

Cache Performance in Java Virtual Machines: A Study of Constituent Phases

Anand S. Rajan
ARM Inc.

arajan@arm.com

Shiwen Hu and Juan Rubio
The University of Texas at Austin

{hushiwen, jrubio}@ece.utexas.edu

Abstract

This paper studies the level 1 cache performance of
Java programs by analyzing memory reference traces of
the SPECjvm98 applications executed by the Latte Java
Virtual Machine. We study in detail Java programs’
cache performance of different access types in three JVM
phases, under two execution modes, using three cache
configurations and two application data sets. We observe
that the poor data cache performance in the JIT execution
mode is caused by code installation, when the data write
miss rate in the execution engine can be as high as 70%.
In addition, code installation also deteriorates instruction
cache performance during execution of translated code.
High cache miss rate in garbage collection is mainly
caused by large working set and pointer chasing of the
garbage collector. A larger data cache works better on
eliminating data cache read misses than write misses, and
is more efficient on improving cache performance in the
execution engine than in the garbage collection. As
application data set increases in the JIT execution mode,
instruction cache and data cache write miss rates of the
execution engine decrease, while data cache read miss
rate of the execution engine increases. On the other hand,
impact of varying data set on cache performance is not as
pronounced in the interpreted mode as in the JIT mode.

1. Introduction

Java [14] is a widely used programming language due
to the machine independent nature of Java bytecodes. In
addition to portability, security and ease of development
of applications have made it very popular with the
software community. Since the JVM specification offers a
lot of flexibility in the implementation of a JVM, a
number of techniques have been used to execute
bytecodes. The most commonly used execution modes are
interpretation, which interprets the bytecodes, and just-in-
time compilation, which dynamically translates bytecodes
to native code on the fly. A recent development has been
the mixed mode execution engine [1], which uses profile
based feedback to interpret/compile bytecodes. Other

possible modes include hardware execution of bytecodes
[8] and ahead-of-time compilation of bytecodes [16].

The execution time of a program in modern
superscalar architectures is not determined solely by the
number of instructions executed. A significant amount of
the execution time can be attributed to inefficient use of
the microarchitecture mechanisms, such as caches [11].
Even though there have been major strides in the
development of fast SRAMS [6] that are used in cache
memories, the prevalence of deep superscalar pipelines
and aggressive techniques to exploit ILP [26] make it
imperative that cache misses are minimized.

In this paper, we characterize the performance of level
1 instruction and data caches of Java programs in the
interpreted and JIT modes by separating the virtual
machine into functionally distinct phases. This enables us
to isolate the component responsible for the major chunk
of these misses. The three distinct phases we examine are
the class loader, the execution engine (interpreter or JIT
compiler) and the garbage collector. A Java application
can use two types of class loaders: a “bootstrap” class
loader and user-defined class loaders. The bootstrap
loader loads classes of the Java API and user defined
classes in some default way, whereas the user-defined
class loaders load classes in custom ways over the course
of program execution. The garbage collector [24]
determines whether objects on the heap are referenced by
the Java application, and makes available the heap space
occupied by objects that are not referenced. In addition to
freeing unreferenced objects, the garbage collector also
combats heap fragmentation.

Our experiments indicate that the execution engine
determines the performance of the L1 instruction cache on
most Java applications. While the garbage collector is
responsible for most of the data cache misses. The reasons
for this behavior are the large working set used during
that phase and the pointer chasing present in the garbage
collection algorithm. Data cache misses are further
categorized as read and write misses, which enables us to
study different JVM features and application
characteristics that contribute to those two types of data
cache misses. We observe that the data cache
performance in the JIT mode is worse than in the
interpreted mode. The deterioration in the cache
performance of data read operations is due to a decrease

in the number of times bytecodes are read. Write
operations also suffer from a poor data cache performance
as a result of the code installation, which incurs
compulsory write misses.

We also analyze the impact of different cache
configurations and application data sets on the L1 cache
performance. Increasing the size of the data caches
improves the performance of the data cache in the
execution phase more than in the garbage collection
phase. We also observe that changing the data set from s1
to s100 affects the JIT mode and the interpreted mode
differently. In the JIT mode, instruction cache and data
cache write miss rates of the execution engine decrease,
while data cache read miss rate of the execution engine
increases. The cache performance of the execution engine
for the interpreted mode changes little as the data set
increases (except for the compress benchmark). The
performance of the data cache for the garbage collection
phase deteriorates when the data set increases from s1 to
s100, without noticeably affecting the instruction cache
performance.

The remainder of the paper is organized as follows.
Section 2 presents the prior research done in this area.
Section 3 discusses the experimental methodology,
including the benchmarks and tools used to conduct the
experiments. Section 4 discusses in detail the results for
the various experiments and analyzes them and section 5
concludes with a highlight of the most significant results
in this paper.

2. Related work

Early work on the area of Java performance
[11,12,15,21] studied the impact of interpreted Java
programs on microarchitectural resources such as the
cache and the branch predictor using a variety of
benchmarks. Radhakrishnan et al. [17] analyzed the
SPECjvm98 benchmarks at the bytecode level while
running in an interpreted environment and did not find
any evidence of poor locality in interpreted Java code.
None of these however examined the behavior of Java
using the JIT execution mode.

