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The last decade saw phenomenal growth in information technology and network 

communication. The network interfaces also have to keep up with the speed, throughput 

and capability to support all the workloads. Network processors (NPs) have recently been 

introduced in the network interfaces to process complex workloads.  

This dissertation investigates architectural alternatives for network processors. 

The network processor should be able to process modern network workloads without 

slowing down line speed. In order to handle variety of emerging applications, good un-

derstanding of the target application from the architectural perspectives is essential. 

While most of the previous research and commercial products for NPs are dedicated to 

routing and communication related to data-plane applications, control-plane applications 

where congestion control and QoS issues are dealt with are not well understood. With the 
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demands of emerging network applications, it is imperative to develop and quantitatively 

characterize the NP control plane workloads to guide architects for designing future NPs.  

In this dissertation, a new benchmark suite, called NpBench, is proposed for net-

work processors and its architectural workload characteristics are studied. The NpBench 

suite includes 5 control plane applications and 5 data plane applications. The NpBench 

suite is implemented using C and is opened to public. Large number of institutions in the 

world has licensed and several papers and articles cite the NpBench. The NpBench suite 

fills a major void that exists in the evaluation and benchmarks of NPs. 

Another major contribution of this dissertation is architectural enhancements for 

network processing. First the parallelism characteristics of network processing applica-

tions were investigated to see the possibility of identifying it statically. Based on the in-

vestigation, it is found that the success of VLIW in the multimedia field can be applied to 

the network processor domain as a processing element for a parallel architectural imple-

mentation. 

As alternative solutions of existing network processor architectures, hardware ac-

celeration techniques are proposed to deal with new emerging workloads. Also, the feasi-

bility of extracting common ISA extensions over variety of network workloads is investi-

gated for accelerating the capability of a processing element within a parallel architec-

ture. 

 

 

 

 



 ix

Table of Contents 

List of Tables........................................................................................................................xii 

List of Figures .....................................................................................................................xiii 

Chapter 1: Introduction .......................................................................................................... 1 
1.1 Network Processor Architectures............................................................................ 1 
1.2 Network Processor Workloads................................................................................ 4 
1.3 The Problem ............................................................................................................ 6 
1.4 Objectives................................................................................................................ 7 
1.5 Thesis Statement ................................................................................................... 10 
1.6 Contributions......................................................................................................... 10 
1.7 Organization .......................................................................................................... 14 

Chapter 2: Related Work...................................................................................................... 16 
2.1 Network Processor Benchmarks ........................................................................... 16 
2.2 Architectural Characteristics of Network Processor Applications........................ 17 
2.3 Network Processor Architectures.......................................................................... 18 

Chapter 3: Development and Characterization of a Network Processor Benchmark 
Suite............................................................................................................................. 21 
3.1 Investigation of Modern Network Workloads ...................................................... 21 
3.2 Description of the Applications in the NpBench Suite ......................................... 28 

3.2.1 Traffic-management and QoS Group (TQG) Benchmarks ....................... 28 
3.2.2 Security and Media processing Group (SMG) Benchmarks..................... 32 
3.2.3 Packet Processing Group (PPG) Benchmarks........................................... 35 

3.3 Implementation...................................................................................................... 36 
3.4 Architectural characteristics of NpBench Workloads........................................... 37 

3.4.1 Experimental Methodology....................................................................... 37 
3.4.2 Instruction Distribution ............................................................................. 38 
3.4.3 Cache Behavior ......................................................................................... 40 
3.4.4 Available Instruction Level Parallelism.................................................... 42 



 x

3.4.5 Required Computation Capability per Packet........................................... 42 
3.5 Architectural Implications..................................................................................... 45 
3.6 Summary ............................................................................................................... 47 

Chapter 4: Bottlenecks in Network Processor Applications ................................................ 48 
4.1 Experimental Methodology................................................................................... 48 
4.2 Effectiveness of Wide Issue Processors ................................................................ 50 
4.3 Power Consumption of Wide Issue Superscalars.................................................. 51 
4.4 Sensitivity Analysis............................................................................................... 53 
4.5 Summary ............................................................................................................... 57 

Chapter 5: Architecture with Statically Identified Parallelism ............................................ 59 
5.1 Background ........................................................................................................... 59 
5.2 Workloads ............................................................................................................. 62 
5.3 Experimental Framework...................................................................................... 64 
5.4 Performance and Power Characteristics of NP and Multimedia Workloads 

on Static Scheduled Architecture ....................................................................... 66 
5.4.1 Performance Metric in VLIW ................................................................... 66 
5.4.2 Performance Characteristics...................................................................... 67 
5.4.3 Power Characteristics of NP and Multimedia Workloads on VLIW........ 70 
5.4.4 Required Parallelism for NP Workloads................................................... 71 

5.5 Summary ............................................................................................................... 72 

Chapter 6: Hardware Acceleration Techniques for Control-plane Workloads in 
Network Processors..................................................................................................... 74 
6.1 Hardware Acceleration for Congestion Control Applications .............................. 74 

6.1.1 Motivation ................................................................................................. 75 
6.1.2 Workload Characterization ....................................................................... 78 

6.1.2.1 Experimental framework............................................................... 78 
6.1.2.2 Kernel Characteristics ................................................................... 79 
6.1.2.3 Bottleneck Analysis ...................................................................... 80 

6.1.3 Acceleration Model ................................................................................... 80 
6.1.4 Experimental Results and Performance Evaluation .................................. 85 

6.2 Hardware Acceleration for Media Transcoding Applications .............................. 87 



 xi

6.2.1 Motivation ................................................................................................. 87 
6.2.2 Workload Characterization ....................................................................... 88 

6.2.2.1 Experimental Framework.............................................................. 89 
6.2.2.2 Kernel Characteristics ................................................................... 89 
6.2.2.3 Bottleneck Analysis ...................................................................... 90 

6.2.3 Acceleration Model ................................................................................... 90 
6.2.4 Experimental Results and Performance Evaluation .................................. 93 

6.3 Hardware Acceleration for LUT-related Applications.......................................... 95 
6.3.1 Motivation ................................................................................................. 95 
6.3.2 Workload Characterization ....................................................................... 96 

6.3.2.1 Experimental Framework.............................................................. 97 
6.3.2.2 Kernel Characteristics ................................................................... 97 
6.3.2.3 Bottleneck analysis........................................................................ 98 

6.3.3 Acceleration Model ................................................................................... 98 
6.3.4 Experimental Results and Performance Evaluation ................................ 100 

6.4 Summary ............................................................................................................. 102 

Chapter 7: Instruction Set Extensions for Efficient Network Processing .......................... 105 
7.1 Motivation ........................................................................................................... 105 
7.2 Instruction set extensions for congestion control applications............................ 106 
7.3 Performance analysis of new instruction extensions for congestion control 

applications....................................................................................................... 108 
7.4 Summary ............................................................................................................. 109 

Chapter 8: Conclusions and Future Work .......................................................................... 111 
8.1 Conclusions ......................................................................................................... 112 
8.2 Future Work ..................................................................................................... 116 

Bibliography....................................................................................................................... 119 

VITA .................................................................................................................................. 135 

 



 xii

List of Tables 

Table 1.1 Required parallelism for control plane workloads ................................................. 7 

Table 3.1 Functional grouping of network processor workloads......................................... 23 

Table 3.2 Benchmarks in the NpBench suite ....................................................................... 27 

Table 3.3 Instruction distribution......................................................................................... 39 

Table 3.4 Processing capability of single processor according to line rates and 

required processing capability of benchmarks ................................................ 45 

Table 4.1 Architectural configurations for the experiments ................................................ 49 

Table 4.2 Selected workloads: 8 NP applications and 3 multimedia kernels ...................... 49 

Table 4.3 Impact of resource constraints on energy distribution (WFQ)............................. 56 

Table 5.1 Selected workloads: 8 NP applications and 3 multimedia kernels ...................... 63 

Table 5.2 Architectural configurations for the VLIW experiments ..................................... 66 

Table 5.3 Performance characteristics for selected NP applications and multimedia 

kernels on VLIW............................................................................................. 68 

Table 5.4 Static code size of different region formation techniques.................................... 69 

Table 5.5 Required parallelism for NP workloads............................................................... 72 

Table 6.1 Required parallelism for congestion control workloads ...................................... 77 

Table 6.2 Instruction distribution of congestion control applications and crypto 

applications...................................................................................................... 79 

Table 6.3 Instruction distribution of media transcoding applications.................................. 90 

Table 6.4 Instruction distribution of MPLS and SSLD applications ................................... 97 

Table 7.1 A extensions for congestion control applications .............................................. 107 

Table 7.2 Architectural configurations for performance analysis...................................... 109 



 xiii

List of Figures 

Figure 1.1 Network processors............................................................................................... 4 

Figure 2.1 Overall architecture of NP .................................................................................. 19 

Figure 3.1 WFQ (Weighted Fair Queuing) .......................................................................... 29 

Figure 3.2 RED (Random Early Detection) ......................................................................... 30 

Figure 3.3 SSLD (SSL Dispatcher)...................................................................................... 31 

Figure 3.4 MPLS (Multi Protocol Label Switching)............................................................ 32 

Figure 3.5 MTC (Media Transcoding)................................................................................. 34 

Figure 3.6 Cache performance of network processor benchmarks ...................................... 41 

Figure 3.7 Available parallelism with ten function units ..................................................... 43 

Figure 3.8 Required computational capability (in terms of number of instructions) per 

packet .............................................................................................................. 44 

Figure 4.1 Performance impact of wide issue in NP applications ....................................... 50 

Figure 4.2 Energy consumption of wide issue Superscalar architectures for NP 

applications...................................................................................................... 51 

Figure 4.3 Power distribution in dynamic execution of NP applications............................. 52 

Figure 4.4 Sensitivity analysis with respect to the resource constraints in NP 

applications...................................................................................................... 54 

Figure 5.1 Conceptual structure of parallel architecture for network processors ................ 62 

Figure 5.2 Main flow of the WFQ application..................................................................... 64 

Figure 5.3 Data flow of NP and multimedia workloads ...................................................... 65 

Figure 5.4 Performance characteristic on VLIW ................................................................. 69 

Figure 5.5 Power consumption on VLIW ............................................................................ 71 

Figure 6.1 Router system ..................................................................................................... 76 



 xiv

Figure 6.2 Hardware acceleration model for WFQ.............................................................. 81 

Figure 6.3 Hardware acceleration model for RED............................................................... 84 

Figure 6.4 Performance evaluation of hardware acceleration model for congestion 

control applications ......................................................................................... 86 

Figure 6.5 Media transcoding............................................................................................... 88 

Figure 6.6 Hardware acceleration model for media transcoding ......................................... 92 

Figure 6.7 Performance evaluation of hardware acceleration model (media 

transcoding)..................................................................................................... 94 

Figure 6.8 Data flow of LUT related applications ............................................................... 96 

Figure 6.9 Partitioned LUT [6] ............................................................................................ 99 

Figure 6.10 Hardware acceleration model for LUT checking module .............................. 101 

Figure 6.11 Performance evaluation of hardware acceleration model (LUT related 

application).................................................................................................... 102 

Figure 7.1 Functional units for new instruction sets .......................................................... 108 

Figure 7.2 Performance evaluation of new instruction extensions .................................... 110 



 1

Chapter 1: Introduction 

 
The last decade saw phenomenal growth in information technology and network 

communication. As Internet and network technologies have exponentially grown and 

evolved, the requirement of network interface has become more complex and diverse. 

Also, various applications and protocols require more intelligent processing over the net-

work. To keep up with these trends of emerging network applications, programmable mi-

croprocessors called the network processor (NP) are introduced in network interfaces to 

handle the demands of modern network applications.  

Several vendors are releasing various network processors using different architec-

tural concepts to meet the features of network application workloads. However, existing 

network processors are designed for packet processing. Modern network workloads in-

clude significant control operations in addition to packet routing. Along with rapidly 

changing network environments and requirements, alternative architectures to handle 

emerging network applications are required. This chapter describes (1) the necessity for 

considering emerging workloads in network processor design, and (2) the objectives and 

contributions of this dissertation. 

 

1.1 NETWORK PROCESSOR ARCHITECTURES 

Network processors can be used in various node positions over the network, such 

as core, edge and access routers. Core routers (10 Gbps rate) are placed in the middle of 
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the network, so they are critical for performance and least responsive to flexibility. Edge 

routers are placed in between core and access devices, requiring medium data rate (2.5 

Gbps) and a certain amount of flexibility. URL load balancers and firewalls are examples 

of edge router functions. Access routers (1 Gbps) provide network access to various de-

vices. Most of their works are related to aggregating and forwarding numerous traffic 

streams through the network [18][19][74][94][103][112]. 

The conventional applications of network interface mainly consist of packet proc-

essing and classification algorithms. However, modern role of such an interface includes 

congestion control, network security, accounting [38], network address/protocol transla-

tions, load balancing and media transcoding. The processing capability of these emerging 

workloads must be at a level equivalent to the speed of the network. As a solution to this 

problem, many NP vendors use the concept of packet-level parallelism (PLP) to satisfy 

high-performance demands of networks. In fact, various companies use parallel architec-

tures such as single chip multiple processor or fine-grain multithreaded processors to 

meet the packet-level parallelism [70]. 

In order to extract the parallelism, it is important to understand the attributes of 

target applications. More importantly, choosing an appropriate benchmark suite is also a 

significant factor to successfully design and evaluate the processors. 

While GPPs (General Purpose Processors) are flexible to rapidly developing net-

work applications and protocols, they do not provide enough performance to process data 

at wire rates. For example, packet throughput of a 10Gbps link is 19.5 million packets per 

second, assuming average packet size of bytes [6][45]. Modern network applications re-

quire thousands of instructions to be executed per packet in order to accomplish all the 
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control plane activities required for the packet. General purpose processors at Gigahertz 

frequencies are not enough to accomplish it. More powerful architectures are required to 

manage the workloads. Dedicated ASPs (Application Specific Processors) are designed 

to process packets at wire rates but they are inconvenient when required to add or change 

the features in order to support new environments. The network processor is a program-

mable processor or an instruction-set processor specialized for a particular application 

domain. As shown in Figure 1.1, the network processor exists in the middle range be-

tween GPPs and dedicated ASPs. 

Due to the variety of application spaces being addressed by network processors, 

there could be a wide range of NP architectures and implementations. For the enterprise 

service, several companies developed RISC-based NP with ASIC blocks for networking 

functions such as IXP 1200/2000 series by Intel [52], CXE-16 by Switchcore, CS2000 by 

Chameleon etc. For the high-end service, Motorola (C-port) [27], Lucent (FPP/RSP) [71], 

EZChip (NP-1) [37] and Vitesse/ Sitera(IQ2000) have used network-specific ASICs with 

the features of network classifying, QoS, etc. Some companies like Chrysalis-ITS, Alli-

ance, NetLogic have developed co-processors with the functions such as routing table, 

classification or cryptography [96]. 

Recently, Crowley, et al. [28] presented that simultaneous multithreading is best 

suited for some of the network applications. Recent research and commercial products for 

network processors show the use of multithreading and vector-type array processing. 

Melvin, et al. [74] utilize multiple multithreaded processing engines to get a high degree 

of thread-level parallelism (TLP) in an NP design that supports 256 simultaneous threads 

in eight processing engines. In this scheme, each thread has its own independent register 
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file, while sharing functional resources and memory ports with other threads. ClearSpeed 

[24] introduces an MTAP (Multi-Threaded Array Processing) processor, which provides 

a scalable processing solution, based on an array of 10s to 1,000s of small processing 

elements. Each PE has its own local memory and I/O capability. Although these imple-

mentations can meet the required performance, they have large amounts of hardware and 

programming complexity, cost and power problems. 
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Figure 1.1 Network processors 

 

 

1.2 NETWORK PROCESSOR WORKLOADS 

The bottleneck in communication networks is not just due to bandwidth anymore. 

Ability to provide flexible processing capability in order to support several emerging ap-
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plications and meet their heavy processing workloads is equally important [64]. Major 

challenges for high bandwidth have reached tremendous advances from optical network 

approaches, a solution to bandwidth-centric bottleneck – currently 10Gbps (OC-192) at 

core router exists and 40Gbps (OC-768) is now starting to emerge. In modern network 

areas, more complex protocols and various network services (e.g., Quality of Service, 

IPSec, IPv6, etc.) require significant processing power for highly intelligent applications, 

so the bottleneck of communication network has moved to the network nodes. Accord-

ingly, extracting representative benchmarks from wide range of emerging network appli-

cations and characterizing their properties are essential for designing network processors 

and evaluating their performance. 

NP applications can be functionally categorized into two types of operations: data 

plane operations and control plane operations. The data plane performs packet forward-

ing, fragmentation and checksum calculation. The control plane handles flow manage-

ment, signaling, higher-level protocol and other control tasks [3][26][64]. Over the past 

few years, several vendors have been releasing NPs using a number of different architec-

tures, but most of them are optimized for throughput mostly in data plane. Also, existing 

benchmark suites for network processors primarily contain data plane workloads, which 

perform packet processing for a forwarding function. Although NPs have initially been 

targeted for data plane applications as a conventional workload of NPs, they also play a 

major role in the control plane. In fact, with the increased demand for complex process-

ing, the boundaries between data plane and control plane have become blurred [1]. Con-

trol plane operations have become part of most network processor workloads and the sig-

nificance of control plane has become greater. The recent trend is that some control plane 
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activities, such as TCP and SSL applications, are being considered as a commodity. Since 

there are a lot of control mechanisms in TCP, it cannot be easily converted into an ASIC 

(Application Specific Integrated Circuit) and it has mostly been left to software solutions. 

