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Abstract 
 

This paper studies the level 1 cache performance of 
Java programs by analyzing memory reference traces of 
the SPECjvm98 applications executed by the Latte Java 
Virtual Machine. We study in detail Java programs’ 
cache performance of different access types in three JVM 
phases, under two execution modes, using three cache 
configurations and two application data sets. We observe 
that the poor data cache performance in the JIT execution 
mode is caused by code installation, when the data write 
miss rate in the execution engine can be as high as 70%. 
In addition, code installation also deteriorates instruction 
cache performance during execution of translated code. 
High cache miss rate in garbage collection is mainly 
caused by large working set and pointer chasing of the 
garbage collector. A larger data cache works better on 
eliminating data cache read misses than write misses, and 
is more efficient on improving cache performance in the 
execution engine than in the garbage collection. As 
application data set increases in the JIT execution mode, 
instruction cache and data cache write miss rates of the 
execution engine decrease, while data cache read miss 
rate of the execution engine increases. On the other hand, 
impact of varying data set on cache performance is not as 
pronounced in the interpreted mode as in the JIT mode. 
 
 
1. Introduction 
 

Java [14] is a widely used programming language due 
to the machine independent nature of Java bytecodes. In 
addition to portability, security and ease of development 
of applications have made it very popular with the 
software community. Since the JVM specification offers a 
lot of flexibility in the implementation of a JVM, a 
number of techniques have been used to execute 
bytecodes. The most commonly used execution modes are 
interpretation, which interprets the bytecodes, and just-in-
time compilation, which dynamically translates bytecodes 
to native code on the fly. A recent development has been 
the mixed mode execution engine [1], which uses profile 
based feedback to interpret/compile bytecodes. Other 

possible modes include hardware execution of bytecodes 
[8] and ahead-of-time compilation of bytecodes [16]. 

The execution time of a program in modern 
superscalar architectures is not determined solely by the 
number of instructions executed. A significant amount of 
the execution time can be attributed to inefficient use of 
the microarchitecture mechanisms, such as caches [11]. 
Even though there have been major strides in the 
development of fast SRAMS [6] that are used in cache 
memories, the prevalence of deep superscalar pipelines 
and aggressive techniques to exploit ILP [26] make it 
imperative that cache misses are minimized. 

In this paper, we characterize the performance of level 
1 instruction and data caches of Java programs in the 
interpreted and JIT modes by separating the virtual 
machine into functionally distinct phases. This enables us 
to isolate the component responsible for the major chunk 
of these misses. The three distinct phases we examine are 
the class loader, the execution engine (interpreter or JIT 
compiler) and the garbage collector. A Java application 
can use two types of class loaders: a “bootstrap” class 
loader and user-defined class loaders. The bootstrap 
loader loads classes of the Java API and user defined 
classes in some default way, whereas the user-defined 
class loaders load classes in custom ways over the course 
of program execution. The garbage collector [24] 
determines whether objects on the heap are referenced by 
the Java application, and makes available the heap space 
occupied by objects that are not referenced. In addition to 
freeing unreferenced objects, the garbage collector also 
combats heap fragmentation. 

Our experiments indicate that the execution engine 
determines the performance of the L1 instruction cache on 
most Java applications. While the garbage collector is 
responsible for most of the data cache misses. The reasons 
for this behavior are the large working set used during 
that phase and the pointer chasing present in the garbage 
collection algorithm. Data cache misses are further 
categorized as read and write misses, which enables us to 
study different JVM features and application 
characteristics that contribute to those two types of data 
cache misses. We observe that the data cache 
performance in the JIT mode is worse than in the 
interpreted mode. The deterioration in the cache 
performance of data read operations is due to a decrease 



in the number of times bytecodes are read. Write 
operations also suffer from a poor data cache performance 
as a result of the code installation, which incurs 
compulsory write misses. 

