 α1 Coefficients 
36.3 4.37 35.8 4.44 35.7 4.31 

Avg Error 3.26% 2.8% 2.6% 

Coefficient of 
Determinatio
n 

0.696 0.735 0.737 

Table 6. Instruction Linear Regression Model Comparison 
 Retire instr /cyc Complete instr/cyc 

α0 α1 α0 α1 Coefficients 
36.8 5.28 36.3 5.52 

Avg Error 5.45% 4.92% 

Coefficient of 
Determination 0.679 0.745 

 
These models generate minimum and maximum power values 
(36W – 47W) similar to what [2] found on a Pentium 3 (31W-
48W) with similar uop/cycle ranges (0 – 2.6).  The stated average 
error values were found using the validation set described in 
Table 1.   

4.3 Micro ROM Related Power Models 
The power models in Tables 5 and 6 perform best when applied to 
workloads mostly composed of integer-type instructions (SPEC-
INT).  However, larger errors result for workloads with high rates 
of floating point instructions (SPEC-FP).  Isci et al [5] 

demonstrates that FP workloads such as equake use complex 
microcode ROM delivered uops. While the complex instructions 
execute, microcode ROM power consumption is high, but total 
power consumption is reduced slightly.  In order to determine if 
this was the case for our traces, we wrote several synthetic 
workloads dynamically composed almost entirely of complex 
instructions.  Each of the programs was composed of a single very 
large loop that was repeated for approximately ten seconds.  The 
loop body was composed of numerous instances (30+) of only one 
instruction.  Since more than 90% of executed instructions were 
identical, average power due an individual instruction can be 
estimated. 

Table 7. Instruction Power Consumption 
 Power (Watts) Latency (Cycles) Throughput (Cycles) 

fcos 30 180-280 130 
fsin 31 160-200 130 
fpta 25 240-300 170 
imul 28 15-18 5 
idiv 32 66-80 30 

 
Table 7 [4] shows that high latency instructions such as floating 
point type, consume less power than the 36W minimum predicted 
by our models.  One possible cause is greater opportunity for 
clock gating.  Since these instructions are guaranteed to take a 
very long time to complete, more aggressive power saving 
techniques may be performed.  Further investigation will be 
required to validate this hypothesis.  Since Table 7 supports our 
conclusion that high latency instructions consume less power, we 
then proposed to improve our power model by including this 
behavior.  Our approach was to note that most high latency 
instructions are composed of relatively long uop sequences 
provided by the microcode ROM.  Microcode ROM events can be 
observed using the trace cache metric microrom uops.  This metric 
counts the number of uops delivered from the microcode ROM.  
The resultant models are given in Table 8.  As expected from our 
observations about power consumption of microcode ROM 
delivered instructions, the model’s microcode ROM component is 
negative.  This small correction allows our power model to extend 
below 36W for workloads with high instances of complex 
microcode ROM instructions.  

Table 8. Uop Linear Regression Model Comparison 
 Deliver, Microrom Deliver, Microrom, Build 

α0 α1 α2 α0 α1 α2 α3 
Coefficients 

36.7 4.24 -
11.8 36.7 4.24 -

14.6 
5.7
4 

Avg Error 2.50% 2.55% 

Coefficient of 
Determination 0.844 0.850 

5. ENERGY EFFICIENCY ANALYSIS 
The power models of the previous section suggest that the 
majority of power consumption is not directly related to the rate at 
which useful work is performed.  Energy consumption due to 
useful work is a relatively small portion of total power.  This 
agrees with the findings of [10] in which they find that for the 
Alpha 21264 only 26% percent of energy goes to useful work.  



Similarly, given our power model with 36W consumption under 
the minimum case of IPC = 0 and 47W for the maximum case of 
IPC = 3, at most only 30.5% of power is directly attributable to 
useful work.  In order to better understand the cause of this low 
efficiency operation, we now examine the dominant metrics that 
effect efficiency.  Note that energy efficiency results in this 
section are presented in terms of Muops/Joule.  This metric is 
similar to the popular MIPS/Watt metric. 

5.1 Effect of L2 Cache Misses 
Like performance (MIPS), efficiency is greatly affected by high 
latency cache misses.  High latency misses, such as those in the 
L2 cache, are often too long for the processor to hide using out-
of-order issue.  Instruction streams with too little ILP and an 
instruction window that is too small to identify additional 
parallelism cause this [14].  Figure 2 shows the relation between 
efficiency and L2 miss frequency (misses/uop).  L2 miss 
frequency is defined as the number of L2 cache misses per 
dynamic uop.  The right side of the graph represents workloads 
that are more memory bound.  The point in the upper left 
represents the synthetic workload written to explore the range of 
high processor utilization (upc = 2.25) not visible in the SPEC 
2000 workloads.  As predicted, the highest levels of efficiency are 
obtained when processor utilization is maximized. 
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Figure 2. Efficiency vs. L2 Miss Density 
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Figure 3. Efficiency vs. Unused Uop Rate 

5.2 Effect of Speculative Execution 
Another contributor to low efficiency is cancelled uops due to 
branch speculation.  As we showed in Figure 1, 20.9% of fetched 
uops do not result in useful work.  These unused uops consume 
energy (fetch/cycle) without contributing to useful work 
(uop/cycle).  Figure 3 shows the effect these unused uops have on 
energy efficiency.  The outlying data points are synthetic 
workloads: bottom left (lowipc) and upper middle (maxipc).  
Similar to the relation of L2 misses to efficiency, branch 
mispredictions have a clear linear relation to efficiency. 