The proliferation of control plane workloads has made it clear that control plane opera-

tions should be included in NP benchmarks. 

 

1.3 THE PROBLEM 

 
While most of the previous research and commercial products for NPs are dedi-

cated to data-plane applications, control-plane applications are not well understood. With 

the demands of these emerging network applications, it is imperative to develop and 

quantitatively characterize the NP control plane workloads to guide architects for design-

ing future NPs. 

The network processor on the physical port of a router should be able to process 

the modern workloads without slowing down line speed. As shown in Table 1.1, compu-

tational load per packet ranges from 880 to 4,800, when assuming a stream of minimum-

sized packets of 64 bytes and a single processor of 1 GHz clock frequency. The required 

parallelism (number of instructions per packet) for executing NP applications is in the 

range of 2 ~ 356 [64]. Hence a conventional processor is not enough to handle these 

workloads. Relevant research is required to identify appropriate architectures to effi-

ciently execute these emerging workloads [53][69][72][75][87]. 
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Table 1.1 Required parallelism for control plane workloads 

Applications Required parallelism (with a unity ILP 
1 GHz processor) 

 

Computational load 
per packet 
(number of 

instructions) 
1Gbps 

(~OC-24)
10Gbps 

(OC-192) 
40Gbps 

(OC-768)
MPLS 3,051 6 60 254
SSLD 4,727 10 94 356
WFQ 2,005 4 40 167
RED   881 2 17 74
 

 

1.4 OBJECTIVES 

 
Recent research and commercial products for parallel implementation of network 

processors are mostly dedicated to data plane applications with multithreaded and vector-

type array processors [24][81]. Although these complex hardware implementations can 

fulfill the demanded performance using massively parallel architectures, they still have 

problems related to cost of hardware, power, low utilization ratio of processing elements 

and hardware complexity. This research focus on the following objectives: 

 

� Create a suite of network processor workloads including control plane, so that 

NPs are designed considering a realistic network workload 

� Characterize and understand emerging NP workloads to obtain directions for ar-

chitecture research 

� Investigate NP architectural alternatives for emerging network workloads 

� Create hardware accelerators for emerging network workloads 
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The first objective is to fill the gap that exists in the field of network benchmarks. 

The objective is to study network algorithms and create benchmarks which can be used in 

architecture research. Modern network applications can be classified into three functional 

groups: traffic-management and quality of service group (TQG), security and media 

processing group (SMG), and packet processing group (PPG). Based on this functional 

grouping, a set of benchmarks called NpBench, which includes emerging network work-

loads especially control plane applications, is presented. Control plane workloads are just 

emerging and evolving in current network environments, and incorporating them in a 

benchmark suite helps to design future NPs. 

To realize the second objective, characterizations of several network workloads 

on existing processors are performed. The objective is to understand bottlenecks and 

identify features of the program that can be exploited while designing network proces-

sors. From the characterization results of the control plane application, it can be seen that 

the control plane applications contain large amounts of instruction level parallelism 

(ILP). The required computational capability for each network application workloads are 

also evaluated. It is found that aggressive parallel architectures are required in order to 

meet the required computational performance of the control plane workloads. 

The third and fourth objective consists of identifying architectures for emerging 

network workloads. Network processors can be used in various node positions with dif-

ferent scales, such as core routers (10 Gbps), edge routers (2.5 Gbps) and access routers 

(1 Gbps). NPs in different positions will need different architectures. Large scale routers 

may need a very parallel architecture to meet the required throughput, but it is hard to 

apply such a complex and expensive architecture to small scale routers. Therefore, a sim-
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ple and low priced architecture is required for small scale routers to perform the high 

throughput workloads 

In order to understand the design tradeoffs, a fundamental question, whether par-

allelism should be identified statically or dynamically, is explored. Dynamically sched-

uled architectures demand less from compiler, however, if the parallelism is easily ame-

nable for compile-time identification, it is a viable alternative. Current popular media 

processors - TI’s C6x and TriMedia’s TM-1300 - rely on the simpler hardware of VLIW 

processors in order to minimize the cost and power of ILP implementation 

[4][47][54][55][97][113]. This is because multimedia and DSP applications include many 

loop operations in the algorithm, and they are well suited for the static scheduling archi-

tecture. Network processor workloads have also many iterative algorithm and large paral-

lel characteristics, so statically scheduled architectures are worth considering for NP ap-

plications. In this approach, characterizing performance and power dissipation of stati-

cally identified ILP implementation are performed, and the characterization results are 

compared to the dynamic optimization for network processor applications. 

The possibilities of hardware acceleration as alternatives for emerging control-

plane workloads in network processors are investigated. In this dissertation, the charac-

teristics of control plane applications for network processors are analyzed, and applica-

tion-specific acceleration techniques are proposed to exploit instruction and data level 

parallelism.  

One of the significant application categories is congestion control applications. 

For this application category, a parallel comparator which decouples serial processing 

from the queue processing module is applied. The queue processing elements are config-
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ured in parallel for exploiting packet level parallelism. In media transcoding application 

category, most of data to be processed in the transcoding proxy are related to multimedia 

applications, so each processing unit has regular and fine-grained processing element. 

Therefore, array-style processor is considered as a candidate for accelerating media 

transcoding. As a third application category, LUT-related applications are also important 

workloads in control-plane. Based on the analysis, lookup table searching is a major bot-

tleneck in the LUT-related applications. In order to improve this bottleneck, modified 

partitioned lookup table mechanism is applied to accelerate lookup table searching mod-

ule. Parallel comparators are used for equality checking to find exactly matched session 

IDs in SSLD or FEC (forward equivalence class) ID in MPLS. 

 

1.5 THESIS STATEMENT 

Modern network workloads involve significant amounts of control plane opera-

tions and require more processing than the capability of general purpose processors. 

Hardware acceleration approaches can deliver the required processing capability at low 

cost.  

 

1.6 CONTRIBUTIONS 

This dissertation makes several contributions to the defining of a new network 

processor benchmark suite, the characterization of network processor workloads, the de-

tection of bottlenecks in network workloads, and towards designing architectural alterna-
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tives including instruction set extensions, hardware acceleration and statically identified 

parallel architectures. The summary of the contributions is listed below: 

 

1. A benchmark suite, called NpBench targeted towards control plane workloads 

which are an important part of modern network applications is presented. While 

previously released network processor benchmarks mainly deal with data plane 

applications, no benchmark suites are available for control plane workloads. 

With the increasing demand of QoS [13] and rapidly changing modern network 

environments, the significance of control plane workloads has become higher. 

The NpBench suite is implemented using C and is opened to public [64]. Large 

number of institutions in the world have licensed and several papers and articles 

cite the NpBench [19][50][77][78][86][88][113][116][118][119]. The bench-

mark suite is described in [58][64][85]. 

2. The characteristics of network processor workloads such as instruction mix, 

cache behavior, available parallelism and required processing capability per 

packet are presented and compared with existing benchmark suites. Several 

characterization results including architectural characteristics of the application 

having control plane properties, their implications to designing network proces-

sors and the significance of additional parallelism to perform NP applications at 

wire speed are described. This contribution is described in more detail in [64]. 

3. Parallelism characteristics of network processing applications are compared to 

multimedia applications. NP applications (e.g. WFQ) have both parallelizable 

operations and an amount of serial operations, while most of multimedia appli-
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cations have large amount of parallelizable operations. The analysis of these 

characteristic differences can be a key to improve the throughput of network 

processors.  

4. It is investigated whether the success of VLIW in the multimedia field can be 

applied to the network processor domain as a processing element for a parallel 

architecture. This premise is analyzed through the comparison between network 

processor workloads and multimedia workloads in terms of performance 

(speedup) and power consumption. It is found that NP applications need more 

aggressive optimization techniques in static scheduled architecture, while media 

applications can get large parallelism with simple basicblock optimizations. 

With the characteristics of large packet-level parallelism, experimental analysis 

supports static scheduling as an applicable paradigm for network processor ap-

plications with lower hardware complexity and lower power dissipation. This 

contribution is described in more detail in [59]. 

5. Congestion control applications contain several parallelizable operations. In or-

der to exploit parallelism of congestion control applications, a hardware accel-

eration technique is introduced using the decoupling the dataflow into the front-

end PLP (Packet level parallelism) module and the back-end hardware accelera-

tion module. This decoupling techniques and defining a hardware acceleration 

module is done by the thoroughly analysis of the applications. When applying 

16 ~ 64 acceleration module in parallel, 10x ~ 50x performance improvement is 

obtained. This contribution is described in more detail in [65]. 
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6. The procedure of media transcoding consists of transcoding decision unit and 

pipeline-styled regular processing units for data conversion. The decision mod-

ule handles which conversion module is enabled and how many modules are en-

abled. Data conversion modules include several different kinds of functionalities. 

Based on the experiments, data conversion module takes 89% of the total execu-

tion cycles. Most of data to be processed in the transcoding proxy are related to 

multimedia applications, so each processing unit requires regular and fine-

grained processing element. Therefore, the systolic-style processor would be a 

good candidate for accelerating media transcoding. Array-style acceleration 

technique is proposed for data conversion module of media transcoding applica-

tions. If 64 parallel implementation of the acceleration module is applied, it can 

be obtained approximately 28x speedup in transcoding. This contribution is de-

scribed in more detail in [60]. 

7. Both SSLD and MPLS have the lookup table searching and updating module in 

each procedure. Lookup table searching is a major bottleneck in the LUT-related 

applications (77% ~ 86% of the total execution cycles in MPLS and SSLD). In 

this dissertation, hardware acceleration techniques are proposed using a parti-

tioned lookup mechanism for searching LUT used in MPLS and SSLD. If 16-

way parallel implementation of the acceleration module is applied, 262x im-

provement for MPLS and 362x for SSLD [60] can be obtained.  

8. The performance improvement of a single processing element is an important 

factor in designing parallel architecture. New instruction-set extensions are in-

troduced to support fast execution of congestion control applications, based on 
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the detailed kernel analysis. Frequently used instructions are combined into one 

instruction. For congestion control applications, two groups of instruction sets 

are defined: conditional operations and multiplication-add / multiplication-sub 

[65]. Proposed architectural extensions show 10~12% improvement in perform-

ance for instruction set enhancements. 

 

1.7 ORGANIZATION 

The rest of the dissertation is organized as follows: 

Chapter 2 describes existing research work pertinent to this dissertation. Previ-

ously proposed benchmark suites for network processors are discussed first. Then con-

ventional network processor architectures and industry products are discussed. 

Chapter 3 introduces the proposed benchmark suite, called NpBench which in-

cludes control plane workloads and data plane workloads. Also, the architectural charac-

teristics of the benchmark are presented and compared to previously released benchmark 

suite. 

 Chapter 4 identifies bottlenecks in the execution of network processor applica-

tions. This observation is found that the common bottlenecks across both applications are 

issue width and memory elements. 

Chapter 5 discuss whether the success of statically identified parallelism in the 

multimedia field can be applied to the network processor domain, even though network 

processor applications have not-so-regular parallel characteristics compared to multime-
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dia applications. Effort is also spent in analyzing how these different characteristics in 

parallelism affect the performance.   

Chapter 6 introduces a hardware acceleration technique. Congestion control, me-

dia transcoding and LUT related applications are enhanced. For congestion control appli-

cations, decoupling the dataflow techniques are introduced.  Also, hardware acceleration 

technique for media transcoding applications and LUT-related applications are presented. 

Chapter 7 introduces new ISA extensions to support fast execution of network 

processing based on the detailed kernel analysis.  

Chapter 8 concludes the dissertation by summarizing the contributions and sug-

gesting future opportunities. 
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Chapter 2: Related Work 

 
Network processors and related workloads have been researched extensively in 

the past few years. This chapter discusses prior work to this dissertation. The related 

work includes several different categories: defining benchmarks, characterizing applica-

tion’s workload, and architectural enhancements to get higher throughput. 

 

2.1 NETWORK PROCESSOR BENCHMARKS 

 
In the network processor fields, there are two benchmarks which were previously 

proposed: CommBench [122] and NetBench [76]. Wolf, et al. [122] presented eight se-

lected workloads called CommBench for traditional routers and active routers. 

CommBench has two groups of benchmarks namely Header Processing Applications 

(HPA) and Payload Processing Applications (PPA). Memik, et al. [76] proposed nine ap-

plications called NetBench for micro-level, IP-level and application-level benchmarks. 

Nemirovsky [80] also discusses the guidelines for defining benchmarks and challenges of 

benchmark suites for network processors. He suggests that the benchmark should have 

two frameworks such as a task-specific benchmark focusing on a single algorithm or pro-

tocol and a rich-scenario benchmark containing the complexity of real-life applications. 

EEMBC [36] and MiBench [44] have some network applications, but they only have 

routing and encryption applications. NpForum [19][82] has released IA (Implementation 
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Agreement) on IP Forwarding and IPSec Forwarding application level benchmarks, but 

as obvious, they focus on forwarding. 

Previously proposed benchmarks are mainly focused on data plane workloads. 

While the benchmarks of data plane applications have been reasonably well understood, 

there has been very little effort in designing control plane workloads that perform conges-

tion control, flow management, higher-level protocols and other control tasks. Control 

plane workloads are just emerging and evolving in current network environments. The 

NpBench suite presented in this dissertation is mostly focusing on control plane applica-

tions. Also, characteristics of control plane workloads from architectural aspects are ana-

lyzed. 

 

 

2.2 ARCHITECTURAL CHARACTERISTICS OF NETWORK PROCESSOR APPLICATIONS 

 
 Past studies using CommBench [122] and NetBench [72] contrast network work-

loads with other benchmarks, such as SPEC [102] and mediabench [66], with respect to 

instruction set characteristics and memory behaviors. Wolf, et al. [122] indicate that net-

work processors must deal with both streaming and header processing applications. 

Memik, et al. [76] insist that network processor applications have a data-intensive nature. 

In terms of load/store instruction ratio, the NetBench applications make high number of 

memory accesses, while MediaBench applications has more frequent branch instructions 

resulting in a lower instruction level parallelism.  
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2.3 NETWORK PROCESSOR ARCHITECTURES  

 
In order to deal with variety of application areas for network processors, there 

could be a wide range of NP architectures and implementations. Each company is apply-

ing their own architectural concepts in the implementation of network processors. For the 

enterprise service, several companies developed RISC-based NP with ASIC blocks for 

networking functions such as IXP 1200/2000 series by Intel [52], CXE-16 by Switchcore, 

CS2000 by Chameleon etc. For the high-end service, Motorola (C-port) [27], Lucent 

(FPP/RSP) [71], EZChip (NP-1) [37] and Vitesse/ Sitera(IQ2000) have used network-

specific ASICs with the features of network classifying, QoS, etc. Some companies like 

Chrysalis-ITS, Alliance, NetLogic have developed co-processors with the functions such 

as routing table, classification or cryptography [96]. 

Most of NP architectures employ multiple processing engines (PEs), even though 

they each have different names such as micro engine, channel processor or task optimized 

processor. Some are based on RISC cores having their PEs arranged in parallel or in a 

pipelined fashion. The alternative to the RISC is the VLIW based architecture, in which 

most of the PEs are organized in a pipelined method. Many RISC based NPs employ 

multithreading on their PEs to maximize the performance. To ensure fast context switch-

ing between tasks, the NP should have hardware support for multithreading. Figure 2.1 

shows an overall architecture of typical network processor. In general, control and man-

agement functions have more complex processing requirements than data functions. 

GPPs have been used as control processors in commercial network products. Many NPs 

provide the function of control processor with an integrated core or externally via a host 
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interface [49]. In this dissertation, it is shown that GPPs do not have enough processing 

capability to come up with increased demand for complex processing and higher data 

rates. 
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Figure 2.1 Overall architecture of NP 

 
Related recent research and commercial products for network processors show the 

use of multithreading and vector-type array processing. Melvin, et al. [74] utilize multi-

ple multithreaded processing engines to get a high degree of thread-level parallelism 

(TLP) in an NP design that supports 256 simultaneous threads in eight processing en-

gines. In this scheme, each thread has its own independent register file, while sharing 

functional resources and memory ports with other threads. ClearSpeed [24] introduces an 

MTAP (Multi-Threaded Array Processing) processor, which provides a scalable process-

ing solution, based on an array of 10s to 1,000s of small processing elements. Each PE 

has its own local memory and I/O capability. Although these implementations can meet 
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the required performance, they have large amounts of hardware complexity, cost and 

power issues.  

