

Copyright

by

Byeong Kil Lee

2005

The Dissertation Committee for Byeong Kil Lee

Certifies that this is the approved version of the following dissertation:

Network Processor Design: Benchmarks and
Architectural Alternatives

Committee:

Lizy K. John, Supervisor

Ronald Barr

Chen-Chau Chu

Sanjay Shakkottai

Earl E. Swartzlander, Jr.

 Network Processor Design: Benchmarks and
Architectural Alternatives

by

Byeong Kil Lee, B.S.E, M.S.E.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2005

To my family and friends

 v

Acknowledgements

I would like to thank my advisor, Dr. Lizy John for her advice, guidance, and

support. She has had a significant influence not only as my graduate advisor but also on

my life. Her professional integrity and pursuit of perfection helped me become a better

individual. Her thoughtfulness and understanding the status of international students

made me have more freedom towards research without any financial problem. I am grate-

ful to her for unconditional support and encouragement she gave me throughout my Ph.

D. study. I’m also grateful to her guiding me to have great experiences on professional

activities.

I also thank my committee, Prof. Ronald Barr, Dr. Chen-Chau Chu, Prof. Sanjay

Shakkottai, and Prof. Earl E. Swartzlander Jr. for their invaluable comments, productive

suggestions, and the time to reading my thesis.

I would like to thank the students (past and current) at the Laboratory for Com-

puter Architecture (LCA) - Deepu Talla, Ravi Bhargava, Juan Rubio, Madhavi Valluri,

Tao Li, Rob Bell, Yue Luo, Shiwen Hu, Anand Rajan, Aashish Phansalkar, Ajay Joshi,

Sean Leather, Lloyd Bircher, Hari Angepat, Jason Matalka and Hareesh Pottamsetty.

They have contributed to my research by providing valuable comments on drafts of my

paper submissions and useful feedback at practice talks.

 vi

I would like to thank Dr. Thang Tran, Teik Tan, Ty Garibay and Dr. Jim Bondi

for providing me with an opportunity to work at Texas Instruments, Austin. I also thank

all team members – Bhasi, Sam, James, Abraham, Paul, Sree, Jeff, Arjun, Murali, Ra-

jinder, Rao, Bob, Hongjoong and Bill.

Thanks to Linda, Shirley, Debi, Melanie, Amy and other administrative assistants

who worked in Computer Engineering in the past years.

Finally, I would like to thank my parents, wife, Jisop (son), Hayoung (daughter)

and friends who have had a tremendous influence on my life.

BYEONG KIL LEE

The University of Texas at Austin

August 2005

 vii

Network Processor Design: Benchmarks and

Architectural Alternatives

Publication No._____________

Byeong Kil Lee, Ph. D.

The University of Texas at Austin, 2005

Supervisor: Lizy John

The last decade saw phenomenal growth in information technology and network

communication. The network interfaces also have to keep up with the speed, throughput

and capability to support all the workloads. Network processors (NPs) have recently been

introduced in the network interfaces to process complex workloads.

This dissertation investigates architectural alternatives for network processors.

The network processor should be able to process modern network workloads without

slowing down line speed. In order to handle variety of emerging applications, good un-

derstanding of the target application from the architectural perspectives is essential.

While most of the previous research and commercial products for NPs are dedicated to

routing and communication related to data-plane applications, control-plane applications

where congestion control and QoS issues are dealt with are not well understood. With the

 viii

demands of emerging network applications, it is imperative to develop and quantitatively

characterize the NP control plane workloads to guide architects for designing future NPs.

In this dissertation, a new benchmark suite, called NpBench, is proposed for net-

work processors and its architectural workload characteristics are studied. The NpBench

suite includes 5 control plane applications and 5 data plane applications. The NpBench

suite is implemented using C and is opened to public. Large number of institutions in the

world has licensed and several papers and articles cite the NpBench. The NpBench suite

fills a major void that exists in the evaluation and benchmarks of NPs.

Another major contribution of this dissertation is architectural enhancements for

network processing. First the parallelism characteristics of network processing applica-

tions were investigated to see the possibility of identifying it statically. Based on the in-

vestigation, it is found that the success of VLIW in the multimedia field can be applied to

the network processor domain as a processing element for a parallel architectural imple-

mentation.

As alternative solutions of existing network processor architectures, hardware ac-

celeration techniques are proposed to deal with new emerging workloads. Also, the feasi-

bility of extracting common ISA extensions over variety of network workloads is investi-

gated for accelerating the capability of a processing element within a parallel architec-

ture.

 ix

Table of Contents

List of Tables..xii

List of Figures ...xiii

Chapter 1: Introduction .. 1
1.1 Network Processor Architectures.. 1
1.2 Network Processor Workloads.. 4
1.3 The Problem .. 6
1.4 Objectives.. 7
1.5 Thesis Statement ... 10
1.6 Contributions... 10
1.7 Organization .. 14

Chapter 2: Related Work.. 16
2.1 Network Processor Benchmarks ... 16
2.2 Architectural Characteristics of Network Processor Applications........................ 17
2.3 Network Processor Architectures.. 18

Chapter 3: Development and Characterization of a Network Processor Benchmark
Suite... 21
3.1 Investigation of Modern Network Workloads .. 21
3.2 Description of the Applications in the NpBench Suite ... 28

3.2.1 Traffic-management and QoS Group (TQG) Benchmarks 28
3.2.2 Security and Media processing Group (SMG) Benchmarks..................... 32
3.2.3 Packet Processing Group (PPG) Benchmarks... 35

3.3 Implementation.. 36
3.4 Architectural characteristics of NpBench Workloads... 37

3.4.1 Experimental Methodology... 37
3.4.2 Instruction Distribution ... 38
3.4.3 Cache Behavior ... 40
3.4.4 Available Instruction Level Parallelism.. 42

 x

3.4.5 Required Computation Capability per Packet... 42
3.5 Architectural Implications... 45
3.6 Summary ... 47

Chapter 4: Bottlenecks in Network Processor Applications .. 48
4.1 Experimental Methodology... 48
4.2 Effectiveness of Wide Issue Processors .. 50
4.3 Power Consumption of Wide Issue Superscalars.. 51
4.4 Sensitivity Analysis... 53
4.5 Summary ... 57

Chapter 5: Architecture with Statically Identified Parallelism .. 59
5.1 Background ... 59
5.2 Workloads ... 62
5.3 Experimental Framework.. 64
5.4 Performance and Power Characteristics of NP and Multimedia Workloads

on Static Scheduled Architecture ... 66
5.4.1 Performance Metric in VLIW ... 66
5.4.2 Performance Characteristics.. 67
5.4.3 Power Characteristics of NP and Multimedia Workloads on VLIW........ 70
5.4.4 Required Parallelism for NP Workloads... 71

5.5 Summary ... 72

Chapter 6: Hardware Acceleration Techniques for Control-plane Workloads in
Network Processors... 74
6.1 Hardware Acceleration for Congestion Control Applications 74

6.1.1 Motivation ... 75
6.1.2 Workload Characterization ... 78

6.1.2.1 Experimental framework... 78
6.1.2.2 Kernel Characteristics ... 79
6.1.2.3 Bottleneck Analysis .. 80

6.1.3 Acceleration Model ... 80
6.1.4 Experimental Results and Performance Evaluation 85

6.2 Hardware Acceleration for Media Transcoding Applications 87

 xi

6.2.1 Motivation ... 87
6.2.2 Workload Characterization ... 88

6.2.2.1 Experimental Framework.. 89
6.2.2.2 Kernel Characteristics ... 89
6.2.2.3 Bottleneck Analysis .. 90

6.2.3 Acceleration Model ... 90
6.2.4 Experimental Results and Performance Evaluation 93

6.3 Hardware Acceleration for LUT-related Applications.. 95
6.3.1 Motivation ... 95
6.3.2 Workload Characterization ... 96

6.3.2.1 Experimental Framework.. 97
6.3.2.2 Kernel Characteristics ... 97
6.3.2.3 Bottleneck analysis.. 98

6.3.3 Acceleration Model ... 98
6.3.4 Experimental Results and Performance Evaluation 100

6.4 Summary ... 102

Chapter 7: Instruction Set Extensions for Efficient Network Processing 105
7.1 Motivation ... 105
7.2 Instruction set extensions for congestion control applications............................ 106
7.3 Performance analysis of new instruction extensions for congestion control

applications... 108
7.4 Summary ... 109

Chapter 8: Conclusions and Future Work .. 111
8.1 Conclusions ... 112
8.2 Future Work ... 116

Bibliography... 119

VITA .. 135

 xii

List of Tables

Table 1.1 Required parallelism for control plane workloads ... 7

Table 3.1 Functional grouping of network processor workloads... 23

Table 3.2 Benchmarks in the NpBench suite ... 27

Table 3.3 Instruction distribution... 39

Table 3.4 Processing capability of single processor according to line rates and

required processing capability of benchmarks .. 45

Table 4.1 Architectural configurations for the experiments .. 49

Table 4.2 Selected workloads: 8 NP applications and 3 multimedia kernels 49

Table 4.3 Impact of resource constraints on energy distribution (WFQ)............................. 56

Table 5.1 Selected workloads: 8 NP applications and 3 multimedia kernels 63

Table 5.2 Architectural configurations for the VLIW experiments 66

Table 5.3 Performance characteristics for selected NP applications and multimedia

kernels on VLIW... 68

Table 5.4 Static code size of different region formation techniques.................................... 69

Table 5.5 Required parallelism for NP workloads... 72

Table 6.1 Required parallelism for congestion control workloads 77

Table 6.2 Instruction distribution of congestion control applications and crypto

applications.. 79

Table 6.3 Instruction distribution of media transcoding applications.................................. 90

Table 6.4 Instruction distribution of MPLS and SSLD applications 97

Table 7.1 A extensions for congestion control applications .. 107

Table 7.2 Architectural configurations for performance analysis...................................... 109

 xiii

List of Figures

Figure 1.1 Network processors... 4

Figure 2.1 Overall architecture of NP .. 19

Figure 3.1 WFQ (Weighted Fair Queuing) .. 29

Figure 3.2 RED (Random Early Detection) ... 30

Figure 3.3 SSLD (SSL Dispatcher).. 31

Figure 3.4 MPLS (Multi Protocol Label Switching).. 32

Figure 3.5 MTC (Media Transcoding)... 34

Figure 3.6 Cache performance of network processor benchmarks 41

Figure 3.7 Available parallelism with ten function units ... 43

Figure 3.8 Required computational capability (in terms of number of instructions) per

packet .. 44

Figure 4.1 Performance impact of wide issue in NP applications 50

Figure 4.2 Energy consumption of wide issue Superscalar architectures for NP

applications.. 51

Figure 4.3 Power distribution in dynamic execution of NP applications............................. 52

Figure 4.4 Sensitivity analysis with respect to the resource constraints in NP

applications.. 54

Figure 5.1 Conceptual structure of parallel architecture for network processors 62

Figure 5.2 Main flow of the WFQ application... 64

Figure 5.3 Data flow of NP and multimedia workloads .. 65

Figure 5.4 Performance characteristic on VLIW ... 69

Figure 5.5 Power consumption on VLIW .. 71

Figure 6.1 Router system ... 76

 xiv

Figure 6.2 Hardware acceleration model for WFQ.. 81

Figure 6.3 Hardware acceleration model for RED... 84

Figure 6.4 Performance evaluation of hardware acceleration model for congestion

control applications ... 86

Figure 6.5 Media transcoding... 88

Figure 6.6 Hardware acceleration model for media transcoding ... 92

Figure 6.7 Performance evaluation of hardware acceleration model (media

transcoding)... 94

Figure 6.8 Data flow of LUT related applications ... 96

Figure 6.9 Partitioned LUT [6] .. 99

Figure 6.10 Hardware acceleration model for LUT checking module 101

Figure 6.11 Performance evaluation of hardware acceleration model (LUT related

application).. 102

Figure 7.1 Functional units for new instruction sets .. 108

Figure 7.2 Performance evaluation of new instruction extensions 110

 1

Chapter 1: Introduction

The last decade saw phenomenal growth in information technology and network

communication. As Internet and network technologies have exponentially grown and

evolved, the requirement of network interface has become more complex and diverse.

Also, various applications and protocols require more intelligent processing over the net-

work. To keep up with these trends of emerging network applications, programmable mi-

croprocessors called the network processor (NP) are introduced in network interfaces to

handle the demands of modern network applications.

Several vendors are releasing various network processors using different architec-

tural concepts to meet the features of network application workloads. However, existing

network processors are designed for packet processing. Modern network workloads in-

clude significant control operations in addition to packet routing. Along with rapidly

changing network environments and requirements, alternative architectures to handle

emerging network applications are required. This chapter describes (1) the necessity for

considering emerging workloads in network processor design, and (2) the objectives and

contributions of this dissertation.

1.1 NETWORK PROCESSOR ARCHITECTURES

Network processors can be used in various node positions over the network, such

as core, edge and access routers. Core routers (10 Gbps rate) are placed in the middle of

 2

the network, so they are critical for performance and least responsive to flexibility. Edge

routers are placed in between core and access devices, requiring medium data rate (2.5

Gbps) and a certain amount of flexibility. URL load balancers and firewalls are examples

of edge router functions. Access routers (1 Gbps) provide network access to various de-

vices. Most of their works are related to aggregating and forwarding numerous traffic

streams through the network [18][19][74][94][103][112].

The conventional applications of network interface mainly consist of packet proc-

essing and classification algorithms. However, modern role of such an interface includes

congestion control, network security, accounting [38], network address/protocol transla-

tions, load balancing and media transcoding. The processing capability of these emerging

workloads must be at a level equivalent to the speed of the network. As a solution to this

problem, many NP vendors use the concept of packet-level parallelism (PLP) to satisfy

high-performance demands of networks. In fact, various companies use parallel architec-

tures such as single chip multiple processor or fine-grain multithreaded processors to

meet the packet-level parallelism [70].

In order to extract the parallelism, it is important to understand the attributes of

target applications. More importantly, choosing an appropriate benchmark suite is also a

significant factor to successfully design and evaluate the processors.

While GPPs (General Purpose Processors) are flexible to rapidly developing net-

work applications and protocols, they do not provide enough performance to process data

at wire rates. For example, packet throughput of a 10Gbps link is 19.5 million packets per

second, assuming average packet size of bytes [6][45]. Modern network applications re-

quire thousands of instructions to be executed per packet in order to accomplish all the

 3

control plane activities required for the packet. General purpose processors at Gigahertz

frequencies are not enough to accomplish it. More powerful architectures are required to

manage the workloads. Dedicated ASPs (Application Specific Processors) are designed

to process packets at wire rates but they are inconvenient when required to add or change

the features in order to support new environments. The network processor is a program-

mable processor or an instruction-set processor specialized for a particular application

domain. As shown in Figure 1.1, the network processor exists in the middle range be-

tween GPPs and dedicated ASPs.

Due to the variety of application spaces being addressed by network processors,

there could be a wide range of NP architectures and implementations. For the enterprise

service, several companies developed RISC-based NP with ASIC blocks for networking

functions such as IXP 1200/2000 series by Intel [52], CXE-16 by Switchcore, CS2000 by

Chameleon etc. For the high-end service, Motorola (C-port) [27], Lucent (FPP/RSP) [71],

EZChip (NP-1) [37] and Vitesse/ Sitera(IQ2000) have used network-specific ASICs with

the features of network classifying, QoS, etc. Some companies like Chrysalis-ITS, Alli-

ance, NetLogic have developed co-processors with the functions such as routing table,

classification or cryptography [96].

Recently, Crowley, et al. [28] presented that simultaneous multithreading is best

suited for some of the network applications. Recent research and commercial products for

network processors show the use of multithreading and vector-type array processing.

Melvin, et al. [74] utilize multiple multithreaded processing engines to get a high degree

of thread-level parallelism (TLP) in an NP design that supports 256 simultaneous threads

in eight processing engines. In this scheme, each thread has its own independent register

 4

file, while sharing functional resources and memory ports with other threads. ClearSpeed

[24] introduces an MTAP (Multi-Threaded Array Processing) processor, which provides

a scalable processing solution, based on an array of 10s to 1,000s of small processing

elements. Each PE has its own local memory and I/O capability. Although these imple-

mentations can meet the required performance, they have large amounts of hardware and

programming complexity, cost and power problems.

Application
Specific Processor

or Co-processor

General
Purpose

Processor

Network
processor

P
ro

gr
am

m
ab

le
 (F

le
xi

bi
lit

y)

Task specific (Performance)

Figure 1.1 Network processors

1.2 NETWORK PROCESSOR WORKLOADS

The bottleneck in communication networks is not just due to bandwidth anymore.

Ability to provide flexible processing capability in order to support several emerging ap-

 5

plications and meet their heavy processing workloads is equally important [64]. Major

challenges for high bandwidth have reached tremendous advances from optical network

approaches, a solution to bandwidth-centric bottleneck – currently 10Gbps (OC-192) at

core router exists and 40Gbps (OC-768) is now starting to emerge. In modern network

areas, more complex protocols and various network services (e.g., Quality of Service,

IPSec, IPv6, etc.) require significant processing power for highly intelligent applications,

so the bottleneck of communication network has moved to the network nodes. Accord-

ingly, extracting representative benchmarks from wide range of emerging network appli-

cations and characterizing their properties are essential for designing network processors

and evaluating their performance.

NP applications can be functionally categorized into two types of operations: data

plane operations and control plane operations. The data plane performs packet forward-

ing, fragmentation and checksum calculation. The control plane handles flow manage-

ment, signaling, higher-level protocol and other control tasks [3][26][64]. Over the past

few years, several vendors have been releasing NPs using a number of different architec-

tures, but most of them are optimized for throughput mostly in data plane. Also, existing

benchmark suites for network processors primarily contain data plane workloads, which

perform packet processing for a forwarding function. Although NPs have initially been

targeted for data plane applications as a conventional workload of NPs, they also play a

major role in the control plane. In fact, with the increased demand for complex process-

ing, the boundaries between data plane and control plane have become blurred [1]. Con-

trol plane operations have become part of most network processor workloads and the sig-

nificance of control plane has become greater. The recent trend is that some control plane

 6

activities, such as TCP and SSL applications, are being considered as a commodity. Since

there are a lot of control mechanisms in TCP, it cannot be easily converted into an ASIC

(Application Specific Integrated Circuit) and it has mostly been left to software solutions.

The proliferation of control plane workloads has made it clear that control plane opera-

tions should be included in NP benchmarks.

1.3 THE PROBLEM

While most of the previous research and commercial products for NPs are dedi-

cated to data-plane applications, control-plane applications are not well understood. With

the demands of these emerging network applications, it is imperative to develop and

quantitatively characterize the NP control plane workloads to guide architects for design-

ing future NPs.

The network processor on the physical port of a router should be able to process

the modern workloads without slowing down line speed. As shown in Table 1.1, compu-

tational load per packet ranges from 880 to 4,800, when assuming a stream of minimum-

sized packets of 64 bytes and a single processor of 1 GHz clock frequency. The required

parallelism (number of instructions per packet) for executing NP applications is in the

range of 2 ~ 356 [64]. Hence a conventional processor is not enough to handle these

workloads. Relevant research is required to identify appropriate architectures to effi-

ciently execute these emerging workloads [53][69][72][75][87].

 7

Table 1.1 Required parallelism for control plane workloads

Applications Required parallelism (with a unity ILP
1 GHz processor)

Computational load
per packet
(number of

instructions)
1Gbps

(~OC-24)
10Gbps

(OC-192)
40Gbps

(OC-768)
MPLS 3,051 6 60 254
SSLD 4,727 10 94 356
WFQ 2,005 4 40 167
RED 881 2 17 74

1.4 OBJECTIVES

Recent research and commercial products for parallel implementation of network

processors are mostly dedicated to data plane applications with multithreaded and vector-

type array processors [24][81]. Although these complex hardware implementations can

fulfill the demanded performance using massively parallel architectures, they still have

problems related to cost of hardware, power, low utilization ratio of processing elements

and hardware complexity. This research focus on the following objectives:

� Create a suite of network processor workloads including control plane, so that

NPs are designed considering a realistic network workload

� Characterize and understand emerging NP workloads to obtain directions for ar-

chitecture research

� Investigate NP architectural alternatives for emerging network workloads

� Create hardware accelerators for emerging network workloads

 8

The first objective is to fill the gap that exists in the field of network benchmarks.

The objective is to study network algorithms and create benchmarks which can be used in

architecture research. Modern network applications can be classified into three functional

groups: traffic-management and quality of service group (TQG), security and media

processing group (SMG), and packet processing group (PPG). Based on this functional

grouping, a set of benchmarks called NpBench, which includes emerging network work-

loads especially control plane applications, is presented. Control plane workloads are just

emerging and evolving in current network environments, and incorporating them in a

benchmark suite helps to design future NPs.