There have been quite a few studies looking at the
execution characteristics and architectural issues involved
with running Java in JIT mode. Radhakrishnan et al.
[18,19] investigates the CPU and cache architectural
support that would benefit both JVM implementations.
They concluded that the instruction and data cache
performance of Java applications is better than that of
C/C++ applications, except in the case of data cache
performance of the JIT mode. However, none of these
studies looked at the different components of the JVM
though Kim et al. [13] and Dieckman et al. [9] examine
the performance of the garbage collection phase alone in
detail. Shuf et al. [22] analyses the accesses performed by

a JVM in terms of stack and heap accesses and correlates
them to the resulting data cache and TLB behavior.

3. Methodology

This section introduces the SPECjvm98 benchmarks,
the Latte Virtual Machine, the cache simulator and
configurations, and the validation of the simulation
results.

3.1. Benchmarks

The SPECjvm98 benchmark suite [4] is used to obtain
the cache performance characteristics of the JVM. The
suite contains a number of applications that are either real
applications or are derived from real applications that are
commercially available. The SPECjvm98 suite allows
users to evaluate performance of the hardware and
software aspects of the JVM client platform. On the
software side, it measures the efficiency of the JVM, the
compiler/interpreter, and operating system
implementations. On the hardware side, it includes CPU,
cache, memory, and other platform specific features.
Table 1 provides a summary of the benchmarks used for
our experiments.

Table 1. Description of the SPEC JVM98
benchmarks
Benchmark Description

Compress A popular LZW compression program.

Jess A Java version of CLIPS rule-based expert systems

Db Data management benchmarking software

Mpegaudio Core algorithm that decodes an MPEG-3 audio stream.

Mtrt A dual-threaded program that ray traces an image file.

Jack A real parser-generator from Sun Microsystems.

For all benchmarks, SPEC provides three different data

sets referred to as s1, s10 and s100. Although the input
names may suggest so, SPECjvm98 does not scale
linearly. Both the s1 and s100 data sets are used for the
experiments. More results can be obtained from [20].

3.2. Instrumentation of the Latte virtual machine

A state-of-the-art JVM, Latte [3], is used to study the
cache performance of distinct JVM phases. It is an open
source virtual machine released in October 1999, and was
derived from the Kaffe open source VM [2] and allows
for instrumentation and experimentation. Its performance
has been shown to be comparable to Sun’s JDK 1.3
(HotSpot) VM [25].

Latte includes a highly optimized JIT compiler
targeted towards SPARC processors. In addition to
classical compiler optimizations such as common sub-
expression elimination and loop invariant code motion, it
also performs object-oriented optimizations, e.g. dynamic
class hierarchy analysis. In addition, it performs efficient
garbage collection and memory management using a fast
mark and sweep algorithm [24].

The source code of Latte was instrumented with
sentinels that mark the phases of class-loading, execution
and garbage collection. The class-loading phase includes
the loading of Java API and user classes. The garbage
collection phase includes all memory accesses and
allocations in the heap in addition to the actual task of
“garbage-collection” because this seems to be a more
logical classification when it comes to data accesses. We
use the default initial heap size of 16MB in all our
experiments. The execution phase consists of bytecode
interpretation in the interpreter execution mode, or
translation of bytecode and installation and execution of
native code in the JIT execution mode.

3.3. Cache simulator and cache hierarchies

Our cache performance study of the Latte JVM is
performed on a Sun UltraSparc platform running Solaris
2.7. The JVM is functionally executed and simulated by
Sun’s Shade V6 analyzing tool [7]. Shade simulates the
entire user program but does not include operating system
calls.

For our performance measurements, we used a cache
simulator based on Cachesim5, which is provided by the
Shade toolset. The cache simulator allows users to specify
the number of levels in the cache hierarchy, the size and
organization of each cache hierarchy and the
replacement/write policies associated with them. The
modified cache simulator also recognizes different JVM
phases and is validated to ensure the correctness. Our
cache simulator provides performance results in terms of
cache hit-miss ratios and does not deal with timing issues.

Table 2 lists the cache hierarchies that are chosen for
our experiments with the first configuration
corresponding to the cache hierarchy of an UltraSparc-1
processor [10]. The first configuration is used for the
detailed per-phase analysis of the Latte JVM presented in
Section 4, and the cache performance under all three
configurations is presented in Section 4.3.

3.4. Validation

The validation of the modified cache simulator is
central to our experiments. Each of the benchmarks is
executed and the resulting instruction trace is provided to
the original Cachesim5 simulator and the total instruction

counts, data accesses and misses are counted. The above
validation is done with the original JVM that is not
instrumented. The benchmarks are then executed and the
resulting instruction traces are gathered for the modified
Cachesim5 simulator. The statistics obtained in this
procedure is compared to those obtained by the original
Cachesim5 to ensure the correctness of the modified
cache simulator.