Shah, et al. [96] indicate that today’s network implementations are based on Field 

Programmable gate Arrays (FPGAs) for lower level processing and General Purpose 

Processors (GPPs) for higher layer processing. They also investigate the broad categories 

of alternatives for system implementations such as ASIC (Application Specific Integrated 

Circuit), ASIP (Application Specific Instruction Processor), Co-processor, FPGA and 

GPP. They also present the diversity among different network processors. For example, 

IBM and Motorola have co-processors for most packet-processing kernels, while Cog-

nigine relies on the reconfigurable functional units. EZchip has entire processors devoted 

to pattern matching, lookup, data manipulation, and queue management. Agere’s Pay-

loadPlus system uses a special processor for pattern matching and data manipulation, a 

co-processor for checksum/CRC computation, and has memory features for queue man-

agement. Vitesse and Xelerated Packet Devices simply use a mix of co-processors and 

functional units. Intel and Lexra also include special memory and bus features and have a 

dedicated processor for the control-plane. 
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Chapter 3: Development and Characterization of a Network Processor 

Benchmark Suite  

 

 
It is important to have a benchmark suite with emerging network workloads in or-

der to design future network processors. A good benchmark suite must contain emerging 

and futuristic workloads in order to prevent it from being outdated very quickly. Design-

ing future processors with benchmarks of today, which are programs of yesterday, often 

results in processors and systems which cannot handle workloads that are prevalent when 

the processor design is finished.  

This chapter presents NpBench, a benchmark suite that was developed to assist 

designers of future network processor designers. Predictions on future workloads are very 

difficult to make, however one can examine trends to make educated guesses on what 

might be probable network workloads a few years from now. The NpBench benchmark 

suite was created by studying applications from modern network domain workload. A 

concern that many network processor designers have is that the control plane processing 

content of network workloads is going up, while the current network benchmarks do not 

represent that. Hence a study of emerging network applications was conducted, with an 

emphasis on control plane processing. 

 

3.1 INVESTIGATION OF MODERN NETWORK WORKLOADS 
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Network applications perform routing, scheduling, traffic management/congestion 

control, quality of service enforcement, security management, packet processing, etc.  A 

survey of the functionality of modern network applications reveal applications in three 

major functional groups: traffic-management and quality of service group (TQG), secu-

rity and media processing group (SMG), and packet processing group (PPG). A categori-

zation of major network applications into these categories is presented in Table 3.1. The 

table also illustrates whether the application includes control plane content. Since control 

plane processing is increasing in modern networks, it will be important to include suffi-

cient amount of control plane applications into the benchmark suite. 

The investigation of the network workloads unveiled various kinds of applications 

that in use today or those which are expected to be popular in future. However, not much 

information is available regarding a mix of these applications in real-world routers. Pre-

dicting the mix of applications that will be popular in a network workload a few years 

from now, is difficult and is outside the scope of this dissertation. The objective of this 

research will only be to develop source code for a variety of applications that are ex-

pected to be popular, and to make it available to other researchers and designers. 

It is often impractical to include every application in the world into a benchmark 

suite. It is often sufficient to choose representative applications for the major classes of 

applications. In order to decide what applications must be selected into the benchmark 

suite, information on the workloads used by network routers in the real world was col-

lected. Cisco Systems Incorporation is the biggest router provider and hence an investiga-

tion of their applications can provide valuable information on what is important in current 
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and future network environments. Information from CISCO [23][21], Lightsurf [73] and 

IBM [8] was used in making some deductions on emerging network workloads. 

Table 3.1 Functional grouping of network processor workloads 

 

Group Applications Data 
Plane 

Control 
Plane 

Routing X X 
Scheduling X X 

Content-based switching X X 
Weighted fair queuing X X 

Traffic shaping X X 
Load balancing X X 

VLAN  X 
MPLS X X 
RSVP X X 

DiffServ X X 

TQG 
(Traffic-management and 

Quality-of-Service 
Group) 

IntServ X X 
Block cipher algorithm X  

Message digest algorithm X  
Firewall application X X 

IPSec X X 
Virtual private network X X 

Public encryption X  
Usage-based accounting X X 

H.323 X  
Media transcoding X X 

SMG 
(Security and 

Media Processing Group) 

Duplicate data suppression X  
IP-packet fragmentation X  

Packet encapsulation X  
Packet marking/editing X  

Packet classification X  

PPG 
(Packet Processing 

Group) 
Checksum calculation X  

 

 

Weighted fair Queuing (WFQ) is one of Cisco's premier queuing techniques [23]. 

For situations in which it is desirable to provide consistent response time to heavy and 
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light network users without adding excessive bandwidth, the solution is WFQ. It is a 

flow-based queuing algorithm, and it can work in conjunction with RSVP (Resource 

Reservation Protocol) to build Integrated Service architecture implementations which are 

designed to guarantee network bandwidth from end to end for IP networks. Hence WFQ 

was included in the NpBench suite. 

Random Early Detection (RED) is useful on any output interface where expected 

to have congestion. RED is usually used in the core routers of a network, rather than the 

network’s edge. Edge routers assign IP precedences to packets as they enter the network. 

Cisco's RED implementations include Distributed Weighted Random Early Detection 

[23], which combines the capabilities of the RED algorithm with IP Precedence. This 

combination provides for preferential traffic handling for higher priority packets. WRED 

provides separate thresholds and weights for different IP precedences, which can provide 

different qualities of service for different traffic. It is not known whether RED will be 

used heavily in the future, but RED is included in the suite because if traffic management 

becomes critical, RED is likely to be employed. 

Cisco’s IOS Multiprotocol Label Switching (MPLS) enables Enterprises and Ser-

vice Providers to build next-generation intelligent networks that deliver a wide variety of 

advanced, value-added services over a single infrastructure [21]. This economical solu-

tion can be integrated seamlessly over any existing infrastructure, such as IP, Frame Re-

lay, ATM, or Ethernet. Subscribers with differing access links can be aggregated on an 

MPLS edge without changing their current environments, as MPLS is independent of ac-

cess technologies. Integration of MPLS application components, including VPN, Traffic 

Engineering, QoS and IPv6 enable the development of highly efficient, scalable, and se-
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cure networks that guarantee Service Level Agreements. MPLS appears to be a likely 

component of future network workloads and hence it is included in the suite.  

Another popular application appeared to be SSL (Secure Socket Layer), the de-

facto standard in securing distributed applications [8]. Originally defined by Netscape 

Communications, SSL is accepted for network applications for authenticated and en-

crypted communication between clients and servers. The SSL protocol runs above 

TCP/IP and below higher-level protocols such as HTTP. It uses TCP/IP on behalf of the 

higher-level protocols, which allows an SSL-enabled server to authenticate itself to an 

SSL-enabled client, allows the client to authenticate itself to the server, and allows both 

machines to establish an encrypted connection. These capabilities address fundamental 

concerns about communication over the Internet and other TCP/IP networks. SSLD is a 

technology to reduce the load of authentication between server and client. 

A significant part of network workloads appear to be handling multimedia data. 

Often, data exists in one format at a server, and has to be displayed in a simpler format on 

a mobile device. Media transcoding (MTC) delivers optimized pictures and other multi-

media content across wide range of heterogeneous devices. LightSurf [73] provides a 

media transcoing product which senses what kind of viewing device the recipient is using 

and intelligently transcodes the images and other multimedia files for optimal delivery. 

Throughout the world, there are hundreds of different graphics-capable mobile phones 

that all have varying display characteristics. Cisco [23] also provides Media Resource 

Manager (MRM) as resource reservation of transcoders within a Cisco CallManager clus-

ter. Cisco CallManager supports simultaneous registration of both Media Transfer Part 
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(MTP) and transcoder and concurrent MTP and transcoder functionality within a single 

call.  

Security is another major issue in networks and security applications are expected 

to be a major component of future network workloads. IPSec is a framework of open 

standards developed by the Internet Engineering Task Force (IETF) that provides security 

for transmission of sensitive information over unprotected networks such as the Internet 

[23]. In the case of secure VPN client IPSec, as the tunnel comes up, the PC receives its 

IP address from the central router's IP address pool, then the pool traffic can reach the 

local or be routed and encrypted to the network behind the outlying router. IPSec pro-

vides a more robust security solution and is standards-based. IPSec also provides data 

authentication and anti-replay services in addition to data confidentiality services. 

Packet processing applications are essential and an important part of modern net-

work workloads. Every packet-based network has an MTU (Maximum Transmission 

Unit) size. The MTU is the size of the largest packet network can transmit. Packets larger 

than the allowable MTU must be divided into multiple smaller packets, or fragments, to 

enable them to traverse the network. Packet fragmentation appears to be an essential ap-

plication for packet processing. 

  Error detection and correction is an important part of network processing. Cy-

cle redundancy check (CRC) is a technique used to check errors. The CRC uses a calcu-

lated numeric value to detect errors in transmitted data. The sender of a data frame calcu-

lates the Frame Check Sequence (FCS). The sender appends the FCS value to outgoing 

messages. The receiver recalculates the FCS, and compares it with the FCS from the 

sender. If a difference exists, the receiver assumes that a transmission error occurred, and 
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sends a request to the sender to re-send the frame. The retention of the true value of a 

frame is important to ensure that the destination correctly interprets the data over the 

network. CRC is another essential application for packet processing. 

Based on this analysis, ten representative applications are chosen from the func-

tional groups for the first version of NpBench suite as shown in Table 3.2. The suite in-

cludes several control plane functions as they are missing from the available NP work-

loads.  

 

Table 3.2 Benchmarks in the NpBench suite 

Group Application Description 

WFQ Weighted Fair Queuing is a queue scheduling algorithm 

RED Random Early Detection is an active queue management algo-
rithm which drops arriving packets probabilistically 

SSLD Secure Sockets Layer Dispatcher is an example of content-
based switching mechanism 

TQG 

MPLS Multi Protocol Layer Switching is a forwarding technology us-
ing short labels 

MTC 
Media Transcoding is the process that a media object in one 
representation is converted into another representation for wide 
spectrum of client types 

AES Advanced Encryption Standard (RijnDael) is a block cipher that 
encrypts and decrypts 128, 192 and 256 bits blocks 

MD5 
Message Digestion algorithm takes as input a message of arbi-
trary length and produces as output a 128-bit fingerprint or mes-
sage digest of the input 

SMG 

DH 
Diffie-Hellman key exchange allows two parties who have not 
met to exchange keys securely on an unsecure communication 
path 

FRAG FRAG is a packet fragmentation application 
PPG CRC Cyclic Redundancy Check is used in Ethernet and ATM Adap-

tation Layer 5 (AAL-5) checksum calculation 
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Some of these selected applications are implemented to form the current release 

of the NpBench suite and the rest of them are referred from open source code sites or 

other benchmarks [44][66][122]. The C code for the benchmarks is available on request 

[85]. 

 

 

3.2 DESCRIPTION OF THE APPLICATIONS IN THE NPBENCH SUITE  

3.2.1 Traffic-management and QoS Group (TQG) Benchmarks 
 

TQG benchmarks have a set of applications related to routing, scheduling, queu-

ing, switching, signaling and quality of services. These applications contain both control 

plane processing and data plane processing. The first two benchmarks, WFQ and RED 

are congestion control algorithms. In general, congestion occurs at a router when incom-

ing packets arrive at a rate faster than the rate the router can switch them to an outgoing 

link. The two representative algorithms for congestion control are the scheduling algo-

rithm and the queue management algorithm [15][39]. The scheduling algorithm deter-

mines which packet to be sent next and is used primarily to manage the allocation of 

bandwidth among flows (e.g., weighted fair queuing). According to the IETF (Internet 

Engineering Task Force) recommendation [15], the default mechanism for managing 

queue lengths to meet these goals in FIFO queues is the RED algorithm. SSLD is a con-

tent-based switching algorithm and MPLS is a technology used for quick forwarding of 

packets across backbones. 
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WFQ (Weighted Fair Queuing): WFQ [11][14][30][105] is a queue-scheduling 

algorithm to serve packets in order of their finish-times considering the weight on con-

nections. As shown in Figure 3.1, various lengths of packets from incoming traffic are 

classified into different queues, which can be used for differential service. And they are 

scheduled by a specific mechanism that determines packets to be sent from the queues. 

WFQ uses each packet's estimated finish-time to decide packets to be sent. 

 

 

 

 

Incoming Packets Transmit Queue

Classfier Scheduler
 

 

Figure 3.1 WFQ (Weighted Fair Queuing) 

 
 
 
 
 

RED (Random Early Detection): RED [15][39] is an active queue management 

algorithm for routers. In contrast to the traditional queue management algorithm, which 

drops packets only when the buffer is full, the RED algorithm drops arriving packets 
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probabilistically before coming into the queue as shown in Figure 3.2. The decision of 

whether or not to drop an incoming packet is based on the estimation of the average 

queue size. 
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Figure 3.2 RED (Random Early Detection) 

 

 

 
SSLD (SSL Dispatcher): SSLD [7][99][102] is one example of content-based 

switching mechanism in the server and client cluster environments. SSL typically runs 

over TCP (Transmission Control Protocol), which is used for secure processing of e-

commerce applications. Once TCP connection is established, SSLD maintains the session 

ID information during authentication process, sharing the SSL information among the 

nodes in cluster. When reconnecting to the same server, a client can reuse the session 
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state established during a previous SSL handshake which makes the workloads computa-

tionally heavy. Figure 3.3 shows the concept of SSL dispatcher. 
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Figure 3.3 SSLD (SSL Dispatcher) 

 

 
MPLS (Multi Protocol Label Switching): MPLS [9][56][79][93][126] is a for-

warding technology, which does away with the lookup of bulky IP headers and uses short 

labels for forwarding at the edge of the MPLS domain as shown in Figure 3.4. In this ver-

sion of NpBench, two control plane aspects of MPLS such as Label Distribution and La-

bel Generation, are used. Two functions are extracted from MPLS, namely an upstream 

routing function (for an ingress edge router or a core router) and a downstream routing 

function (for a core router or an egress router).  
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Figure 3.4 MPLS (Multi Protocol Label Switching) 

 

3.2.2 Security and Media processing Group (SMG) Benchmarks 

 
As the e-commerce industry has grown, the security and the accounting applica-

tions such as firewall application, admission control, encryption applications and usage 

based accounting, have become an emerging workload. With higher bandwidth, the de-

mand for high quality of multimedia service is increased. Data stream manipulation, me-

dia transcoding, H.323 and several encoding applications [61][62] can be important is-

sues of NP, associated with QoS. For security benchmarks, three components of IPSec 
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[19][33][95] – Authentication Header (AH), Encapsulating Security Payload (ESP) and 

key management – are included in SMG. 

 
 

 

MTC (Media TransCoding): Media Transcoding [46][99] is a process in which 

a data object in one representation is converted into another representation. In order to 

accommodate the wide spectrum of client capabilities, the media data is modified along 

the dimensions, fidelity, and resolution. As shown in Figure 3.5, media transcoding con-

sists of transcoding policy decision module and transcoding module. The trnascoding pol-

icy decision module decides which factors should be converted to another representation 

based on client device information, contents information and network environments. The 

transcoding module deals with actual conversion processing.  

 

AES (Advanced Encryption Standard): Advanced Encryption Standard 

(RijnDael) [1][44] is a block cipher that encrypts and decrypts 128, 192 and 256 bit 

blocks, which is a U.S. government standard for encryption and digital signature. It is 

used for implementation of AH in IPSec. AES, designed by Joan Daemen & Vincent Ri-

jmen, is a block cipher using symmetric key. It is fast and scalable, and it is also resistant 

to all known cryptanalysis attacks. Decryption is 30% slower than encryption, since in-

verse matrix calculation is more complicated. In the algorithm, the block is considered to 

be structured as 4, 6 or 8 columns of 4 bytes, depending on block size. The basic opera-

tions applied to the block are KeyAddition, Substitution, ShiftRow and MixColumn. 
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Figure 3.5 MTC (Media Transcoding) 

 
 

 

MD5 (Message Digestion): MD5 algorithm [44][122] takes a message of arbi-

trary length as an input and produces a 128-bit “fingerprint” or “message digest” as an 

output. MD5 is a method to verify data integrity and is more reliable than checksum 

method. It is used to perform ESP in IPSec. An algorithm created in 1991 by Professor 

Ronald Rivest that is used to create digital signatures. It is intended for use with 32 bit 

machines and is safer than the MD4 algorithm, which has been broken. MD5 is a one-

way hash function, meaning that it takes a message and converts it into a fixed string of 

digits, also called a message digest. When using a one-way hash function, one can com-

pare a calculated message digest against the message digest that is decrypted with a pub-

lic key to verify that the message hasn't been tampered with. This comparison is called a 

"hashcheck."  
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DH (Diffie-Hellman): Diffie-Hellman [44][76][122] key exchange allows two 

parties who have not met, to exchange keys securely on an unsecured communication 

path. Typically DH is used to exchange a randomly generated conventional encryption 

key, the rest of the exchange is then encrypted with the conventional cipher. It is applied 

to the function of key management in IPSec. Diffie-Hellman key exchange allows two 

parties who have not met to exchange keys securely on an unsecure communication path. 

It has been used with DES, 3DES, IDEA, RC4 though basically the approach of using 

DH key exchange can be used for any conventional stream or block cipher. PGP itself 

operates in a similar fashion, except that PGP uses RSA for key exchange, and IDEA as 

the conventional cipher.  

 

3.2.3 Packet Processing Group (PPG) Benchmarks 

 
Packet processing group includes IP packet fragmentation, packet marking, edit-

ing and classification. Most applications are data plane processing. 

FRAG (Packet Fragmentation): FRAG [122] is a packet fragmentation applica-

tion. IP packets are split into multiple fragments for which some header fields have to be 

adjusted and a header checksum computed. 

 

CRC (Cyclic Redundancy Check): 32-bit Cyclic Redundancy Check [44] is 

used in Ethernet and ATM Adaptation Layer 5 (AAL-5) checksum calculation. 
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In summary, the NpBench suite consists of both essential workloads widely used 

in real world and emerging workloads starting to be used in real applications or services. 