To realize the second objective, characterizations of several network workloads

on existing processors are performed. The objective is to understand bottlenecks and

identify features of the program that can be exploited while designing network proces-

sors. From the characterization results of the control plane application, it can be seen that

the control plane applications contain large amounts of instruction level parallelism

(ILP). The required computational capability for each network application workloads are

also evaluated. It is found that aggressive parallel architectures are required in order to

meet the required computational performance of the control plane workloads.

The third and fourth objective consists of identifying architectures for emerging

network workloads. Network processors can be used in various node positions with dif-

ferent scales, such as core routers (10 Gbps), edge routers (2.5 Gbps) and access routers

(1 Gbps). NPs in different positions will need different architectures. Large scale routers

may need a very parallel architecture to meet the required throughput, but it is hard to

apply such a complex and expensive architecture to small scale routers. Therefore, a sim-

 9

ple and low priced architecture is required for small scale routers to perform the high

throughput workloads

In order to understand the design tradeoffs, a fundamental question, whether par-

allelism should be identified statically or dynamically, is explored. Dynamically sched-

uled architectures demand less from compiler, however, if the parallelism is easily ame-

nable for compile-time identification, it is a viable alternative. Current popular media

processors - TI’s C6x and TriMedia’s TM-1300 - rely on the simpler hardware of VLIW

processors in order to minimize the cost and power of ILP implementation

[4][47][54][55][97][113]. This is because multimedia and DSP applications include many

loop operations in the algorithm, and they are well suited for the static scheduling archi-

tecture. Network processor workloads have also many iterative algorithm and large paral-

lel characteristics, so statically scheduled architectures are worth considering for NP ap-

plications. In this approach, characterizing performance and power dissipation of stati-

cally identified ILP implementation are performed, and the characterization results are

compared to the dynamic optimization for network processor applications.

The possibilities of hardware acceleration as alternatives for emerging control-

plane workloads in network processors are investigated. In this dissertation, the charac-

teristics of control plane applications for network processors are analyzed, and applica-

tion-specific acceleration techniques are proposed to exploit instruction and data level

parallelism.

One of the significant application categories is congestion control applications.

For this application category, a parallel comparator which decouples serial processing

from the queue processing module is applied. The queue processing elements are config-

 10

ured in parallel for exploiting packet level parallelism. In media transcoding application

category, most of data to be processed in the transcoding proxy are related to multimedia

applications, so each processing unit has regular and fine-grained processing element.

Therefore, array-style processor is considered as a candidate for accelerating media

transcoding. As a third application category, LUT-related applications are also important

workloads in control-plane. Based on the analysis, lookup table searching is a major bot-

tleneck in the LUT-related applications. In order to improve this bottleneck, modified

partitioned lookup table mechanism is applied to accelerate lookup table searching mod-

ule. Parallel comparators are used for equality checking to find exactly matched session

IDs in SSLD or FEC (forward equivalence class) ID in MPLS.

1.5 THESIS STATEMENT

Modern network workloads involve significant amounts of control plane opera-

tions and require more processing than the capability of general purpose processors.

Hardware acceleration approaches can deliver the required processing capability at low

cost.

1.6 CONTRIBUTIONS

This dissertation makes several contributions to the defining of a new network

processor benchmark suite, the characterization of network processor workloads, the de-

tection of bottlenecks in network workloads, and towards designing architectural alterna-

 11

tives including instruction set extensions, hardware acceleration and statically identified

parallel architectures. The summary of the contributions is listed below:

1. A benchmark suite, called NpBench targeted towards control plane workloads

which are an important part of modern network applications is presented. While

previously released network processor benchmarks mainly deal with data plane

applications, no benchmark suites are available for control plane workloads.

With the increasing demand of QoS [13] and rapidly changing modern network

environments, the significance of control plane workloads has become higher.

The NpBench suite is implemented using C and is opened to public [64]. Large

number of institutions in the world have licensed and several papers and articles

cite the NpBench [19][50][77][78][86][88][113][116][118][119]. The bench-

mark suite is described in [58][64][85].

2. The characteristics of network processor workloads such as instruction mix,

cache behavior, available parallelism and required processing capability per

packet are presented and compared with existing benchmark suites. Several

characterization results including architectural characteristics of the application

having control plane properties, their implications to designing network proces-

sors and the significance of additional parallelism to perform NP applications at

wire speed are described. This contribution is described in more detail in [64].

3. Parallelism characteristics of network processing applications are compared to

multimedia applications. NP applications (e.g. WFQ) have both parallelizable

operations and an amount of serial operations, while most of multimedia appli-

 12

cations have large amount of parallelizable operations. The analysis of these

characteristic differences can be a key to improve the throughput of network

processors.

4. It is investigated whether the success of VLIW in the multimedia field can be

applied to the network processor domain as a processing element for a parallel

architecture. This premise is analyzed through the comparison between network

processor workloads and multimedia workloads in terms of performance

(speedup) and power consumption. It is found that NP applications need more

aggressive optimization techniques in static scheduled architecture, while media

applications can get large parallelism with simple basicblock optimizations.

With the characteristics of large packet-level parallelism, experimental analysis

supports static scheduling as an applicable paradigm for network processor ap-

plications with lower hardware complexity and lower power dissipation. This

contribution is described in more detail in [59].

5. Congestion control applications contain several parallelizable operations. In or-

der to exploit parallelism of congestion control applications, a hardware accel-

eration technique is introduced using the decoupling the dataflow into the front-

end PLP (Packet level parallelism) module and the back-end hardware accelera-

tion module. This decoupling techniques and defining a hardware acceleration

module is done by the thoroughly analysis of the applications. When applying

16 ~ 64 acceleration module in parallel, 10x ~ 50x performance improvement is

obtained. This contribution is described in more detail in [65].

 13

6. The procedure of media transcoding consists of transcoding decision unit and

pipeline-styled regular processing units for data conversion. The decision mod-

ule handles which conversion module is enabled and how many modules are en-

abled. Data conversion modules include several different kinds of functionalities.

Based on the experiments, data conversion module takes 89% of the total execu-

tion cycles. Most of data to be processed in the transcoding proxy are related to

multimedia applications, so each processing unit requires regular and fine-

grained processing element. Therefore, the systolic-style processor would be a

good candidate for accelerating media transcoding. Array-style acceleration

technique is proposed for data conversion module of media transcoding applica-

tions. If 64 parallel implementation of the acceleration module is applied, it can

be obtained approximately 28x speedup in transcoding. This contribution is de-

scribed in more detail in [60].

7. Both SSLD and MPLS have the lookup table searching and updating module in

each procedure. Lookup table searching is a major bottleneck in the LUT-related

applications (77% ~ 86% of the total execution cycles in MPLS and SSLD). In

this dissertation, hardware acceleration techniques are proposed using a parti-

tioned lookup mechanism for searching LUT used in MPLS and SSLD. If 16-

way parallel implementation of the acceleration module is applied, 262x im-

provement for MPLS and 362x for SSLD [60] can be obtained.

8. The performance improvement of a single processing element is an important

factor in designing parallel architecture. New instruction-set extensions are in-

troduced to support fast execution of congestion control applications, based on

 14

the detailed kernel analysis. Frequently used instructions are combined into one

instruction. For congestion control applications, two groups of instruction sets

are defined: conditional operations and multiplication-add / multiplication-sub

[65]. Proposed architectural extensions show 10~12% improvement in perform-

ance for instruction set enhancements.

1.7 ORGANIZATION

The rest of the dissertation is organized as follows:

Chapter 2 describes existing research work pertinent to this dissertation. Previ-

ously proposed benchmark suites for network processors are discussed first. Then con-

ventional network processor architectures and industry products are discussed.

Chapter 3 introduces the proposed benchmark suite, called NpBench which in-

cludes control plane workloads and data plane workloads. Also, the architectural charac-

teristics of the benchmark are presented and compared to previously released benchmark

suite.

 Chapter 4 identifies bottlenecks in the execution of network processor applica-

tions. This observation is found that the common bottlenecks across both applications are

issue width and memory elements.

Chapter 5 discuss whether the success of statically identified parallelism in the

multimedia field can be applied to the network processor domain, even though network

processor applications have not-so-regular parallel characteristics compared to multime-

 15

dia applications. Effort is also spent in analyzing how these different characteristics in

parallelism affect the performance.

Chapter 6 introduces a hardware acceleration technique. Congestion control, me-

dia transcoding and LUT related applications are enhanced. For congestion control appli-

cations, decoupling the dataflow techniques are introduced. Also, hardware acceleration

technique for media transcoding applications and LUT-related applications are presented.

Chapter 7 introduces new ISA extensions to support fast execution of network

processing based on the detailed kernel analysis.

Chapter 8 concludes the dissertation by summarizing the contributions and sug-

gesting future opportunities.

 16

Chapter 2: Related Work

Network processors and related workloads have been researched extensively in

the past few years. This chapter discusses prior work to this dissertation. The related

work includes several different categories: defining benchmarks, characterizing applica-

tion’s workload, and architectural enhancements to get higher throughput.

2.1 NETWORK PROCESSOR BENCHMARKS

In the network processor fields, there are two benchmarks which were previously

proposed: CommBench [122] and NetBench [76]. Wolf, et al. [122] presented eight se-

lected workloads called CommBench for traditional routers and active routers.

CommBench has two groups of benchmarks namely Header Processing Applications

(HPA) and Payload Processing Applications (PPA). Memik, et al. [76] proposed nine ap-

plications called NetBench for micro-level, IP-level and application-level benchmarks.

Nemirovsky [80] also discusses the guidelines for defining benchmarks and challenges of

benchmark suites for network processors. He suggests that the benchmark should have

two frameworks such as a task-specific benchmark focusing on a single algorithm or pro-

tocol and a rich-scenario benchmark containing the complexity of real-life applications.

EEMBC [36] and MiBench [44] have some network applications, but they only have

routing and encryption applications. NpForum [19][82] has released IA (Implementation

 17

Agreement) on IP Forwarding and IPSec Forwarding application level benchmarks, but

as obvious, they focus on forwarding.

Previously proposed benchmarks are mainly focused on data plane workloads.

While the benchmarks of data plane applications have been reasonably well understood,

there has been very little effort in designing control plane workloads that perform conges-

tion control, flow management, higher-level protocols and other control tasks. Control

plane workloads are just emerging and evolving in current network environments. The

NpBench suite presented in this dissertation is mostly focusing on control plane applica-

tions. Also, characteristics of control plane workloads from architectural aspects are ana-

lyzed.

2.2 ARCHITECTURAL CHARACTERISTICS OF NETWORK PROCESSOR APPLICATIONS

 Past studies using CommBench [122] and NetBench [72] contrast network work-

loads with other benchmarks, such as SPEC [102] and mediabench [66], with respect to

instruction set characteristics and memory behaviors. Wolf, et al. [122] indicate that net-

work processors must deal with both streaming and header processing applications.

Memik, et al. [76] insist that network processor applications have a data-intensive nature.

In terms of load/store instruction ratio, the NetBench applications make high number of

memory accesses, while MediaBench applications has more frequent branch instructions

resulting in a lower instruction level parallelism.

 18

2.3 NETWORK PROCESSOR ARCHITECTURES

In order to deal with variety of application areas for network processors, there

could be a wide range of NP architectures and implementations. Each company is apply-

ing their own architectural concepts in the implementation of network processors. For the

enterprise service, several companies developed RISC-based NP with ASIC blocks for

networking functions such as IXP 1200/2000 series by Intel [52], CXE-16 by Switchcore,

CS2000 by Chameleon etc. For the high-end service, Motorola (C-port) [27], Lucent

(FPP/RSP) [71], EZChip (NP-1) [37] and Vitesse/ Sitera(IQ2000) have used network-

specific ASICs with the features of network classifying, QoS, etc. Some companies like

Chrysalis-ITS, Alliance, NetLogic have developed co-processors with the functions such

as routing table, classification or cryptography [96].

Most of NP architectures employ multiple processing engines (PEs), even though

they each have different names such as micro engine, channel processor or task optimized

processor. Some are based on RISC cores having their PEs arranged in parallel or in a

pipelined fashion. The alternative to the RISC is the VLIW based architecture, in which

most of the PEs are organized in a pipelined method. Many RISC based NPs employ

multithreading on their PEs to maximize the performance. To ensure fast context switch-

ing between tasks, the NP should have hardware support for multithreading. Figure 2.1

shows an overall architecture of typical network processor. In general, control and man-

agement functions have more complex processing requirements than data functions.

GPPs have been used as control processors in commercial network products. Many NPs

provide the function of control processor with an integrated core or externally via a host

 19

interface [49]. In this dissertation, it is shown that GPPs do not have enough processing

capability to come up with increased demand for complex processing and higher data

rates.

Hardware
Support

Control
Processor

Shared
Memory

Lookup
Engine

Processing
EngineProcessing

EngineProcessing
Engine

Fabric
Interface

DRAM
Controller

SRAM
ControlloerNetwork

Interface

Figure 2.1 Overall architecture of NP

Related recent research and commercial products for network processors show the

use of multithreading and vector-type array processing. Melvin, et al. [74] utilize multi-

ple multithreaded processing engines to get a high degree of thread-level parallelism

(TLP) in an NP design that supports 256 simultaneous threads in eight processing en-

gines. In this scheme, each thread has its own independent register file, while sharing

functional resources and memory ports with other threads. ClearSpeed [24] introduces an

MTAP (Multi-Threaded Array Processing) processor, which provides a scalable process-

ing solution, based on an array of 10s to 1,000s of small processing elements. Each PE

has its own local memory and I/O capability. Although these implementations can meet

 20

the required performance, they have large amounts of hardware complexity, cost and

power issues.

Shah, et al. [96] indicate that today’s network implementations are based on Field

Programmable gate Arrays (FPGAs) for lower level processing and General Purpose

Processors (GPPs) for higher layer processing. They also investigate the broad categories

of alternatives for system implementations such as ASIC (Application Specific Integrated

Circuit), ASIP (Application Specific Instruction Processor), Co-processor, FPGA and

GPP. They also present the diversity among different network processors. For example,

IBM and Motorola have co-processors for most packet-processing kernels, while Cog-

nigine relies on the reconfigurable functional units. EZchip has entire processors devoted

to pattern matching, lookup, data manipulation, and queue management. Agere’s Pay-

loadPlus system uses a special processor for pattern matching and data manipulation, a

co-processor for checksum/CRC computation, and has memory features for queue man-

agement. Vitesse and Xelerated Packet Devices simply use a mix of co-processors and

functional units. Intel and Lexra also include special memory and bus features and have a

dedicated processor for the control-plane.

 21

Chapter 3: Development and Characterization of a Network Processor

Benchmark Suite

It is important to have a benchmark suite with emerging network workloads in or-

der to design future network processors. A good benchmark suite must contain emerging

and futuristic workloads in order to prevent it from being outdated very quickly. Design-

ing future processors with benchmarks of today, which are programs of yesterday, often

results in processors and systems which cannot handle workloads that are prevalent when

the processor design is finished.

This chapter presents NpBench, a benchmark suite that was developed to assist

designers of future network processor designers. Predictions on future workloads are very

difficult to make, however one can examine trends to make educated guesses on what

might be probable network workloads a few years from now. The NpBench benchmark

suite was created by studying applications from modern network domain workload. A

concern that many network processor designers have is that the control plane processing

content of network workloads is going up, while the current network benchmarks do not

represent that. Hence a study of emerging network applications was conducted, with an

emphasis on control plane processing.

3.1 INVESTIGATION OF MODERN NETWORK WORKLOADS

 22

Network applications perform routing, scheduling, traffic management/congestion

control, quality of service enforcement, security management, packet processing, etc. A

survey of the functionality of modern network applications reveal applications in three

major functional groups: traffic-management and quality of service group (TQG), secu-

rity and media processing group (SMG), and packet processing group (PPG). A categori-

zation of major network applications into these categories is presented in Table 3.1. The

table also illustrates whether the application includes control plane content. Since control

plane processing is increasing in modern networks, it will be important to include suffi-

cient amount of control plane applications into the benchmark suite.

The investigation of the network workloads unveiled various kinds of applications

that in use today or those which are expected to be popular in future. However, not much

information is available regarding a mix of these applications in real-world routers. Pre-

dicting the mix of applications that will be popular in a network workload a few years

from now, is difficult and is outside the scope of this dissertation. The objective of this

research will only be to develop source code for a variety of applications that are ex-

pected to be popular, and to make it available to other researchers and designers.

It is often impractical to include every application in the world into a benchmark

suite. It is often sufficient to choose representative applications for the major classes of

applications. In order to decide what applications must be selected into the benchmark

suite, information on the workloads used by network routers in the real world was col-

lected. Cisco Systems Incorporation is the biggest router provider and hence an investiga-

tion of their applications can provide valuable information on what is important in current

 23

and future network environments. Information from CISCO [23][21], Lightsurf [73] and

IBM [8] was used in making some deductions on emerging network workloads.

Table 3.1 Functional grouping of network processor workloads

Group Applications Data
Plane

Control
Plane

Routing X X
Scheduling X X

Content-based switching X X
Weighted fair queuing X X

Traffic shaping X X
Load balancing X X

VLAN X
MPLS X X
RSVP X X

DiffServ X X

TQG
(Traffic-management and

Quality-of-Service
Group)

IntServ X X
Block cipher algorithm X

Message digest algorithm X
Firewall application X X

IPSec X X
Virtual private network X X

Public encryption X
Usage-based accounting X X

H.323 X
Media transcoding X X

SMG
(Security and

Media Processing Group)

Duplicate data suppression X
IP-packet fragmentation X

Packet encapsulation X
Packet marking/editing X

Packet classification X

PPG
(Packet Processing

Group)
Checksum calculation X

Weighted fair Queuing (WFQ) is one of Cisco's premier queuing techniques [23].

For situations in which it is desirable to provide consistent response time to heavy and

 24

light network users without adding excessive bandwidth, the solution is WFQ. It is a

flow-based queuing algorithm, and it can work in conjunction with RSVP (Resource

Reservation Protocol) to build Integrated Service architecture implementations which are

designed to guarantee network bandwidth from end to end for IP networks. Hence WFQ

was included in the NpBench suite.

Random Early Detection (RED) is useful on any output interface where expected

to have congestion. RED is usually used in the core routers of a network, rather than the

network’s edge. Edge routers assign IP precedences to packets as they enter the network.

Cisco's RED implementations include Distributed Weighted Random Early Detection

[23], which combines the capabilities of the RED algorithm with IP Precedence. This

combination provides for preferential traffic handling for higher priority packets. WRED

provides separate thresholds and weights for different IP precedences, which can provide

different qualities of service for different traffic. It is not known whether RED will be

used heavily in the future, but RED is included in the suite because if traffic management

becomes critical, RED is likely to be employed.

Cisco’s IOS Multiprotocol Label Switching (MPLS) enables Enterprises and Ser-

vice Providers to build next-generation intelligent networks that deliver a wide variety of

advanced, value-added services over a single infrastructure [21]. This economical solu-

tion can be integrated seamlessly over any existing infrastructure, such as IP, Frame Re-

lay, ATM, or Ethernet. Subscribers with differing access links can be aggregated on an

MPLS edge without changing their current environments, as MPLS is independent of ac-

cess technologies. Integration of MPLS application components, including VPN, Traffic

Engineering, QoS and IPv6 enable the development of highly efficient, scalable, and se-

 25

cure networks that guarantee Service Level Agreements. MPLS appears to be a likely

component of future network workloads and hence it is included in the suite.

Another popular application appeared to be SSL (Secure Socket Layer), the de-

facto standard in securing distributed applications [8]. Originally defined by Netscape

Communications, SSL is accepted for network applications for authenticated and en-

crypted communication between clients and servers. The SSL protocol runs above

TCP/IP and below higher-level protocols such as HTTP. It uses TCP/IP on behalf of the

higher-level protocols, which allows an SSL-enabled server to authenticate itself to an

SSL-enabled client, allows the client to authenticate itself to the server, and allows both

machines to establish an encrypted connection. These capabilities address fundamental

concerns about communication over the Internet and other TCP/IP networks. SSLD is a

technology to reduce the load of authentication between server and client.

A significant part of network workloads appear to be handling multimedia data.

Often, data exists in one format at a server, and has to be displayed in a simpler format on

a mobile device. Media transcoding (MTC) delivers optimized pictures and other multi-

media content across wide range of heterogeneous devices. LightSurf [73] provides a

media transcoing product which senses what kind of viewing device the recipient is using

and intelligently transcodes the images and other multimedia files for optimal delivery.

Throughout the world, there are hundreds of different graphics-capable mobile phones

that all have varying display characteristics. Cisco [23] also provides Media Resource

Manager (MRM) as resource reservation of transcoders within a Cisco CallManager clus-

ter. Cisco CallManager supports simultaneous registration of both Media Transfer Part

 26

(MTP) and transcoder and concurrent MTP and transcoder functionality within a single

call.