Table 2. Cache configurations in the experiments

Config. L1 I-cache L1 D-cache L2-Unified cache

1

16KB, 32 byte

blocks,

2-way set

associative

16KB, 32 byte blocks

Direct mapped, write

through with write-no-

allocate

512KB, 64 byte blocks

Direct mapped, write

back with write on

allocate

2

64KB, 32 byte

blocks,

2-way set

associative

64KB, 32 byte blocks

4-way set associative,

write through with write-

no-allocate

1MB, 64 byte blocks

Direct mapped, write

back with write on

allocate

3

256KB, 32

byte blocks,

2-way set

associative

256KB, 32 byte blocks

4-way set associative,

write through with write-

no-allocate

2MB, 64 byte blocks

Direct mapped, write

back with write on

allocate

With instrumentation applied to the JVM, we needed

to validate the results again. The cache statistics gathered
for each JVM phase is added up and compared to the
numbers obtained in the previous two cases. The numbers
agree in all the cases. For the sake of sanity check, the
numbers are further compared to those obtained in [19]
and there is close correspondence between the numbers
obtained in both studies.

4. Results and analysis

This section summarizes the results that characterize
the L1 cache performance of SPECjvm98 benchmarks in
the various phases of the Latte Virtual Machine in both
interpreted and JIT execution modes. Section 4.1 presents
the results for the instruction cache performance, while
Section 4.2 analyzes the results for the data cache
performance in terms of reads and writes. Section 4.3
studies the impact of increased cache sizes on data cache
performance by comparing the data cache performance
under the three different cache configurations presented in
Section 3.3. Section 4.4 studies the impact of varying data
set on L1 cache performance.

Class loading contributes almost a constant number of
instructions in all benchmarks and its contribution is
almost negligible. In fact, the statistics for class loading in
every benchmark are more or less constant, and class-

loading accounts for merely 0.01% of the total misses in
either execution mode and is therefore not shown in the
subsequent tables.

4.1. Instruction cache performance

Figure 1 shows the contribution of the garbage
collection and execution phases to the total number of
instruction cache accesses. We note that the instruction
cache accesses are almost completely dominated by the
execution phase in the interpreted mode in all the
benchmarks except mtrt. Nevertheless, in the JIT
execution mode, the garbage collection has a more
significant role on instruction cache accesses than in the
interpreted mode. Under both execution modes, garbage
collector shows almost no activity in compress and
mpegaudio, which reflects the runtime characteristics,
such as infrequent heap object allocations and long
lifetimes of heap objects [13], of these two benchmarks.

0
10
20
30
40
50
60
70
80
90

100

int jit int jit int jit int jit int jit int jit

compress jess db mpegaudio mtrt jack

execution garbage collection

Figure 1. Decomposition of level 1 instruction
cache accesses (cache specifications:
Configuration 1)

In the interpreted execution mode, the actual
interpretation component constitutes the majority of the
total instruction count. It ranges from about 143 billion
instructions for compress to about 25 billion for mtrt
[20]. The overall instruction miss rate is therefore almost
the same as the instruction miss rate of the interpretation
phase. On the other hand, there is almost an 80% to 90%
decrease in the dynamic instruction count when moving
from the interpreted mode to the JIT mode [20]. The
decreasing instruction count in the JIT mode is due to the
fact that a Java method is translated only once and
executed directly afterwards. While in the interpreted
mode the interpreter has to be invoked every time to
execute the method, which results in a much higher
translated native code/bytecode rate than in the JIT mode.

Under the interpreted execution mode, overall
instruction miss rate varies from 0.16% (db) to 1.33%
(jess) (Table 3) and this good instruction locality is due

to that the major part of the interpreter resides in the
instruction cache. The interpreter is one large switch
statement with about 220 case labels interpreting distinct
bytecodes. Since about 40 bytecodes are accessed 90% of
the time [17], the case statements for those frequently
used bytecodes can fit into the instruction cache.

Table 3. Instruction cache performance (% Abs.
miss indicates absolute miss rate in a particular
phase and % Total miss indicates the
contribution of that phase to the total number of
misses. Cache specifications: Configuration 1)

Execution Phase Garbage
Collection Phase Overall

Benchmark %
Abs.
miss

%Total
miss

%
Abs.
miss

%Total
miss

% Abs.
miss

1.30 99.46 0.15 0.002 1.30 Compress (int)
(jit) 0.07 98.85 0.16 1.03 0.07

1.35 96.48 1.03 3.51 1.33 Jess (int)
(jit) 1.48 85.68 0.68 14.28 1.26

0.16 99.35 0.10 0.62 0.16 Db (int)
(jit) 0.12 97.70 0.03 2.21 0.11

0.60 99.99 0.45 0.003 0.60 Mpegaudio (int)
(jit) 0.18 99.51 0.31 0.48 0.18

0.47 68.51 0.42 31.40 0.46 Mtrt (int)
(jit) 1.21 54.45 0.51 45.52 0.75

0.72 97.14 0.89 2.86 0.72 Jack (int)
(jit) 1.31 95.98 0.27 4.00 1.14

The JIT mode has a better overall instruction cache

performance than the interpreted mode in four out of six
benchmarks. It is mainly due to high method reuse that a
small subset of methods is accessed frequently. High
method reuse considerably diminishes the impact of non-
contiguously placed translated code on instruction cache
performance. In compress (the miss rate decreasing from
1.3% in the interpreted mode to 0.07% in the JIT mode)
and mpegaudio (the miss rate decreasing from 0.6% in
the interpreted mode to 0.2% in the JIT mode), the
execution of the translated native code dominates the
whole execution time.