5.3 What are the Bounds of Efficiency? 
Given the significant minimum power consumption predicted by 
our model, maximum efficiency is coincident with maximum 
power consumption.  This is obvious since fetch rate and retire 
rate (uop/cycle) are approximately equal and the α0 term has a 
smaller effect as these rates increase.  Using the maximum 
sustained throughput of the Pentium 4 (3 uops/cycle) as an upper 
bound, we project maximum efficiency to be 133.55 Muop/Joule 
for our 2.2GHz processor.  Minimum efficiency was assumed the 
smallest observed efficiency for any workload.  We found this 
value to be 5.04 Muop/Joule for mcf. Given these bounds, we 
explored the range of energy efficiencies for the SPEC CPU 2000 
workloads.  We found that the majority of workloads operate at 
less than half of projected maximum efficiency.  The average 
efficiency was found to be 42.1 Muop/Joule.  Twenty of the 
workloads fell within one standard deviation of the mean.  The 
only workload with efficiency significantly higher than the mean 
was the synthetic maxipc.  These results are provided in Figure 4.  
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Figure 4. Efficiency Metric W/E for SPEC 2000 workloads 

5.4 How Efficiency can be Improved 
Given the previous analysis of efficiency how can these results be 
used to design and/or utilize microprocessors in a more efficient 
manner?  First, since minimum power consumption is so large 
compared to scalable power consumption (uop/cycle dependent) 
improving processor performance using techniques that don’t 
increase incorrect speculation offers the best improvement.  This 
agrees with the findings of [14], which showed that efficiency 
increases with increased micro-architecture utilization.  In those 
cases, improvements were made through utilizing improved static 
optimizations (compile time).   



Another approach would be to identify the inefficient phases of 
programs and reduce the effect of the α0 term.  Current 
microprocessors already have facilities for scaling frequency and 
voltage [9][1] in order to save power.  Unfortunately, existing 
power scaling policies guarantee safe operating conditions, not 
optimum efficiency.  Their approach is to keep case temperature 
within a safe range.  The result is application of voltage and 
frequency scaling at the worst time from an energy efficiency 
perspective.  According to our power models, maximum power 
and therefore maximum case temperature are coincident with 
maximum processor utilization.  Applying scaling when metric1 • 
α1 is maximum reduces efficiency.  A better approach would be to 
apply scaling when metric1 • α1 is at a minimum.  According to 
Figures 2 and 3 scaling should be applied during program phases 
with high frequencies of branch mispredictions and L2 misses. Li 
et al [7] attempted a similar approach using L2 misses and 
available ILP.  Their approach used simulation for verification 
and was not applicable to existing processors.  Since it is possible 
that efficiency is being affected by a combination of L2 miss rate, 
branch misprediction rate and other more minor events, better 
approach is to consider the resultant overall efficiency.  Rather 
than attempting to find the exact contribution of numerous 
metrics, phases of low efficiency could be identified directly using 
our model of efficiency. This software-only approach requires no 
microarchitecture change and is not computationally demanding.  
Unlike scaling only when the processor exceeds a specified 
temperature, this approach improves energy efficiency and 
reduces the likelihood of temperature emergencies.  Since power 
consumption is reduced during low efficiency phases, the case 
temperature is lower when the processor enters high power 
phases.  Therefore, the processor is less likely to exceed thermal 
limits. 

6. CONCLUSION 
In this paper we presented simple power/energy models that could 
be used to address the critical issues of high power consumption 
and low energy efficiency.  We also motivated further work in this 
area through a detailed analysis of energy efficiency for SPEC 
CPU 2000 workloads.  We showed that an accurate power 
prediction could be made using a simple, PMC-based linear 
regression model.  IPC-related metrics were shown to be the most 
representative.  Of these metrics, uops fetched per cycle was the 
most accurate.  Accuracy was improved further by utilizing a two-
input, trace cache-based model that considered the effect of 
microcode ROM delivered uops.  Additionally, we presented an 
efficiency analysis of the SPEC CPU 2000 benchmark suite.  The 
majority of workloads yielded low energy efficiency.  The cause 
of the poor efficiency was attributed to level 2 cache misses and 
branch mispredictions.  We also compared our finding to existing 
PMC-based power modeling research.  Our results showed that 
the simulation-based model of [8] was not representative of real 
systems.  In addition, an accurate power model can be created 
using considerably fewer PMC metrics than [5]. 

7. FUTURE WORK 
Our primary objective for future work is to apply our runtime 
efficiency model to detecting opportunities for energy savings on 
a real system.  We plan to detect efficiency phases using a 
periodic system service and make voltage and frequency scaling 
decisions based on the results.  In order to make the most effective 

use of scaling, a characterization of typical efficiency phase 
duration will be required.  Finally, our models could be improved 
by controlling for processor die temperature during the training 
workloads to reduce underestimation of lengthy workloads. 
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