We also analyze the impact of different cache 
configurations and application data sets on the L1 cache 
performance. Increasing the size of the data caches 
improves the performance of the data cache in the 
execution phase more than in the garbage collection 
phase. We also observe that changing the data set from s1 
to s100 affects the JIT mode and the interpreted mode 
differently. In the JIT mode, instruction cache and data 
cache write miss rates of the execution engine decrease, 
while data cache read miss rate of the execution engine 
increases. The cache performance of the execution engine 
for the interpreted mode changes little as the data set 
increases (except for the compress benchmark). The 
performance of the data cache for the garbage collection 
phase deteriorates when the data set increases from s1 to 
s100, without noticeably affecting the instruction cache 
performance. 

The remainder of the paper is organized as follows. 
Section 2 presents the prior research done in this area. 
Section 3 discusses the experimental methodology, 
including the benchmarks and tools used to conduct the 
experiments. Section 4 discusses in detail the results for 
the various experiments and analyzes them and section 5 
concludes with a highlight of the most significant results 
in this paper. 

 
2. Related work 
 

Early work on the area of Java performance 
[11,12,15,21] studied the impact of interpreted Java 
programs on microarchitectural resources such as the 
cache and the branch predictor using a variety of 
benchmarks. Radhakrishnan et al. [17] analyzed the 
SPECjvm98 benchmarks at the bytecode level while 
running in an interpreted environment and did not find 
any evidence of poor locality in interpreted Java code. 
None of these however examined the behavior of Java 
using the JIT execution mode. 

There have been quite a few studies looking at the 
execution characteristics and architectural issues involved 
with running Java in JIT mode. Radhakrishnan et al. 
[18,19] investigates the CPU and cache architectural 
support that would benefit both JVM implementations. 
They concluded that the instruction and data cache 
performance of Java applications is better than that of 
C/C++ applications, except in the case of data cache 
performance of the JIT mode. However, none of these 
studies looked at the different components of the JVM 
though Kim et al. [13] and Dieckman et al. [9] examine 
the performance of the garbage collection phase alone in 
detail. Shuf et al. [22] analyses the accesses performed by 

a JVM in terms of stack and heap accesses and correlates 
them to the resulting data cache and TLB behavior. 

 
3. Methodology 
 

This section introduces the SPECjvm98 benchmarks, 
the Latte Virtual Machine, the cache simulator and 
configurations, and the validation of the simulation 
results. 

 
3.1. Benchmarks 
 

The SPECjvm98 benchmark suite [4] is used to obtain 
the cache performance characteristics of the JVM. The 
suite contains a number of applications that are either real 
applications or are derived from real applications that are 
commercially available. The SPECjvm98 suite allows 
users to evaluate performance of the hardware and 
software aspects of the JVM client platform. On the 
software side, it measures the efficiency of the JVM, the 
compiler/interpreter, and operating system 
implementations. On the hardware side, it includes CPU, 
cache, memory, and other platform specific features. 
Table 1 provides a summary of the benchmarks used for 
our experiments. 

 
Table 1. Description of the SPEC JVM98 
benchmarks 
Benchmark Description 

Compress A popular LZW compression program. 

Jess A Java version of CLIPS rule-based expert systems 

Db Data management benchmarking software  

Mpegaudio Core algorithm that decodes an MPEG-3 audio stream. 

Mtrt A dual-threaded program that ray traces an image file. 

Jack A real parser-generator from Sun Microsystems. 

 
For all benchmarks, SPEC provides three different data 

sets referred to as s1, s10 and s100. Although the input 
names may suggest so, SPECjvm98 does not scale 
linearly. Both the s1 and s100 data sets are used for the 
experiments. More results can be obtained from [20]. 

 
3.2. Instrumentation of the Latte virtual machine 
 

A state-of-the-art JVM, Latte [3], is used to study the 
cache performance of distinct JVM phases. It is an open 
source virtual machine released in October 1999, and was 
derived from the Kaffe open source VM [2] and allows 
for instrumentation and experimentation. Its performance 
has been shown to be comparable to Sun’s JDK 1.3 
(HotSpot) VM [25]. 