In the interpreted mode, garbage collection plays a
significant role only in the case of mtrt, where it
contributes about 31% of the total number of instruction
cache misses, which is mainly due to the fact that mtrt has
the most method invocations among all benchmarks. In
the JIT mode, the garbage collection phase has relatively
more activities than the garbage collection phase in the
interpreted mode, especially for jess and mtrt. Moreover,
in the JIT mode, the garbage collection phase has better
instruction cache locality than the execution phase. And
when the instruction cache accesses of the garbage
collection phase are substantial, the overall miss rate is
brought down due to the low miss rate in the garbage
collection phase, which is evidenced in the case of jess
(overall miss rate of 1.26% and execution phase miss rate

of 1.48%) and mtrt (overall miss rate of 0.75% and
execution phase miss rate of 1.21%).

4.2. Data cache performance

Table 4 shows the contribution of each phase to the
total data cache misses. We find that once again the
contribution of the class-loading phase is quite negligible.
The contribution of the garbage collection phase is
significant in the interpreted mode in all benchmarks
except compress and mpegaudio. Under the JIT
execution mode, the garbage collection phase contributes
about 40-70% of the total data misses in several
benchmarks. In compress and mpegaudio, the
execution phase once again makes the other phases
inconsequential.

Table 4. Contribution of each phase to the data
cache misses (cache specifications:
Configuration 1)

Benchmark
Class

Loading

Execution Garbage
Collection

Overall Data
Cache Miss

%
0.001 99.84 0.15 2.98 Compress(int)

(jit) 0.003 98.99 0.98 3.60
0.003 81.04 18.94 6.11 Jess (int)

(jit) 0.004 58.77 41.20 24.07
0.002 94.48 5.50 4.20 Db (int)

(jit) 0.004 86.33 13.65 19.52
0.004 99.94 0.05 1.08 Mpegaudio (int)

(jit) 0.005 99.63 0.34 11.06
0.003 31.14 68.86 4.09 Mtrt (int)

(jit) 0.005 28.16 71.81 21.47
0.004 84.26 15.72 3.09 Jack (int)

(jit) 0.007 60.82 39.14 18.87

Read accesses in both modes of execution consist of

reading method bytecodes and data required by
workloads. The difference is that in the JIT mode
bytecodes of a method are read for compilation only when
the method is first encountered, while in the interpreted
mode bytecodes are read every time when the method is
invoked. Write accesses in the JIT mode are mostly the
result of compiled native code installation, whereas in the
interpreted mode, write accesses include mainly Java heap
and stack accesses. Data accesses required by applications
are similar in both execution modes and affect both
modes equally. However, the fundamental differences
between the causes of read and write accesses under the
two execution modes motivate us to study data cache read
and write activities separately.

4.2.1. Read accesses. Table 5 shows the performance
results obtained for data cache reads in both the
interpreted and JIT modes. There is a drastic reduction in
the number of read accesses under the JIT mode. Under
the JIT mode, bytecodes of a method are read only when

the method is compiled, while under the interpreted mode,
bytecodes are read every time when the method is
interpreted. Another reason for the reduction is the fact
that a large percentage of operations under the interpreted
mode involve accessing the stack, which are implemented
as loads and stores, while under the JIT mode these stack
accessing operations are optimized as register-register
operations.

Table 5. Data cache (read) performance (% Abs.
miss indicates absolute miss rate in a particular
phase and % Total miss indicates the
contribution of that phase to the total number of
misses. Cache specifications: Configuration 1)

Execution Phase Garbage
Collection Phase Overall

Benchmark % Abs.
miss

%Total
miss

% Abs.
miss

%Total
miss

% Abs.
miss

2.03 99.94 16.14 0.05 2.03 Compress (int)
(jit) 8.78 99.62 12.99 0.36 8.79

4.92 95.26 14.74 4.73 5.08 Jess (int)
(jit) 10.92 82.30 12.74 17.68 11.19

3.67 98.06 19.39 0.02 3.72 Db (int)
(jit) 18.83 95.94 18.76 4.04 18.82

0.94 99.98 3.88 0.01 0.94 Mpegaudio (int)
(jit) 5.75 99.75 6.66 0.21 5.75

4.09 33.55 4.31 66.44 4.23 Mtrt (int)
(jit) 13.83 33.18 17.04 66.79 15.84

2.68 97.89 8.24 2.09 2.72 Jack (int)
(jit) 9.48 90.03 7.86 9.91 9.29

Miss rates for the execution phase increase from an

average of 3.5% under the interpreted mode to as high as
19% (db) under the JIT mode. Most bytecode read misses
under the JIT mode are compulsory misses since they are
brought into the data cache the very first time when the
method is invoked. As a result, the lowest miss rates will
be seen in programs where the actual data required by
programs is a large fraction of the total data accesses.
Two of such programs are compress (8.78% in the JIT
mode and 2.03% in the interpreted mode) and
mpegaudio (5.75% in the JIT mode and 0.94% in the
interpreted mode). Both compress and mpegaudio
operate on large amounts of data.