Some of control plane workloads including WFQ, RED and MPLS are used in real world, 

while SSLD and MTC are emerging workloads which will be significant workloads in 

routers. These emerging applications will be widely used at routers as Internet business 

and wireless technologies are evolving. In the data plane workloads, three IPSec applica-

tions are very important in all security-related areas including banking, personal identifi-

cation and e-commerce applications. FRAG and CRC are basic and essential operations 

for packet processing. 

 

 

3.3 IMPLEMENTATION 

 
The NpBench control-plane functions such as WFQ, RED, SSLD, MPLS and 

MTC at the application level are developed using C language, and most of the data-plane 

functions such as FRAG, CRC and IPSec applications were extracted from pen source 

code or other benchmarks [44][66][76][122].  

Randomly generated packets are used as input of the benchmark. For TQG 

benchmarks, WFQ uses packet size and queue information as an input. RED uses incom-

ing packet size and average queue size to decide whether the packet is to be dropped or 

put in the FIFO queue. The clientHello message and serverHello message of the SSL pro-

tocol [102] are used with randomly generated session ID information for the experiment 

of SSLD. The values of FEC identification number are used for two MPLS functions. 

The RED implementation allows an option of congestion environment, which is con-
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trolled by transmission rate of the queue. The SSLD inputs can be different session IDs 

with different reusability factors. In SMG benchmarks, MTC can be separated into two 

components which are policy modules to get adaptive transcoding policies and transfor-

mation modules to perform real transcoding. The policy decision module can be executed 

independently with an execution option. AES can use any files as an input data and MD5 

can make a fingerprint of any files or strings for the input. DH generates and exchanges 

for any number of Diffie-Hellman key pairs. For PPG benchmarks, FRAG and CRC em-

ploy randomly generated IP header as an input data. Under the above simulated network 

environments, the characteristic of NpBench is investigated and presented at next section. 

 

 

3.4 ARCHITECTURAL CHARACTERISTICS OF NPBENCH WORKLOADS 

In this section, experimental results including instruction distribution, cache be-

havior and parallelism of the NpBench are presented. These metrics are essential infor-

mation for understanding dynamic characteristics of the application and for designing the 

processor architecture. Also, required computational capability (in terms of number of 

instructions) to process one packet data is explored, assuming a minimum-sized packet of 

64 bytes. 

 

3.4.1 Experimental Methodology 
 

The SUN Shade binary instrumentation tool [25] is used to obtain the dynamic 

traces while executing NpBench applications. Cachesim5, a cache analyzer tool of SUN 



 38

Shade [25], is also used to perform cache simulation and Tetra [10] to get available paral-

lelism with constraints. 

3.4.2 Instruction Distribution 
 

In these experiments, the number of instructions in the NpBench applications is 

investigated. Table 3.3 shows the dynamic instruction distribution during execution. 

From this workload distribution, it is observed that computational operations occupy a 

significant share of the total instruction mix (53% on the average). Branch operations 

(branch, jump and call) are heavily used in the applications having control plane func-

tions (23.7%) such as WFQ, SSLD and MPLS, for finding fair conditions of each packet, 

looking up session reuse conditions of each session request and investigating same for-

warding equivalence class respectively. Data plane functions have relatively small per-

centage of branch operations (11.1%). 

Since the data plane application is to handle more packet data and coefficients for 

performing the algorithm within payload processing, it is found that the data plane appli-

cation (31.2% on average) uses more memory operations (load and store) than the appli-

cations having control plane functions (23.5%). In the case of SSLD, as the reusability 

factor used in SSLD increases, it is observed that the required computation workloads for 

new session request could be avoided and the required number of instructions could be 

reduced. 

Compared to CommBench, the NpBench has similar percentage of ALU opera-

tions out of the total instructions. However, branch operations are heavily used in 
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NpBench control plane applications (23.7%), followed by CommBench-HPA (20.6%), 

CommBench-PPA (15.3%) and NpBench data plane applications (11.1%). 

 

Table 3.3 Instruction distribution 

           ( Unit: % ) 
NpBench 

App. int/float shift logic branch load store etc 
WFQ 20.6 16.9 0.0 29.2 16.2 7.9 9.3 
RED 39.7 7.2 0.0 15.3 23.6 10.9 3.0 
SSLD 57.0 0.0 0.0 28.3 14.4 0.2 0.0 
MPLS 35.8 11.4 8.6 22.0 16.1 4.9 1.3 
MTC 33.9 2.6 10.5 11.2 21.7 18.1 1.9 
AES 10.5 18.4 26.9 7.0 29.4 7.7 0.1 
MD5 45.1 13.0 20.5 7.5 7.1 6.7 0.2 
DH 24.0 12.0 10.9 9.7 27.0 11.3 5.1 
CRC 25.0 10.0 15.0 10.0 25.0 15.0 0.0 
FRAG 40.0 3.8 15.1 21.4 12.2 6.1 0.7 
Avg. 33.2 9.5 10.8 16.2 19.3 8.9 2.2 

 
(a) NpBench 

 

           ( Unit: % ) 
CommBench 

App. int/float shift logic branch load store etc 
CAST 25.4 17.0 20.4 8.9 20.4 7.4 0.5 
ZIP 34.0 8.0 12.4 20.2 19.4 5.6 0.4 
REED 40.2 11.7 7.1 21.4 14.7 4.9 0.0 
JPEG 43.8 16.1 2.7 10.8 16.5 9.7 0.3 
PPA 35.8 13.2 10.7 15.3 17.8 6.9 0.3 

RTR 20.6 0.7 11.0 23.4 41.3 2.7 0.2 
FRAG 41.5 3.8 15.0 20.4 12.8 6.5 0.0 
DRR 31.7 1.0 0.2 18.3 41.8 6.9 0.1 
TCP 37.2 5.2 12.5 20.5 16.4 7.1 1.3 
HPA 32.8 2.6 9.7 20.6 28.1 5.8 0.4 

Avg. 34.3 7.9 10.2 18.0 22.9 6.3 0.4 
 

 
(b) CommBench 
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3.4.3 Cache Behavior 

 

 
 

The general purpose processor spends a significant part of their real estate for on-

chip caches and hence it is important to understand cache behavior of the NpBench appli-

cations executing on GPP. Cache performance for 2-way set associative cache was evalu-

ated with varying cache sizes. A line size of 32 bytes was commonly used for all cache 

configurations. Figure 3.6 shows the cache miss rates for NpBench applications. Most of 

the NpBench applications perform same operations with various inputs, explaining the 

excellent instruction cache hit ratios. However, data cache performance of these applica-

tions is very poor for small cache sizes. The average miss ratios converge to 0.056% for 

I-cache and 1.531% for D-cache with increasing cache sizes. Instruction cache sizes lar-

ger than 16KB marginally increase cache performance and same observations are made 

with data cache sizes larger than 32KB. This implies 16KB and 32KB could be optimal I-

cache and D-cache size for NpBench application. As shown in Figure 3.6, the applica-

tions having control plane functions show more sensitivity on varying cache sizes. Also, 

it is found that CommBench and NpBench show similar trends in cache miss rates, for 

example, poor performance in data cache behavior. 

In general, each application can be implemented with one PE having its L1 cache 

within the PE itself, and L2 cache of the network processor can be shared by several PEs. 

For reduction of L2 memory access latency, a few mechanisms are proposed [45][98]. 

 

 



 41

 

 

 
 

0

0.2

0.4

0.6

0.8

1

W
FQ

R
E

D

S
S

LD

M
P

LS

M
TC

A
E

S

M
D

5

D
H

C
R

C

FR
A

G

C
A

S
T

ZIP

R
E

E
D

JP
E

G

R
TR

FR
A

G

D
R

R

TC
P

8K

16K

32K

64K

128K

 
(a) Instruction Cache Miss Rate (%) with varying cache size 
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(b) Data Cache Miss Rate (%)with varying cache size 

 

Figure 3.6 Cache performance of network processor benchmarks 
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3.4.4 Available Instruction Level Parallelism 
 

 

Instruction level parallelism of NpBench applications is investigated as a function 

of the inherent data dependencies and data flow constraints with limited number of func-

tional units. Figure 3.7 shows that the available parallelism ranges from 2 to 9. As shown 

in Figure 3.7, NpBench control plane applications (7.61 on an average) have more ILP 

than NpBench data plane applications (4.80), and the available parallelism of 

CommBench (6.14) is in the middle. Security applications except for AES exhibit lower 

parallelism due to the need to perform encryption tasks. Since AES is a block cipher al-

gorithm, it shows relatively higher ILP than other security applications. Even though the 

applications having control plane function have large amount of branch operations, they 

have more execution parallelism, which means there exists a room to improve perform-

ance of control plane processor with more parallel implementation. While most of NPs 

are implemented with several PEs to acquire packet level parallelism (PLP), they still 

need more parallelism with instruction level parallelism (ILP) and intra-packet parallel-

ism (IPP) within the PEs or control plane processors. 

 

 

3.4.5 Required Computation Capability per Packet 

 
 

Some control plane and data plane workloads, from NpBench (e.g., WFQ, RED) 

and CommBench (e.g., DRR, FRAG), are used to get the required computational capabil-
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ity (in terms of number of instructions) per packet. These experiments employ one mil-

lion packets of data as each input. As shown in Figure 3.8, the required processing capa-

bility of control plane is estimated from 880 to 4,800 instructions per packet, while data 

plane is from 330 to 440 (2,660 for control plane and 380 for data plane on average). 

From the graph in Table 3.4, it is seen that control plane functions need larger processing 

capability, since their algorithms have higher complexity to meet sophisticated network 

services. For example, WFQ has to estimate each packet’s finish-time and then classify 

the incoming packet into different queues, in order to maintain fairness and support QoS. 

This makes the algorithm more complex and the number of instructions larger. In contrast 

to that, FRAG performs relatively simple algorithm to split packets into multiple frag-

ments, requiring less processing capability.  
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Figure 3.7 Available parallelism with ten function units 
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Figure 3.8 Required computational capability (in terms of number of instructions) per 
packet 

 

 

 

As shown in Table 3.4, larger packet throughput is demanded for higher line rate. 

Assuming a stream of minimum-sized packets of 64 bytes and one clock frequency for 

executing one instruction, packet throughput of a 10 Gbps link is 19.5 million packets per 

second which means one packet is arrived every 51.2 nanosecond. Given a single proces-

sor of 1 GHz clock frequency, it can execute only 51 instructions per one packet time. 

Since a single processor is not enough to cope with wire speed and handle the workload 

of those applications, current trend of NPs is a single chip multi-processor. Not only more 

parallelism, but also new concept of instruction set architecture (ISA) with sophisticated 

programmability, should be considered to increase the number of instructions per cycle. 
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Table 3.4 Processing capability of single processor according to line rates and required 
processing capability of benchmarks 

 
 

 

3.5 ARCHITECTURAL IMPLICATIONS 

 
Network processors can be used in various positions over the network such as 

edge, core or access network. Each application has different requirements and complex-

ity. As a key solution to current network bottleneck, designing network processors could 

be a challenging work, for the reason that network environments keep changing and 

evolving. Since a variety of NP applications are used in the real field as shown in Table 

3.1, network processors cannot be considered to be very focused  application specific 

processors anymore. It has to process and perform various kinds of applications as does a 

general purpose processor, along with much higher throughput. When designing and 

evaluating a programmable network processor, especially for control plane processors, 

the workloads of NpBench can serve as an appropriate benchmark suite. 

Since NPs would be used in routers over the network, most important things to be 

considered in designing NPs should be the processing capability without the slowdown of 

Line rate Throughput 
(packets/s) 

One 
packet 
time 

Processor clock 
frequency 

Allowable # of instructions per 
one packet time 

500 MHz 256 1Gbps 1.95 M 512 ns 1 GHz 512 
500 MHz 25 10 Gbps 19.5 M 51.2 ns 1 GHz 51 
500 MHz 6 40 Gbps 78.12 M 12.8 ns 1 GHz 12 
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required wire speed. Based on the characteristic analysis with NpBench, some issues 

should be reflected to design the network processor to accomplish demanding perform-

ance and throughput. The following issues are relevant: 

 

• Based on the instruction mix used in executing benchmarks, new instruction sets 

should be considered to reduce the number of instructions per cycle and to accom-

plish higher throughput that can come up with the required number of instruction per 

packet. 

• From the observation of cache behavior, data cache performance should be improved 

with novel cache structure for the network processor. When several PEs are inte-

grated on a single chip, the problems including the shared memory problem should be 

solved for network processors. 

• Due to variety of applications, packet level parallelism has been implemented with 

several processing engines. However, if large numbers of PEs are used, the process-

ing time for each individual packet would be longer and utilization ratio could be de-

teriorated [2][70]. Based on the analysis of available parallelism, NP architectures 

still need more parallelism with instruction level parallelism (ILP) within the PEs or 

control plane processors. Intra-packet parallelism (IPP) should also be considered. 

• Although most of NPs have been targeted for data plane applications, they also play a 

major role in the control plane. In fact, with the increased demand for complex proc-

essing, the boundaries between data plane and control plane have become blurred. To 

cope up with future data rate and complexity of the NP application, control plane 
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workloads should also be considered for designing the network processor, whether 

the NPs provide the function of control processor with an integrated core or exter-

nally via a host interface. 

 

3.6 SUMMARY 

 
As the network environment is rapidly changing, network interfaces demand 

highly intelligent traffic management in addition to the basic requirement of wire speed 

packet forwarding. Extracting representative applications and characterizing network 

workloads is essential for designing network processors and for evaluating their perform-

ance. Several vendors are releasing various network processors in order to handle these 

demands, but it is oriented for data plane functions to get more throughputs. Also, exist-

ing benchmark suites for the network processor primarily contain data plane workloads, 

which perform packet processing for a forwarding function. 

In this chapter, a set of benchmarks, called NpBench targeted towards control 

plane workloads as well as data plane workloads are presented. The characteristics of 

NpBench workloads such as instruction mix, cache behavior, available parallelism and 

required processing capability per packet are presented and compared with CommBench. 

Also, analytical results including the architectural characteristics of the application hav-

ing control plane functions, their implications to designing network processors and the 

significance of additional parallelism to perform NP applications at wire speed are dis-

cussed. 
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Chapter 4: Bottlenecks in Network Processor Applications 

 
This chapter presents the bottleneck analysis of network processor applications. 

Bottleneck analysis is performed to see what is main bottleneck during the execution of 

control plane applications, how does the architectural factors affect the performance, and 

what kinds of architectural solutions are required to relieve the bottleneck.  

 

4.1 EXPERIMENTAL METHODOLOGY 

In order to study the sensitivity of each hardware resources towards the perform-

ance and the effectiveness of issue widths, Experiments on an out-of-order superscalar 

processor model which have variety of hardware resources are performed. Performance 

and power consumption are used as metrics, hence two different tools in this evaluation 

are utilized: The Simplescalar out-of-order simulator[17] is used for evaluating the per-

formance of given architecture. The tool Wattch [16] is also used to estimate the power 

dissipation of given architecture when executing each application. 

Several processor configurations are simulated on the different tools. For the ex-

periments on the effectiveness of issue widths, various superscalar configurations ranging 

from 4-issue to 64-issue are simulated. Simplescalar configurations for 4 and 8-issue su-

perscalar are explained in Table 4.1 and the wider superscalar configurations use propor-

tionally larger resources. 
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For the bottleneck analysis, eight NP applications from the three NP benchmarks - 

CommBench, NetBench and NpBench - are chosen. Table 4.2 summarizes selected ap-

plications. 

 
 
 

Table 4.1 Architectural configurations for the experiments 

Issue width Hardware resorces 4-issue 8-issue 
Decode width 4 8 
Issue width 4 8 

Commit width 4 8 
Integer ALU 4 8 

Integer Multi/Div 4 8 
FP ALU 1 1 

FP Multi/Div 1 1 
L1 I-cache Size:32K, block size: 64, assoc:1 
L1 D-cache Size:32K, block size:32, assoc:4 
L2 u-cache Size:1,024K, block size: 64, assoc:4 

 
 
 
 

Table 4.2 Selected workloads: 8 NP applications and 3 multimedia kernels 

 
Applications Description 
DRR Deficit round robin scheduling 
FRAG Packet fragmentation application 
REED Reed-Solomon error correction scheme 
WFQ Weighted fair queuing 
RED Random early detection algorithm 
SSLD SSL(Secure sockets layer) dispatcher 
MPLS Multi-protocol layer switching 
MTC Media transcoding 
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4.2 EFFECTIVENESS OF WIDE ISSUE PROCESSORS 

The most significant concern in designing network processors is maintaining the 

required throughput. Network processor workloads contain a large amount of instruction 

level parallelism [64]. Hence they possibly will be able to exploit wider and wider issue 

widths. For each NP application, various issue widths of superscalar architectures are ap-

plied in order to see the performance (IPC) variations; the result is shown in Figure 4.1. 