Latte includes a highly optimized JIT compiler 
targeted towards SPARC processors. In addition to 
classical compiler optimizations such as common sub-
expression elimination and loop invariant code motion, it 
also performs object-oriented optimizations, e.g. dynamic 
class hierarchy analysis. In addition, it performs efficient 
garbage collection and memory management using a fast 
mark and sweep algorithm [24]. 

The source code of Latte was instrumented with 
sentinels that mark the phases of class-loading, execution 
and garbage collection. The class-loading phase includes 
the loading of Java API and user classes. The garbage 
collection phase includes all memory accesses and 
allocations in the heap in addition to the actual task of 
“garbage-collection” because this seems to be a more 
logical classification when it comes to data accesses. We 
use the default initial heap size of 16MB in all our 
experiments. The execution phase consists of bytecode 
interpretation in the interpreter execution mode, or 
translation of bytecode and installation and execution of 
native code in the JIT execution mode. 

 
3.3. Cache simulator and cache hierarchies 
 

Our cache performance study of the Latte JVM is 
performed on a Sun UltraSparc platform running Solaris 
2.7. The JVM is functionally executed and simulated by 
Sun’s Shade V6 analyzing tool [7]. Shade simulates the 
entire user program but does not include operating system 
calls. 

For our performance measurements, we used a cache 
simulator based on Cachesim5, which is provided by the 
Shade toolset. The cache simulator allows users to specify 
the number of levels in the cache hierarchy, the size and 
organization of each cache hierarchy and the 
replacement/write policies associated with them. The 
modified cache simulator also recognizes different JVM 
phases and is validated to ensure the correctness. Our 
cache simulator provides performance results in terms of 
cache hit-miss ratios and does not deal with timing issues. 

Table 2 lists the cache hierarchies that are chosen for 
our experiments with the first configuration 
corresponding to the cache hierarchy of an UltraSparc-1 
processor [10]. The first configuration is used for the 
detailed per-phase analysis of the Latte JVM presented in 
Section 4, and the cache performance under all three 
configurations is presented in Section 4.3. 

 
3.4. Validation 
 

The validation of the modified cache simulator is 
central to our experiments. Each of the benchmarks is 
executed and the resulting instruction trace is provided to 
the original Cachesim5 simulator and the total instruction 

counts, data accesses and misses are counted. The above 
validation is done with the original JVM that is not 
instrumented. The benchmarks are then executed and the 
resulting instruction traces are gathered for the modified 
Cachesim5 simulator. The statistics obtained in this 
procedure is compared to those obtained by the original 
Cachesim5 to ensure the correctness of the modified 
cache simulator. 

 
Table 2. Cache configurations in the experiments 

Config. L1 I-cache L1 D-cache L2-Unified cache 

1 

16KB, 32 byte 

blocks, 

2-way set 

associative 

16KB, 32 byte blocks  

Direct mapped, write 

through with write-no-

allocate 

512KB, 64 byte blocks 

Direct mapped, write 

back with write on 

allocate 

2 

64KB, 32 byte 

blocks, 

2-way set 

associative 

64KB, 32 byte blocks 

4-way set associative, 

write through with write-

no-allocate 

1MB, 64 byte blocks 

Direct mapped, write 

back with write on 

allocate 

3 

256KB, 32 

byte blocks, 

2-way set 

associative 

256KB, 32 byte blocks 

4-way set associative, 

write through with write-

no-allocate 

2MB, 64 byte blocks 

Direct mapped, write 

back with write on 

allocate 

 
 
With instrumentation applied to the JVM, we needed 

to validate the results again. The cache statistics gathered 
for each JVM phase is added up and compared to the 
numbers obtained in the previous two cases. The numbers 
agree in all the cases. For the sake of sanity check, the 
numbers are further compared to those obtained in [19] 
and there is close correspondence between the numbers 
obtained in both studies. 

 
4. Results and analysis 
 

This section summarizes the results that characterize 
the L1 cache performance of SPECjvm98 benchmarks in 
the various phases of the Latte Virtual Machine in both 
interpreted and JIT execution modes. Section 4.1 presents 
the results for the instruction cache performance, while 
Section 4.2 analyzes the results for the data cache 
performance in terms of reads and writes. Section 4.3 
studies the impact of increased cache sizes on data cache 
performance by comparing the data cache performance 
under the three different cache configurations presented in 
Section 3.3. Section 4.4 studies the impact of varying data 
set on L1 cache performance. 