 The garbage collection phases under both execution
modes yield high data cache read miss rates. The
influence of the garbage collection phase is insignificant
in compress and mpegaudio where the garbage
collection phase contributes less than 0.4% of the total
misses in either mode. For the other benchmarks, the
garbage collection phase tends to increase the overall miss
rate. The high miss rate of the garbage collection phase is
more serious under the JIT mode since under the JIT
mode the garbage collection phase’s contribution to the
overall miss rate is substantial. One of the examples is
mtrt, whose overall miss rate is 16% compared to the
execution phase miss rate 14%.

Three factors contribute to the high miss rate in the
garbage phase. The first factor is the frequent conflict and
capacity misses between the data accessed by the garbage
collector (references to arrays and objects on the heap)
and the data for the execution phase (method bytecodes
and application required data). Large working set of the
garbage collector also inflicts conflict and capacity misses
in the data cache. Finally, frequent pointer chasings by the
garbage collector cause compulsory misses in the data
cache.

4.2.2. Write accesses. Table 6 shows the results for the
write accesses under the interpreted and JIT execution
modes. Under the interpreted mode, overall miss rates
range from 1.51% (mpegaudio) to 9.53% (jess). Under
the JIT mode, we observe much higher write miss rates
than those under the interpreted mode, which is primarily
caused by the phenomenon of double-caching. When the
JIT compiler translates bytecodes into native code for the
very first time, it incurs compulsory misses when the code
is installed in the data cache. In addition, compulsory
misses occur when the native code is brought into the
instruction cache for execution. These two operations
together constitute double-caching. Compulsory misses
are also seen when the method bytecodes are read into the
data cache on invocation of the method for the very first
time but this is not as profound as in the case of code
installation because each bytecode is translated into 25
native instructions on an average [17].

We observe that the data cache write miss rates in the
execution phase of the JIT mode range from 12.5% (db)
to about 69.8% (jess). A direct result of the native code
installation is that L2 cache is polluted by the installed
code. Also, we noted the poorer performance of the
instruction cache under the JIT mode when compared to
the interpreted mode in Section 4.1. Double-caching thus
results in the overall poor cache performance of JIT
compilers, which renders them less effective under
memory constraints even though the speedup over the
interpreted mode is appreciable.

An examination of the garbage-collection phase miss
rates in both modes reveal them to be extremely high
(ranging from 50% to 74%) in all the benchmarks except
mtrt, whose miss rate is 4% under the interpreted mode
and 39% under the JIT mode. High write miss rate in the
garbage collection phase has an adverse effect on the
overall miss rates of the benchmarks such as jess (overall
miss rate of 9% compared to 5% in the execution phase
under the interpreted mode) and jack (overall miss rate of
48% compared to 39% in the execution phase under the
JIT mode).

Most of the data writes in the garbage collection phase
are due to allocation of objects. As the heap size grows
during program execution, more and more of the
allocations tend to be compulsory misses, which result in
high miss rate. On the other hand, if the heap size is
small, the garbage collector would be invoked more
frequently, leading to more interference between the
installed native code and the heap objects in the JIT
mode. As a result, the initial heap size chosen for a Java
program should be highly program dependent.

Table 6. Data cache (write) performance (% Abs.
miss indicates absolute miss rate in a particular
phase and % Total miss indicates the
contribution of that phase to the total number of
misses. Cache specifications: Configuration 1)

Execution Phase Garbage
Collection Phase Overall

Benchmark % Abs.
miss

%Total
miss

% Abs.
miss

%Total
miss

% Abs.
miss

6.18 99.73 74.56 0.26 6.19 Compress (int)
(jit) 19.61 97.77 67.37 2.20 19.92

5.68 55.81 65.32 44.17 9.53 Jess (int)
(jit) 69.86 45.72 63.88 54.26 66.48

5.18 86.36 60.59 13.63 5.92 Db (int)
(jit) 12.54 40.34 59.59 59.61 59.61

1.51 99.85 49.89 0.14 1.51 Mpegaudio (int)
(jit) 31.91 99.54 50.04 0.44 31.95

2.44 22.51 4.27 77.47 3.66 Mtrt (int)
(jit) 39.31 21.85 38.69 78.12 38.82

2.34 54.90 57.70 44.96 4.12 Jack (int)
(jit) 39.21 43.56 58.99 56.42 48.35

The runtime characteristics of benchmarks also

account for the high write miss rate in the garbage
collection phase. For example, compress spends most of
its execution time in loops whereby the lifetimes of
objects are less than the duration of a loop, which leads to
frequent heap object allocations. The frequent allocations
cause more interference between different phases and
result in a poor cache performance.

4.3. Cache performance with increased cache
sizes

We experiment with different cache sizes to examine if
the poor data cache performance in the JIT compiled
mode is a result of mere capacity misses. We examine
only the miss rates for data cache accesses since programs
have very good instruction locality and the overall level 1
cache performance is mainly determined by data cache
performance.