Security is another major issue in networks and security applications are expected

to be a major component of future network workloads. IPSec is a framework of open

standards developed by the Internet Engineering Task Force (IETF) that provides security

for transmission of sensitive information over unprotected networks such as the Internet

[23]. In the case of secure VPN client IPSec, as the tunnel comes up, the PC receives its

IP address from the central router's IP address pool, then the pool traffic can reach the

local or be routed and encrypted to the network behind the outlying router. IPSec pro-

vides a more robust security solution and is standards-based. IPSec also provides data

authentication and anti-replay services in addition to data confidentiality services.

Packet processing applications are essential and an important part of modern net-

work workloads. Every packet-based network has an MTU (Maximum Transmission

Unit) size. The MTU is the size of the largest packet network can transmit. Packets larger

than the allowable MTU must be divided into multiple smaller packets, or fragments, to

enable them to traverse the network. Packet fragmentation appears to be an essential ap-

plication for packet processing.

 Error detection and correction is an important part of network processing. Cy-

cle redundancy check (CRC) is a technique used to check errors. The CRC uses a calcu-

lated numeric value to detect errors in transmitted data. The sender of a data frame calcu-

lates the Frame Check Sequence (FCS). The sender appends the FCS value to outgoing

messages. The receiver recalculates the FCS, and compares it with the FCS from the

sender. If a difference exists, the receiver assumes that a transmission error occurred, and

 27

sends a request to the sender to re-send the frame. The retention of the true value of a

frame is important to ensure that the destination correctly interprets the data over the

network. CRC is another essential application for packet processing.

Based on this analysis, ten representative applications are chosen from the func-

tional groups for the first version of NpBench suite as shown in Table 3.2. The suite in-

cludes several control plane functions as they are missing from the available NP work-

loads.

Table 3.2 Benchmarks in the NpBench suite

Group Application Description

WFQ Weighted Fair Queuing is a queue scheduling algorithm

RED Random Early Detection is an active queue management algo-
rithm which drops arriving packets probabilistically

SSLD Secure Sockets Layer Dispatcher is an example of content-
based switching mechanism

TQG

MPLS Multi Protocol Layer Switching is a forwarding technology us-
ing short labels

MTC
Media Transcoding is the process that a media object in one
representation is converted into another representation for wide
spectrum of client types

AES Advanced Encryption Standard (RijnDael) is a block cipher that
encrypts and decrypts 128, 192 and 256 bits blocks

MD5
Message Digestion algorithm takes as input a message of arbi-
trary length and produces as output a 128-bit fingerprint or mes-
sage digest of the input

SMG

DH
Diffie-Hellman key exchange allows two parties who have not
met to exchange keys securely on an unsecure communication
path

FRAG FRAG is a packet fragmentation application
PPG CRC Cyclic Redundancy Check is used in Ethernet and ATM Adap-

tation Layer 5 (AAL-5) checksum calculation

 28

Some of these selected applications are implemented to form the current release

of the NpBench suite and the rest of them are referred from open source code sites or

other benchmarks [44][66][122]. The C code for the benchmarks is available on request

[85].

3.2 DESCRIPTION OF THE APPLICATIONS IN THE NPBENCH SUITE

3.2.1 Traffic-management and QoS Group (TQG) Benchmarks

TQG benchmarks have a set of applications related to routing, scheduling, queu-

ing, switching, signaling and quality of services. These applications contain both control

plane processing and data plane processing. The first two benchmarks, WFQ and RED

are congestion control algorithms. In general, congestion occurs at a router when incom-

ing packets arrive at a rate faster than the rate the router can switch them to an outgoing

link. The two representative algorithms for congestion control are the scheduling algo-

rithm and the queue management algorithm [15][39]. The scheduling algorithm deter-

mines which packet to be sent next and is used primarily to manage the allocation of

bandwidth among flows (e.g., weighted fair queuing). According to the IETF (Internet

Engineering Task Force) recommendation [15], the default mechanism for managing

queue lengths to meet these goals in FIFO queues is the RED algorithm. SSLD is a con-

tent-based switching algorithm and MPLS is a technology used for quick forwarding of

packets across backbones.

 29

WFQ (Weighted Fair Queuing): WFQ [11][14][30][105] is a queue-scheduling

algorithm to serve packets in order of their finish-times considering the weight on con-

nections. As shown in Figure 3.1, various lengths of packets from incoming traffic are

classified into different queues, which can be used for differential service. And they are

scheduled by a specific mechanism that determines packets to be sent from the queues.

WFQ uses each packet's estimated finish-time to decide packets to be sent.

Incoming Packets Transmit Queue

Classfier Scheduler

Figure 3.1 WFQ (Weighted Fair Queuing)

RED (Random Early Detection): RED [15][39] is an active queue management

algorithm for routers. In contrast to the traditional queue management algorithm, which

drops packets only when the buffer is full, the RED algorithm drops arriving packets

 30

probabilistically before coming into the queue as shown in Figure 3.2. The decision of

whether or not to drop an incoming packet is based on the estimation of the average

queue size.

Incoming Packets
Transmit Queue

Scheduler
(FIFO)

RED

Drop Test

Forward

Drop

Figure 3.2 RED (Random Early Detection)

SSLD (SSL Dispatcher): SSLD [7][99][102] is one example of content-based

switching mechanism in the server and client cluster environments. SSL typically runs

over TCP (Transmission Control Protocol), which is used for secure processing of e-

commerce applications. Once TCP connection is established, SSLD maintains the session

ID information during authentication process, sharing the SSL information among the

nodes in cluster. When reconnecting to the same server, a client can reuse the session

 31

state established during a previous SSL handshake which makes the workloads computa-

tionally heavy. Figure 3.3 shows the concept of SSL dispatcher.

SSL Dispatcher
Server
Cluster

Client network

Client network

Figure 3.3 SSLD (SSL Dispatcher)

MPLS (Multi Protocol Label Switching): MPLS [9][56][79][93][126] is a for-

warding technology, which does away with the lookup of bulky IP headers and uses short

labels for forwarding at the edge of the MPLS domain as shown in Figure 3.4. In this ver-

sion of NpBench, two control plane aspects of MPLS such as Label Distribution and La-

bel Generation, are used. Two functions are extracted from MPLS, namely an upstream

routing function (for an ingress edge router or a core router) and a downstream routing

function (for a core router or an egress router).

 32

(Ingress) edge label
switching router

(Egress) edge label
switching router

Core label
switching router

Existing routing
protocol(OSPF, IS-IS)

LDP(Label Distribution
Protocol)

Figure 3.4 MPLS (Multi Protocol Label Switching)

3.2.2 Security and Media processing Group (SMG) Benchmarks

As the e-commerce industry has grown, the security and the accounting applica-

tions such as firewall application, admission control, encryption applications and usage

based accounting, have become an emerging workload. With higher bandwidth, the de-

mand for high quality of multimedia service is increased. Data stream manipulation, me-

dia transcoding, H.323 and several encoding applications [61][62] can be important is-

sues of NP, associated with QoS. For security benchmarks, three components of IPSec

 33

[19][33][95] – Authentication Header (AH), Encapsulating Security Payload (ESP) and

key management – are included in SMG.

MTC (Media TransCoding): Media Transcoding [46][99] is a process in which

a data object in one representation is converted into another representation. In order to

accommodate the wide spectrum of client capabilities, the media data is modified along

the dimensions, fidelity, and resolution. As shown in Figure 3.5, media transcoding con-

sists of transcoding policy decision module and transcoding module. The trnascoding pol-

icy decision module decides which factors should be converted to another representation

based on client device information, contents information and network environments. The

transcoding module deals with actual conversion processing.

AES (Advanced Encryption Standard): Advanced Encryption Standard

(RijnDael) [1][44] is a block cipher that encrypts and decrypts 128, 192 and 256 bit

blocks, which is a U.S. government standard for encryption and digital signature. It is

used for implementation of AH in IPSec. AES, designed by Joan Daemen & Vincent Ri-

jmen, is a block cipher using symmetric key. It is fast and scalable, and it is also resistant

to all known cryptanalysis attacks. Decryption is 30% slower than encryption, since in-

verse matrix calculation is more complicated. In the algorithm, the block is considered to

be structured as 4, 6 or 8 columns of 4 bytes, depending on block size. The basic opera-

tions applied to the block are KeyAddition, Substitution, ShiftRow and MixColumn.

 34

Transcoding Policy Decision Module
bandwidth, hardware capability, user preferences, etc.

Transformation Module
text modification, actual transcoding

(decode & compress)

Content
Server

Client

Transcoding Proxy

Figure 3.5 MTC (Media Transcoding)

MD5 (Message Digestion): MD5 algorithm [44][122] takes a message of arbi-

trary length as an input and produces a 128-bit “fingerprint” or “message digest” as an

output. MD5 is a method to verify data integrity and is more reliable than checksum

method. It is used to perform ESP in IPSec. An algorithm created in 1991 by Professor

Ronald Rivest that is used to create digital signatures. It is intended for use with 32 bit

machines and is safer than the MD4 algorithm, which has been broken. MD5 is a one-

way hash function, meaning that it takes a message and converts it into a fixed string of

digits, also called a message digest. When using a one-way hash function, one can com-

pare a calculated message digest against the message digest that is decrypted with a pub-

lic key to verify that the message hasn't been tampered with. This comparison is called a

"hashcheck."

 35

DH (Diffie-Hellman): Diffie-Hellman [44][76][122] key exchange allows two

parties who have not met, to exchange keys securely on an unsecured communication

path. Typically DH is used to exchange a randomly generated conventional encryption

key, the rest of the exchange is then encrypted with the conventional cipher. It is applied

to the function of key management in IPSec. Diffie-Hellman key exchange allows two

parties who have not met to exchange keys securely on an unsecure communication path.

It has been used with DES, 3DES, IDEA, RC4 though basically the approach of using

DH key exchange can be used for any conventional stream or block cipher. PGP itself

operates in a similar fashion, except that PGP uses RSA for key exchange, and IDEA as

the conventional cipher.

3.2.3 Packet Processing Group (PPG) Benchmarks

Packet processing group includes IP packet fragmentation, packet marking, edit-

ing and classification. Most applications are data plane processing.

FRAG (Packet Fragmentation): FRAG [122] is a packet fragmentation applica-

tion. IP packets are split into multiple fragments for which some header fields have to be

adjusted and a header checksum computed.

CRC (Cyclic Redundancy Check): 32-bit Cyclic Redundancy Check [44] is

used in Ethernet and ATM Adaptation Layer 5 (AAL-5) checksum calculation.

 36

In summary, the NpBench suite consists of both essential workloads widely used

in real world and emerging workloads starting to be used in real applications or services.

Some of control plane workloads including WFQ, RED and MPLS are used in real world,

while SSLD and MTC are emerging workloads which will be significant workloads in

routers. These emerging applications will be widely used at routers as Internet business

and wireless technologies are evolving. In the data plane workloads, three IPSec applica-

tions are very important in all security-related areas including banking, personal identifi-

cation and e-commerce applications. FRAG and CRC are basic and essential operations

for packet processing.

3.3 IMPLEMENTATION

The NpBench control-plane functions such as WFQ, RED, SSLD, MPLS and

MTC at the application level are developed using C language, and most of the data-plane

functions such as FRAG, CRC and IPSec applications were extracted from pen source

code or other benchmarks [44][66][76][122].

Randomly generated packets are used as input of the benchmark. For TQG

benchmarks, WFQ uses packet size and queue information as an input. RED uses incom-

ing packet size and average queue size to decide whether the packet is to be dropped or

put in the FIFO queue. The clientHello message and serverHello message of the SSL pro-

tocol [102] are used with randomly generated session ID information for the experiment

of SSLD. The values of FEC identification number are used for two MPLS functions.

The RED implementation allows an option of congestion environment, which is con-

 37

trolled by transmission rate of the queue. The SSLD inputs can be different session IDs

with different reusability factors. In SMG benchmarks, MTC can be separated into two

components which are policy modules to get adaptive transcoding policies and transfor-

mation modules to perform real transcoding. The policy decision module can be executed

independently with an execution option. AES can use any files as an input data and MD5

can make a fingerprint of any files or strings for the input. DH generates and exchanges

for any number of Diffie-Hellman key pairs. For PPG benchmarks, FRAG and CRC em-

ploy randomly generated IP header as an input data. Under the above simulated network

environments, the characteristic of NpBench is investigated and presented at next section.

3.4 ARCHITECTURAL CHARACTERISTICS OF NPBENCH WORKLOADS

In this section, experimental results including instruction distribution, cache be-

havior and parallelism of the NpBench are presented. These metrics are essential infor-

mation for understanding dynamic characteristics of the application and for designing the

processor architecture. Also, required computational capability (in terms of number of

instructions) to process one packet data is explored, assuming a minimum-sized packet of

64 bytes.

3.4.1 Experimental Methodology

The SUN Shade binary instrumentation tool [25] is used to obtain the dynamic

traces while executing NpBench applications. Cachesim5, a cache analyzer tool of SUN

 38

Shade [25], is also used to perform cache simulation and Tetra [10] to get available paral-

lelism with constraints.

3.4.2 Instruction Distribution

In these experiments, the number of instructions in the NpBench applications is

investigated. Table 3.3 shows the dynamic instruction distribution during execution.

From this workload distribution, it is observed that computational operations occupy a

significant share of the total instruction mix (53% on the average). Branch operations

(branch, jump and call) are heavily used in the applications having control plane func-

tions (23.7%) such as WFQ, SSLD and MPLS, for finding fair conditions of each packet,

looking up session reuse conditions of each session request and investigating same for-

warding equivalence class respectively. Data plane functions have relatively small per-

centage of branch operations (11.1%).

Since the data plane application is to handle more packet data and coefficients for

performing the algorithm within payload processing, it is found that the data plane appli-

cation (31.2% on average) uses more memory operations (load and store) than the appli-

cations having control plane functions (23.5%). In the case of SSLD, as the reusability

factor used in SSLD increases, it is observed that the required computation workloads for

new session request could be avoided and the required number of instructions could be

reduced.

Compared to CommBench, the NpBench has similar percentage of ALU opera-

tions out of the total instructions. However, branch operations are heavily used in

 39

NpBench control plane applications (23.7%), followed by CommBench-HPA (20.6%),

CommBench-PPA (15.3%) and NpBench data plane applications (11.1%).

Table 3.3 Instruction distribution

 (Unit: %)
NpBench

App. int/float shift logic branch load store etc
WFQ 20.6 16.9 0.0 29.2 16.2 7.9 9.3
RED 39.7 7.2 0.0 15.3 23.6 10.9 3.0
SSLD 57.0 0.0 0.0 28.3 14.4 0.2 0.0
MPLS 35.8 11.4 8.6 22.0 16.1 4.9 1.3
MTC 33.9 2.6 10.5 11.2 21.7 18.1 1.9
AES 10.5 18.4 26.9 7.0 29.4 7.7 0.1
MD5 45.1 13.0 20.5 7.5 7.1 6.7 0.2
DH 24.0 12.0 10.9 9.7 27.0 11.3 5.1
CRC 25.0 10.0 15.0 10.0 25.0 15.0 0.0
FRAG 40.0 3.8 15.1 21.4 12.2 6.1 0.7
Avg. 33.2 9.5 10.8 16.2 19.3 8.9 2.2

(a) NpBench

 (Unit: %)
CommBench

App. int/float shift logic branch load store etc
CAST 25.4 17.0 20.4 8.9 20.4 7.4 0.5
ZIP 34.0 8.0 12.4 20.2 19.4 5.6 0.4
REED 40.2 11.7 7.1 21.4 14.7 4.9 0.0
JPEG 43.8 16.1 2.7 10.8 16.5 9.7 0.3
PPA 35.8 13.2 10.7 15.3 17.8 6.9 0.3

RTR 20.6 0.7 11.0 23.4 41.3 2.7 0.2
FRAG 41.5 3.8 15.0 20.4 12.8 6.5 0.0
DRR 31.7 1.0 0.2 18.3 41.8 6.9 0.1
TCP 37.2 5.2 12.5 20.5 16.4 7.1 1.3
HPA 32.8 2.6 9.7 20.6 28.1 5.8 0.4

Avg. 34.3 7.9 10.2 18.0 22.9 6.3 0.4

(b) CommBench

 40

3.4.3 Cache Behavior

The general purpose processor spends a significant part of their real estate for on-

chip caches and hence it is important to understand cache behavior of the NpBench appli-

cations executing on GPP. Cache performance for 2-way set associative cache was evalu-

ated with varying cache sizes. A line size of 32 bytes was commonly used for all cache

configurations. Figure 3.6 shows the cache miss rates for NpBench applications. Most of

the NpBench applications perform same operations with various inputs, explaining the

excellent instruction cache hit ratios. However, data cache performance of these applica-

tions is very poor for small cache sizes. The average miss ratios converge to 0.056% for

I-cache and 1.531% for D-cache with increasing cache sizes. Instruction cache sizes lar-

ger than 16KB marginally increase cache performance and same observations are made

with data cache sizes larger than 32KB. This implies 16KB and 32KB could be optimal I-

cache and D-cache size for NpBench application. As shown in Figure 3.6, the applica-

tions having control plane functions show more sensitivity on varying cache sizes. Also,

it is found that CommBench and NpBench show similar trends in cache miss rates, for

example, poor performance in data cache behavior.

In general, each application can be implemented with one PE having its L1 cache

within the PE itself, and L2 cache of the network processor can be shared by several PEs.

For reduction of L2 memory access latency, a few mechanisms are proposed [45][98].

 41

0

0.2

0.4

0.6

0.8

1

W
FQ

R
E

D

S
S

LD

M
P

LS

M
TC

A
E

S

M
D

5

D
H

C
R

C

FR
A

G

C
A

S
T

ZIP

R
E

E
D

JP
E

G

R
TR

FR
A

G

D
R

R

TC
P

8K

16K

32K

64K

128K

(a) Instruction Cache Miss Rate (%) with varying cache size

0

5

10

15

20

25

W
FQ

R
E

D

S
S

LD

M
P

LS

M
TC

A
E

S

M
D

5

D
H

C
R

C

FR
A

G

C
A

S
T

ZIP

R
E

E
D

JP
E

G

R
TR

FR
A

G

D
R

R

TC
P

8K

16K

32K

64K

128K

(b) Data Cache Miss Rate (%)with varying cache size

Figure 3.6 Cache performance of network processor benchmarks

(5.8)

NpBench CommBench

NpBench CommBench

(1.2)

 42

3.4.4 Available Instruction Level Parallelism

Instruction level parallelism of NpBench applications is investigated as a function

of the inherent data dependencies and data flow constraints with limited number of func-

tional units. Figure 3.7 shows that the available parallelism ranges from 2 to 9. As shown

in Figure 3.7, NpBench control plane applications (7.61 on an average) have more ILP

than NpBench data plane applications (4.80), and the available parallelism of

CommBench (6.14) is in the middle. Security applications except for AES exhibit lower

parallelism due to the need to perform encryption tasks. Since AES is a block cipher al-

gorithm, it shows relatively higher ILP than other security applications. Even though the

applications having control plane function have large amount of branch operations, they

have more execution parallelism, which means there exists a room to improve perform-

ance of control plane processor with more parallel implementation. While most of NPs

are implemented with several PEs to acquire packet level parallelism (PLP), they still

need more parallelism with instruction level parallelism (ILP) and intra-packet parallel-

ism (IPP) within the PEs or control plane processors.

3.4.5 Required Computation Capability per Packet

Some control plane and data plane workloads, from NpBench (e.g., WFQ, RED)

and CommBench (e.g., DRR, FRAG), are used to get the required computational capabil-

 43

ity (in terms of number of instructions) per packet. These experiments employ one mil-

lion packets of data as each input. As shown in Figure 3.8, the required processing capa-

bility of control plane is estimated from 880 to 4,800 instructions per packet, while data

plane is from 330 to 440 (2,660 for control plane and 380 for data plane on average).

From the graph in Table 3.4, it is seen that control plane functions need larger processing

capability, since their algorithms have higher complexity to meet sophisticated network

services. For example, WFQ has to estimate each packet’s finish-time and then classify

the incoming packet into different queues, in order to maintain fairness and support QoS.

This makes the algorithm more complex and the number of instructions larger. In contrast

to that, FRAG performs relatively simple algorithm to split packets into multiple frag-

ments, requiring less processing capability.