4-issue superscalar is considered as a base configuration and the number of hardware re-

sources is doubled according to each issue width. Most applications show better perform-

ance (IPC) with increasing issue widths, but some applications, such as FRAG, REED 

and SSLD, show early saturation at a small issue width. In order to get a high throughput, 

an aggressive increase of issue width can slightly help to improve the performance, but 

the cost and complexity of the hardware and the relatively small magnitude of improve-

ment make wide issue not so desirable.  
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Figure 4.1 Performance impact of wide issue in NP applications 
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4.3 POWER CONSUMPTION OF WIDE ISSUE SUPERSCALARS 

In order to understand the power consumption of wide superscalar processors, the 

Wattch [16] framework is used for experimentation. As shown in Figure 4.2, total energy 

consumption increases with increasing issue width. In this experiment, large amounts of 

power are consumed in instruction window wakeup/select, reorder buffer, and other 

scheduling related hardware modules. It is found that the total energy consumption of a 

64-issue architecture is 10 times (on average) larger than that of 4-issue architecture. Fig-

ure 4.3 shows power distribution in dynamic execution of NP applications. In particular, 

the power consumption of the instruction window greatly increases with increasing issue 

widths. 
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(Y axis: a normalized energy compared to the total energy of 4-issue superscalar architecture) 
 

 

Figure 4.2 Energy consumption of wide issue Superscalar architectures for NP applica-
tions 
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(a) Power Breakdown of baseline architecture (4-issue) 
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(b) Power Breakdown of baseline architecture (32-issue) 
 

Figure 4.3 Power distribution in dynamic execution of NP applications 
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4.4 SENSITIVITY ANALYSIS  

 

 
In order to investigate which hardware element is most influential to the through-

put, sensitivity analysis for NP applications is performed. In this experiment, nine re-

stricted hardware elements are used, including branch prediction, commit width, decode 

width, the number of functional units, issue width, load/store queue size, the number of 

memory ports, memory bus width and the register update unit.  

Figure 4.4 presents the results of the sensitivity analysis for NP applications. For 

each NP application, the impact of restricting the resource is studied. In this analysis, the 

performance of a 32-issue machine is assumed as the maximum performance, since per-

formance improvement is saturated at 32-issue based on the experiments. In each ex-

periment, a single constraint is intentionally inserted into the maximum performance 

model. Each hardware element of the 4-issue superscalar is used as the corresponding 

constraint for the maximum performance model. From the experiment, the degree of im-

pact, which indicates how the constraint affects the overall performance during dynamic 

execution, is investigated. The percentage value of each bar represents a normalized per-

formance metric, which is the relative performance compared to the assumed baseline 

performance (100%). 
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 (Y axis: IPC normalized with respect to 32-issue architecture) 
 

(a) Loss of IPC when resources are restricted 
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(Y axis: Energy changes compared to baseline architecture) 
 

(b) Changes (increase/decrease) in total energy consumption when resources are re-
stricted  

 
 

Figure 4.4 Sensitivity analysis with respect to the resource constraints in NP applications 

 

 

 
For this sensitivity analysis, nine constraints, which are independent of each other, 

are applied: The ‘bpred’ bar shows the effect of branch misprediction compared to per-

fect prediction. The ‘commit’, ‘decode’ and ‘issue’ bar show the impact of the limited 

size of each resource. The ‘FU’ bar illustrates the impact of restricted functional units. 
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The ‘LSQ’ and ‘RUU’ bar show the effects of limited load/store queues and register up-

date units, respectively. The ‘mem_port’ bar provides the sensitivity of the limited num-

ber of memory system ports available to the CPU, and the ‘mem_width’ bar represents 

the sensitivity of limited memory access bus width. From this analysis, it is found that the 

restriction of memory width has little impact on the overall performance in most NP ap-

plications, except for RED and MPLS. Branch misprediction has largely affected all NP 

applications, except for SSLD. This observation shows that branches are quite unpredict-

able in NP applications. As shown in Figure 4.4 (a), MPLS is the application that was 

most affected by all of constraints. The common bottlenecks across all NP applications 

are ‘LSQ’ and ‘RUU’, with RED and MPLS having the largest impact. Also, the ‘com-

mit’, ‘decode’ and ‘issue’ width are medium-level bottlenecks in the overall performance 

for all NP applications.  

Figure 4.4 (b) shows the sensitivity analysis of the total energy with respect to the 

resource constraints. It is interesting to note that branch misprediction leads to a large 

amount of additional energy dissipation, which is due to the increase in cycles due to the 

misprediction. The ‘commit’ has a similar effect as the ‘branch’ in some applications. 

Experimental results show that better performance (and hence fewer cycles) mean less 

energy consumption. All other constraints, except for the above two, show the propor-

tional impact of the reduced resources in the power dissipation. 

Table 4.3 shows the impact of inserted constraints on detailed resource elements 

in one representative application. The WFQ is selected for this experiment because WFQ 

shows a typical characteristic among the selected NP applications. When the ‘bpred’ is 

given as a constraint, the power dissipation of all resources (except for ‘LSQ’) is in-
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creased in order to execute additional instructions, which compensate for misprediction 

penalties. The most affected resource is the register file in the WFQ experiment. The reg-

ister file consumes twelve times more energy by restricting ‘commit’ width. This is be-

cause there are large amounts of access to the register file, which is due to the narrow 

commit width.  

The ‘issue’ and ‘RUU’ make the largest impact on the power dissipation across 

all applications, which implies that large amounts of power is demanded for the related 

resources (e.g., instruction window) in large issue-width architecture. Figure 4.3 shows 

that the dynamic energy consumption of the instruction window is increased from 7.2% 

to 22.3% with larger issue architecture among the selected NP applications. It is assumed 

that aggressive clock-gating is employed and, therefore, power is scaled linearly with port 

or unit usage. Another assumption is that unused units dissipate 10% of their maximum 

power. 

 

 

Table 4.3 Impact of resource constraints on energy distribution (WFQ) 

Energy Dissipation in each Hardware Elements Inserted 
Resource 

Constraints rename bpred window LSQ regfile icache dcache dcache2 alu resultbus clock 
total 

bpred 3.28 7.11 2.63 0.63 2.07 2.36 1.70 2.71 3.01 2.73 2.98 2.14 
commit 0.90 1.46 1.00 0.33 12.23 1.48 0.71 1.47 1.43 1.00 1.46 1.04 
decode 0.25 1.72 1.00 0.35 0.94 1.76 1.03 1.73 1.68 1.00 1.21 0.86 

FU 1.25 1.38 1.01 0.32 1.22 1.07 0.91 1.38 0.38 0.76 0.65 0.73 
issue 1.57 2.16 0.14 0.46 0.03 1.57 1.24 2.17 2.13 0.31 1.55 0.43 
LSQ 2.18 2.96 1.12 0.38 2.20 1.82 1.59 2.97 2.91 1.32 1.62 1.09 

mem_port 1.41 1.44 1.00 0.04 1.86 0.98 0.32 1.50 1.36 1.01 1.21 0.78 
mem_width 1.10 1.01 1.00 0.27 0.95 0.83 0.71 1.01 1.01 1.00 1.13 0.81 

RUU 0.92 2.83 0.09 0.28 2.32 2.25 1.50 2.84 2.80 0.34 1.47 0.43 
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4.5 SUMMARY 

Generally, conditional operations and memory operations could be constraints for 

getting large parallelism and throughput. Based on previous research [64][65], most of 

NP applications use large amount of conditional operations irrespective of the amount of 

load and store usage. It is because they have to handle each packet by its priority and spe-

cific conditions to perform differentiated services, security checking and traffic manage-

ment.  

Based on the experiments in this chapter, an aggressive increase of issue width 

can help to slightly improve the performance in order to get a high throughput, but the 

cost and complexity of the hardware can be very high. For the energy perspective, total 

energy consumption more sharply increases with increasing issue width, when comparing 

performance perspective. The issue width is one of the bottlenecks for executing NP ap-

plications, but associated optimization techniques should be applied in order to reduce the 

hardware cost and to increase the utilization ratio of processing element. 

The common bottlenecks across all NP applications are ‘load store queue’ and 

‘register update unit’. Also, the ‘commit’, ‘decode’ and ‘issue’ width are medium-level 

bottlenecks in the overall performance for all NP applications. Branch misprediction 

leads to a large amount of additional energy dissipation, which is due to the increase in 

cycles due to the misprediction. The ‘issue’ and ‘register update unit’ make the largest 

impact on the power dissipation across all applications, which implies that large amounts 

of power is demanded for the related resources (e.g., instruction window) in large issue-

width architecture. 
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The experiments in this chapter are based on dynamically scheduled architectures, 

so large amount of energy is consumed by a group of hardware resources (e.g., instruc-

tion window) for dynamic optimization. In general, static scheduled architecture requires 

relatively low energy consumption. Therefore, in the next chapter, NP applications are 

executed on statically scheduled architecture and performance and energy consumptions 

compared in order to see its effectiveness.
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Chapter 5: Architecture with Statically Identified Parallelism 

Most significant issues in modern processor design are related to exploiting paral-

lelism to increase throughput and reducing power consumption. These issues are impor-

tant in the design of Network processors also. Based on previous study [64], network 

processor workloads contain a large amount of instruction level parallelism and iterative 

execution of same algorithm. From this viewpoint, architectural characteristics of NP ap-

plications are similar to media applications. However, they are totally different from the 

data (packet) attribute aspects. While media applications show regularity in the data 

workloads and similarity between neighboring data, NP applications have irregular data 

workloads and distinct properties between adjacent data.  

Based on similarity between media applications and NP applications, it is investi-

gated whether the success of VLIW in the multimedia field can be applied to the network 

processor domain.  

 

5.1 BACKGROUND 
 

Contemporary computer and communication applications are multimedia-rich, in-

volving significant amounts of audio and video compression, image processing, graphics, 

speech and character recognition and signal processing [12][32][41][42][63][66][67][83] 

[91][97][99][105][106][107][108][109][110]. To handle these applications, many ven-

dors have tried application-specific processors. Multimedia processors with VLIW archi-
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tectures have been very popular. More recently, another application-specific processor, 

the network processor (NP), has been introduced to keep up with the high computation 

workloads and intelligent processing capability of network workloads [49][80].  

Network processors handle packet data applications, control plane applications 

and payload applications [49][64][122]. Multimedia applications can actually be included 

in the network payload application category. Also, multimedia data is a dominant element 

of network bandwidth, and it might be a major reason of congestion problems, since the 

size of multimedia data sets tend to be large and differential services become widely ap-

plied [84]. 

Modern network applications and protocols demand intelligent and sophisticated 

processing over the network, which requires non-trivial computation capability. The 

processing requirements within network interfaces and routers are becoming more com-

plex. The network processor on the physical port of a router should be able to process the 

modern workloads without slowing down line speed. Hence large parallel architecture is 

required for fast network processing, and relevant power issues are also considered in de-

signing network processors [114].  

Various kinds of network processors based on different architectural platforms are 

commercially available and academically studied [96]. Crowley, et al. [28] presented that 

simultaneous multithreading is best suited for some of network applications. Recent re-

search and commercial products for network processors show the use of multithreading 

and vector-type array processing [24][74][80][122][123][124][125]. Although these im-

plementations are targeted to meet the required performance, they have complexity in 

hardware and programming software, cost and power problems. 
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Current popular media processors – Texas Instruments’ C6x [113] and TriMedia’s 

TM-1300 [47][97] - rely on the simpler hardware of VLIW processors in order to mini-

mize the cost and power of ILP implementation [48]. Some network processors, such as 

Cisco Toaster [22] and Agere’s PayloadPlus [3][71], are partially applying static schedul-

ing/VLIW to their architectures. The basic architecture of Toaster is a systolic array ar-

chitecture, and PayloadPlus is employing VLIW to one of several components. However, 

it is still not widely thought that VLIW is the way to go for network processors. For re-

cent research related to VLIW, Rao, et al. [92] evaluates compiler support for network 

processing. 

In this chapter, it is investigated whether the success of VLIW in the multimedia 

field can be applied to the network processor domain as a processing element of a parallel 

architecture for NP as shown in Figure 5.1. Generally, the processing element should be a 

simple and low power architecture. Therefore, the VLIW architecture can be a good can-

didate for the processing element of NP parallel architecture from VLSI design aspects. 

This premise is analyzed through the comparison between network processor workloads 

and multimedia workloads in terms of performance (speedup) and power consumption. 

Network processor applications are quite different from multimedia and DSP applications 

in functionality, but both applications have large data (packet) level parallelism. How-

ever, network processor applications have not-so-regular parallel characteristics com-

pared to multimedia applications. It is also analyzed how these different characteristics in 

parallelism affect the performance.  
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Figure 5.1 Conceptual structure of parallel architecture for network processors 

 

5.2 WORKLOADS 

 
Eight NP applications are selected from the three NP benchmarks [64][76][122], 

and three multimedia kernels are also included for the experiments. Table 5.1 summarizes 

selected applications. 

Based on previous research [64][122], it is observed that most of NP applications 

use large amount of conditional operations irrespective of the amount of load and store 

usage. It is because they have to handle each packet by its priority and some specific 

conditions to perform differentiated services, security checking and traffic management. 
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In general, conditional operations and memory operations typically consume a significant 

part of the total execution cycles, and also they restrict performing the parallelism. 

Table 5.1 Selected workloads: 8 NP applications and 3 multimedia kernels 

Applications                 Description 
DRR Deficit round robin scheduling 
FRAG Packet fragmentation application 
REED Reed-Solomon error correction scheme 
WFQ Weighted fair queuing 
RED Random early detection algorithm 
SSLD SSL(Secure sockets layer) dispatcher 
MPLS Multi-protocol layer switching 
MTC Media transcoding 
MM Matrix multiplication 
ADPCM Adaptive Differential Pulse Modulation 
FFT Fast fourier transform 

 

 

Figure 5.2 shows the flow of WFQ [11][14][30][103]. WFQ is a good example to 

investigate its data flow because it has many characteristics of exploiting QoS (Quality-

of-Services) [126], and it is also a solution for congestion problem of the network inter-

faces.  

The WFQ has two main loops – Loop2 handles all queue operations, and during 

Loop1, round number calculations for next Loop2 are performed based on results of 

Loop2 iterations. Therefore, as shown in Figure 5.3, NP applications (e.g. WFQ) have 

both parallelizable operations and an amount of serial operations, while most of multime-

dia applications have large amount of parallelizable operations. However, there is still a 

possibility to improve parallelism for WFQ, since parallel processing parts are dominant 

of the total execution. The flow analysis of WFQ evidences that statically scheduled ar-
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chitecture, which shows good performance in multimedia areas, can be a candidate of a 

processing element for network processors. 

 
 

Loop1: (active)
Loop2: (for all queues)

1. Empty queue checking
2. Finish time calculation
3. Calculation of min/max value of finish time

EndLoop2

4. Round number calculation for next Loop2
EndLoop1

 

Figure 5.2 Main flow of the WFQ application 

    
 

5.3 EXPERIMENTAL FRAMEWORK  

 
In order to study the effectiveness of static scheduling for NP applications, ex-

periments are performed on a VLIW architecture model. However, any particular stati-

cally scheduled architecture is not advocated in this experiment. VLIW paradigm is sim-

ply applied as a vehicle to investigate the feasibility of static scheduling for NP applica-

tions. Performance (speedup) and energy consumption are used as metrics, hence power 

simulators are also needed. The Trimaran [113] tool is used as a framework for static 

scheduled architecture simulation. The tool PowerImpact [68] is also used to estimate 

power consumption of VLIW architecture. For the simulation, 8-issue Trimaran configu-

ration is applied as shown in Table 5.2. The VLIW configuration (4-1-2-1) is based on 

instruction distribution presented in chapter 3 and also in [64]. 
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Figure 5.3 Data flow of NP and multimedia workloads 

 
In the static scheduling simulation using Trimaran, three different region forma-

tions techniques - basicblock, hyperblock and superblock – are used in order to see the 
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effectiveness of aggressive compiler optimization techniques. Basicblock scheduling has 

a limited scope of exploiting ILP, and each basicblock has 4-5 interdependent instruc-

tions on average. Hyperblock and superblock are a kind of extended basicblock for 

scheduling in which groups of basicblocks are scheduled as a single unit. 

PowerImpact is designed on the Impact tool [20]. These tools are capable of 

breaking down the power consumption with respect to the various units of the processor, 

and hence analysis of the power consumption of various processor units is analyzed in 

detail. 

Table 5.2 Architectural configurations for the VLIW experiments 

VLIW Trimaran-4121 configurations 
Integer 4 
Floating Point 1 
Memory 2 
Branch 1 
L1 I-cache Size:32K, block size: 64, associativity:1 
L1 D-cache Size:32K, block size:32, associativity:4 
L2 u-cache Size:1,024K, block size: 64, associativity:4 

 

5.4 PERFORMANCE AND POWER CHARACTERISTICS OF NP AND MULTIMEDIA 
WORKLOADS ON STATIC SCHEDULED ARCHITECTURE 

 
In this section, the performance of NP applications is compared to multimedia ap-

plications on static scheduled architectures (VLIW). 

 

5.4.1 Performance Metric in VLIW 
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Total execution cycles is used as a performance metric rather than IPC (Instruc-

tion per Cycle), when comparing the performance impact between different techniques 

with respect to one application. It is because some aggressive compiler optimizations in-

crease the total number of dynamic instructions. Even though the optimization techniques 

introduce much higher parallelism, IPC comparison based on different number of instruc-

tions are not reasonable within one application. For example, as shown in Table 5.3, su-

perblock simulation of MTC has highest IPC among three block formations, but its actual 

execution cycle is not the highest. Also, in the static scheduling experiments, it is seen 

that some applications, such as WFQ and RED, has better performance when executing 

the application with superblock optimization, while MPLS, SSLD and MTC have better 

results with hyperblock. 