0

2

4

6

8

10

12

14

16

18

20

compress jess db mpegaudio mtrt jack
Benchmarks

M
is

s
R

at
e

(%
)

config. 1

config. 2

config. 3

0

10

20

30

40

50

60

70

compress jess db mpegaudio mtrt jack
Benchmarks

M
is

s
ra

te
 (%

)

config. 1

config. 2

config. 3

(a) Data cache read misses (b) Data cache write misses

Figure 2. Data cache performance of the execution phase under the JIT mode

0

2

4

6

8

10

12

14

16

18

20

compress jess db mpegaudio mtrt jack
Benchmarks

M
is

s
R

at
e

(%
)

config. 1

config. 2

config. 3

0

10

20

30

40

50

60

70

80

compress jess db mpegaudio mtrt jack
Benchmarks

M
is

s
R

at
e

(%
)

config. 1
config. 2
config. 3

(a) Data cache read misses (b) Data cache write misses

Figure 3. Data cache performance of the garbage collection phase under the JIT mode

As cache size increases, for both execution (Figure 2)
and garbage collection (Figure 3) phases, data cache read
misses reduce notably, while the reduction in data cache
write misses is not very substantial. Since most write
misses are compulsory misses (due to native code
installation), a larger data cache size helps little on
reducing compulsory misses. When data cache changes
from configuration 1 to configuration 2, average cache
miss reductions are 63% for reads in the execution phase,
23% for writes in the execution phase, 43% for reads in
the garbage collection phase, and 12% for writes in the
garbage collection phase.

Data cache miss reduction due to a larger cache is
more substantial in the execution phase than that in the
garbage collection phase, which holds true for both reads
and writes. This is mainly due to the facts that the garbage
collector’s working set, the heap, is too large to fit into the

L1 data cache for all three configurations, and write
misses caused by pointer chasing are compulsory misses.

Data cache miss reduction diminishes as cache size
increases. When data cache changes from configuration 2
to configuration 3, average cache miss reductions are 47%
for reads in the execution phase, 16% for writes in the
execution phase, 21% for reads in the garbage collection
phase, and 3% for writes in the garbage collection phase
respectively. All those reductions are smaller than
corresponding ones when the data cache changes from
configuration 1 to configuration 2.

4.4. Cache performance for the different data sets

As the data set for the SPECjvm98 benchmarks varies,
different JVM components perform differently. For
instance, the number of classes loaded for the s1 data set

roughly equals those loaded for the s100 data set for all
SPECjvm98 benchmarks. Hence the occurrences of class
loading and verification vary little as data set changes
from s1 to s100. Another example is the JIT compiler. As
the data set increases, methods are invoked more times to
process the larger data. On the other hand, the number of
method compilations holds constant since methods are
compiled only in their first invocations. Consequently, the
impact of JIT compilation on the overall cache miss rate
diminishes.

The cache performance of programs using the s1 and
s100 data sets is compared for the execution (Table 7) and
garbage collection (Table 8) phases respectively. The L1
cache miss rates are compared as well for both interpreted
and JIT execution modes.

Table 7. Execution engine cache miss rates
under s1 and s100 data sets (Cache
specifications: Configuration 1)

I-cache D-cache Read D-cache WriteMiss Rates (%)
s1 s100 s1 s100 s1 s100

0.01 1.3 0.24 2.03 0.75 6.18 Compress (int)
(jit) 0.58 0.07 8.03 8.78 25.89 19.61

1.43 1.35 7.75 4.92 8.18 5.68 Jess (int)
(jit) 1.95 1.48 9.46 10.92 61.2 69.86

0.45 0.16 2.05 3.67 5.17 5.18 Db (int)
(jit) 1.79 0.12 8.87 18.83 54.77 12.54

1.02 0.6 2.17 0.94 1.66 1.51 Mpegaudio (int)
(jit) 1.7 0.18 9.01 5.75 47.48 31.91

0.59 0.42 3.18 4.09 3.77 2.44 Mtrt (int)
(jit) 1.78 1.21 9.04 13.83 55.41 39.31

0.7 0.72 2.64 2.68 2.41 2.34 Jack (int)
(jit) 1.78 1.31 10.01 9.48 54.59 39.21

Under the JIT execution mode, the instruction cache

performs better when using the s100 data set than the s1
data set since a higher method reuse results in a better
instruction locality. The same trend is seen for data cache
writes. Since one method needs to be compiled only in its
first invocation, increasing the data set does not cause an
increase in the number of method compilations. At the
same time, application-specific data writes increase as the
data set increases. As a result, compulsory misses caused
by code installation have a smaller impact over the data
cache writes when using s100 as opposed to s1. Contrary
to the decreases in instruction and data cache write miss
rates, data cache reads perform worse in s100 than in s1.
This is a result of more capacity and conflict misses due to
larger data set.

Cache performance under the interpreted mode varies
little as data set increases. Under the interpreted mode,
bytecodes of a method are interpreted whenever the
method is invoked, and those bytecodes are treated as
data. Hence in both s1 and s100 data sets, the interpreter
dominates instruction cache accesses; bytecode accesses
and stack operations of the interpreter dominate data
cache reads; and stack operations of the interpreter

dominates data cache writes. As a result, data set sizes
have little impact on the cache performance in the
interpreted mode.