6.0
7.0

9.7
7.8

6.7

8.3

2.8 2.3
3.3

5.4

3.6

5.8

8.5

5.9
5.2 5.3

7.0
7.6

0

2

4

6

8

10
W

FQ

R
E

D

S
S

LD

M
P

LS

M
TC

A
E

S

M
D

5

D
H

C
R

C
32

FR
A

G

C
A

S
T

ZIP

R
E

E
D

JP
E

G

R
TR

FR
A

G

D
R

R

TC
P

Pa
ra

lle
lis

m

Figure 3.7 Available parallelism with ten function units

NpBench CommBench

 44

Figure 3.8 Required computational capability (in terms of number of instructions) per
packet

As shown in Table 3.4, larger packet throughput is demanded for higher line rate.

Assuming a stream of minimum-sized packets of 64 bytes and one clock frequency for

executing one instruction, packet throughput of a 10 Gbps link is 19.5 million packets per

second which means one packet is arrived every 51.2 nanosecond. Given a single proces-

sor of 1 GHz clock frequency, it can execute only 51 instructions per one packet time.

Since a single processor is not enough to cope with wire speed and handle the workload

of those applications, current trend of NPs is a single chip multi-processor. Not only more

parallelism, but also new concept of instruction set architecture (ISA) with sophisticated

programmability, should be considered to increase the number of instructions per cycle.

0

1000

2000

3000

4000

5000

WFQ RED SSLD MPLS FRAG DRR

Required computational
capability (number of
instructions) per packet

 45

Table 3.4 Processing capability of single processor according to line rates and required
processing capability of benchmarks

3.5 ARCHITECTURAL IMPLICATIONS

Network processors can be used in various positions over the network such as

edge, core or access network. Each application has different requirements and complex-

ity. As a key solution to current network bottleneck, designing network processors could

be a challenging work, for the reason that network environments keep changing and

evolving. Since a variety of NP applications are used in the real field as shown in Table

3.1, network processors cannot be considered to be very focused application specific

processors anymore. It has to process and perform various kinds of applications as does a

general purpose processor, along with much higher throughput. When designing and

evaluating a programmable network processor, especially for control plane processors,

the workloads of NpBench can serve as an appropriate benchmark suite.

Since NPs would be used in routers over the network, most important things to be

considered in designing NPs should be the processing capability without the slowdown of

Line rate Throughput
(packets/s)

One
packet
time

Processor clock
frequency

Allowable # of instructions per
one packet time

500 MHz 256 1Gbps 1.95 M 512 ns 1 GHz 512
500 MHz 25 10 Gbps 19.5 M 51.2 ns 1 GHz 51
500 MHz 6 40 Gbps 78.12 M 12.8 ns 1 GHz 12

 46

required wire speed. Based on the characteristic analysis with NpBench, some issues

should be reflected to design the network processor to accomplish demanding perform-

ance and throughput. The following issues are relevant:

• Based on the instruction mix used in executing benchmarks, new instruction sets

should be considered to reduce the number of instructions per cycle and to accom-

plish higher throughput that can come up with the required number of instruction per

packet.

• From the observation of cache behavior, data cache performance should be improved

with novel cache structure for the network processor. When several PEs are inte-

grated on a single chip, the problems including the shared memory problem should be

solved for network processors.

• Due to variety of applications, packet level parallelism has been implemented with

several processing engines. However, if large numbers of PEs are used, the process-

ing time for each individual packet would be longer and utilization ratio could be de-

teriorated [2][70]. Based on the analysis of available parallelism, NP architectures

still need more parallelism with instruction level parallelism (ILP) within the PEs or

control plane processors. Intra-packet parallelism (IPP) should also be considered.

• Although most of NPs have been targeted for data plane applications, they also play a

major role in the control plane. In fact, with the increased demand for complex proc-

essing, the boundaries between data plane and control plane have become blurred. To

cope up with future data rate and complexity of the NP application, control plane

 47

workloads should also be considered for designing the network processor, whether

the NPs provide the function of control processor with an integrated core or exter-

nally via a host interface.

3.6 SUMMARY

As the network environment is rapidly changing, network interfaces demand

highly intelligent traffic management in addition to the basic requirement of wire speed

packet forwarding. Extracting representative applications and characterizing network

workloads is essential for designing network processors and for evaluating their perform-

ance. Several vendors are releasing various network processors in order to handle these

demands, but it is oriented for data plane functions to get more throughputs. Also, exist-

ing benchmark suites for the network processor primarily contain data plane workloads,

which perform packet processing for a forwarding function.

In this chapter, a set of benchmarks, called NpBench targeted towards control

plane workloads as well as data plane workloads are presented. The characteristics of

NpBench workloads such as instruction mix, cache behavior, available parallelism and

required processing capability per packet are presented and compared with CommBench.

Also, analytical results including the architectural characteristics of the application hav-

ing control plane functions, their implications to designing network processors and the

significance of additional parallelism to perform NP applications at wire speed are dis-

cussed.

 48

Chapter 4: Bottlenecks in Network Processor Applications

This chapter presents the bottleneck analysis of network processor applications.

Bottleneck analysis is performed to see what is main bottleneck during the execution of

control plane applications, how does the architectural factors affect the performance, and

what kinds of architectural solutions are required to relieve the bottleneck.

4.1 EXPERIMENTAL METHODOLOGY

In order to study the sensitivity of each hardware resources towards the perform-

ance and the effectiveness of issue widths, Experiments on an out-of-order superscalar

processor model which have variety of hardware resources are performed. Performance

and power consumption are used as metrics, hence two different tools in this evaluation

are utilized: The Simplescalar out-of-order simulator[17] is used for evaluating the per-

formance of given architecture. The tool Wattch [16] is also used to estimate the power

dissipation of given architecture when executing each application.

Several processor configurations are simulated on the different tools. For the ex-

periments on the effectiveness of issue widths, various superscalar configurations ranging

from 4-issue to 64-issue are simulated. Simplescalar configurations for 4 and 8-issue su-

perscalar are explained in Table 4.1 and the wider superscalar configurations use propor-

tionally larger resources.

 49

For the bottleneck analysis, eight NP applications from the three NP benchmarks -

CommBench, NetBench and NpBench - are chosen. Table 4.2 summarizes selected ap-

plications.

Table 4.1 Architectural configurations for the experiments

Issue width Hardware resorces 4-issue 8-issue
Decode width 4 8
Issue width 4 8

Commit width 4 8
Integer ALU 4 8

Integer Multi/Div 4 8
FP ALU 1 1

FP Multi/Div 1 1
L1 I-cache Size:32K, block size: 64, assoc:1
L1 D-cache Size:32K, block size:32, assoc:4
L2 u-cache Size:1,024K, block size: 64, assoc:4

Table 4.2 Selected workloads: 8 NP applications and 3 multimedia kernels

Applications Description
DRR Deficit round robin scheduling
FRAG Packet fragmentation application
REED Reed-Solomon error correction scheme
WFQ Weighted fair queuing
RED Random early detection algorithm
SSLD SSL(Secure sockets layer) dispatcher
MPLS Multi-protocol layer switching
MTC Media transcoding

 50

4.2 EFFECTIVENESS OF WIDE ISSUE PROCESSORS

The most significant concern in designing network processors is maintaining the

required throughput. Network processor workloads contain a large amount of instruction

level parallelism [64]. Hence they possibly will be able to exploit wider and wider issue

widths. For each NP application, various issue widths of superscalar architectures are ap-

plied in order to see the performance (IPC) variations; the result is shown in Figure 4.1.

4-issue superscalar is considered as a base configuration and the number of hardware re-

sources is doubled according to each issue width. Most applications show better perform-

ance (IPC) with increasing issue widths, but some applications, such as FRAG, REED

and SSLD, show early saturation at a small issue width. In order to get a high throughput,

an aggressive increase of issue width can slightly help to improve the performance, but

the cost and complexity of the hardware and the relatively small magnitude of improve-

ment make wide issue not so desirable.

0

2

4

6

8

10

drr frag reed wfq red ssld mpls mtc

IP
C

4-issue 8-issue 16-issue 32-issue 64-issue

Figure 4.1 Performance impact of wide issue in NP applications

 51

4.3 POWER CONSUMPTION OF WIDE ISSUE SUPERSCALARS

In order to understand the power consumption of wide superscalar processors, the

Wattch [16] framework is used for experimentation. As shown in Figure 4.2, total energy

consumption increases with increasing issue width. In this experiment, large amounts of

power are consumed in instruction window wakeup/select, reorder buffer, and other

scheduling related hardware modules. It is found that the total energy consumption of a

64-issue architecture is 10 times (on average) larger than that of 4-issue architecture. Fig-

ure 4.3 shows power distribution in dynamic execution of NP applications. In particular,

the power consumption of the instruction window greatly increases with increasing issue

widths.

0

2

4

6

8

10

12

14

drr frag reed w fq red ssld mpls mtc

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

4-issue 8-issue 16-issue 32-issue 64-issue

(Y axis: a normalized energy compared to the total energy of 4-issue superscalar architecture)

Figure 4.2 Energy consumption of wide issue Superscalar architectures for NP applica-
tions

 52

bpred
5.3%

w indow
7.2%

lsq
1.0%

regfile
3.6%

icache
10.4%

dcache
8.8%

dcache2
2.2%alu

17.8%

resultbus
5.2%

clock
37.6%

rename
1.1%

rename

bpred

w indow

lsq

regfile

icache

dcache

dcache2

alu

resultbus

clock

(a) Power Breakdown of baseline architecture (4-issue)

w indow
22.3%

resultbus
20.1%

clock
25.3%

lsq
3.0%

alu
14.0%

dcache2
0.6%

dcache
5.8%

icache
3.2%

regfile
3.8%

rename
1.3%

bpred
0.6% rename

bpred

w indow

lsq

regfile

icache

dcache

dcache2

alu

resultbus

clock

(b) Power Breakdown of baseline architecture (32-issue)

Figure 4.3 Power distribution in dynamic execution of NP applications

 53

4.4 SENSITIVITY ANALYSIS

In order to investigate which hardware element is most influential to the through-

put, sensitivity analysis for NP applications is performed. In this experiment, nine re-

stricted hardware elements are used, including branch prediction, commit width, decode

width, the number of functional units, issue width, load/store queue size, the number of

memory ports, memory bus width and the register update unit.

Figure 4.4 presents the results of the sensitivity analysis for NP applications. For

each NP application, the impact of restricting the resource is studied. In this analysis, the

performance of a 32-issue machine is assumed as the maximum performance, since per-

formance improvement is saturated at 32-issue based on the experiments. In each ex-

periment, a single constraint is intentionally inserted into the maximum performance

model. Each hardware element of the 4-issue superscalar is used as the corresponding

constraint for the maximum performance model. From the experiment, the degree of im-

pact, which indicates how the constraint affects the overall performance during dynamic

execution, is investigated. The percentage value of each bar represents a normalized per-

formance metric, which is the relative performance compared to the assumed baseline

performance (100%).

 54

 (Y axis: IPC normalized with respect to 32-issue architecture)

(a) Loss of IPC when resources are restricted

0%

50%

100%

150%

200%

250%

drr frag reed w fq red ssld mpls mtcSe
ns

iti
vi

ty
 o

f T
ot

al
 P

ow
er

bpred commit decode FU issue LSQ mem_port mem_w idth RUU

(Y axis: Energy changes compared to baseline architecture)

(b) Changes (increase/decrease) in total energy consumption when resources are re-
stricted

Figure 4.4 Sensitivity analysis with respect to the resource constraints in NP applications

For this sensitivity analysis, nine constraints, which are independent of each other,

are applied: The ‘bpred’ bar shows the effect of branch misprediction compared to per-

fect prediction. The ‘commit’, ‘decode’ and ‘issue’ bar show the impact of the limited

size of each resource. The ‘FU’ bar illustrates the impact of restricted functional units.

0%

20%

40%

60%

80%

100%

drr frag reed w fq red ssld mpls mtc

Se
ns

iti
vi

ty
 o

f I
PC

bpred commit decode FU issue LSQ mem_port mem_width RUU

 55

The ‘LSQ’ and ‘RUU’ bar show the effects of limited load/store queues and register up-

date units, respectively. The ‘mem_port’ bar provides the sensitivity of the limited num-

ber of memory system ports available to the CPU, and the ‘mem_width’ bar represents

the sensitivity of limited memory access bus width. From this analysis, it is found that the

restriction of memory width has little impact on the overall performance in most NP ap-

plications, except for RED and MPLS. Branch misprediction has largely affected all NP

applications, except for SSLD. This observation shows that branches are quite unpredict-

able in NP applications. As shown in Figure 4.4 (a), MPLS is the application that was

most affected by all of constraints. The common bottlenecks across all NP applications

are ‘LSQ’ and ‘RUU’, with RED and MPLS having the largest impact. Also, the ‘com-

mit’, ‘decode’ and ‘issue’ width are medium-level bottlenecks in the overall performance

for all NP applications.

Figure 4.4 (b) shows the sensitivity analysis of the total energy with respect to the

resource constraints. It is interesting to note that branch misprediction leads to a large

amount of additional energy dissipation, which is due to the increase in cycles due to the

misprediction. The ‘commit’ has a similar effect as the ‘branch’ in some applications.

Experimental results show that better performance (and hence fewer cycles) mean less

energy consumption. All other constraints, except for the above two, show the propor-

tional impact of the reduced resources in the power dissipation.

Table 4.3 shows the impact of inserted constraints on detailed resource elements

in one representative application. The WFQ is selected for this experiment because WFQ

shows a typical characteristic among the selected NP applications. When the ‘bpred’ is

given as a constraint, the power dissipation of all resources (except for ‘LSQ’) is in-

 56

creased in order to execute additional instructions, which compensate for misprediction

penalties. The most affected resource is the register file in the WFQ experiment. The reg-

ister file consumes twelve times more energy by restricting ‘commit’ width. This is be-

cause there are large amounts of access to the register file, which is due to the narrow

commit width.

The ‘issue’ and ‘RUU’ make the largest impact on the power dissipation across

all applications, which implies that large amounts of power is demanded for the related

resources (e.g., instruction window) in large issue-width architecture. Figure 4.3 shows

that the dynamic energy consumption of the instruction window is increased from 7.2%

to 22.3% with larger issue architecture among the selected NP applications. It is assumed

that aggressive clock-gating is employed and, therefore, power is scaled linearly with port

or unit usage. Another assumption is that unused units dissipate 10% of their maximum

power.

Table 4.3 Impact of resource constraints on energy distribution (WFQ)

Energy Dissipation in each Hardware Elements Inserted
Resource

Constraints rename bpred window LSQ regfile icache dcache dcache2 alu resultbus clock
total

bpred 3.28 7.11 2.63 0.63 2.07 2.36 1.70 2.71 3.01 2.73 2.98 2.14
commit 0.90 1.46 1.00 0.33 12.23 1.48 0.71 1.47 1.43 1.00 1.46 1.04
decode 0.25 1.72 1.00 0.35 0.94 1.76 1.03 1.73 1.68 1.00 1.21 0.86

FU 1.25 1.38 1.01 0.32 1.22 1.07 0.91 1.38 0.38 0.76 0.65 0.73
issue 1.57 2.16 0.14 0.46 0.03 1.57 1.24 2.17 2.13 0.31 1.55 0.43
LSQ 2.18 2.96 1.12 0.38 2.20 1.82 1.59 2.97 2.91 1.32 1.62 1.09

mem_port 1.41 1.44 1.00 0.04 1.86 0.98 0.32 1.50 1.36 1.01 1.21 0.78
mem_width 1.10 1.01 1.00 0.27 0.95 0.83 0.71 1.01 1.01 1.00 1.13 0.81

RUU 0.92 2.83 0.09 0.28 2.32 2.25 1.50 2.84 2.80 0.34 1.47 0.43

 57

4.5 SUMMARY

Generally, conditional operations and memory operations could be constraints for

getting large parallelism and throughput. Based on previous research [64][65], most of

NP applications use large amount of conditional operations irrespective of the amount of

load and store usage. It is because they have to handle each packet by its priority and spe-

cific conditions to perform differentiated services, security checking and traffic manage-

ment.

Based on the experiments in this chapter, an aggressive increase of issue width

can help to slightly improve the performance in order to get a high throughput, but the

cost and complexity of the hardware can be very high. For the energy perspective, total

energy consumption more sharply increases with increasing issue width, when comparing

performance perspective. The issue width is one of the bottlenecks for executing NP ap-

plications, but associated optimization techniques should be applied in order to reduce the

hardware cost and to increase the utilization ratio of processing element.

The common bottlenecks across all NP applications are ‘load store queue’ and

‘register update unit’. Also, the ‘commit’, ‘decode’ and ‘issue’ width are medium-level

bottlenecks in the overall performance for all NP applications. Branch misprediction

leads to a large amount of additional energy dissipation, which is due to the increase in

cycles due to the misprediction. The ‘issue’ and ‘register update unit’ make the largest

impact on the power dissipation across all applications, which implies that large amounts

of power is demanded for the related resources (e.g., instruction window) in large issue-

width architecture.

 58

The experiments in this chapter are based on dynamically scheduled architectures,

so large amount of energy is consumed by a group of hardware resources (e.g., instruc-

tion window) for dynamic optimization. In general, static scheduled architecture requires

relatively low energy consumption. Therefore, in the next chapter, NP applications are

executed on statically scheduled architecture and performance and energy consumptions

compared in order to see its effectiveness.

 59

Chapter 5: Architecture with Statically Identified Parallelism

Most significant issues in modern processor design are related to exploiting paral-

lelism to increase throughput and reducing power consumption. These issues are impor-

tant in the design of Network processors also. Based on previous study [64], network

processor workloads contain a large amount of instruction level parallelism and iterative

execution of same algorithm. From this viewpoint, architectural characteristics of NP ap-

plications are similar to media applications. However, they are totally different from the

data (packet) attribute aspects. While media applications show regularity in the data

workloads and similarity between neighboring data, NP applications have irregular data

workloads and distinct properties between adjacent data.

Based on similarity between media applications and NP applications, it is investi-

gated whether the success of VLIW in the multimedia field can be applied to the network

processor domain.

5.1 BACKGROUND

Contemporary computer and communication applications are multimedia-rich, in-

volving significant amounts of audio and video compression, image processing, graphics,

speech and character recognition and signal processing [12][32][41][42][63][66][67][83]

[91][97][99][105][106][107][108][109][110]. To handle these applications, many ven-

dors have tried application-specific processors. Multimedia processors with VLIW archi-

 60

tectures have been very popular. More recently, another application-specific processor,

the network processor (NP), has been introduced to keep up with the high computation

workloads and intelligent processing capability of network workloads [49][80].

Network processors handle packet data applications, control plane applications

and payload applications [49][64][122]. Multimedia applications can actually be included

in the network payload application category. Also, multimedia data is a dominant element

of network bandwidth, and it might be a major reason of congestion problems, since the

size of multimedia data sets tend to be large and differential services become widely ap-

plied [84].

Modern network applications and protocols demand intelligent and sophisticated

processing over the network, which requires non-trivial computation capability. The

processing requirements within network interfaces and routers are becoming more com-

plex. The network processor on the physical port of a router should be able to process the

modern workloads without slowing down line speed. Hence large parallel architecture is

required for fast network processing, and relevant power issues are also considered in de-

signing network processors [114].

Various kinds of network processors based on different architectural platforms are

commercially available and academically studied [96]. Crowley, et al. [28] presented that

simultaneous multithreading is best suited for some of network applications. Recent re-

search and commercial products for network processors show the use of multithreading

and vector-type array processing [24][74][80][122][123][124][125]. Although these im-

plementations are targeted to meet the required performance, they have complexity in

hardware and programming software, cost and power problems.

 61

Current popular media processors – Texas Instruments’ C6x [113] and TriMedia’s

TM-1300 [47][97] - rely on the simpler hardware of VLIW processors in order to mini-

mize the cost and power of ILP implementation [48]. Some network processors, such as

Cisco Toaster [22] and Agere’s PayloadPlus [3][71], are partially applying static schedul-

ing/VLIW to their architectures. The basic architecture of Toaster is a systolic array ar-

chitecture, and PayloadPlus is employing VLIW to one of several components. However,

it is still not widely thought that VLIW is the way to go for network processors. For re-

cent research related to VLIW, Rao, et al. [92] evaluates compiler support for network

processing.

In this chapter, it is investigated whether the success of VLIW in the multimedia

field can be applied to the network processor domain as a processing element of a parallel

architecture for NP as shown in Figure 5.1. Generally, the processing element should be a

simple and low power architecture. Therefore, the VLIW architecture can be a good can-

didate for the processing element of NP parallel architecture from VLSI design aspects.

This premise is analyzed through the comparison between network processor workloads

and multimedia workloads in terms of performance (speedup) and power consumption.

Network processor applications are quite different from multimedia and DSP applications

in functionality, but both applications have large data (packet) level parallelism. How-

ever, network processor applications have not-so-regular parallel characteristics com-

pared to multimedia applications. It is also analyzed how these different characteristics in

parallelism affect the performance.