Class loading contributes almost a constant number of 
instructions in all benchmarks and its contribution is 
almost negligible. In fact, the statistics for class loading in 
every benchmark are more or less constant, and class-



loading accounts for merely 0.01% of the total misses in 
either execution mode and is therefore not shown in the 
subsequent tables. 

 
4.1. Instruction cache performance 
 

Figure 1 shows the contribution of the garbage 
collection and execution phases to the total number of 
instruction cache accesses. We note that the instruction 
cache accesses are almost completely dominated by the 
execution phase in the interpreted mode in all the 
benchmarks except mtrt. Nevertheless, in the JIT 
execution mode, the garbage collection has a more 
significant role on instruction cache accesses than in the 
interpreted mode. Under both execution modes, garbage 
collector shows almost no activity in compress and 
mpegaudio, which reflects the runtime characteristics, 
such as infrequent heap object allocations and long 
lifetimes of heap objects [13], of these two benchmarks. 
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Figure 1. Decomposition of level 1 instruction 
cache accesses (cache specifications: 
Configuration 1) 
 

In the interpreted execution mode, the actual 
interpretation component constitutes the majority of the 
total instruction count. It ranges from about 143 billion 
instructions for compress to about 25 billion for mtrt 
[20]. The overall instruction miss rate is therefore almost 
the same as the instruction miss rate of the interpretation 
phase. On the other hand, there is almost an 80% to 90% 
decrease in the dynamic instruction count when moving 
from the interpreted mode to the JIT mode [20]. The 
decreasing instruction count in the JIT mode is due to the 
fact that a Java method is translated only once and 
executed directly afterwards. While in the interpreted 
mode the interpreter has to be invoked every time to 
execute the method, which results in a much higher 
translated native code/bytecode rate than in the JIT mode. 

Under the interpreted execution mode, overall 
instruction miss rate varies from 0.16% (db) to 1.33% 
(jess) (Table 3) and this good instruction locality is due 

to that the major part of the interpreter resides in the 
instruction cache. The interpreter is one large switch 
statement with about 220 case labels interpreting distinct 
bytecodes. Since about 40 bytecodes are accessed 90% of 
the time [17], the case statements for those frequently 
used bytecodes can fit into the instruction cache. 

 
Table 3. Instruction cache performance (% Abs. 
miss indicates absolute miss rate in a particular 
phase and % Total miss indicates the 
contribution of that phase to the total number of 
misses. Cache specifications: Configuration 1) 

Execution Phase Garbage 
Collection Phase Overall 

Benchmark % 
Abs. 
miss 

%Total 
miss 

% 
Abs. 
miss 

%Total 
miss 

% Abs. 
miss 

1.30 99.46 0.15 0.002 1.30 Compress (int) 
(jit) 0.07 98.85 0.16 1.03 0.07 

1.35 96.48 1.03 3.51 1.33 Jess (int) 
(jit) 1.48 85.68 0.68 14.28 1.26 

0.16 99.35 0.10 0.62 0.16 Db (int) 
(jit) 0.12 97.70 0.03 2.21 0.11 

0.60 99.99 0.45 0.003 0.60 Mpegaudio (int)
(jit) 0.18 99.51 0.31 0.48 0.18 

0.47 68.51 0.42 31.40 0.46 Mtrt (int) 
(jit) 1.21 54.45 0.51 45.52 0.75 

0.72 97.14 0.89 2.86 0.72 Jack (int) 
(jit) 1.31 95.98 0.27 4.00 1.14 

 
The JIT mode has a better overall instruction cache 

performance than the interpreted mode in four out of six 
benchmarks. It is mainly due to high method reuse that a 
small subset of methods is accessed frequently. High 
method reuse considerably diminishes the impact of non-
contiguously placed translated code on instruction cache 
performance. In compress (the miss rate decreasing from 
1.3% in the interpreted mode to 0.07% in the JIT mode) 
and mpegaudio (the miss rate decreasing from 0.6% in 
the interpreted mode to 0.2% in the JIT mode), the 
execution of the translated native code dominates the 
whole execution time. 