Table 8. Garbage collection cache miss rates
under s1 and s100 data sets (Cache
specifications: Configuration 1)

I-cache D-cache Read D-cache WriteMiss Rates (%)
s1 s100 s1 s100 s1 s100

0.04 0.15 3.3 16.14 52.17 74.56 Compress (int)
(jit) 0.25 0.16 6.73 12.99 51.49 67.37

0.73 1.03 4.04 14.74 59.8 65.32 Jess (int)
(jit) 0.38 0.68 4.92 12.74 50.99 63.88

0.05 0.1 0.96 19.39 47.15 60.59 Db (int)
(jit) 0.28 0.03 5.49 18.76 47.99 59.59

0.51 0.45 4.17 3.88 49.89 49.89 Mpegaudio (int)
(jit) 0.31 0.31 6.64 6.66 50.07 50.04

0.29 0.47 13.29 4.31 65.68 4.27 Mtrt (int)
(jit) 0.17 0.51 10.52 17.04 62.62 38.69

0.69 0.89 6.37 8.24 60.35 57.7 Jack (int)
(jit) 0.29 0.27 6.18 7.86 57.21 58.99

As the data set increases from s1 to s100, data cache

read and write miss rates for the garbage collection phase
increase under both the interpreted and JIT modes (Table
8). This is mainly due to the increase in capacity and
conflict misses of the garbage collector that comes as a
result of the larger data set residing in the L1 data cache.
On the other hand, instruction cache miss rates for the
garbage collector on both execution modes vary little as
the data set changes.

5. Conclusion

At the heart of Java technology lays the Java Virtual
Machine. The design of efficient JVM implementations
on diverse hardware platforms is critical to the success of
Java technology. An efficient JVM involves addressing
issues in compilation technology, software design and
hardware-software interaction.

This study has focused on understanding the L1 cache
performance of the JVM. We study in detail the cache
performance of the different access types (instruction
read, and data read and write) for Java applications. We
look at three JVM phases (class loading, execution
engine, and garbage collection), under two execution
engines (interpretation and JIT compilation), using three
cache configurations and two application data sets (s1 and
s100) of the SPECjvm98 benchmark [4]. This multi-
dimensional study enables us to analyze the impact of
different JVM and application features on cache
performance, and we find that JIT compilation’s
double-caching and pointer chasing together with the
large working set of garbage collection affect cache
performance in several aspects. The major observations of
the paper are as follows:

• For most Java applications, L1 instruction cache
performance is mainly determined by the execution
engine.

• Garbage collection in the JIT execution mode is more
frequent than in the interpreted mode since in JIT
mode compiled native code also resides in the heap
and increases the memory footprint substantially.

• Both data cache read and write miss rates in the
garbage collection are much higher than those in the
execution engine. Two factors account for the high
miss rate in the garbage collection phase. First,
garbage collector’s working set (the heap) is too large
to fit into the L1 data cache, which means that
garbage collector has more conflict and capacity
misses than the execution engine. Second, the pointer
chasing algorithm used in the garbage collector
module causes many compulsory misses in the data
cache.

• Data cache performance in the JIT mode is worse
than in the interpreted mode. The performance
deterioration of data cache reads in the JIT mode is
due to the decreasing of method bytecode locality
since in the JIT mode bytecodes are read into the L1
data cache only for compilation, while in the
interpreted mode bytecodes of a method are fetched
into the L1 data cache whenever the method is
interpreted. As the result of decreasing bytecode
reads in the L1 data cache, data cache read miss rate
increases. The performance deterioration of data
cache writes in the JIT mode is due to compiled code
installation, which incurs compulsory write misses.

• As cache size increases, data cache performance in
the execution phase improves more than in the
garbage collection phase, and a larger data cache is
more effective on eliminating read misses than write
misses in both the execution engine and the garbage
collection.

• The impact that a change in the data set has over
cache performance varies depending on the JVM
phase and cache access type. In JIT mode, as the data
set changes from s1 to s100, the instruction cache and
data cache write miss rates of the execution engine
decrease, while data cache read miss rate of the
execution engine increases. Contrary to the notable
cache performance differences in the JIT mode, in the
interpreted mode, cache performance of the execution
engine varies little as data set increases on most
applications. For the garbage collection in either
execution mode, data cache performance deteriorates
when data set increases from s1 to s100, while
varying data set affects little the instruction cache
performance.

Acknowledgments
This research is partially supported by the National

Science Foundation under grant numbers 0113105,
9807112, and by Tivoli, Motorola, Intel, IBM and
Microsoft Corporations.

References

[1] The Java HotSpot Performance Engine
Architecture,
http://java.sun.com/products/hotspot/whitepaper.html.

[2] Kaffe. http://www.kaffe.org/.

[3] LaTTe: An Open-Source Java Virtual Machine and
Just-in-Time Compiler. http://latte.snu.ac.kr/

[4] SPEC JVM98 Benchmarks,
http://www.spec.org/osg/jvm98.