 62

Processing

ElementInput Buffer Output Buffer

Processing
Element

Processing
Element

Packet In Packet Out

Figure 5.1 Conceptual structure of parallel architecture for network processors

5.2 WORKLOADS

Eight NP applications are selected from the three NP benchmarks [64][76][122],

and three multimedia kernels are also included for the experiments. Table 5.1 summarizes

selected applications.

Based on previous research [64][122], it is observed that most of NP applications

use large amount of conditional operations irrespective of the amount of load and store

usage. It is because they have to handle each packet by its priority and some specific

conditions to perform differentiated services, security checking and traffic management.

 63

In general, conditional operations and memory operations typically consume a significant

part of the total execution cycles, and also they restrict performing the parallelism.

Table 5.1 Selected workloads: 8 NP applications and 3 multimedia kernels

Applications Description
DRR Deficit round robin scheduling
FRAG Packet fragmentation application
REED Reed-Solomon error correction scheme
WFQ Weighted fair queuing
RED Random early detection algorithm
SSLD SSL(Secure sockets layer) dispatcher
MPLS Multi-protocol layer switching
MTC Media transcoding
MM Matrix multiplication
ADPCM Adaptive Differential Pulse Modulation
FFT Fast fourier transform

Figure 5.2 shows the flow of WFQ [11][14][30][103]. WFQ is a good example to

investigate its data flow because it has many characteristics of exploiting QoS (Quality-

of-Services) [126], and it is also a solution for congestion problem of the network inter-

faces.

The WFQ has two main loops – Loop2 handles all queue operations, and during

Loop1, round number calculations for next Loop2 are performed based on results of

Loop2 iterations. Therefore, as shown in Figure 5.3, NP applications (e.g. WFQ) have

both parallelizable operations and an amount of serial operations, while most of multime-

dia applications have large amount of parallelizable operations. However, there is still a

possibility to improve parallelism for WFQ, since parallel processing parts are dominant

of the total execution. The flow analysis of WFQ evidences that statically scheduled ar-

 64

chitecture, which shows good performance in multimedia areas, can be a candidate of a

processing element for network processors.

Loop1: (active)
Loop2: (for all queues)

1. Empty queue checking
2. Finish time calculation
3. Calculation of min/max value of finish time

EndLoop2

4. Round number calculation for next Loop2
EndLoop1

Figure 5.2 Main flow of the WFQ application

5.3 EXPERIMENTAL FRAMEWORK

In order to study the effectiveness of static scheduling for NP applications, ex-

periments are performed on a VLIW architecture model. However, any particular stati-

cally scheduled architecture is not advocated in this experiment. VLIW paradigm is sim-

ply applied as a vehicle to investigate the feasibility of static scheduling for NP applica-

tions. Performance (speedup) and energy consumption are used as metrics, hence power

simulators are also needed. The Trimaran [113] tool is used as a framework for static

scheduled architecture simulation. The tool PowerImpact [68] is also used to estimate

power consumption of VLIW architecture. For the simulation, 8-issue Trimaran configu-

ration is applied as shown in Table 5.2. The VLIW configuration (4-1-2-1) is based on

instruction distribution presented in chapter 3 and also in [64].

 65

 Processing elements

I
N
P
U
T

O
U
T
P
U
T

parallel
processing

serial
processing

(a) NP application (e.g. WFQ)

 Processing elements

INPUT OUTPUT

parallel
processing

(b) Multimedia application (e.g. FFT)

Figure 5.3 Data flow of NP and multimedia workloads

In the static scheduling simulation using Trimaran, three different region forma-

tions techniques - basicblock, hyperblock and superblock – are used in order to see the

 66

effectiveness of aggressive compiler optimization techniques. Basicblock scheduling has

a limited scope of exploiting ILP, and each basicblock has 4-5 interdependent instruc-

tions on average. Hyperblock and superblock are a kind of extended basicblock for

scheduling in which groups of basicblocks are scheduled as a single unit.

PowerImpact is designed on the Impact tool [20]. These tools are capable of

breaking down the power consumption with respect to the various units of the processor,

and hence analysis of the power consumption of various processor units is analyzed in

detail.

Table 5.2 Architectural configurations for the VLIW experiments

VLIW Trimaran-4121 configurations
Integer 4
Floating Point 1
Memory 2
Branch 1
L1 I-cache Size:32K, block size: 64, associativity:1
L1 D-cache Size:32K, block size:32, associativity:4
L2 u-cache Size:1,024K, block size: 64, associativity:4

5.4 PERFORMANCE AND POWER CHARACTERISTICS OF NP AND MULTIMEDIA
WORKLOADS ON STATIC SCHEDULED ARCHITECTURE

In this section, the performance of NP applications is compared to multimedia ap-

plications on static scheduled architectures (VLIW).

5.4.1 Performance Metric in VLIW

 67

Total execution cycles is used as a performance metric rather than IPC (Instruc-

tion per Cycle), when comparing the performance impact between different techniques

with respect to one application. It is because some aggressive compiler optimizations in-

crease the total number of dynamic instructions. Even though the optimization techniques

introduce much higher parallelism, IPC comparison based on different number of instruc-

tions are not reasonable within one application. For example, as shown in Table 5.3, su-

perblock simulation of MTC has highest IPC among three block formations, but its actual

execution cycle is not the highest. Also, in the static scheduling experiments, it is seen

that some applications, such as WFQ and RED, has better performance when executing

the application with superblock optimization, while MPLS, SSLD and MTC have better

results with hyperblock.

5.4.2 Performance Characteristics

In VLIW architecture, the compiler plays a major role in finding parallelism, de-

creasing dependencies among instructions and exploiting other optimization techniques

in static mode. For more aggressive optimization, several types of region formations have

been used in the compilation stage. Table 5.4 shows the static code size of each region

formation in VLIW optimization. Hyperblock and superblock optimization has a much

larger code size than basicblock optimization, as shown in Table 5.4, since these optimi-

zations use several algorithms, such as tail duplication, node splitting and loop peeling, to

exploit larger parallelism. These algorithms make the code size larger during the optimi-

 68

zation process, but total execution cycles become smaller due to the aggressive parallel-

ism from the optimization.

Table 5.3 Performance characteristics for selected NP applications and multimedia ker-
nels on VLIW

Benchmarks/Architectures Total icount Total cycles
basicblock 299,861,954 255,950,125
hyperblock 246,863,079 87,865,261DRR Trimaran-

4121 superblock 242,616,913 81,910,851
basicblock 46,701,519 29,800,918
hyperblock 46,415,391 17,113,605FRAG Trimaran-

4121 superblock 47,315,391 13,813,605
basicblock 791,093,230 664,971,864

hyperblock 764,712,720 175,726,369REED Trimaran-
4121 superblock 1,085,431,602 297,961,729

basicblock 21,840,219 20,205,926
hyperblock 30,549,203 11,965,495WFQ Trimaran-

4121 superblock 31,366,939 9,716,299
basicblock 8,619,963 5,134,718
hyperblock 11,560,637 3,770,468RED Trimaran-

4121 superblock 10,901,051 2,734,384
basicblock 41,540,697 32,216,891

hyperblock 22,430,498 5,480,132SSLD Trimaran-
4121 superblock 38,446,616 11,115,653

basicblock 47,130,280 37,635,484
hyperblock 26,018,784 5,346,058MPLS Trimaran-

4121 superblock 43,394,820 10,761,597
basicblock 423,951,206 249,137,276

hyperblock 411,585,030 207,468,467MTC Trimaran-
4121 superblock 413,819,818 207,553,368

basicblock 4,978,201 1,731,232
hyperblock 5,705,563 1,762,825MM Trimaran-

4121 superblock 5,724,763 1,770,025
basicblock 10,259,845 7,425,995
hyperblock 11,812,295 4,682,874ADPCM Trimaran-

4121 superblock 11,480,874 4,253,279
basicblock 32,932,660 16,776,649
hyperblock 16,128,966 9,281,398FFT Trimaran-

4121 superblock 18,706,169 7,176,384

 69

Table 5.4 Static code size of different region formation techniques

Static code size of different region formations Benchmarks
basicblock hyperblock superblock

DRR 204 1,170 1,073
FRAG 89 152 152
REED 148 915 847
WFQ 353 2,258 1,875
RED 358 858 1,332
SSLD 280 1,551 1,778
MPLS 263 926 976
MTC 988 3,160 3,221
MM 166 621 573

ADPCM 172 469 491
FFT 580 2,074 2,268

The most important exploiting of parallelism can be done by employing instruc-

tion scheduling which is for assigning instructions into fixed functional units in VLIW

architecture. Figure 5.4 shows the performance comparison between the scheduled and

the unscheduled VLIW experiments. For a more intuitive comparison, normalized

speedup is used for comparison to total execution cycles of the unscheduled VLIW.

* Y axis: a normalized speedup to the total execution cycles of unscheduled VLIW

Figure 5.4 Performance characteristic on VLIW

0

2

4

6

8

10

12

drr frag reed wfq red ssld mpls mtc mm adpcm fft

unscheduled basicblock hyperblock superblock

 70

Most of NP applications show relatively little improvement from basicblock op-

timization compared to multimedia workloads. However, more aggressive optimization

techniques give comparable improvements to NP workloads. It is because hyperblock and

superblock optimizations reduce the impact of conditional operations, which is a main

factor to decrease the parallelism of NP workloads. MPLS and SSLD show tremendous

impact from hyperblock optimization. Another interesting observation is that multimedia

applications show comparable performance in basicblock optimization without using hy-

perblock and superblock optimization except ADPCM. In the case of ADPCM, its impact

from scheduling is little, because each sample is computed using previous sample values

making it to contain very little parallelism. Based on this experiment, it can be found that

the static scheduled architecture can be applied to network processor domain with more

aggressive optimization techniques.

5.4.3 Power Characteristics of NP and Multimedia Workloads on VLIW

Power consumption of NP and multimedia applications on VLIW architectures is

investigated to see the power impact from using different block formation techniques.

Figure 5.5 shows normalized power consumption to basicblock formation. From Figure

5.5, it cannot be observed any regular patterns of power consumption among different

block optimization techniques in both applications, but NP applications have more energy

impact than multimedia applications from aggressively optimized block formation. It is

because larger parallelism requires more power consumption to exploit more hardware

 71

units. Based on the power experiments, similar power characteristics are expected be-

tween both workloads when more optimized parallelism is applied to NP applications.

* Y axis: a normalized power consumption to basicblock formation

Figure 5.5 Power consumption on VLIW

5.4.4 Required Parallelism for NP Workloads

Assuming a stream of minimum-sized packets of 64 bytes and given a single

processor of 1 GHz clock frequency for the router, this single processor can execute only

512 instructions per one packet time over 1Gbps (~OC-24) network line. As shown in

Table 5.5, required number of parallelism can be obtained with 1~10 parallel implemen-

tation of a unity ILP machine [64]. If OC-192 and OC-768 routers are considered, the

requirements will be much higher as shown in Table 5.5. Based on this study, it is seen

that the parallel implementation costs can be reduced by 50%~75% from a single VLIW-

4121. Even though more works on tuning issue-width and accelerating processing ele-

ments are required, static scheduled architecture can be a candidate for a processing ele-

0.0

0.2

0.4

0.6

0.8

1.0

drr frag reed wfq red ssld mpls mtc mm adpcm fft

basicblock hyperblock superblock

 72

ment when designing network processors as a processing element of a parallel architec-

ture. As the architectural technology is being evolved, higher speed processors also help

to reduce the cost of parallel implementation.

Table 5.5 Required parallelism for NP workloads
(* is indicates control plane applications)

Required number of processing

elements (with a unity ILP
processor)

How many processing elements
(VLIW-4121) are required?

Workload

(~OC-24) (OC-192) (OC-768)

Parallelism
of a VLIW-

4121
 (~OC-24) (OC-192) (OC-768)

DRR 1 7 28 4.04 1 2 7
FRAG 1 9 38 3.23 1 3 10
WFQ* 4 39 168 2.07 1 10 42
RED* 2 17 74 3.22 1 5 19
SSLD* 10 91 394 8.62 3 23 98
MPLS* 6 59 255 5.71 2 15 63

5.5 SUMMARY

In this chapter, it is investigated whether the success of VLIW in the multimedia

field can be applied to the network processor domain as a processing element of a parallel

architecture for NP. This premise is analyzed through the comparison between network

processor workloads and multimedia workloads in terms of performance (speedup) and

power consumption. Network processor applications are quite different from multimedia

and DSP applications in functionality, but both applications have large data (packet) level

parallelism. However, network processor applications have not-so-regular parallel char-

acteristics compared to multimedia applications. It is also analyzed how these different

characteristics in parallelism affect the performance. Experimental results show that NP

 73

applications need more aggressive optimization techniques in static scheduled architec-

ture, while media applications can get large parallelism with simple basicblock optimiza-

tions. With the characteristics of large packet-level parallelism, experimental analysis

supports static scheduling as an applicable paradigm for network processor applications

with lower hardware complexity and lower power dissipation.

Based on the experiments, it can be concluded that control plane workloads need

large-scale parallel implementations. Generally, network processors can be used in vari-

ous node positions with different scales, such as core routers (10 Gbps), edge routers (2.5

Gbps) and access routers (1 Gbps). Large scale routers may need a grid style architecture

to meet the required throughput, but it is hard to apply such a complex and expensive ar-

chitecture to small scale routers. Therefore, a simple and low priced NP architecture is

required for small scale routers. In the following chapters, the feasibility of using a hard-

ware accelerator for specific heavily used operations from the application will be studied.

Careful analysis of the workload is conducted to identify appropriate candidates for

hardware acceleration.

 74

Chapter 6: Hardware Acceleration Techniques for Control-plane

Workloads in Network Processors

This chapter describes hardware acceleration techniques for control plane work-

loads in network processors. Three types of hardware acceleration modules presented in

each section. This chapter is organized as follows: Section 6.1 describes congestion con-

trol workloads and a hardware acceleration technique. Section 6.2 provides media

transcoding workloads and an array-style hardware acceleration model. Section 6.3 pre-

sents lookup table related workloads in control plane and a hardware acceleration tech-

nique using partitioned lookup table. Finally, summary of this chapter is presented in

Section 6.4.

6.1 HARDWARE ACCELERATION FOR CONGESTION CONTROL APPLICATIONS

Complex network protocols and various network services require significant

processing capability for modern intelligent network applications. One of the significant

features in modern networks is differentiated service. Along with differentiated service,

rapidly changing network environments cause congestion problems. In this section, char-

acteristics of representative congestion control applications such as scheduling and queue

management algorithms are analyzed, and application-specific acceleration techniques

are proposed using PLP (Packet Level Parallelism). From PLP perspective, a hardware

acceleration model is proposed based on detailed analysis of congestion control applica-

 75

tions. In order to get higher throughput, large number of processing elements and a paral-

lel comparator are designed. Such hardware accelerators provide large parallelism pro-

portional to the number of processing elements added.

6.1.1 Motivation

As the bottleneck of communication networks is moving to the network nodes

from channel bandwidth problem, it is required to have flexible processing capability for

network processors in order to support several emerging network applications and their

heavy processing workloads [49][80].

One of the significant features in modern network workloads is differentiated ser-

vice. This differentiated service requires a capability to process computation-intensive

workloads in the network node. Also, as network contents tend to be large and various

kinds of client devices are introduced, new network applications such as media transcod-

ing [41][103] should be performed in the network nodes. These rapidly changing network

environments also bring about congestion problems. While the existing research and

products [27][37][51][52][76][122] have been mostly focused on handling packet proc-

essing, no previous research analyzes these workloads from the architectural perspec-

tives.

NP workloads have large data (packet) level parallelism, since they iteratively use

same algorithm to input packets [64]. In order to extract and exploit the parallelism for

designing network processors, it is extremely important to identify appropriate bench-

marks for efficient design and evaluation of any processor. Among three NP benchmarks

 76

[64][76][122], NpBench [76] provides a categorized NP control-plane workloads. Con-

trol plane workloads are just emerging and evolving in current network environments,

and they perform congestion control, flow management, higher-level protocols and other

control tasks.

In general, congestion occurs at a router when incoming packets arrive at a rate

faster than the rate that the router can switch them to an outgoing link as shown in Figure

6.1. The two representative algorithms for congestion control are the scheduling and the

queue management algorithm [15][39]. The scheduling algorithm determines which

packet to be sent next and is used primarily to manage the allocation of bandwidth among

flows (e.g., weighted fair queuing (WFQ) [11][30][103]). According to the IETF (Inter-

net Engineering Task Force) recommendation [15][39], the default mechanism for man-

aging queue lengths in FIFO queues is the Random Early Detection (RED) algorithm.

100Mbps

100Mbps

100Mbps

34Mbps

Internet

Router

Router

Router
Gateway Router

Figure 6.1 Router system

 77

For the low-delay and low-jitter services (e.g. premium services), the network

processor on the physical port of a router should be able to process these congestion con-

trol workloads without slowing down the line speed. Assuming a stream of minimum-

sized packets of 64 bytes and given a single processor of 1 GHz clock frequency for the

router, this single processor can execute only 512 instructions per one packet time over

1Gbps (~OC-24) network line. As shown in Table 6.1, required number of parallelism

can be obtained with 2~4-way parallel implementation of a unity ILP machine [64]. In

the case of OC-192 and OC-768 routers, the requirements will be much higher as shown

in Table 6.1.

Table 6.1 Required parallelism for congestion control workloads

Workloads

 Required parallelism
(with a unity ILP 1 GHz processor)

Required number

of instructions
per packet 1Gbps

(~OC-24)
10Gbps

(OC-192)
40Gbps

(OC-768)
WFQ 2,005 4 40 167
RED 881 2 17 74

In this section, characteristics of two representative congestion control applica-

tions are analyzed, and application-specific acceleration techniques are proposed using

PLP concepts. For PLP implementation, a hardware acceleration model is proposed based

on detailed analysis of congestion control applications.

The rest of this section describes workload characterization of congestion control

applications and performance analysis of proposed acceleration model.

 78

6.1.2 Workload Characterization

In order to design coprocessors that relieve congestion, a detailed understanding

of the algorithm itself including its dataflow, essential operations and its inherent bottle-

neck is required. In this section, two representative applications for congestion control -

WFQ and RED are analyzed. The WFQ [14][104] is a queue-scheduling algorithm to

serve packets in order of their finish-times considering the weight on connections. Vari-

ous lengths of packets from incoming traffic are classified into different queues, which

can be used for differentiated service. The Random Early Detection (RED) [15][39] is an

active queue management algorithm for routers. In contrast to the traditional queue man-

agement algorithm, which drops packets only when the buffer is full, the RED algorithm

probabilistically drops arriving packets before coming into the queue. The decision of

whether or not to drop an incoming packet is based on the estimation of the average

queue size.

As shown in Figure 5.3, NP applications (e.g. WFQ) contain several parallelizable

operations. Particularly, two congestion solutions show many comparison operations and

conditional operations to exploit fair scheduling and active queue management.

6.1.2.1 Experimental framework

Workload characterization and performance analysis are performed with the Sim-

plescalar Tool Set version 3.0 for the PISA architecture [17]. Program performance is

analyzed on the detailed timing simulator. In order to measure more accurate timing re-

quirements, proposed acceleration model is coded using VHDL. Synopsys Design Vision

 79

[105] is used for the synthesis of the VHDL model, in which a cell-based methodology is

used to target the VHDL models to a 0.18-micron technology.

6.1.2.2 Kernel Characteristics

Instruction mix of the congestion control applications is investigated. Table 6.2

shows the dynamic instruction distribution during execution. From this workload distri-

bution, it can be observed that ALU operations occupy a significant share of the total in-

struction mix (21% ~ 40%). Branch operations (branch, jump and call) are heavily used

in the congestion applications (16% ~ 30%) for finding fair conditions and active queue

management, compared to crypto applications (7% ~ 10%) - AES, MD5 and DH. These

conditional operations are a main factor to decrease the parallel performance of conges-

tion control applications.

Table 6.2 Instruction distribution of congestion control applications and crypto applica-
tions

App. alu shift logic branch Load store msc.
WFQ 20.6 16.9 0.0 29.2 16.2 7.9 9.3
RED 39.7 7.2 0.0 15.3 23.6 10.9 3.0
AES 10.5 18.4 26.9 7.0 29.4 7.7 0.1
MD5 45.1 13.0 20.5 7.5 7.1 6.7 0.2
DH 24.0 12.0 10.9 9.7 27.0 11.3 5.1

 80

6.1.2.3 Bottleneck Analysis

In order to investigate which hardware element impacts performance the most,

bottleneck analysis is performed for congestion applications. For this bottleneck analysis,

nine constraints, which are independent of each other, are applied - branch prediction,

commit width, decode width, the number of functional units, issue width, load/store

queue size, the number of memory ports, memory bus width and the register update unit.