 

5.4.2 Performance Characteristics 

 
In VLIW architecture, the compiler plays a major role in finding parallelism, de-

creasing dependencies among instructions and exploiting other optimization techniques 

in static mode. For more aggressive optimization, several types of region formations have 

been used in the compilation stage. Table 5.4 shows the static code size of each region 

formation in VLIW optimization. Hyperblock and superblock optimization has a much 

larger code size than basicblock optimization, as shown in Table 5.4, since these optimi-

zations use several algorithms, such as tail duplication, node splitting and loop peeling, to 

exploit larger parallelism. These algorithms make the code size larger during the optimi-
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zation process, but total execution cycles become smaller due to the aggressive parallel-

ism from the optimization. 

 

Table 5.3 Performance characteristics for selected NP applications and multimedia ker-
nels on VLIW 

Benchmarks/Architectures Total icount Total cycles
basicblock 299,861,954 255,950,125
hyperblock 246,863,079 87,865,261DRR Trimaran-

4121 superblock 242,616,913 81,910,851
basicblock 46,701,519 29,800,918
hyperblock 46,415,391 17,113,605FRAG Trimaran-

4121 superblock 47,315,391 13,813,605
basicblock 791,093,230 664,971,864

hyperblock 764,712,720 175,726,369REED Trimaran-
4121 superblock 1,085,431,602 297,961,729

basicblock 21,840,219 20,205,926
hyperblock 30,549,203 11,965,495WFQ Trimaran-

4121 superblock 31,366,939 9,716,299
basicblock 8,619,963 5,134,718
hyperblock 11,560,637 3,770,468RED Trimaran-

4121 superblock 10,901,051 2,734,384
basicblock 41,540,697 32,216,891

hyperblock 22,430,498 5,480,132SSLD Trimaran-
4121 superblock 38,446,616 11,115,653

basicblock 47,130,280 37,635,484
hyperblock 26,018,784 5,346,058MPLS Trimaran-

4121 superblock 43,394,820 10,761,597
basicblock 423,951,206 249,137,276

hyperblock 411,585,030 207,468,467MTC Trimaran-
4121 superblock 413,819,818 207,553,368

basicblock 4,978,201 1,731,232
hyperblock 5,705,563 1,762,825MM Trimaran-

4121 superblock 5,724,763 1,770,025
basicblock 10,259,845 7,425,995
hyperblock 11,812,295 4,682,874ADPCM Trimaran-

4121 superblock 11,480,874 4,253,279
basicblock 32,932,660 16,776,649
hyperblock 16,128,966 9,281,398FFT Trimaran-

4121 superblock 18,706,169 7,176,384
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Table 5.4 Static code size of different region formation techniques 

Static code size of different region formations Benchmarks 
basicblock hyperblock superblock

DRR 204 1,170 1,073 
FRAG 89 152 152 
REED 148 915 847 
WFQ 353 2,258 1,875 
RED 358   858 1,332 
SSLD 280 1,551 1,778 
MPLS 263  926   976 
MTC 988 3,160 3,221 
MM 166     621    573 

ADPCM 172     469    491 
FFT 580 2,074 2,268 

 
 
 

The most important exploiting of parallelism can be done by employing instruc-

tion scheduling which is for assigning instructions into fixed functional units in VLIW 

architecture. Figure 5.4 shows the performance comparison between the scheduled and 

the unscheduled VLIW experiments. For a more intuitive comparison, normalized 

speedup is used for comparison to total execution cycles of the unscheduled VLIW.  

 

 

* Y axis: a normalized speedup to the total execution cycles of unscheduled VLIW 

Figure 5.4 Performance characteristic on VLIW 
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Most of NP applications show relatively little improvement from basicblock op-

timization compared to multimedia workloads. However, more aggressive optimization 

techniques give comparable improvements to NP workloads. It is because hyperblock and 

superblock optimizations reduce the impact of conditional operations, which is a main 

factor to decrease the parallelism of NP workloads. MPLS and SSLD show tremendous 

impact from hyperblock optimization. Another interesting observation is that multimedia 

applications show comparable performance in basicblock optimization without using hy-

perblock and superblock optimization except ADPCM. In the case of ADPCM, its impact 

from scheduling is little, because each sample is computed using previous sample values 

making it to contain very little parallelism. Based on this experiment, it can be found that 

the static scheduled architecture can be applied to network processor domain with more 

aggressive optimization techniques. 

 

5.4.3 Power Characteristics of NP and Multimedia Workloads on VLIW 
 

Power consumption of NP and multimedia applications on VLIW architectures is 

investigated to see the power impact from using different block formation techniques. 

Figure 5.5 shows normalized power consumption to basicblock formation. From Figure 

5.5, it cannot be observed any regular patterns of power consumption among different 

block optimization techniques in both applications, but NP applications have more energy 

impact than multimedia applications from aggressively optimized block formation. It is 

because larger parallelism requires more power consumption to exploit more hardware 
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units. Based on the power experiments, similar power characteristics are expected be-

tween both workloads when more optimized parallelism is applied to NP applications.  

 

* Y axis: a normalized power consumption to basicblock formation 

Figure 5.5 Power consumption on VLIW 

 

5.4.4 Required Parallelism for NP Workloads 

 
Assuming a stream of minimum-sized packets of 64 bytes and given a single 

processor of 1 GHz clock frequency for the router, this single processor can execute only 

512 instructions per one packet time over 1Gbps (~OC-24) network line. As shown in 

Table 5.5, required number of parallelism can be obtained with 1~10 parallel implemen-

tation of a unity ILP machine [64]. If OC-192 and OC-768 routers are considered, the 

requirements will be much higher as shown in Table 5.5. Based on this study, it is seen 

that the parallel implementation costs can be reduced by 50%~75% from a single VLIW-

4121. Even though more works on tuning issue-width and accelerating processing ele-

ments are required, static scheduled architecture can be a candidate for a processing ele-
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ment when designing network processors as a processing element of a parallel architec-

ture. As the architectural technology is being evolved, higher speed processors also help 

to reduce the cost of parallel implementation. 

 

Table 5.5 Required parallelism for NP workloads  
(* is indicates control plane applications) 

 
Required number of processing 

elements (with a unity ILP 
processor) 

How many processing elements 
(VLIW-4121) are required? 

Workload 

(~OC-24) (OC-192)  (OC-768) 

Parallelism 
of a VLIW-

4121 
 (~OC-24) (OC-192)  (OC-768) 

DRR 1 7 28 4.04 1 2 7
FRAG 1 9 38 3.23 1 3 10
WFQ* 4 39 168 2.07 1 10 42
RED* 2 17 74 3.22 1 5 19
SSLD* 10 91 394 8.62 3 23 98
MPLS* 6 59 255 5.71 2 15 63

 

 

5.5 SUMMARY 

 
In this chapter, it is investigated whether the success of VLIW in the multimedia 

field can be applied to the network processor domain as a processing element of a parallel 

architecture for NP. This premise is analyzed through the comparison between network 

processor workloads and multimedia workloads in terms of performance (speedup) and 

power consumption. Network processor applications are quite different from multimedia 

and DSP applications in functionality, but both applications have large data (packet) level 

parallelism. However, network processor applications have not-so-regular parallel char-

acteristics compared to multimedia applications. It is also analyzed how these different 

characteristics in parallelism affect the performance. Experimental results show that NP 
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applications need more aggressive optimization techniques in static scheduled architec-

ture, while media applications can get large parallelism with simple basicblock optimiza-

tions. With the characteristics of large packet-level parallelism, experimental analysis 

supports static scheduling as an applicable paradigm for network processor applications 

with lower hardware complexity and lower power dissipation. 

Based on the experiments, it can be concluded that control plane workloads need 

large-scale parallel implementations. Generally, network processors can be used in vari-

ous node positions with different scales, such as core routers (10 Gbps), edge routers (2.5 

Gbps) and access routers (1 Gbps). Large scale routers may need a grid style architecture 

to meet the required throughput, but it is hard to apply such a complex and expensive ar-

chitecture to small scale routers. Therefore, a simple and low priced NP architecture is 

required for small scale routers. In the following chapters, the feasibility of using a hard-

ware accelerator for specific heavily used operations from the application will be studied. 

Careful analysis of the workload is conducted to identify appropriate candidates for 

hardware acceleration. 
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Chapter 6: Hardware Acceleration Techniques for Control-plane 

Workloads in Network Processors 

 
This chapter describes hardware acceleration techniques for control plane work-

loads in network processors. Three types of hardware acceleration modules presented in 

each section. This chapter is organized as follows: Section 6.1 describes congestion con-

trol workloads and a hardware acceleration technique. Section 6.2 provides media 

transcoding workloads and an array-style hardware acceleration model. Section 6.3 pre-

sents lookup table related workloads in control plane and a hardware acceleration tech-

nique using partitioned lookup table. Finally, summary of this chapter is presented in 

Section 6.4. 

 

6.1 HARDWARE ACCELERATION FOR CONGESTION CONTROL APPLICATIONS 

Complex network protocols and various network services require significant 

processing capability for modern intelligent network applications. One of the significant 

features in modern networks is differentiated service. Along with differentiated service, 

rapidly changing network environments cause congestion problems. In this section, char-

acteristics of representative congestion control applications such as scheduling and queue 

management algorithms are analyzed, and application-specific acceleration techniques 

are proposed using PLP (Packet Level Parallelism). From PLP perspective, a hardware 

acceleration model is proposed based on detailed analysis of congestion control applica-
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tions. In order to get higher throughput, large number of processing elements and a paral-

lel comparator are designed. Such hardware accelerators provide large parallelism pro-

portional to the number of processing elements added.  

 

6.1.1 Motivation 

As the bottleneck of communication networks is moving to the network nodes 

from channel bandwidth problem, it is required to have flexible processing capability for 

network processors in order to support several emerging network applications and their 

heavy processing workloads [49][80]. 

One of the significant features in modern network workloads is differentiated ser-

vice. This differentiated service requires a capability to process computation-intensive 

workloads in the network node. Also, as network contents tend to be large and various 

kinds of client devices are introduced, new network applications such as media transcod-

ing [41][103] should be performed in the network nodes. These rapidly changing network 

environments also bring about congestion problems. While the existing research and 

products [27][37][51][52][76][122] have been mostly focused on handling packet proc-

essing, no previous research analyzes these workloads from the architectural perspec-

tives. 

NP workloads have large data (packet) level parallelism, since they iteratively use 

same algorithm to input packets [64]. In order to extract and exploit the parallelism for 

designing network processors, it is extremely important to identify appropriate bench-

marks for efficient design and evaluation of any processor. Among three NP benchmarks 
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[64][76][122], NpBench [76] provides a categorized NP control-plane workloads. Con-

trol plane workloads are just emerging and evolving in current network environments, 

and they perform congestion control, flow management, higher-level protocols and other 

control tasks.  

In general, congestion occurs at a router when incoming packets arrive at a rate 

faster than the rate that the router can switch them to an outgoing link as shown in Figure 

6.1. The two representative algorithms for congestion control are the scheduling and the 

queue management algorithm [15][39]. The scheduling algorithm determines which 

packet to be sent next and is used primarily to manage the allocation of bandwidth among 

flows (e.g., weighted fair queuing (WFQ) [11][30][103]). According to the IETF (Inter-

net Engineering Task Force) recommendation [15][39], the default mechanism for man-

aging queue lengths in FIFO queues is the Random Early Detection (RED) algorithm.  
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Figure 6.1 Router system 
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For the low-delay and low-jitter services (e.g. premium services), the network 

processor on the physical port of a router should be able to process these congestion con-

trol workloads without slowing down the line speed. Assuming a stream of minimum-

sized packets of 64 bytes and given a single processor of 1 GHz clock frequency for the 

router, this single processor can execute only 512 instructions per one packet time over 

1Gbps (~OC-24) network line. As shown in Table 6.1, required number of parallelism 

can be obtained with 2~4-way parallel implementation of a unity ILP machine [64]. In 

the case of OC-192 and OC-768 routers, the requirements will be much higher as shown 

in Table 6.1. 

 

Table 6.1 Required parallelism for congestion control workloads 

 

 
 

Workloads 

 Required parallelism    
(with a unity ILP 1 GHz processor) 

 

 
Required number 

of instructions 
per packet  1Gbps 

(~OC-24) 
10Gbps 

(OC-192) 
40Gbps 

(OC-768) 
WFQ 2,005 4 40 167 
RED 881 2 17 74 

 
 

 

In this section, characteristics of two representative congestion control applica-

tions are analyzed, and application-specific acceleration techniques are proposed using 

PLP concepts. For PLP implementation, a hardware acceleration model is proposed based 

on detailed analysis of congestion control applications.  

The rest of this section describes workload characterization of congestion control 

applications and performance analysis of proposed acceleration model.     
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6.1.2 Workload Characterization 

In order to design coprocessors that relieve congestion, a detailed understanding 

of the algorithm itself including its dataflow, essential operations and its inherent bottle-

neck is required. In this section, two representative applications for congestion control - 

WFQ and RED are analyzed. The WFQ [14][104] is a queue-scheduling algorithm to 

serve packets in order of their finish-times considering the weight on connections. Vari-

ous lengths of packets from incoming traffic are classified into different queues, which 

can be used for differentiated service. The Random Early Detection (RED) [15][39] is an 

active queue management algorithm for routers. In contrast to the traditional queue man-

agement algorithm, which drops packets only when the buffer is full, the RED algorithm 

probabilistically drops arriving packets before coming into the queue. The decision of 

whether or not to drop an incoming packet is based on the estimation of the average 

queue size. 

As shown in Figure 5.3, NP applications (e.g. WFQ) contain several parallelizable 

operations. Particularly, two congestion solutions show many comparison operations and 

conditional operations to exploit fair scheduling and active queue management. 

 

6.1.2.1 Experimental framework 

Workload characterization and performance analysis are performed with the Sim-

plescalar Tool Set version 3.0 for the PISA architecture [17]. Program performance is 

analyzed on the detailed timing simulator. In order to measure more accurate timing re-

quirements, proposed acceleration model is coded using VHDL. Synopsys Design Vision 
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[105] is used for the synthesis of the VHDL model, in which a cell-based methodology is 

used to target the VHDL models to a 0.18-micron technology. 

 
 
 

6.1.2.2 Kernel Characteristics 

 
Instruction mix of the congestion control applications is investigated. Table 6.2 

shows the dynamic instruction distribution during execution. From this workload distri-

bution, it can be observed that ALU operations occupy a significant share of the total in-

struction mix (21% ~ 40%). Branch operations (branch, jump and call) are heavily used 

in the congestion applications (16% ~ 30%) for finding fair conditions and active queue 

management, compared to crypto applications (7% ~ 10%) - AES, MD5 and DH. These 

conditional operations are a main factor to decrease the parallel performance of conges-

tion control applications.  

 

Table 6.2 Instruction distribution of congestion control applications and crypto applica-
tions 

 

App. alu shift logic branch Load store msc. 
WFQ 20.6 16.9 0.0 29.2 16.2 7.9 9.3 
RED 39.7 7.2 0.0 15.3 23.6 10.9 3.0 
AES 10.5 18.4 26.9 7.0 29.4 7.7 0.1 
MD5 45.1 13.0 20.5 7.5 7.1 6.7 0.2 
DH 24.0 12.0 10.9 9.7 27.0 11.3 5.1 
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6.1.2.3 Bottleneck Analysis 

In order to investigate which hardware element impacts performance the most, 

bottleneck analysis is performed for congestion applications. For this bottleneck analysis, 

nine constraints, which are independent of each other, are applied - branch prediction, 

commit width, decode width, the number of functional units, issue width, load/store 

queue size, the number of memory ports, memory bus width and the register update unit.  

From this analysis, it is observed that the restriction of memory width has less 

impact on the overall performance in WFQ than RED. Branch misprediction has largely 

affected both applications. This observation shows that branches are quite unpredictable 

in these congestion applications. The common bottlenecks across both applications are 

‘bpred’, ‘issue’ width, ‘LSQ’ and ‘RUU’.  

In the following section, it is focused on relaxing bottleneck effects from ‘issue’ 

width using the hardware acceleration model, in order to maximize congestion control 

application’s inherent parallelism. 

 

6.1.3 Acceleration Model 

Along with the instruction level parallelism, packet level parallelism should be 

applied to congestion control application to acquire the required parallelism, even though 

they have serial data flows as shown in Figure 6.2 (a). The input packets are processed in 

the queue processing elements (PEs) for the fair queuing, and min/max calculation and 

round number calculations are performed based on the finish time of each processing 

elements.  
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Figure 6.2 Hardware acceleration model for WFQ 
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In order to exploit packet level parallelism, min/max calculation module is de-

coupled from the queue processing flow, and merged into the large parallel comparison 

module with round number calculation model. Also, the queue processing elements are 

configured in parallel for exploiting packet level parallelism as shown in Figure 6.2 (b).  