In the interpreted mode, garbage collection plays a 
significant role only in the case of mtrt, where it 
contributes about 31% of the total number of instruction 
cache misses, which is mainly due to the fact that mtrt has 
the most method invocations among all benchmarks. In 
the JIT mode, the garbage collection phase has relatively 
more activities than the garbage collection phase in the 
interpreted mode, especially for jess and mtrt. Moreover, 
in the JIT mode, the garbage collection phase has better 
instruction cache locality than the execution phase. And 
when the instruction cache accesses of the garbage 
collection phase are substantial, the overall miss rate is 
brought down due to the low miss rate in the garbage 
collection phase, which is evidenced in the case of jess 
(overall miss rate of 1.26% and execution phase miss rate 



of 1.48%) and mtrt (overall miss rate of 0.75% and 
execution phase miss rate of 1.21%). 

 
4.2. Data cache performance 
 

Table 4 shows the contribution of each phase to the 
total data cache misses. We find that once again the 
contribution of the class-loading phase is quite negligible. 
The contribution of the garbage collection phase is 
significant in the interpreted mode in all benchmarks 
except compress and mpegaudio. Under the JIT 
execution mode, the garbage collection phase contributes 
about 40-70% of the total data misses in several 
benchmarks. In compress and mpegaudio, the 
execution phase once again makes the other phases 
inconsequential. 

 
Table 4. Contribution of each phase to the data 
cache misses (cache specifications: 
Configuration 1) 

Benchmark 
Class 

Loading 
 

Execution Garbage 
Collection 

Overall Data 
Cache Miss 

% 
0.001 99.84 0.15 2.98 Compress(int) 

(jit) 0.003 98.99 0.98 3.60 
0.003 81.04 18.94 6.11 Jess (int) 

(jit) 0.004 58.77 41.20 24.07 
0.002 94.48 5.50 4.20 Db (int) 

(jit) 0.004 86.33 13.65 19.52 
0.004 99.94 0.05 1.08 Mpegaudio (int) 

(jit)  0.005 99.63 0.34 11.06 
0.003 31.14 68.86 4.09 Mtrt (int) 

(jit) 0.005 28.16 71.81 21.47 
0.004 84.26 15.72 3.09 Jack (int) 

(jit) 0.007 60.82 39.14 18.87 

 
Read accesses in both modes of execution consist of 

reading method bytecodes and data required by 
workloads. The difference is that in the JIT mode 
bytecodes of a method are read for compilation only when 
the method is first encountered, while in the interpreted 
mode bytecodes are read every time when the method is 
invoked. Write accesses in the JIT mode are mostly the 
result of compiled native code installation, whereas in the 
interpreted mode, write accesses include mainly Java heap 
and stack accesses. Data accesses required by applications 
are similar in both execution modes and affect both 
modes equally. However, the fundamental differences 
between the causes of read and write accesses under the 
two execution modes motivate us to study data cache read 
and write activities separately. 

 
4.2.1. Read accesses. Table 5 shows the performance 
results obtained for data cache reads in both the 
interpreted and JIT modes. There is a drastic reduction in 
the number of read accesses under the JIT mode. Under 
the JIT mode, bytecodes of a method are read only when 

the method is compiled, while under the interpreted mode, 
bytecodes are read every time when the method is 
interpreted. Another reason for the reduction is the fact 
that a large percentage of operations under the interpreted 
mode involve accessing the stack, which are implemented 
as loads and stores, while under the JIT mode these stack 
accessing operations are optimized as register-register 
operations. 