From this analysis, it is observed that the restriction of memory width has less

impact on the overall performance in WFQ than RED. Branch misprediction has largely

affected both applications. This observation shows that branches are quite unpredictable

in these congestion applications. The common bottlenecks across both applications are

‘bpred’, ‘issue’ width, ‘LSQ’ and ‘RUU’.

In the following section, it is focused on relaxing bottleneck effects from ‘issue’

width using the hardware acceleration model, in order to maximize congestion control

application’s inherent parallelism.

6.1.3 Acceleration Model

Along with the instruction level parallelism, packet level parallelism should be

applied to congestion control application to acquire the required parallelism, even though

they have serial data flows as shown in Figure 6.2 (a). The input packets are processed in

the queue processing elements (PEs) for the fair queuing, and min/max calculation and

round number calculations are performed based on the finish time of each processing

elements.

 81

Queue PE

Queue PE

Queue PE

Original Model

INPUT OUTPUT

Min/Max

Min/Max

Min/Max

Round
Number

Calculation

(a) Original architecture

Queue PE

Queue PE

Queue PE

Queue PE

Acceleration Model

INPUT OUTPUT

Parallel Comparison Module

Min/Max

Round
Number

Calculation

(b) Proposed accelerator architecture

Figure 6.2 Hardware acceleration model for WFQ

 82

In order to exploit packet level parallelism, min/max calculation module is de-

coupled from the queue processing flow, and merged into the large parallel comparison

module with round number calculation model. Also, the queue processing elements are

configured in parallel for exploiting packet level parallelism as shown in Figure 6.2 (b).

Given NP packets and NQ queues, the total execution cycle of Figure 6.2 (a) can

be expressed as follows:

Q

P
RQMQ N

NtNtt ⋅+⋅+ }){(

where tQ is queue processing cycles, tM is min/max calculation cycles, and tR is round

number calculation cycles. Under the same condition, the total execution cycle of the

proposed hardware acceleration model is:

Q

P
MRQ N

Ntt ⋅+ }{

where tMR is min/max calculation cycles for all queue processing elements plus round

number calculation cycles (tR). Therefore, the expected performance improvement is:

MR

QRQMQQ

t
ttNtNt −+⋅+⋅

From the above equation, only NQ dominantly affects the performance improve-

ment. Hence, the speedup from proposed hardware acceleration module would be propor-

tional to the number of queue processing elements and inversely proportional to tMR. If

same acceleration mechanism is applied to RED as shown in Figure 6.3, the average

 83

queue calculation module can be modeled as front-end PLP elements, and decoupled de-

cision module and overall average queue size calculation module can be configured at the

back-end as a parallel comparison module. Similarly, the speedup from proposed hard-

ware acceleration module would also be proportional to the number of front-end PEs.

 84

Original Model

INPUT OUTPUT

AVG Queue PE

AVG Queue PE

AVG Queue PE

Decision

Decision

Decision

(a) Original architecture

Acceleration Model

INPUT OUTPUT

Decision

Overall
AVG PE

Parallel Comparison Module

Decision

Decision

AVG Queue PE

AVG Queue PE

AVG Queue PE

(b) Proposed accelerator architecture

Figure 6.3 Hardware acceleration model for RED

 85

6.1.4 Experimental Results and Performance Evaluation

The proposed hardware acceleration model, as explained in section 6.1.3, is simu-

lated for performance evaluation. In this experiment, ‘min/max calculation time’ (see

Figure 6.2) for large input sets is assumed to be approximately 10 cycles in the WFQ. It

is based on generic 2-bit comparator delay, which is 3 XNOR gates delay. And, the 2-bit

comparisons should be performed over ‘log 2
(number of input sets)+1’ stages. So, if 64-queue

processing elements is applied and 8-bit comparison is needed, total delay of the critical

path could be 3 XNOR gates delay (3x170ps) x 7 stages x 3 (8bit comparison). Given

1GHz clock frequency and assumed 65 ps as one gate delay, it takes about 10 cycles.

In order to measure more accurate timing requirements, parallel comparator is

modeled using VHDL and synthesized using Synopsys synthesis tools [105]. Cell-based

methodology is used to target the VHDL models to a 0.18-micron technology

(HT018.db). From the synthesis, critical-path delay of the parallel comparator is 4,166.27

ps, which is 5 cycles if 1 GHz clock frequency is applied.

As shown in Figure 6.2, actual decision for sending a packet happens at the end of

queue processing (Queue PE), and the next round of queue processing requires a round

number from current round queue processing. From the experiment using Simplescalar,

round number calculation time is approximately 142 cycles, and min/max calculation

time at the back-end is assumed as 5 cycles. These delays are constant regardless of the

number of front-end PEs, when tM < tR. As shown in Figure 6.4, speedup from proposed

hardware acceleration module is proportional to the number of front-end PEs.

 86

0

10

20

30

40

50

60

4 8 16 32 64
Number of PEs (in parallel)

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t

WFQ RED

Figure 6.4 Performance evaluation of hardware acceleration model for congestion control
applications

The performance comparison is based on the execution time of 4-issue Simplesca-

lar architecture. The RED shows more improvement, since its ratio of front-end execution

cycle to back-end execution cycle is larger than that in the WFQ. In the case of RED, the

number of PEs should be 4, 8 and 32 for OC-24, OC-192 and OC-768 to avoid slowing

down the line speed. It is observed that the RED shows more improvement, since its ratio

of front-end execution cycle to back-end execution cycle is larger than that in the WFQ.

In order to get large parallelism in congestion control applications, it is required to

carefully decouple the dataflow and split into the front-end PLP module and the back-end

hardware acceleration module. This decoupling and defining a hardware acceleration

module could be done by the thoroughly analysis of the applications. Since large number

of processing elements should be applied for congestion control applications, implemen-

 87

tation issues such as power, processing element utilization ratio, interconnection delay

can not be ignored.

6.2 HARDWARE ACCELERATION FOR MEDIA TRANSCODING APPLICATIONS

In this section, characteristics of media transcoding applications are analyzed, as

the second category of control plane applications for network processors, and application-

specific acceleration techniques are proposed to exploit data (packet) level. Array-style

processing module is considered as a candidate for accelerating data conversion module.

Such hardware accelerators provide large parallelism proportional to the number of array

processing elements added.

6.2.1 Motivation

As network contents tend to be large and various kinds of client devices are intro-

duced, new network applications such as media transcoding [46][100] should be per-

formed in the network nodes. As shown in Figure 6.5, the network bandwidths of content

server and client device has a big difference, since content servers are directly linked to

large scale networks (e.g., enterprise network) and client device is related to small scale

networks (e.g., home networks, mobile networks). Also, the hardware resources for dis-

playing and processing data are very limited in client device aspects, particularly for mo-

bile devices [34][35]. If high resolution data is to be sent to client devices from content

server, it is not economical to send original high resolution data. It will take longer to

 88

send the data over the small bandwidth network, and processing time in the client device

also will take long time. In addition to that, it can cause congestion problems in the node.

Therefore media transcoding technology should be essentially applied to intermediate

node between content servers and client devices. Most of data are related to regular me-

dia data, so it would be well matched with array-style architecture to handle data

transcoding. For PLP implementation using the array architecture, hardware acceleration

models are proposed based on detailed analyses of media transcoding applications.

Content
Server

Client
Device

Transcoding
Proxy

Fast (e.g., 100Mbps) Slow (e.g., 1Mbps)

TtcT1 T2

Figure 6.5 Media transcoding

The rest of this section describes workload characterization of media transcoding

applications and performance analysis of proposed acceleration model.

6.2.2 Workload Characterization

Media Transcoding [46][100] is a process in which a data object in one represen-

tation is converted into another representation. In order to accommodate the wide spec-

trum of client capabilities and associated network speeds, the media data need to be

 89

modified along the dimensions, fidelity, and resolution. It is not an efficient way to send a

bigger data to low-resource devices through the slow network line. As shown in Figure

6.5, transcoding proxy will handle this conversion work, so network bandwidth will be

efficiently used and it helps to avoid the congestion.

6.2.2.1 Experimental Framework

Workload characterization and performance analysis are performed with the Sim-

plescalar Tool Set version 3.0 for the PISA architecture [17]. Program performance is

analyzed on the detailed timing simulator. Several processor configurations are simulated

for bottleneck analysis. Synopsys synthesis tool [105], design vision, is also used for tim-

ing verification of proposed hardware acceleration modules.

6.2.2.2 Kernel Characteristics

Dynamic instruction mix of the control plane applications is investigated. Table

6.3 shows the dynamic instruction distribution during execution. From this workload dis-

tribution, it can be observed that ALU operations occupy a significant share of the total

instruction mix (33.9%). Memory operations (load and store) are heavily used for fetch-

ing data from the memory and storing the result to the memory. If systolic-style array

processors are applied to this application, the memory fetching and storing workloads can

be significantly reduced.

 90

Table 6.3 Instruction distribution of media transcoding applications

App. Alu shift logic branch load store misc.
MTC 33.9 2.6 10.5 11.2 21.7 18.1 1.9

6.2.2.3 Bottleneck Analysis

For the bottleneck analysis of media transcoding, nine constraints as section

6.1.2.3, which are independent of each other, are applied. Based on this analysis, it is

found that the restriction of ‘memory_width’ has less impact on the overall performance.

Branch misprediction has more impact on this application. The bottlenecks which

strongly influenced the performance are ‘bpred’, ‘issue width’, ‘LSQ’ and ‘RUU’. In the

following section, it is focused on relieving bottleneck effects from ‘issue’ width and

‘LSQ’ using parallel hardware acceleration model, in order to maximize media transcod-

ing application’s inherent parallelism.

6.2.3 Acceleration Model

The procedure of media transcoding consists of transcoding decision unit and

pipeline-styled regular processing units as shown in Figure 6.6 (a). This decision module

is very critical in the functioning of the workload. The decision module handles which

module is enabled and how many modules are enabled. Data conversion modules include

several different kinds of functionalities including size conversion, color conversion, con-

trast control and gamma correction. Once each processing unit is enabled, the input data

 91

is processed in one processing unit and the processed data is forwarded to the next proc-

essing unit. Most of data to be processed in the transcoding proxy are related to multime-

dia applications, so each processing unit requires regular and fine-grained processing

element. Therefore, the array-style processor would be a good candidate for accelerating

media transcoding as shown in Figure 6.6 (b).

Based on experiments using 4-issue Simplescalar, data conversion module takes

89% of the total execution cycles. If a 128x128 image is used as an input to the data con-

version module, average execution cycles for an image takes 58,800 cycles when four

transcoding modules are enabled. As shown in Figure 6.6 (c), a processing unit consists

of simple arithmetic elements including multipliers for red, green and blue color process-

ing, or a combination of three multipliers and one adder.

.......

TC or No TC Purpose

Size

Contrast

Gamma

Color

Size Contrast Gamma Color

Data conversion module

TC decision module

(a) Original architecture

 92

TC #1 TC #2 TC #3 TC #4

From TC decision module (TC-enable signal)

(b) Proposed accelerating architecture

G

B

TC-enable signal

R MUL

MUL

MUL

G

B

TC-enable signal

R MUL

MUL

MUL

+

(c) Processing units

Figure 6.6 Hardware acceleration model for media transcoding

 93

6.2.4 Experimental Results and Performance Evaluation

Each processing unit consists of 3 multipliers and one adder as shown in Figure

6.6 (c). If array multiplier is applied, the critical path of the multiplier is 14 adder-delays.

High-speed multipliers like Wallace multiplier can reduce the critical path to 7 adder-

delays. In order to measure timing requirements, processing unit is modeled using VHDL

and the model is synthesized using 0.18-micron technology (HT018.db). From the syn-

thesis results, its critical-path delay of a processing unit is 7,784.96 ps, which is 8 cycles

if 1 GHz clock frequency is applied.

If a 128x128 image is considered as an input to the data conversion module

(without accelerator), average execution cycles for an image takes 58,800 cycles when

four transcoding modules are enabled. If 4 parallel processing units are applied for each

transcoding module (4x4 array architecture), it takes 32,768 cycles, which is 1.8x

speedup. If 64 parallel implementation (4x64 array architecture) is used, only 2,048 cy-

cles is needed for transcoding (28.7x speedup). Figure 6.7 shows the speedup of proposed

acceleration module in terms of the number of PEs.

 94

0

10

20

30

4 8 16 32 64
Number of PEs (in parallel)

Pe
rf

or
m

an
ce

 im
pr

ov
em

en
t MTC

Figure 6.7 Performance evaluation of hardware acceleration model (media transcoding)

 95

6.3 HARDWARE ACCELERATION FOR LUT-RELATED APPLICATIONS

In this section, characteristics of lookup-table-related applications for network

processors are analyzed, and application-specific acceleration techniques are proposed to

exploit data (packet) level parallelism in these applications. It is focused on accelerating

lookup table searching module using the modified partitioned lookup table mechanism.

Such hardware acceleration technique provides large parallelism proportional to the

number of LUT partitions.

6.3.1 Motivation

As e-commerce applications are widely used in secured environments, content-

based switching mechanism [7][100] between server and client clusters, which is a model

to reduce the computational loads of heavy authentication, have emerged.

SSLD [100][103] is one example of content-based switching mechanism in the

server and client environments. When SSLD runs over TCP connection, the SSLD main-

tains the session ID information during authentication process. When reconnecting to the

same server, a client can reuse the session so that computational load of authentication

which is computationally heavy processing, can be reduced. In order to find previously

used session information and update newly used session information, lookup table (LUT)

manipulations are applied.

MPLS [9][56][126] is a forwarding technology, which does away with the lookup

of bulky IP headers and uses short labels for forwarding at the edge of the MPLS domain.

 96

MPLS also use lookup table for finding a forwarding equivalent class of a given destina-

tion address.

Both SSLD and MPLS have lookup table searching and updating module in each

procedure as show in Figure 6.8. Lookup table searching is a major bottleneck in the

LUT-related applications. Based on experiments using 4-issue Simplescalar, LUT search-

ing takes 77% ~ 86% of the total execution cycles in MPLS and SSLD. In this section,

hardware acceleration models of LUT searching functionality are proposed.

Input LUT
check

processing OutputLUT
update

Figure 6.8 Data flow of LUT related applications

The rest of this section describes workload characterization of lookup table re-

lated applications and performance analysis of proposed hardware acceleration model.

6.3.2 Workload Characterization

Architectural characteristics of LUT-related applications are analyzed. Bottleneck

analysis is also performed to see what is main bottleneck for executing these applications.

 97

6.3.2.1 Experimental Framework

Workload characterization and performance analysis are performed with the Sim-

plescalar Tool Set version 3.0 for the PISA architecture [17]. Program performance is

investigated on the detailed timing simulator. Several processor configurations are simu-

lated for bottleneck analysis. The tool CACTI [121] is used for timing verification of

memory module for lookup table.

6.3.2.2 Kernel Characteristics

Dynamic instruction mix of the SSLD and MPLS applications are investigated.

Table 6.4 shows the dynamic instruction distribution during execution. From this work-

load distribution, it can be observed that ALU operations occupy a significant share of

the total instruction mix (35.8% ~ 57.0%). Branch operations are heavily used for com-

parison of unique ID during LUT searching. If hardware module for parallel searching is

applied, actual execution time consumed by comparison operations can be reduced.

Table 6.4 Instruction distribution of MPLS and SSLD applications

App. Alu shift logic branch load store misc.
MPLS 35.8 11.4 8.6 22.0 16.1 4.9 1.3
SSLD 57.0 0.0 0.0 28.3 14.4 0.2 0.0

 98

6.3.2.3 Bottleneck analysis

For the bottleneck analysis of LUT-related applications, nine constraints as in sec-

tion 6.1.2.3, which are independent of each other, are applied. Based on this analysis,

MPLS is restricted by most of the constraints, while SSLD is mainly restricted by ‘RUU’

and ‘issue width’. It is interesting to note that all hardware resources are evenly used in

the MPLS application.

6.3.3 Acceleration Model

Lookup table searching is a major bottleneck in the LUT-related applications. In

this study, the focus is on accelerating lookup table searching module. Akhbarizadeh, et

al. [6][101] proposed partitioned lookup table mechanism for IP packet forwarding,

which is applied for IPv4 or IPv6 [29]. As shown in Figure 6.9, they use parallel GT

(Great Than) comparison block for each partitioned lookup table (PLUT) in order to find

the longest prefix matching IP address and output port among partitioned lookup tables.

They also use TCAM (Ternary Content Addressable Memory) module [43][113] for

lookup table.

For PLP implementations of SSLD and MPLS, partitioned lookup mechanism

from [101] is modified. Lookup table is partitioned into N (power of 2) small lookup ta-

bles. Each PLUT contains a subset of data for lookup. Lookup table of MPLS has desti-

 99

nation IP addresses and FEC ID, while SSLD contains destination IP addresses and ses-

sion ID in lookup table.

PLUT1

PLUT2

PLUTN

COMP1

COMP2

COMPN

>

>

>

&

PT1

PT2

PTN

PTj

Figure 6.9 Partitioned LUT [6]

 100

Figure 6.10 presents proposed partitioned lookup table mechanism. When an IP

packet is received, its destination IP address field is broadcasted to all the PLUTs. The

partitioned lookup table units are checking if the received destination exists in each

PLUT. If it exists in a PLUT, associated data (FEC ID or session ID) will be controlled

by Hit/Miss control signal whether the data is transferred to next stage or not. The PLUT

is similar to the behavior of cache. In this approach, applying TCAM module for lookup

table is not considered, because it still costs a lot, dissipates more power and takes more

area compared to SRAM. Typically one bit cell of SRAM requires 4-6 transistors, while

one bitcell of TCAM requires 11-15 transistors [43]. Several companies including Siber-

Core Technologies [113] produce 2M – 18M TCAM. In the case of 2M TCAMs, it is ca-

pable of single and multi-field classification in as little as 10 ns. Currently TCAM is rela-

tively expensive to use, but it can be expected to be much faster, denser and cheaper

products in the near future [43].

6.3.4 Experimental Results and Performance Evaluation

Using the tool CACTI [57][121], average access time of the RAM-based lookup

tables is compared, when applying different lookup table sizes.

In the case of lookup table for SSLD, it consists of 32 bit IP address and 256 bits

for session id. From the CACTI simulation, the access time of this LUT module (256

Kbytes, 4K entries) is 2.48 ns under the 0.18 micron technology. If the lookup table size

is 64 Kbytes (1K entries), the access time can be reduced to 1.65 ns. Therefore it can be

 101

expected to get speedup in searching LUT if the partitioned LUTs can be executed in

parallel for SSLD or MPLS. In the case of MPLS, 8 bytes of block size is needed for FEC

ID. Hence, estimated access time is 1.31 ns for a 32 Kbyte LUT (4K entries) and 1.05 ns

for an 8 Kbyte LUT (1K entries) respectively.

Input LUT
check

Label
processing OutputLUT

update

Figure 6.10 Hardware acceleration model for LUT checking module

 102

Based on the simulation, total critical-path delay of LUT searching module is

same as access time of a lookup table memory module. As shown in Figure 6.11, speedup

from proposed acceleration module is 178x ~ 262x for MPLS and 163x ~ 362x for SSLD,

when compared to execution cycle without acceleration module.

0

100

200

300

400

1 4 8 16

Number of LUT partitions

Pe
rfo

rm
an

ce
 im

pr
ov

em
en

t MPLS SSLD

Figure 6.11 Performance evaluation of hardware acceleration model (LUT related appli-
cation)

6.4 SUMMARY

In section 6.1, characteristics of network congestion control applications are ana-

lyzed, and application-specific acceleration techniques are proposed to exploit data

(packet) level parallelism in these applications. Two representative algorithms for con-

gestion control are scheduling and queue management algorithms. From the PLP perspec-

tive, a hardware acceleration model is proposed based on detailed analysis of congestion

 103

control applications. In order to get higher throughput, large number of processing ele-

ments and a parallel comparator are designed. Such hardware accelerators provide bene-

fits proportional to the number of processing elements added.

In section 6.2, characteristics of media transcoding applications for network proc-

essors are analyzed, and application-specific acceleration techniques are proposed to ex-

ploit data level parallelism. Most of the data to be processed in the transcoding proxy are

related to multimedia applications, so each processing unit has regular and fine-grained

processing element. Therefore, an array-style processor is used as a candidate for acceler-

ating media transcoding.

Lookup table searching is a major bottleneck in the LUT-related applications. In

order to reduce this bottleneck, in section 6.3, it is focused on accelerating lookup table

searching module using the modified partitioned lookup table mechanism. Parallel com-

parator (for equality checking) is also used to find exactly matched session ID (for SSLD)

or FEC (forwarding equivalence class) ID (for MPLS) among partitioned LUTs.