Given NP packets and NQ queues, the total execution cycle of Figure 6.2 (a) can 

be expressed as follows: 

Q

P
RQMQ N

NtNtt ⋅+⋅+ }){(  

 
where tQ is queue processing cycles, tM is min/max calculation cycles, and tR is round 

number calculation cycles. Under the same condition, the total execution cycle of the 

proposed hardware acceleration model is: 
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P
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where tMR is min/max calculation cycles for all queue processing elements plus round 

number calculation cycles (tR). Therefore, the expected performance improvement is: 
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From the above equation, only NQ dominantly affects the performance improve-

ment. Hence, the speedup from proposed hardware acceleration module would be propor-

tional to the number of queue processing elements and inversely proportional to tMR. If 

same acceleration mechanism is applied to RED as shown in Figure 6.3, the average 
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queue calculation module can be modeled as front-end PLP elements, and decoupled de-

cision module and overall average queue size calculation module can be configured at the 

back-end as a parallel comparison module. Similarly, the speedup from proposed hard-

ware acceleration module would also be proportional to the number of front-end PEs. 
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Figure 6.3 Hardware acceleration model for RED 
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6.1.4 Experimental Results and Performance Evaluation 

 
The proposed hardware acceleration model, as explained in section 6.1.3, is simu-

lated for performance evaluation. In this experiment, ‘min/max calculation time’ (see 

Figure 6.2) for large input sets is assumed to be approximately 10 cycles in the WFQ. It 

is based on generic 2-bit comparator delay, which is 3 XNOR gates delay. And, the 2-bit 

comparisons should be performed over ‘log 2
(number of input sets)+1’ stages. So, if 64-queue 

processing elements is applied and 8-bit comparison is needed, total delay of the critical 

path could be 3 XNOR gates delay (3x170ps) x 7 stages x 3 (8bit comparison). Given 

1GHz clock frequency and assumed 65 ps as one gate delay, it takes about 10 cycles.  

In order to measure more accurate timing requirements, parallel comparator is 

modeled using VHDL and synthesized using Synopsys synthesis tools [105]. Cell-based 

methodology is used to target the VHDL models to a 0.18-micron technology 

(HT018.db). From the synthesis, critical-path delay of the parallel comparator is 4,166.27 

ps, which is 5 cycles if 1 GHz clock frequency is applied.      

As shown in Figure 6.2, actual decision for sending a packet happens at the end of 

queue processing (Queue PE), and the next round of queue processing requires a round 

number from current round queue processing. From the experiment using Simplescalar, 

round number calculation time is approximately 142 cycles, and min/max calculation 

time at the back-end is assumed as 5 cycles. These delays are constant regardless of the 

number of front-end PEs, when tM < tR. As shown in Figure 6.4, speedup from proposed 

hardware acceleration module is proportional to the number of front-end PEs. 
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Figure 6.4 Performance evaluation of hardware acceleration model for congestion control 
applications 

 

 

 

The performance comparison is based on the execution time of 4-issue Simplesca-

lar architecture. The RED shows more improvement, since its ratio of front-end execution 

cycle to back-end execution cycle is larger than that in the WFQ. In the case of RED, the 

number of PEs should be 4, 8 and 32 for OC-24, OC-192 and OC-768 to avoid slowing 

down the line speed. It is observed that the RED shows more improvement, since its ratio 

of front-end execution cycle to back-end execution cycle is larger than that in the WFQ.  

In order to get large parallelism in congestion control applications, it is required to 

carefully decouple the dataflow and split into the front-end PLP module and the back-end 

hardware acceleration module. This decoupling and defining a hardware acceleration 

module could be done by the thoroughly analysis of the applications. Since large number 

of processing elements should be applied for congestion control applications, implemen-
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tation issues such as power, processing element utilization ratio, interconnection delay 

can not be ignored.  

 

6.2 HARDWARE ACCELERATION FOR MEDIA TRANSCODING APPLICATIONS 

In this section, characteristics of media transcoding applications are analyzed, as 

the second category of control plane applications for network processors, and application-

specific acceleration techniques are proposed to exploit data (packet) level. Array-style 

processing module is considered as a candidate for accelerating data conversion module. 

Such hardware accelerators provide large parallelism proportional to the number of array 

processing elements added.  

 

6.2.1 Motivation 

As network contents tend to be large and various kinds of client devices are intro-

duced, new network applications such as media transcoding [46][100] should be per-

formed in the network nodes. As shown in Figure 6.5, the network bandwidths of content 

server and client device has a big difference, since content servers are directly linked to 

large scale networks (e.g., enterprise network) and client device is related to small scale 

networks (e.g., home networks, mobile networks). Also, the hardware resources for dis-

playing and processing data are very limited in client device aspects, particularly for mo-

bile devices [34][35]. If high resolution data is to be sent to client devices from content 

server, it is not economical to send original high resolution data. It will take longer to 
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send the data over the small bandwidth network, and processing time in the client device 

also will take long time. In addition to that, it can cause congestion problems in the node. 

Therefore media transcoding technology should be essentially applied to intermediate 

node between content servers and client devices. Most of data are related to regular me-

dia data, so it would be well matched with array-style architecture to handle data 

transcoding. For PLP implementation using the array architecture, hardware acceleration 

models are proposed based on detailed analyses of media transcoding applications.  
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Figure 6.5 Media transcoding 

 

The rest of this section describes workload characterization of media transcoding 

applications and performance analysis of proposed acceleration model.    

 

6.2.2 Workload Characterization 

Media Transcoding [46][100] is a process in which a data object in one represen-

tation is converted into another representation. In order to accommodate the wide spec-

trum of client capabilities and associated network speeds, the media data need to be 
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modified along the dimensions, fidelity, and resolution. It is not an efficient way to send a 

bigger data to low-resource devices through the slow network line. As shown in Figure 

6.5, transcoding proxy will handle this conversion work, so network bandwidth will be 

efficiently used and it helps to avoid the congestion.  

 

 

6.2.2.1 Experimental Framework 

 

Workload characterization and performance analysis are performed with the Sim-

plescalar Tool Set version 3.0 for the PISA architecture [17]. Program performance is 

analyzed on the detailed timing simulator. Several processor configurations are simulated 

for bottleneck analysis. Synopsys synthesis tool [105], design vision, is also used for tim-

ing verification of proposed hardware acceleration modules.  

 
 
 

6.2.2.2 Kernel Characteristics 

 

Dynamic instruction mix of the control plane applications is investigated. Table 

6.3 shows the dynamic instruction distribution during execution. From this workload dis-

tribution, it can be observed that ALU operations occupy a significant share of the total 

instruction mix (33.9%). Memory operations (load and store) are heavily used for fetch-

ing data from the memory and storing the result to the memory. If systolic-style array 

processors are applied to this application, the memory fetching and storing workloads can 

be significantly reduced.  
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Table 6.3 Instruction distribution of media transcoding applications 

 

App. Alu shift logic branch load store misc. 
MTC 33.9 2.6 10.5 11.2 21.7 18.1 1.9

 
 
 
 

6.2.2.3 Bottleneck Analysis 

 

For the bottleneck analysis of media transcoding, nine constraints as section 

6.1.2.3, which are independent of each other, are applied. Based on this analysis, it is 

found that the restriction of ‘memory_width’ has less impact on the overall performance. 

Branch misprediction has more impact on this application. The bottlenecks which 

strongly influenced the performance are ‘bpred’, ‘issue width’, ‘LSQ’ and ‘RUU’. In the 

following section, it is focused on relieving bottleneck effects from ‘issue’ width and 

‘LSQ’ using parallel hardware acceleration model, in order to maximize media transcod-

ing application’s inherent parallelism. 

 

6.2.3 Acceleration Model 

The procedure of media transcoding consists of transcoding decision unit and 

pipeline-styled regular processing units as shown in Figure 6.6 (a). This decision module 

is very critical in the functioning of the workload. The decision module handles which 

module is enabled and how many modules are enabled. Data conversion modules include 

several different kinds of functionalities including size conversion, color conversion, con-

trast control and gamma correction. Once each processing unit is enabled, the input data 
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is processed in one processing unit and the processed data is forwarded to the next proc-

essing unit. Most of data to be processed in the transcoding proxy are related to multime-

dia applications, so each processing unit requires regular and fine-grained processing 

element. Therefore, the array-style processor would be a good candidate for accelerating 

media transcoding as shown in Figure 6.6 (b). 

Based on experiments using 4-issue Simplescalar, data conversion module takes 

89% of the total execution cycles. If a 128x128 image is used as an input to the data con-

version module, average execution cycles for an image takes 58,800 cycles when four 

transcoding modules are enabled. As shown in Figure 6.6 (c), a processing unit consists 

of simple arithmetic elements including multipliers for red, green and blue color process-

ing, or a combination of three multipliers and one adder.  
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Figure 6.6 Hardware acceleration model for media transcoding 
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6.2.4 Experimental Results and Performance Evaluation 

 
Each processing unit consists of 3 multipliers and one adder as shown in Figure 

6.6 (c). If array multiplier is applied, the critical path of the multiplier is 14 adder-delays. 

High-speed multipliers like Wallace multiplier can reduce the critical path to 7 adder-

delays. In order to measure timing requirements, processing unit is modeled using VHDL 

and the model is synthesized using 0.18-micron technology (HT018.db). From the syn-

thesis results, its critical-path delay of a processing unit is 7,784.96 ps, which is 8 cycles 

if 1 GHz clock frequency is applied. 

If a 128x128 image is considered as an input to the data conversion module 

(without accelerator), average execution cycles for an image takes 58,800 cycles when 

four transcoding modules are enabled. If 4 parallel processing units are applied for each 

transcoding module (4x4 array architecture), it takes 32,768 cycles, which is 1.8x 

speedup. If 64 parallel implementation (4x64 array architecture) is used, only 2,048 cy-

cles is needed for transcoding (28.7x speedup). Figure 6.7 shows the speedup of proposed 

acceleration module in terms of the number of PEs. 
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Figure 6.7 Performance evaluation of hardware acceleration model (media transcoding) 
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6.3 HARDWARE ACCELERATION FOR LUT-RELATED APPLICATIONS 

In this section, characteristics of lookup-table-related applications for network 

processors are analyzed, and application-specific acceleration techniques are proposed to 

exploit data (packet) level parallelism in these applications. It is focused on accelerating 

lookup table searching module using the modified partitioned lookup table mechanism. 

Such hardware acceleration technique provides large parallelism proportional to the 

number of LUT partitions.  

 

6.3.1 Motivation 

As e-commerce applications are widely used in secured environments, content-

based switching mechanism [7][100] between server and client clusters, which is a model 

to reduce the computational loads of heavy authentication, have emerged.  

SSLD [100][103] is one example of content-based switching mechanism in the 

server and client environments. When SSLD runs over TCP connection, the SSLD main-

tains the session ID information during authentication process. When reconnecting to the 

same server, a client can reuse the session so that computational load of authentication 

which is computationally heavy processing, can be reduced. In order to find previously 

used session information and update newly used session information, lookup table (LUT) 

manipulations are applied. 

MPLS [9][56][126] is a forwarding technology, which does away with the lookup 

of bulky IP headers and uses short labels for forwarding at the edge of the MPLS domain. 
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MPLS also use lookup table for finding a forwarding equivalent class of a given destina-

tion address. 

Both SSLD and MPLS have lookup table searching and updating module in each 

procedure as show in Figure 6.8. Lookup table searching is a major bottleneck in the 

LUT-related applications. Based on experiments using 4-issue Simplescalar, LUT search-

ing takes 77% ~ 86% of the total execution cycles in MPLS and SSLD. In this section, 

hardware acceleration models of LUT searching functionality are proposed.  

 

Input LUT
check

processing OutputLUT
update

 

Figure 6.8 Data flow of LUT related applications 

 

The rest of this section describes workload characterization of lookup table re-

lated applications and performance analysis of proposed hardware acceleration model.    

 

6.3.2 Workload Characterization 

Architectural characteristics of LUT-related applications are analyzed. Bottleneck 

analysis is also performed to see what is main bottleneck for executing these applications. 
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6.3.2.1 Experimental Framework 

Workload characterization and performance analysis are performed with the Sim-

plescalar Tool Set version 3.0 for the PISA architecture [17]. Program performance is 

investigated on the detailed timing simulator. Several processor configurations are simu-

lated for bottleneck analysis. The tool CACTI [121] is used for timing verification of 

memory module for lookup table. 

 

6.3.2.2 Kernel Characteristics 

Dynamic instruction mix of the SSLD and MPLS applications are investigated. 

Table 6.4 shows the dynamic instruction distribution during execution. From this work-

load distribution, it can be observed that ALU operations occupy a significant share of 

the total instruction mix (35.8% ~ 57.0%). Branch operations are heavily used for com-

parison of unique ID during LUT searching. If hardware module for parallel searching is 

applied, actual execution time consumed by comparison operations can be reduced.    

 
 
 

Table 6.4 Instruction distribution of MPLS and SSLD applications 

 

App. Alu shift logic branch load store misc. 
MPLS 35.8 11.4 8.6 22.0 16.1 4.9 1.3 
SSLD 57.0 0.0 0.0 28.3 14.4 0.2 0.0 
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6.3.2.3 Bottleneck analysis 

For the bottleneck analysis of LUT-related applications, nine constraints as in sec-

tion 6.1.2.3, which are independent of each other, are applied. Based on this analysis, 

MPLS is restricted by most of the constraints, while SSLD is mainly restricted by ‘RUU’ 

and ‘issue width’. It is interesting to note that all hardware resources are evenly used in 

the MPLS application. 
 

 

 

6.3.3 Acceleration Model 

 
Lookup table searching is a major bottleneck in the LUT-related applications. In 

this study, the focus is on accelerating lookup table searching module. Akhbarizadeh, et 

al. [6][101] proposed partitioned lookup table mechanism for IP packet forwarding, 

which is applied for IPv4 or IPv6 [29]. As shown in Figure 6.9, they use parallel GT 

(Great Than) comparison block for each partitioned lookup table (PLUT) in order to find 

the longest prefix matching IP address and output port among partitioned lookup tables. 

They also use TCAM (Ternary Content Addressable Memory) module [43][113] for 

lookup table. 

For PLP implementations of SSLD and MPLS, partitioned lookup mechanism 

from [101] is modified. Lookup table is partitioned into N (power of 2) small lookup ta-

bles. Each PLUT contains a subset of data for lookup. Lookup table of MPLS has desti-
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nation IP addresses and FEC ID, while SSLD contains destination IP addresses and ses-

sion ID in lookup table.  
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Figure 6.9 Partitioned LUT [6] 

 



 100

Figure 6.10 presents proposed partitioned lookup table mechanism. When an IP 

packet is received, its destination IP address field is broadcasted to all the PLUTs. The 

partitioned lookup table units are checking if the received destination exists in each 

PLUT. If it exists in a PLUT, associated data (FEC ID or session ID) will be controlled 

by Hit/Miss control signal whether the data is transferred to next stage or not. The PLUT 

is similar to the behavior of cache. In this approach, applying TCAM module for lookup 

table is not considered, because it still costs a lot, dissipates more power and takes more 

area compared to SRAM. Typically one bit cell of SRAM requires 4-6 transistors, while 

one bitcell of TCAM requires 11-15 transistors [43]. Several companies including Siber-

Core Technologies [113] produce 2M – 18M TCAM. In the case of 2M TCAMs, it is ca-

pable of single and multi-field classification in as little as 10 ns. Currently TCAM is rela-

tively expensive to use, but it can be expected to be much faster, denser and cheaper 

products in the near future [43]. 

 

6.3.4 Experimental Results and Performance Evaluation 

 
Using the tool CACTI [57][121], average access time of the RAM-based lookup 

tables is compared, when applying different lookup table sizes.  

In the case of lookup table for SSLD, it consists of 32 bit IP address and 256 bits 

for session id. From the CACTI simulation, the access time of this LUT module (256 

Kbytes, 4K entries) is 2.48 ns under the 0.18 micron technology. If the lookup table size 

is 64 Kbytes (1K entries), the access time can be reduced to 1.65 ns. Therefore it can be 
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expected to get speedup in searching LUT if the partitioned LUTs can be executed in 

parallel for SSLD or MPLS. In the case of MPLS, 8 bytes of block size is needed for FEC 

ID. Hence, estimated access time is 1.31 ns for a 32 Kbyte LUT (4K entries) and 1.05 ns 

for an 8 Kbyte LUT (1K entries) respectively.  
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Figure 6.10 Hardware acceleration model for LUT checking module 
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Based on the simulation, total critical-path delay of LUT searching module is 

same as access time of a lookup table memory module. As shown in Figure 6.11, speedup 

from proposed acceleration module is 178x ~ 262x for MPLS and 163x ~ 362x for SSLD, 

when compared to execution cycle without acceleration module.  
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Figure 6.11 Performance evaluation of hardware acceleration model (LUT related appli-
cation) 

 

6.4 SUMMARY 

 

In section 6.1, characteristics of network congestion control applications are ana-

lyzed, and application-specific acceleration techniques are proposed to exploit data 

(packet) level parallelism in these applications. Two representative algorithms for con-

gestion control are scheduling and queue management algorithms. From the PLP perspec-

tive, a hardware acceleration model is proposed based on detailed analysis of congestion 
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control applications. In order to get higher throughput, large number of processing ele-

ments and a parallel comparator are designed. Such hardware accelerators provide bene-

fits proportional to the number of processing elements added. 

In section 6.2, characteristics of media transcoding applications for network proc-

essors are analyzed, and application-specific acceleration techniques are proposed to ex-

ploit data level parallelism. Most of the data to be processed in the transcoding proxy are 

related to multimedia applications, so each processing unit has regular and fine-grained 

processing element. Therefore, an array-style processor is used as a candidate for acceler-

ating media transcoding.  