[5] B. Calder, D. Grunwald, and B. Zorn, “Quantifying
Behavioral Differences Between C and C++ Programs”,
Journal of Programming Languages, Vol. 2, No. 4, 1995,
pp. 313-351.

[6] A. Chandrakasan, W. Bowhill, and F. Fox, Design
of High-Performance Microprocessor Circuits, IEEE
Press, 2000.

[7] R. F. Cmelik and D. Keppel, “Shade: A Fast
Instruction Set Simulator for Execution Profiling”,
Technical Report SMLI TR-93-12, Sun Microsystems Inc.,
1993.

[8] M. O’Connor and M.Tremblay, “PicoJava-I: The
Java Virtual Machine in Hardware”, IEEE Micro, March
1997, pp. 45-53.

[9] S. Dieckman and U. Holzle, “A study of the
Allocation Behavior of the SPECjvm98 Java
Benchmarks”, ECOOP98, pp. 92-115.

[10] T. Horel and G. Lauterbach, “UltraSPARC-III:
Designing Third-Generation 64-Bit Performance”, IEEE
Micro, May-June. 1999, pp. 73-85.

[11] C. A. Hsieh, M. Conte, T. L. Johnson, J. C.
Gyllenhaal, and W. W. Hwu, “A Study of Cache and
Branch Performance Issues with Java on Current
Hardware Platforms”, Proceedings of COMPCON, Feb
1997, pp. 211-216.

[12] C. A. Hsieh, J. C. Gyllenhaal, and W. W. Hwu,
“Java Bytecode to Native Code Translation: The Caffeine
Prototype and Preliminary Results”, Proceedings of the
29th Annual International Symposium on
Microarchitecture, 1996, pp. 90-97.

[13] J. Kim and Y. Hsu, “Memory System Behavior of
Java Programs: Methodology and Analysis”, Proceedings
of the Joint International Conference on Measurement
and Modeling of Computer System, 2000, pp. 264-274.

[14] T. Lindholm and F. Yellin, The Java Virtual
Machine Specification, Addison Wesley, 1997.

[15] T. Newhall and B.Miller, “Performance
Measurement of Interpreted Programs”, Proceedings of
Euro-Par ’98, 1998.

[16] T. Proebsting, G. Townsend, P. Bridges, J. H.
Hartman, T. Newsham, and S. A. Waterson, “Toba: Java
for Applications a Way Ahead of Time (WAT)
Compiler”, Proceedings of the Third Conference on
Object-Oriented Technologies and Systems, 1997.

[17] R. Radhakrishnan, J. Rubio and L. K. John,
“Characterization of Java Applications at Bytecode and
Ultra-SPARC Machine Code Levels”, Proceedings of
IEEE International Conference on Computer Design,
1999, pp. 281-284.

[18] R. Radhakrishnan, N. Vijaykrishnan, A.
Sivasubramaniam, and L. K. John, “Architectural Issues
in Java Runtime Systems”, Proceedings of the
International Symposium on High Performance Computer
Architecture, 2000, pp. 387-398.

[19] R. Radhakrishnan, J. Rubio, L. K. John, and N.
Vijaykrishnan, “Execution Characteristics of JIT
Compilers”, Technical Report TR-990717-01, University
of Texas at Austin, 1999.

[20] A. Rajan, “A Study of Cache Performance in Java
Virtual Machines”, Master’s Thesis, University of Texas
at Austin, 2002.

[21] T. H. Romer, D. Lee, G. M. Voelker, A. Wolman,
W. A. Wong, J. Baer, B. N. Bershad, and H. M. Levy,
“The Structure and Performance of Interpreters”,
Proceedings of ASPLOS VII, 1996, pp. 150-159.

[22] Y. Shuf, M. J. Serrano, M. Gupta, and J. P. Singh.
“Characterizing the Memory Behavior of Java Workloads:
A Structured View and Opportunities for Optimizations”,
Proceedings of the Joint International Conference on
Measurement & Modeling of Computer Systems, 2000,
pp. 194-205.

[23] B.Venners, Inside the Java 2 Virtual Machine,
McGraw Hill, 2000.

[24] P. Wilson, “Uniprocessor Garbage Collection
Techniques”, International Workshop on Memory
Management, Sep. 1992, pp. 16-18.

[25] B. Yang, S. Moon, S. Park, J. Lee, S. Lee, J. Park,
Y. C. Chung, S. Kim, K. Ebcioglu, and E. Altman,
“LaTTe: A Java VM Just-in-time Compiler with Fast and

Efficient Register Allocation”, International Conference
on Parallel Architectures and Compilation Techniques,
October 1999, pp. 128-138.

[26] T.Yeh and Y.Patt, “A Comprehensive Instruction
Fetch Mechanism for a Processor Supporting Speculative
Execution”, IEEE Micro, 1992.

	A
	Abstract
	Introduction
	Related work
	Methodology
	Benchmarks
	Instrumentation of the Latte virtual machine
	Cache simulator and cache hierarchies
	Validation

	Results and analysis
	Instruction cache performance
	Data cache performance
	Cache performance with increased cache sizes
	Cache performance for the different data sets

	Conclusion
	Acknowledgments