Current network processors handle specific application with each processing ele-

ment for accelerating packet processing. This is because there is no common solution for

network processing workloads and many companies want to use their own design solu-

tion to avoid any costs for licensing fee and to reduce the time-to-market. There is no re-

search on finding common architectural characteristics on network processor workloads,

while several architectural solutions are commonly used for multimedia workloads. The

processor architecture for network nodes has been changed from the software implemen-

tation on general purpose processor to ASICs and network processors. As the perform-

ance of general purpose processor rapidly increases, it is required to consider going back

 104

to use general purpose processors for network nodes, but more application-specific exten-

sion modules are required to commonly used for network processor applications.

 105

Chapter 7: Instruction Set Extensions for Efficient Network Processing

One of the significant features in modern networks is differentiated service. Along

with differentiated service, rapidly changing network environments result in congestion

problems. In this chapter, application-specific acceleration technique is proposed using

instruction set extensions for congestion control applications. Based on investigation,

other control plane applications, except for media transcoding, have little opportunities to

come up with new instruction set extensions. Multimedia extensions have already been

applied to general purpose processors such as MMX.

As the performance and clock frequency of general purpose processor rapidly in-

creases, one can consider going back to use general purpose processors for network

nodes. However, as in multimedia extensions, it is essential to extract instruction set ex-

tensions for network processor applications.

7.1 MOTIVATION

To design coprocessors that relieve congestion, one requires a detailed under-

standing of the algorithm itself including its dataflow, essential operations and its inher-

ent bottleneck. The WFQ [30][104] is a queue-scheduling algorithm to serve packets in

the order of their finish-times considering the weight on connections. The Random Early

Detection (RED) [15] is an active queue management algorithm for routers. In contrast to

the traditional queue management algorithm, which drops packets only when the buffer is

 106

full, the RED algorithm drops arriving packets probabilistically before coming into the

queue. These two congestion solutions show many comparison operations and condi-

tional operations to exploit fair scheduling and active queue management. In general,

conditional operations and comparison operations reduce the parallelism in dynamic exe-

cution. If a few instructions associated with these operations can be combined into one

instruction, total number of instructions can be reduced in dynamic execution.

7.2 INSTRUCTION SET EXTENSIONS FOR CONGESTION CONTROL APPLICATIONS

Based on analysis of congestion control applications, highly parallel implementa-

tion for packet (data) level parallelism (PLP/DLP) is needed to get high throughput as the

network line speed become higher. In the case of OC-768 (40Gbps), 74 ~ 167 parallel

implementation of a unity ILP machine is required. Even though a simple parallel archi-

tecture is modelled, its hardware cost and power consumption cannot be ignored. In order

to reduce these costs, the performance improvement of a single processing element is an

important factor in designing parallel architecture. In this dissertation, instruction exten-

sions are proposed by defining new instruction sets to increase pereformance within a

single processing element.

Table 7.1 shows new instructions to support fast execution of congestion control

applications. These architectural extensions are created by detailed kernel analysis in

source code and instruction level. Frequently used instructions are combining into one

instruction. Basically, two groups of instructions are defined: conditional operations and

multiplication-add / multiplication-sub. New conditional instructions including CNDGT,

 107

CNDLT, CNDEQ, CNDNE, CNDEZ and CNDNZ, are frequently used in congestion

control applications to find fair conditions and active queue management. Based on the

experimental results, congestion control workloads have many computational operations

during dynamic execution. Therefore, two ALU operations are also combined as one in-

struction such as MADD1, MADD2, MSUB1 and MSUB2. These instructions can reduce

the execution cycles in ALU. This kind of multiply-add instructions are already available

in many general purpose architectures.

Table 7.1 A extensions for congestion control applications

Instruction Description
CNDGT dest, src1, src2

if(src1 > src2)
else

dest = src1;
dest = src2;

CNDLT dest, src1, src2

if(src1 < src2)
else

dest = src1;
dest = src2;

CNDEQ dest, src1, src2

if(src1 == src2)
else

dest = src1;
dest = src2;

CNDNE dest, src1, src2

if(src1 != src2)
else

dest = src1;
dest = src2;

CNDEZ dest, src1, src2

if(src1 == 0)
else

dest = src1;
dest = src2;

CNDNZ dest, src1, src2

if(src1 != 0)
else

dest = src1;
dest = src2;

MADD1 dest, src1, src2 dest = src1* src2 + src1;
MADD2 dest, src1, src2 dest = src1* src1 + src2;
MSUB1 dest, src1, src2 dest = src1* src2 - src1;
MSUB2 dest, src1, src2 dest = src1* src1 - src2;

Figure 7.1 shows new functional units which are added into a single processing

element. For the combined conditional operations, a function unit, including the function-

 108

ality of one comparator and one transfer module is defined. Another function unit for the

combined multiplication operations includes one multiplier and one adder.

MUX

dest

src1 src2

COMP

(a) Functional unit for conditional operation

dest

src1 src2

ADDER
MUL

(b) Functional unit for ALU operation

Figure 7.1 Functional units for new instruction sets

7.3 PERFORMANCE ANALYSIS OF NEW INSTRUCTION EXTENSIONS FOR CONGESTION

CONTROL APPLICATIONS

For this experiment, instruction annotation technology is used based on Simples-

calar PISA instruction sets and cross compiler (gcc-pisa), and hand-coded optimized ver-

sions of each congestion control applications. As shown in Table 7.2, 4 different hard-

 109

ware configurations are used for a single processing element: 4-way, 4-way+extension,

8-way and 8way+extension. In order to support new instruction extensions, two CND

functional units and two MADD / MSUB functional units are added into 4-way baseline

architecture. The 8-way model doubles the issue width, the execution modules and mem-

ory bandwidth.

Table 7.2 Architectural configurations for performance analysis

Architectural
element

4-way 4-way +
ext

8-way 8-way + ext

Issue width 4 4 8 8
ALU 4 4 8 8

Memory Port 2 2 4 4
CND 0 2 0 4

MADD/MSUB 0 2 0 4

As shown in Figure 7.2, the performance improvement from instruction exten-

sions provides 10~12% which is not a big improvement, so exploiting packet level paral-

lelism is really required to make desired throughput as well. It is observed that the RED

shows more sensitivity from increasing issue widths, and new extensions show more per-

formance improvement from the wider issue width.

7.4 SUMMARY

In this chapter, application-specific acceleration techniques are proposed to ex-

ploit instructions for congestion control applications. From the ILP perspective, new in-

struction set extensions for fast conditional operations are applied for congestion control

 110

applications. Based on experiments, proposed architectural extensions show 10~12% im-

provement in performance for instruction set enhancements.

Figure 7.2 Performance evaluation of new instruction extensions

0

0.5

1

1.5

2

wfq red

4W 4W- ext 8W 8W- ext

 111

Chapter 8: Conclusions and Future Work

As modern network technologies have explosively grown along with Internet

businesses, various applications and protocols require intelligent processing over the

network. Therefore, network interfaces also have to keep up with the speed, throughput

and capability to support all the workloads over the network. Good understanding of the

target applications from the architectural perspectives is essential in designing a network

processor.

The network processor on the physical port of a router should be able to process

the modern workloads without slowing down line speed. Computational load per packet

(in terms of number of instructions) ranges from 880 to 4,800, when assuming a stream

of minimum-sized packets of 64 bytes and a single processor of 1 GHz clock frequency.

The required parallelism for executing NP applications is in the range of 2 ~ 356 [64].

Hence a conventional processor is not enough to handle these workloads. Relevant re-

search is required to identify appropriate architectures to efficiently execute these emerg-

ing workloads.

Control plane network applications that handle traffic management, quality of

service etc. have become very important. While most of the previous research and com-

mercial products for NPs are dedicated to data-plane applications, control-plane applica-

tions are not well understood. With the demands of these emerging network applications,

it is imperative to develop and quantitatively characterize the NP control plane workloads

to guide architects for designing future NPs.

 112

In this dissertation, a new benchmark suite for network processors is proposed

and its architectural workload characteristics are presented. Parallelism characteristics of

these applications are analyzed and hardware acceleration techniques are proposed as al-

ternative solution of existing architectures to deal with new emerging workloads.

8.1 CONCLUSIONS

This dissertation makes several contributions to the defining of a new network

processor benchmark suite, characterization of network processor workloads, the detec-

tion of bottlenecks in network workloads, and towards designing architectural alterna-

tives including instruction set extensions, and hardware acceleration. These are also de-

scribed in more detail in [62][64][65][66]. The summary of the contributions is listed be-

low:

1. A set of benchmarks, called NpBench targeted towards control plane workloads as

well as data plane workloads, is proposed. While previously released network

processor benchmarks deal with data plane applications, the NpBench includes

emerging control plane applications. With the increasing demand of QoS and rap-

idly changing modern network environments, the significance of control plane

workloads will be becoming larger. NpBench includes 5 control plane applications

and 5 data plane applications. Control plane applications consist of Weighted Fair

Queuing (WFQ), Random Early Detection (RED), Secure Sockets Layer Dis-

patcher (SSLD) and Media Transcoding (MTC). Data plane applications consist of

Advanced Encryption Standard (AES), Message Digestion (MD5), Diffie-Hellman

 113

(DH), Packet Fragmentation (FRAG) and Cyclic Redundancy Check (CRC). The

NpBench suite is implemented using C and is opened to public [64]. Large number

of institutions in the world have licensed and several papers and articles cite the

NpBench [19][49][77][78][86] [88][111][116][118][119].

2. The characteristics of network processor workloads such as instruction mix, cache

behavior, available parallelism and required processing capability per packet are

presented and compared with existing benchmark suites. Architectural characteris-

tics of the application having control plane properties are presented along with

their implications to designing network processors and the significance of addi-

tional parallelism to perform NP applications at wire speed. From the experiments,

it is seen that branch operations are heavily used for executing control plane appli-

cations. Control plane workloads are seen to have more ILP than data plane work-

loads. Based on the analysis of available parallelism, NP architectures still need

more parallel implementations with instruction level parallelism (ILP) within the

PEs or control plane processors. This contribution is described in more detail in

[64].

3. Parallelism characteristics of network processing applications are compared to

multimedia applications. NP applications (e.g. WFQ) have both parallelizable op-

erations and a significant amount of serial operations, while most of multimedia

applications have large amount of parallelizable operations. Network processor

applications are quite different from multimedia and DSP applications in architec-

tural aspects, but both applications have large parallelism and iteratively utilize

many similar algorithms. Based on this investigation, it can be concluded that the

 114

architectures successfully used in multimedia domain can be a good candidate for

the architectures of NP applications.

4. It is investigated that whether the success of VLIW in the multimedia field can be

applied to the network processor domain as a processing element for a parallel ar-

chitectural implementation. This premise is analyzed through the comparison be-

tween network processor workloads and multimedia workloads in terms of per-

formance (speedup) and power consumption. It is found that NP applications need

more aggressive optimization techniques in static scheduled architecture, while

media applications can get large parallelism with simple basicblock optimizations.

With the characteristics of large packet-level parallelism, experimental analysis

supports static scheduling as an applicable paradigm for network processor appli-

cations with lower hardware complexity and lower power dissipation. Based on

this investigation, it can be observed that the parallel implementation costs can be

reduced by 50%~75% when applying VLIW to network processing. This contribu-

tion is described in more detail in [59].

5. Congestion applications have both parallelizable operations and same serial opera-

tions. In order to get large parallelism in the congestion applications, a hardware

acceleration technique is introduced by decoupling the dataflow into the front-end

PLP (Packet level parallelism) module and the back-end hardware acceleration

module. When applying 16 ~ 64 acceleration module in parallel, 10x ~ 50x per-

formance improvement can be obtained. This contribution is described in more de-

tail in [65].

 115

6. The procedure of media transcoding consists of transcoding decision unit and

pipeline-styled regular processing units. The decision module handles which mod-

ule is enabled and how many modules are enabled. Data conversion modules in-

clude several different kinds of functionalities. Based on the characterization ex-

periments, data conversion module takes 89% of the total execution cycles. Most

of data to be processed in the transcoding proxy are related to multimedia applica-

tions, so each processing unit requires regular and fine-grained processing element.

Therefore, the array-style processor would be a good candidate for accelerating

media transcoding. Array-style acceleration technique is proposed for data conver-

sion module of media transcoding applications. If 64 parallel implementation of

the acceleration module is applied, 28.7x transcoding speedup can be obtained.

This contribution is described in more detail in [60].

7. Both SSLD and MPLS have the lookup table searching and updating module in

each procedure. Lookup table searching is a major bottleneck in the LUT-related

applications (77% ~ 86% of the total execution cycles in MPLS and SSLD). In this

dissertation, acceleration techniques are proposed using this partitioned lookup

mechanism for searching LUT used in MPLS and SSLD. Parallel comparator (for

equality checking) is used to find exactly matched session ID (for SSLD) or FEC

(forwarding equivalence class) ID (for MPLS) among partitioned LUTs. If 16-way

parallel implementation of the acceleration module is applied, 262x improvement

for MPLS and 362x for SSLD can be obtained. This contribution is described in

more detail in [60].

 116

8. The performance improvement of a single processing element is an important fac-

tor in designing parallel architecture. New instruction-set extensions are intro-

duced to support fast execution of network processor applications, based on the

detailed kernel analysis. Frequently used instructions are combined into one in-

struction. For congestion control applications, two groups of instruction sets are

defined: conditional operations and multiplication-add / multiplication-sub. Pro-

posed architectural extensions show 10~12% improvement in performance for in-

struction set enhancements [65].

8.2 FUTURE WORK

Several kinds of workloads and benchmarks have been developed as target appli-

cations for application-specific processors. While SPEC is working on the benchmarks of

general purpose processors, EEMBC and several academic benchmark suites deal with

the workloads of application-specific processors. However, these benchmark suites con-

sist of several single workloads. They could not reflect realistic workload, since many

network and multimedia applications are composite-type. In order to design an appropri-

ate processor for a specific application, it is required to consider these evolving trends.

The processor architecture for network nodes has changed from software imple-

mentations on general purpose processors to ASICs and network processors. As the per-

formance of general purpose processor rapidly increases, one may need to consider going

back to use general purpose processors for network nodes, but more application-specific

 117

extension modules are required to commonly used for network processor applications.

For future work, the feasibility of extracting common architectural extensions over vari-

ety of network workloads, and defining architectural extensions (e.g., as in MMX for

multimedia applications) can be investigated. Careful analysis of the workload will be

conducted to identify more appropriate candidates for hardware extensions. This research

can be extended in the following ways in the future:

1. Finding Common Hardware Acceleration Solutions for Emerging Network

Processor Applications: Current network processors handle specific network ap-

plications at individual application level. This is because there is no common so-

lution for network processing workloads and many companies want to use their

own design solutions to avoid any costs for licensing fee and to reduce the time-

to-market. There is no research on finding common architectural characteristics

on network processor workloads, while several architectural solutions are com-

monly used for multimedia workloads (e.g., MMX, 3DNow!, etc). However, net-

work processing is stream processing and it performs same patterns of processing

with irregular patterns of data. So, if one can find common factors among several

network applications, it can reduce the cost of development. Also, when this

mechanism can be applied to general purpose processors, a hardware extension

for NP applications can be developed as in MMX for multimedia application.

2. Extracting smallest set of NP benchmarks through the statistical analysis:

As network environments keep evolving, extracting new workloads would be sig-

 118

nificant in the future. However, it is not realistic to characterize all applications,

and the relevant simulation time will be additional big bottleneck in the design

procedures of a processor. Therefore it would be valuable work to design a

framework to statistically analyze new emerging NP workloads and extract small-

est set of benchmarks, so that simulation time can be reduced and time to market

(TTM) can be significantly reduced.

3. Development of an Automated Framework that supports Performance

Modeling and Design: Designing millions (or billions) of gates in RTL takes too

long and too hard to verify its design. So many companies are making some ef-

forts on performance modeling, to reduce development periods, which is to evalu-

ate the target processor by software design of instruction-set simulator. Currently,

several chip companies are working on this area, but there is no standardized solu-

tion for processor description and software design methodology. The instruction

simulators can be automatically generated by the processor descriptions and the

automated methodology. Since processors are frequently upgraded based on the

previous version, once a version of processor descriptions have been developed, it

can be easily developed new version of instruction-set simulator with small

changes of descriptions. This area will be important as the demands of SoC de-

velopment increases.

 119

Bibliography

[1] C. Adams, “Constructing Symmetric Ciphers Using the CAST Design Proce-

dure,” Designs, Codes and Cryptography, vol. 12, pp. 283-316, Nov., 1997

[2] A. Agarwal, B. Lim, D. Kranz and J. Kubiatowicz, “A Processor Architecture

for Multiprocessing,” Proc. of 17th International Symposium on Computer Ar-

chitecture, pp. 278 –288, 1990

[3] Agere Inc., The Challenge for Next Generation Network Processors, Agere Inc.

white paper, 1999

[4] V. Agarwal, M. S. Hrishikesh, S. W. Keckler and D. Burger, “Clock Rate ver-

sus IPS: The End of the Road for Conventional Microarchitectures,” Proc. of

the 27th Annual International Symposium on Computer Architectures, pp. 248

–259, 2000

[5] Agilent Technologies, JTC 003 Mixed Packet Size Throughput, The Journal of

Internet Test Methodologies, ed. 2.2,

 http://advanced.comms.agilent.com/n2x/docs/journal/JTC_003.html, 2002

[6] M. J. Akhbarizadeh and M. Nourani, “An IP Packet Forwarding Technique

Based on Partitioned Lookup Table,” Proc. of the IEEE International Confer-

ence on Communications (ICC'02), pp. 2263-2267, 2002

[7] G. Apostolopoulos, D. Aubespin, V. Peris, P. Pradhan and D. Saha, Design,

“Implementation and Performance of a Content-Based Switch,” Proc. of

INFOCOM'00, pp. 1117-1126, 2000

 120

[8] G. Apostolopoulos, V. Peris, P. Pradhan and D. Saha, L5: A Self Learning

Layer-5 Switch, IBM research Report, RC21461, Apr. 1999

[9] G. Armitage, “MPLS: The Magic Behind the Myths,” IEEE Communications

Magazine, vol. 38, pp. 124-131, Jan. 2000

[10] T. M. Austin and G. S. Sohi, TETRA: Evaluation of Serial Program Perform-

ance on Fine-grain Parallel Processors, University of Wisconsin technical re-

port #1162, 1993

[11] J. Bennett and H. Zhang, “Worst Case Fair Weighted Fair Queuing,” Proc. of

IEEE INFOCOM 95, pp. 120-128, 1995

[12] R. Bhargava, L. K. John, B. L. Evans and R. Radhakrishnan, “Evaluating

MMX Technology Using DSP and Multimedia Applications,” Proc. of the

IEEE Symposium on Microarchitecture, pp. 37-46, 1998

[13] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss, An Archi-

tecture for Differentiated Services, RFC2475, Internet Engineering Task Force

(IETF) Network Working Group, http://www.ietf.org 1998

[14] J. M. Blanquer and B. Ozden, “Fair Queuing for Aggregated Multiple Links,”

Proc. of ACM SIGCOMM 2001, pp. 189-197, 2001

[15] B. Branden, et al., Recommendations on Queue Management and Congestion

Avoidance in the Internet, IETF Internet Draft, 1997

[16] D. Brooks, V. Tiwari and M. Martonosi, “Wattch: A Framework for Architec-

tural-Level Power Analysis and Optimizations,” Proc. Of 27th International

Symposium on Computer Architecture (ISCA), pp. 83-94, 2000

 121

[17] D. C. Burger and T. M. Austin, “The SimpleScalar Toolset,” Computer Archi-

tecture News, vol. 25, pp. 13-25, 1997

[18] W. Bux, W. E. Denzel, T. Engbersen, A. Herkersdorf and R. P. Luijten, “Tech-

nologies and Building Blocks for Fast Packet Forwarding,” IEEE Communica-

tion Magazine, vol. 39, pp. 70-77, Jan. 2001

[19] M. Castelino and F. Hady, Tutorial on NPF's IPsec Forwarding Benchmark,

Network Processing Forum,

http://www.commsdesign.com/showArticle.jhtml?articleID=49400850, 2004

[20] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Water and W. W. Hwu,

“IMPACT: An Architectural Framework for Multiple-Instruction-Issue Proces-

sors,” Proc. of the 18th Annual International Symposium on Computer Archi-

tecture, pp. 266-275, 1991

[21] Cisco Systems, Cisco IOS software and Multiprotocol Label Switching,

http://www.cisco.com/, Apr. 2000

[22] Cisco Systems, Parallel eXpress Forwarding in the Cisco 10000 Edge Service

Router, White Paper, 2000

[23] Cisco Systems, Release 12.4T New Features and Hardware Support, No. 3001,

http://www.cisco.com/, 2005

[24] ClearSpeed, ClearSpeed MTAP processor (CSX600),

 http://www.clearspeed.com, 2004

[25] R. F. Cmelik and D. Keppel, Shade: A Fast Instruction-set Simulator for Exe-

cution Profiling, Technical Report SMLI TR-93-12, SUN Microsystems Inc.,

1993

 122

[26] D. Comer and D. Stevens, Internetworking with TCP/IP, vol. II, Upper Saddle

River, NJ: Prentice Hall, 1994

[27] C-Port Network Processors (C-5, C-3e, C-5e, M-5), http://www.freescale.com/

[28] P. Crowley, M. E. Fiuczynski, J-L Baer and B. Bershad, “Workloads for Pro-

grammable Network Interfaces,” Workload Characterization for Computer Sys-

tem Design, Norwell, MA: Kluwer Academic Publishers, pp. 135-147, 2000

[29] S. Deering, and R. Hinden, Internet Protocol, Version 6 (IPv6) Specification,

RFC2460, Internet Engineering Task Force (IETF) Network Working Group,

1998

[30] A. Demers, S. Keshav and S. Shenker, “Analysis and Simulation of a Fair

Queuing Algorithm,” Proc. of ACM SIGCOMM, pp. 1-12, 1989

[31] N. Deshpande, TCP Extensions for Wireless Networks, Student Report, Wash-

ington University in St. Louis, available at

 ftp://ftp.netlab.ohio-state.edu/pub/jain/courses/cis788-99/tcp_wireless.pdf

[32] K. Diefendorff and P. K. Dubey, “How Multimedia Workloads will Change

Processor Design,” IEEE Computer, vol. 30, pp. 43-45, 1997

[33] N. Doraswamy and D. Harkins, IPSec: the New Security Standard for the

Internet, Intranets, and Virtual Private Networks, Upper Saddle River, NJ:

Prentice Hall, 1999

[34] T. Eklund, The World’s First 40Gbps (OC-768) Network Processor, Network

Processor Forum, 2001

 123

[35] The Electronic Design, Chip Sets Hurdle QoS Issues To Deliver Wireless

Video, Nov. 2003,

 http://www.elecdesign.com/Articles/Index.cfm?ArticleID=6825

[36] Embedded Microprocessor Benchmarking Consortium, http://www.eembc.org

[37] EZchip Technologies, Network Processor Designs for Next-Generation Net-

working Equipment, White paper, 1999

[38] W. Fang, Building An Accounting Infrastructure for the Internet, Princeton

University Computer Science Technical Report, TR-599-99, 1999

[39] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Congestion

Avoidance,” IEEE Transactions on Networking, vol. 1, pp. 397-413, 1993

[40] C. Fraleigh, C. Diot, S. Moon, P. Owezarski, D. Papagiannaki and F. Tobagi,

Experiences Monitoring Backbone IP Networks, Proc. of Workshop on Passive

and Active Measurements on the Internet, Amsterdam, The Netherlands, pp.