Lookup table searching is a major bottleneck in the LUT-related applications. In 

order to reduce this bottleneck, in section 6.3, it is focused on accelerating lookup table 

searching module using the modified partitioned lookup table mechanism. Parallel com-

parator (for equality checking) is also used to find exactly matched session ID (for SSLD) 

or FEC (forwarding equivalence class) ID (for MPLS) among partitioned LUTs. 

Current network processors handle specific application with each processing ele-

ment for accelerating packet processing. This is because there is no common solution for 

network processing workloads and many companies want to use their own design solu-

tion to avoid any costs for licensing fee and to reduce the time-to-market. There is no re-

search on finding common architectural characteristics on network processor workloads, 

while several architectural solutions are commonly used for multimedia workloads. The 

processor architecture for network nodes has been changed from the software implemen-

tation on general purpose processor to ASICs and network processors. As the perform-

ance of general purpose processor rapidly increases, it is required to consider going back 
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to use general purpose processors for network nodes, but more application-specific exten-

sion modules are required to commonly used for network processor applications. 
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Chapter 7: Instruction Set Extensions for Efficient Network Processing 

 
One of the significant features in modern networks is differentiated service. Along 

with differentiated service, rapidly changing network environments result in congestion 

problems. In this chapter, application-specific acceleration technique is proposed using 

instruction set extensions for congestion control applications. Based on investigation, 

other control plane applications, except for media transcoding, have little opportunities to 

come up with new instruction set extensions. Multimedia extensions have already been 

applied to general purpose processors such as MMX. 

As the performance and clock frequency of general purpose processor rapidly in-

creases, one can consider going back to use general purpose processors for network 

nodes. However, as in multimedia extensions, it is essential to extract instruction set ex-

tensions for network processor applications. 

 

7.1 MOTIVATION 

To design coprocessors that relieve congestion, one requires a detailed under-

standing of the algorithm itself including its dataflow, essential operations and its inher-

ent bottleneck. The WFQ [30][104] is a queue-scheduling algorithm to serve packets in 

the order of their finish-times considering the weight on connections. The Random Early 

Detection (RED) [15] is an active queue management algorithm for routers. In contrast to 

the traditional queue management algorithm, which drops packets only when the buffer is 
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full, the RED algorithm drops arriving packets probabilistically before coming into the 

queue. These two congestion solutions show many comparison operations and condi-

tional operations to exploit fair scheduling and active queue management. In general, 

conditional operations and comparison operations reduce the parallelism in dynamic exe-

cution. If a few instructions associated with these operations can be combined into one 

instruction, total number of instructions can be reduced in dynamic execution. 

 

7.2 INSTRUCTION SET EXTENSIONS FOR CONGESTION CONTROL APPLICATIONS 

Based on analysis of congestion control applications, highly parallel implementa-

tion for packet (data) level parallelism (PLP/DLP) is needed to get high throughput as the 

network line speed become higher. In the case of OC-768 (40Gbps), 74 ~ 167 parallel 

implementation of a unity ILP machine is required. Even though a simple parallel archi-

tecture is modelled, its hardware cost and power consumption cannot be ignored. In order 

to reduce these costs, the performance improvement of a single processing element is an 

important factor in designing parallel architecture. In this dissertation, instruction exten-

sions are proposed by defining new instruction sets to increase pereformance within a 

single processing element. 

Table 7.1 shows new instructions to support fast execution of congestion control 

applications. These architectural extensions are created by detailed kernel analysis in 

source code and instruction level. Frequently used instructions are combining into one 

instruction. Basically, two groups of instructions are defined: conditional operations and 

multiplication-add / multiplication-sub. New conditional instructions including CNDGT, 
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CNDLT, CNDEQ, CNDNE, CNDEZ and CNDNZ, are frequently used in congestion 

control applications to find fair conditions and active queue management. Based on the 

experimental results, congestion control workloads have many computational operations 

during dynamic execution. Therefore, two ALU operations are also combined as one in-

struction such as MADD1, MADD2, MSUB1 and MSUB2. These instructions can reduce 

the execution cycles in ALU. This kind of multiply-add instructions are already available 

in many general purpose architectures. 

 
 

Table 7.1 A extensions for congestion control applications 
 

Instruction Description 
CNDGT    dest, src1, src2 
 

if(src1 > src2) 
else 

dest = src1; 
dest = src2;  

CNDLT    dest, src1, src2 
 

if(src1 < src2) 
else 

dest = src1; 
dest = src2;  

CNDEQ    dest, src1, src2 
 

if(src1 == src2) 
else 

dest = src1; 
dest = src2;  

CNDNE    dest, src1, src2 
 

if(src1 != src2) 
else 

dest = src1; 
dest = src2;  

CNDEZ    dest, src1, src2 
 

if(src1 == 0) 
else 

dest = src1; 
dest = src2;  

CNDNZ    dest, src1, src2 
 

if(src1 != 0) 
else 

dest = src1; 
dest = src2;  

MADD1   dest, src1, src2 dest = src1* src2 + src1; 
MADD2   dest, src1, src2 dest = src1* src1 + src2; 
MSUB1    dest, src1, src2 dest = src1* src2 - src1; 
MSUB2    dest, src1, src2 dest = src1* src1 - src2; 

 
 

 

Figure 7.1 shows new functional units which are added into a single processing 

element. For the combined conditional operations, a function unit, including the function-
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ality of one comparator and one transfer module is defined. Another function unit for the 

combined multiplication operations includes one multiplier and one adder. 
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(a) Functional unit for conditional operation 
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(b) Functional unit for ALU operation 

 
 

Figure 7.1 Functional units for new instruction sets 
 

7.3 PERFORMANCE ANALYSIS OF NEW INSTRUCTION EXTENSIONS FOR CONGESTION 

CONTROL APPLICATIONS 

For this experiment, instruction annotation technology is used based on Simples-

calar PISA instruction sets and cross compiler (gcc-pisa), and hand-coded optimized ver-

sions of each congestion control applications. As shown in Table 7.2, 4 different hard-
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ware configurations are used for a single processing element:  4-way, 4-way+extension, 

8-way and 8way+extension. In order to support new instruction extensions, two CND 

functional units and two MADD / MSUB functional units are added into 4-way baseline 

architecture. The 8-way model doubles the issue width, the execution modules and mem-

ory bandwidth. 

Table 7.2 Architectural configurations for performance analysis 

 

Architectural  
element 

4-way 4-way + 
ext 

8-way 8-way + ext 

Issue width 4 4 8 8 
ALU 4 4 8 8 

Memory Port 2 2 4 4 
CND 0 2 0 4 

MADD/MSUB 0 2 0 4 
 

 

As shown in Figure 7.2, the performance improvement from instruction exten-

sions provides 10~12% which is not a big improvement, so exploiting packet level paral-

lelism is really required to make desired throughput as well. It is observed that the RED 

shows more sensitivity from increasing issue widths, and new extensions show more per-

formance improvement from the wider issue width. 

7.4 SUMMARY 

In this chapter, application-specific acceleration techniques are proposed to ex-

ploit instructions for congestion control applications. From the ILP perspective, new in-

struction set extensions for fast conditional operations are applied for congestion control 
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applications. Based on experiments, proposed architectural extensions show 10~12% im-

provement in performance for instruction set enhancements.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.2 Performance evaluation of new instruction extensions 
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Chapter 8: Conclusions and Future Work 

 
As modern network technologies have explosively grown along with Internet 

businesses, various applications and protocols require intelligent processing over the 

network. Therefore, network interfaces also have to keep up with the speed, throughput 

and capability to support all the workloads over the network. Good understanding of the 

target applications from the architectural perspectives is essential in designing a network 

processor.  

The network processor on the physical port of a router should be able to process 

the modern workloads without slowing down line speed. Computational load per packet 

(in terms of number of instructions) ranges from 880 to 4,800, when assuming a stream 

of minimum-sized packets of 64 bytes and a single processor of 1 GHz clock frequency. 

The required parallelism for executing NP applications is in the range of 2 ~ 356 [64]. 

Hence a conventional processor is not enough to handle these workloads. Relevant re-

search is required to identify appropriate architectures to efficiently execute these emerg-

ing workloads. 

Control plane network applications that handle traffic management, quality of 

service etc. have become very important. While most of the previous research and com-

mercial products for NPs are dedicated to data-plane applications, control-plane applica-

tions are not well understood. With the demands of these emerging network applications, 

it is imperative to develop and quantitatively characterize the NP control plane workloads 

to guide architects for designing future NPs. 
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In this dissertation, a new benchmark suite for network processors is proposed 

and its architectural workload characteristics are presented. Parallelism characteristics of 

these applications are analyzed and hardware acceleration techniques are proposed as al-

ternative solution of existing architectures to deal with new emerging workloads. 

8.1 CONCLUSIONS 

This dissertation makes several contributions to the defining of a new network 

processor benchmark suite, characterization of network processor workloads, the detec-

tion of bottlenecks in network workloads, and towards designing architectural alterna-

tives including instruction set extensions, and hardware acceleration. These are also de-

scribed in more detail in [62][64][65][66]. The summary of the contributions is listed be-

low: 

 

1. A set of benchmarks, called NpBench targeted towards control plane workloads as 

well as data plane workloads, is proposed. While previously released network 

processor benchmarks deal with data plane applications, the NpBench includes 

emerging control plane applications. With the increasing demand of QoS and rap-

idly changing modern network environments, the significance of control plane 

workloads will be becoming larger. NpBench includes 5 control plane applications 

and 5 data plane applications. Control plane applications consist of Weighted Fair 

Queuing (WFQ), Random Early Detection (RED), Secure Sockets Layer Dis-

patcher (SSLD) and Media Transcoding (MTC). Data plane applications consist of 

Advanced Encryption Standard (AES), Message Digestion (MD5), Diffie-Hellman 
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(DH), Packet Fragmentation (FRAG) and Cyclic Redundancy Check (CRC). The 

NpBench suite is implemented using C and is opened to public [64]. Large number 

of institutions in the world have licensed and several papers and articles cite the 

NpBench [19][49][77][78][86] [88][111][116][118][119]. 

2. The characteristics of network processor workloads such as instruction mix, cache 

behavior, available parallelism and required processing capability per packet are 

presented and compared with existing benchmark suites. Architectural characteris-

tics of the application having control plane properties are presented along with 

their implications to designing network processors and the significance of addi-

tional parallelism to perform NP applications at wire speed. From the experiments, 

it is seen that branch operations are heavily used for executing control plane appli-

cations. Control plane workloads are seen to have more ILP than data plane work-

loads. Based on the analysis of available parallelism, NP architectures still need 

more parallel implementations with instruction level parallelism (ILP) within the 

PEs or control plane processors. This contribution is described in more detail in 

[64]. 

3. Parallelism characteristics of network processing applications are compared to 

multimedia applications. NP applications (e.g. WFQ) have both parallelizable op-

erations and a significant amount of serial operations, while most of multimedia 

applications have large amount of parallelizable operations. Network processor 

applications are quite different from multimedia and DSP applications in architec-

tural aspects, but both applications have large parallelism and iteratively utilize 

many similar algorithms. Based on this investigation, it can be concluded that the 
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architectures successfully used in multimedia domain can be a good candidate for 

the architectures of NP applications. 

4. It is investigated that whether the success of VLIW in the multimedia field can be 

applied to the network processor domain as a processing element for a parallel ar-

chitectural implementation. This premise is analyzed through the comparison be-

tween network processor workloads and multimedia workloads in terms of per-

formance (speedup) and power consumption. It is found that NP applications need 

more aggressive optimization techniques in static scheduled architecture, while 

media applications can get large parallelism with simple basicblock optimizations. 

With the characteristics of large packet-level parallelism, experimental analysis 

supports static scheduling as an applicable paradigm for network processor appli-

cations with lower hardware complexity and lower power dissipation. Based on 

this investigation, it can be observed that the parallel implementation costs can be 

reduced by 50%~75% when applying VLIW to network processing. This contribu-

tion is described in more detail in [59]. 

5. Congestion applications have both parallelizable operations and same serial opera-

tions. In order to get large parallelism in the congestion applications, a hardware 

acceleration technique is introduced by decoupling the dataflow into the front-end 

PLP (Packet level parallelism) module and the back-end hardware acceleration 

module. When applying 16 ~ 64 acceleration module in parallel, 10x ~ 50x per-

formance improvement can be obtained. This contribution is described in more de-

tail in [65]. 
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6. The procedure of media transcoding consists of transcoding decision unit and 

pipeline-styled regular processing units. The decision module handles which mod-

ule is enabled and how many modules are enabled. Data conversion modules in-

clude several different kinds of functionalities. Based on the characterization ex-

periments, data conversion module takes 89% of the total execution cycles. Most 

of data to be processed in the transcoding proxy are related to multimedia applica-

tions, so each processing unit requires regular and fine-grained processing element. 

Therefore, the array-style processor would be a good candidate for accelerating 

media transcoding. Array-style acceleration technique is proposed for data conver-

sion module of media transcoding applications. If 64 parallel implementation of 

the acceleration module is applied, 28.7x transcoding speedup can be obtained. 

This contribution is described in more detail in [60]. 

7. Both SSLD and MPLS have the lookup table searching and updating module in 

each procedure. Lookup table searching is a major bottleneck in the LUT-related 

applications (77% ~ 86% of the total execution cycles in MPLS and SSLD). In this 

dissertation, acceleration techniques are proposed using this partitioned lookup 

mechanism for searching LUT used in MPLS and SSLD. Parallel comparator (for 

equality checking) is used to find exactly matched session ID (for SSLD) or FEC 

(forwarding equivalence class) ID (for MPLS) among partitioned LUTs. If 16-way 

parallel implementation of the acceleration module is applied, 262x improvement 

for MPLS and 362x for SSLD can be obtained. This contribution is described in 

more detail in [60]. 
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8. The performance improvement of a single processing element is an important fac-

tor in designing parallel architecture. New instruction-set extensions are intro-

duced to support fast execution of network processor applications, based on the 

detailed kernel analysis. Frequently used instructions are combined into one in-

struction. For congestion control applications, two groups of instruction sets are 

defined: conditional operations and multiplication-add / multiplication-sub. Pro-

posed architectural extensions show 10~12% improvement in performance for in-

struction set enhancements [65]. 

 

8.2 FUTURE WORK 

 
Several kinds of workloads and benchmarks have been developed as target appli-

cations for application-specific processors. While SPEC is working on the benchmarks of 

general purpose processors, EEMBC and several academic benchmark suites deal with 

the workloads of application-specific processors. However, these benchmark suites con-

sist of several single workloads. They could not reflect realistic workload, since many 

network and multimedia applications are composite-type. In order to design an appropri-

ate processor for a specific application, it is required to consider these evolving trends. 

The processor architecture for network nodes has changed from software imple-

mentations on general purpose processors to ASICs and network processors. As the per-

formance of general purpose processor rapidly increases, one may need to consider going 

back to use general purpose processors for network nodes, but more application-specific 
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extension modules are required to commonly used for network processor applications. 

For future work, the feasibility of extracting common architectural extensions over vari-

ety of network workloads, and defining architectural extensions (e.g., as in MMX for 

multimedia applications) can be investigated. Careful analysis of the workload will be 

conducted to identify more appropriate candidates for hardware extensions. This research 

can be extended in the following ways in the future: 

 

1. Finding Common Hardware Acceleration Solutions for Emerging Network 

Processor Applications: Current network processors handle specific network ap-

plications at individual application level. This is because there is no common so-

lution for network processing workloads and many companies want to use their 

own design solutions to avoid any costs for licensing fee and to reduce the time-

to-market. There is no research on finding common architectural characteristics 

on network processor workloads, while several architectural solutions are com-

monly used for multimedia workloads (e.g., MMX, 3DNow!, etc). However, net-

work processing is stream processing and it performs same patterns of processing 

with irregular patterns of data. So, if one can find common factors among several 

network applications, it can reduce the cost of development. Also, when this 

mechanism can be applied to general purpose processors, a hardware extension 

for NP applications can be developed as in MMX for multimedia application. 

 

2. Extracting smallest set of NP benchmarks through the statistical analysis: 

As network environments keep evolving, extracting new workloads would be sig-
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nificant in the future. However, it is not realistic to characterize all applications, 

and the relevant simulation time will be additional big bottleneck in the design 

procedures of a processor. Therefore it would be valuable work to design a 

framework to statistically analyze new emerging NP workloads and extract small-

est set of benchmarks, so that simulation time can be reduced and time to market 

(TTM) can be significantly reduced.  

 

3. Development of an Automated Framework that supports Performance 

Modeling and Design: Designing millions (or billions) of gates in RTL takes too 

long and too hard to verify its design. So many companies are making some ef-

forts on performance modeling, to reduce development periods, which is to evalu-

ate the target processor by software design of instruction-set simulator. Currently, 

several chip companies are working on this area, but there is no standardized solu-

tion for processor description and software design methodology. The instruction 

simulators can be automatically generated by the processor descriptions and the 

automated methodology. Since processors are frequently upgraded based on the 

previous version, once a version of processor descriptions have been developed, it 

can be easily developed new version of instruction-set simulator with small 

changes of descriptions. This area will be important as the demands of SoC de-

velopment increases. 
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