12-22, 2001

[41] J. Fritts and W. Wolf, “Evaluation of Static and Dynamic Scheduling for Media

Processors,” Proc. of 2nd Workshop on Media Processors and DSPs, pp. 33-

43, 2000

[42] J. Fritts, W. Wolf and B. Liu, “Understanding Multimedia Application Charac-

teristics for Designing Programmable Media Processors,” Proc. of The Interna-

tional Society for Optical Engineering (SPIE), pp. 2-13, 1999

[43] P. Gupta and N. McKweown, “Algorithms for Packet Classification,” IEEE

Network, vol. 15, pp. 24-32, 2001

 124

[44] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge and R. B.

Brown, “MiBench: A Free, Commercially Representative Embedded Bench-

mark Suite,” Proc. of the 4th annual IEEE International Workshop on Work-

load Characterization, pp. 3-14, 2001

[45] D. Hammerstrom and E. Davidson, “Information Content of CPU Memory

Referencing Behavior,” Proc. of the 4th International Symposium on Computer

Architecture, pp. 184-192, 1977

[46] R. Han, et al., “Dynamic Adaptation in An Image Transcoding Proxy for Mo-

bile Web Browsing,” IEEE Personal Communications Magazine, vol. 5, pp. 8-

17, 1998

[47] G. J. Hekstra, G. D. La Hei, P. Bingley and F. W. Sijstermans, “TriMedia

CPU64 Design Space Exploration,” Proc. of International Conference on

Computer Design, pp. 599-606, 1999

[48] J. L. Hennessy and D. A. Patterson, Computer Architecture - A Quantitative

Approach, 3rd ed., San Francisco, CA: Morgan Kaufmann Publishers, pp. 363-

367, 1995

[49] A. Heppel, An Introduction to Network Processors, White paper, Roke Manor

Research Ltd., 2003

[50] C-H. Hsu and U. Kremer, “The Design, Implementation, and Evaluation of a

Compiler Algorithm for CPU Energy Reduction,” ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI'03), pp. 38-48,

2003

 125

[51] IBM Corp., IBM Network Processor (IBM32NPR161EPXCAC100), Product

Overview, 1999

[52] Intel IXP1200 Network Processor,

 http://www.intel.com/design/network/products/npfamily/ixp1200.htm

[53] S. Keshav and R. Sharma, “Issues and Trends in Router Design,” IEEE Com-

munications Magazines, vol. 36, pp. 144-151, May 1998

[54] M. Kovac and N. Ranganathan, “JAGUAR: A Fully Pipelined VLSI Architec-

ture for JPEG Image Compression Standard,” Proc. of the IEEE, vol. 83, pp.

247-258 1995

[55] H. T. Kung, “Why Systolic Architectures?” IEEE Computer, vol. 15, pp. 37-46,

1982

[56] LDP Specification, Internet Engineering Task Force (IETF) Network Working

Group, http://www.ietf.org/, 2001

[57] J. Law and B. K. Lee, Access Time and Power Characteristics of Various Fu-

ture File Configurations, Technical Report TR-020821-01, Laboratory for

Computer Architecture, The University of Texas at Austin, 2002

[58] B. K. Lee and L. John, Development and Characterization of Control-plane

Network Workloads, Technical Report TR-030827-01, Laboratory for Com-

puter Architecture, The University of Texas at Austin, 2003

[59] B. K. Lee and L. John, Exploiting Statically Identified Parallelism for Network

Processor Applications, Technical Report LCA-TR-050615-02, Laboratory for

Computer Architecture, The University of Texas at Austin, 2005

 126

[60] B. K. Lee and L. John, Hardware Acceleration Techniques for Control-plane

Applications in Network Processors, Technical Report LCA-TR-050615-01,

Laboratory for Computer Architecture, The University of Texas at Austin, 2005

[61] B. K. Lee and L. K. John, “Implications of Executing Compression and En-

cryption Applications on General Purpose Processors,” IEEE Transactions on

Computers, vol. 54, pp. 917-922, 2005

[62] B. K. Lee and L. K. John, “Implications of Programmable General Purpose

Processors for Compression / Encryption Applications,” Proc. of IEEE 13th In-

ternational Conference on Application-specific Systems, Architectures and

Processors, pp. 233-242, 2002

[63] B. K. Lee and L. John, Implications of Programmable General Purpose Proc-

essors for Compression/Encryption Applications, Technical Report LCA-TR-

020315, Laboratory for Computer Architecture, The University of Texas at

Austin, 2002

[64] B. K. Lee and L. K. John, “NpBench: A Benchmark Suite for Control Plane

and Data Plane Applications for Network Processors,” Proc. of the Interna-

tional Conference on Computer Design (ICCD'03), pp. 226-233, 2003

[65] B. K. Lee, L. K. John and E. John, “Architectural Support for Accelerating

Congestion Control Applications in Network Processors,” Proc. of IEEE 16th

International Conference on Application-specific Systems, Architectures and

Processors (ASAP), pp. 169-175, 2005

 127

[66] C. Lee, M. Potkonjak and W. H. Mangione-Smith, “MediaBench: A Tool for

Evaluating and Synthesizing Multimedia and Communications Systems,” Proc.

of International Symposium on Microarchitecture, pp. 330-335, 1997

[67] R. B. Lee, “Multimedia Extensions for General-purpose Processors,” Proc.

IEEE Workshop on Signal Processing Systems, pp. 9-23, 1997.

[68] W. Liao and L. He, “Power Modeling and Reduction of VLIW Processors,”

Proc. of Workshop on Compilers and Operating Systems for Low Power, pp.

155-171, 2001

[69] Linley Gwenap, “Net Processor Makers Race toward 10-Gbit/s Goal,” EE

Times, June 19, 2000, available at

 http://www.eetimes.com/story/OEG20000619S0011

[70] H. Liu, “A Trace Driven Study of Packet Level Parallelism,” Proc. of Interna-

tional Conference on Communications (ICC), pp. 2191-2195, 2002

[71] Lucent Technologies, Inc., PayloadPlus TM Fast Pattern Processor,

http://www.agere.com/support/non-nda/docs/FPP-ProductBrief.pdf, 2000

[72] J. Matthew, “Network Processor Companies Face the Same Tough Issues,”

Electronic News Online, available at

 http://www.electronicnews.com/enews/Issue/RegisteredIssues/2000/07172000/

 z24f-1.asp, July 17, 2000

[73] Media Transcoding and Optimization - LightSurf 6 Open Standards MMS Plat-

form, LightSurf Technologies Inc.,

 http://www.lightsurf.com/technology/optimization.html

 128

[74] S. Melvin, M. Nemirovsky, E. Musoll, J. Huynh, R. Milito, H. Urdaneta and K.

Saraf, “A Massively Multi-threaded Packet Processor,” Proc. of Workshop on

Network Processors - NP2 held in conjunction with Ninth International Sympo-

sium on High Performance Computer Architecture (HPCA-9), Anaheim, CA,

pp. 64-74, 2003

[75] G. Memik and W. H. Mangione-Smith, “Increasing Power Efficiency of Multi-

Core Network Processors Through Data Filtering,” Proc. of International Con-

ference on Compilers, Architecture and Synthesis for Embedded Systems, pp.

108-116, 2002

[76] G. Memik, W. H. Mangione-smith and W. Hu, “NetBench: A Benchmarking

Suite for Network Processors,” Proc. of International conference on Computer

Aided Design (ICCAD), pp. 39-42, 2001

[77] Y. L. Moullec, N. B. Amor, J. Diguet and P. Koch, “Adaptive Wireless Sys-

tems Optimization based on Follow-up Modeling,” GSPx 2004:Embedded Ap-

plications Software & Hardware, 2004

[78] Y. L. Moullec, N. B. Amor, J. Diguet and P. Koch, “Follow-up Modeling for

Wireless Personal Communication Systems,” Proc. of Wireless Personal Mul-

timedia Communications (WPMC), Abano Terme, Italy, pp. 255-259, 2004

[79] Multi Protocol Label Switching Architecture, Internet Engineering Task Force

(IETF) Network Working Group, available at: http://www.ietf.org/, 2001

[80] A. Nemirovsky, Towards Characterizing Network Processors: Needs and

Challenges, Xstream logic, white paper, 2000

 129

[81] M. Nemirovsky, Simultaneous Multithreading Architectures: Enabling the

Next-Generation Internet, XStream Logic Devices, 2000

[82] Network Processing Forum, Network Processing Forum Unveils Specifications

Roadmap, Press Release, April 30, 2001

[83] H. Nguyen and L. K. John, “Exploiting SIMD Parallelism in DSP and Multi-

media Algorithms using the AltiVec Technology,” Proc. of ACM International

Conference on Supercomputing, pp. 11-20, 1999

[84] K. Nichols, S. Blake, F. Baker and D. Black, Definition of the Differentiated

Services Field (DS Field) in the IPv4 and IPv6 Headers, Internet Engineering

Task Force (IETF) Network Working Group, available at: http://www.ietf.org/,

1998

[85] NpBench Website, http://lca.ece.utexas.edu/npbench/

[86] NpBench, http://www.cc.gatech.edu/classes/AY2005/cs8803hpc_spring/

[87] P. Pappu and T. Wolf, “Scheduling Processing Resources in Programmable

Routers,” Proc. of the Twenty-First IEEE Conference on Computer Communi-

cations (INFOCOM), pp. 104 –112, 2002

[88] R. Ramaswamy, N. Weng, and T. Wolf, “Analysis of Network Processing

Workloads,” Proc. of IEEE International Symposium on Performance Analysis

of Systems and Software (ISPASS), pp. 226-235, 2005

[89] N. Ranganathan and S. Venugopal, “A VLSI Chip for Template Matching,”

Proc. of IEEE International Symposium on VLSI Design, pp. 542-545, 1994

 130

[90] N. Ranganathan and S. Henriques, “High-Speed VLSI Designs for Lempel-Ziv-

Based Data Compression,” IEEE Transactions on Circuits and Systems, pp. 96-

106, 1992

[91] P. Ranganathan, S. Adve and N. Jouppi, “Performance of Image and Video

Processing with General-purpose Processors and Media ISA Extensions,” Proc.

of 26th IEEE/ACM Symposium on Computer Architecture, pp. 124-135, 1999.

[92] P. H. Rao and S. K. Nandy, “Evaluating Compiler Support for Complexity-

Effective Network Processing,” Proc. of Workshop on Complexity Effective

Design (WCED), pp. 39-42, 2003

[93] E. Rosen, A. Viswanathan and R. Callon, Multiprotocol Label Switching Archi-

tecture, Internet Engineering Task Force (IETF) Network Working Group,

available at: http://www.ietf.org/, 2001

[94] E. Seamans and M. Rosenblum, “Parallel Decompositions of a Packet-

Processing Workload,” Proc. of Advanced Networking and Communications

Hardware Workshop (ANCHOR) held in conjunction with the 31st Annual In-

ternational Symposium on Computer Architecture (ISCA 2004), Munich, Ger-

many, pp. 40-48, 2004

[95] Security Architecture for the Internet Protocol, Internet Engineering Task

Force (IETF) Network Working Group, available at: http://www.ietf.org/, 1998

[96] N. Shah, Understanding Network Processors, Master's thesis, University of

California, Berkeley, 2001

[97] SimpleScalar LLC, available at: http://www.simplescalar.com

 131

[98] G. A. Slavenburg, S. Rathnam, and H. Dijkstra, “The Trimedia TM-1 PCI

VLIW Media Processor,” Proc. of Hot Chips VIII Symposium, pp. 171-177,

1996

[99] N. T. Slingerland and A. J. Smith, “Cache Performance for Multimedia Appli-

cations,” Proc. of the 15th IEEE International Conference on Supercomputing,

pp. 204-217, 2001

[100] J. R. Smith, R. Mohan and C. Li, “Content-based Transcoding of Images in the

Internet,” Proc. of IEEE Conference on Image Processing (ICIP-98), pp. 7-11,

1998

[101] Y. Song and E. Aboelela, “A Parallel IP-Address Forwarding Approach Based

on Partitioned Lookup Table Techniques,” Proc. of 29th Annual IEEE Interna-

tional Conference on Local Computer Networks (LCN'04), pp. 425-426, 2004

[102] SPEC CPU2000, Standard Performance Evaluation Corporation (SPEC),

http://www.spec.org/osg/cpu2000/

[103] SSL Protocol version 3.0, Internet Engineering Task Force (IETF) Transport

Layer Security Working Group,

 http://wp.netscape.com/eng/ssl3/ssl-toc.html, 1996

[104] D. Stiliadis and A. Varma, “Efficient Fair-queuing Algorithms for Packet-

switched Networks,” IEEE/ACM transactions on Networking, pp. 175-185,

1998

[105] Synopsys Design Vision - Products and Solutions, http://www.synopsys.com/

 132

[106] D. Talla and L. K. John, “Cost-effective Hardware Acceleration of Multimedia

Applications,” Proc. of the IEEE International Conference on Computer De-

sign '01, pp. 415-424, 2001

[107] D. Talla and L. K. John, “Execution Characteristics of Multimedia Applications

on a Pentium II Processor,” Proc. of the IEEE International Performance,

Computing and Communications Conference, pp. 516-524, 2000

[108] D. Talla and L. K. John, “Performance Evaluation and Benchmarking of Native

Signal Processing,” Euro-Par '99, pp. 266-270, 1999

[109] D. Talla, L. K. John and D. Burger, “Bottlenecks in Multimedia Processing

with SIMD Style Extensions and Architectural Enhancements,” IEEE Transac-

tions on Computers, vol. 52, pp. 1015-1031, 2003

[110] D. Talla, L. K. John, V. Lapinskii and B. L. Evans, “Evaluating Signal Process-

ing and Multimedia Applications on SIMD, VLIW and Superscalar Architec-

tures,” Proc. of the IEEE International Conference on Computer Design, pp.

163-172, 2000

[111] Z. Tan, C. Lin, H. Yin and B. Li, “Optimization and Benchmark of Crypto-

graphic Algorithms on Network Processors,” IEEE Micro, vol. 24, no. 5, pp.

55-69, Sep. 2004

[112] A. Tanenbaum, Computer Networks, Upper Saddle River, NJ: Prentice Hall,

1996

[113] Ternary CAM, SiberCore Technology, http://www.sibercore.com

[114] TMS320C62X/C64X/C67X Reference Manual, Texas Instruments,

 http://www.ti.com/cst

 133

[115] Trimaran toolset, http://www.trimaran.org

[116] M. Tsai, C. Kulkarni, C. Sauer, N. Shah and K. Keutzer, “A Benchmarking

Methodology for Network Processors,” Proc. of 1st Workshop on network

processors, pp. 63-74, 2002

[117] M. Valluri, L. John and H. Hanson, “Exploiting Compiler-generated Schedules

for Energy Savings in High-performance Processors,” Proc. of the Interna-

tional Symposium on Low Power Electronics and Design (ISLPED), pp. 414-

419, 2003

[118] J. Verdú, J. García, M. Nemirovsky and M. Valero, Analysis of Traffic Traces

for Stateful Applications, DAC Report-2003-53, Universitat Politècnica de

Catalunya, 2003

[119] J. Verdu, J. García, M. Nemirovsky and M. Valero, “The Impact of Traffic Ag-

gregation on the Memory Performance of Networking Applications,” Proc. of

Workshop on Memory Performance, Dealing with Applications, Systems and

Architectures (MEDEA), pp. 59-64, 2004

[120] J. Williams, “Architectures for Network Processing,” Proc. of IEEE Interna-

tional Symposium on VLSI Technology, Systems, and Applications, pp. 61-64,

2001

[121] S. J. E. Wilton and N. P. Jouppi, “CACTI: An Enhanced Cache Access and Cy-

cle Time Model,” IEEE Journal of Solid-State Circuits, vol. 31, pp 677-688,

1996

 134

[122] T. Wolf and M. A. Franklin, “CommBench - A Telecommunications Bench-

mark for Network Processors,” International Symposium on Performance

Analysis of Systems and Software, pp. 154-162, 2000

[123] T. Wolf and M. A. Franklin, “Design Tradeoffs for Embedded Network Proc-

essors,” Proc. of International Conference on Architecture of Computing Sys-

tems (ARCS) (Lecture Notes in Computer Science), pp 149 –164, 2002

[124] T. Wolf and M. A. Franklin, “Locality-aware Predictive Scheduling for Net-

work Processors,” Proc. of IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), pp 152 –159, 2001

[125] T. Wolf and J. S. Turner, “Design Issues for High Performance Active

Routers,” Proc. of the International Zurich Seminar on Broadband Communi-

cations, pp 199 –205, 2000

[126] X. Xiao and L. M. Ni, “Internet QoS: A Big Picture,” IEEE Network, vol. 13,

Mar.-Apr., pp. 8-18, 1999

 135

VITA

Byeong Kil Lee was born in Kyungpook, Korea, on March 11, 1967, as the first

son of Jae Ho Lee and Cha Joo Bae. After completing his high school education at Neung

In High School in Taegu, Korea, he entered the Department of Electrical Engineering,

Kyungpook National University in Taegu, Korea in March 1985. He received the degree

of Bachelor of Science in Electrical Engineering from Kyungpook National University in

February 1989. He joined the graduate program for Electrical Engineering at same uni-

versity in March 1989 and obtained the degree of Master of Science in Electrical Engi-

neering in February 1991. From February 1991 to June 2000, he was a senior researcher

at Agency for Defense Development in Korea. In September 2000, he entered the Ph.D.

program in Electrical and Computer Engineering at The University of Texas at Austin.

During July 2004 to May 2005, he interned at Texas Instruments Inc., Austin. He joined

Texas Instruments Inc. as a full-time engineer from May 2005. He is a student member of

IEEE, IEEE Computer Society and ACM.

Permanent address: Bosung APT 101-803 Upnedong Bukgu

 Taegu, Korea 702-772

This dissertation was typed by the author.