 
Table 5. Data cache (read) performance (% Abs. 
miss indicates absolute miss rate in a particular 
phase and % Total miss indicates the 
contribution of that phase to the total number of 
misses. Cache specifications: Configuration 1) 

Execution Phase Garbage 
Collection Phase Overall 

Benchmark % Abs. 
miss 

%Total 
miss 

% Abs. 
miss 

%Total 
miss 

% Abs. 
miss 

2.03 99.94 16.14 0.05 2.03 Compress (int)
(jit) 8.78 99.62 12.99 0.36 8.79 

4.92 95.26 14.74 4.73 5.08 Jess (int)
(jit) 10.92 82.30 12.74 17.68 11.19 

3.67 98.06 19.39 0.02 3.72 Db (int)
(jit) 18.83 95.94 18.76 4.04 18.82 

0.94 99.98 3.88 0.01 0.94 Mpegaudio (int)
(jit) 5.75 99.75 6.66 0.21 5.75 

4.09 33.55 4.31 66.44 4.23 Mtrt (int)
(jit) 13.83 33.18 17.04 66.79 15.84 

2.68 97.89 8.24 2.09 2.72 Jack (int)
(jit) 9.48 90.03 7.86 9.91 9.29 

 
Miss rates for the execution phase increase from an 

average of 3.5% under the interpreted mode to as high as 
19% (db) under the JIT mode. Most bytecode read misses 
under the JIT mode are compulsory misses since they are 
brought into the data cache the very first time when the 
method is invoked. As a result, the lowest miss rates will 
be seen in programs where the actual data required by 
programs is a large fraction of the total data accesses. 
Two of such programs are compress (8.78% in the JIT 
mode and 2.03% in the interpreted mode) and 
mpegaudio (5.75% in the JIT mode and 0.94% in the 
interpreted mode). Both compress and mpegaudio 
operate on large amounts of data. 

 The garbage collection phases under both execution 
modes yield high data cache read miss rates. The 
influence of the garbage collection phase is insignificant 
in compress and mpegaudio where the garbage 
collection phase contributes less than 0.4% of the total 
misses in either mode. For the other benchmarks, the 
garbage collection phase tends to increase the overall miss 
rate. The high miss rate of the garbage collection phase is 
more serious under the JIT mode since under the JIT 
mode the garbage collection phase’s contribution to the 
overall miss rate is substantial. One of the examples is 
mtrt, whose overall miss rate is 16% compared to the 
execution phase miss rate 14%. 



Three factors contribute to the high miss rate in the 
garbage phase. The first factor is the frequent conflict and 
capacity misses between the data accessed by the garbage 
collector (references to arrays and objects on the heap) 
and the data for the execution phase (method bytecodes 
and application required data). Large working set of the 
garbage collector also inflicts conflict and capacity misses 
in the data cache. Finally, frequent pointer chasings by the 
garbage collector cause compulsory misses in the data 
cache. 

 
4.2.2. Write accesses. Table 6 shows the results for the 
write accesses under the interpreted and JIT execution 
modes. Under the interpreted mode, overall miss rates 
range from 1.51% (mpegaudio) to 9.53% (jess). Under 
the JIT mode, we observe much higher write miss rates 
than those under the interpreted mode, which is primarily 
caused by the phenomenon of double-caching. When the 
JIT compiler translates bytecodes into native code for the 
very first time, it incurs compulsory misses when the code 
is installed in the data cache. In addition, compulsory 
misses occur when the native code is brought into the 
instruction cache for execution. These two operations 
together constitute double-caching. Compulsory misses 
are also seen when the method bytecodes are read into the 
data cache on invocation of the method for the very first 
time but this is not as profound as in the case of code 
installation because each bytecode is translated into 25 
native instructions on an average [17]. 

We observe that the data cache write miss rates in the 
execution phase of the JIT mode range from 12.5% (db) 
to about 69.8% (jess). A direct result of the native code 
installation is that L2 cache is polluted by the installed 
code. Also, we noted the poorer performance of the 
instruction cache under the JIT mode when compared to 
the interpreted mode in Section 4.1. Double-caching thus 
results in the overall poor cache performance of JIT 
compilers, which renders them less effective under 
memory constraints even though the speedup over the 
interpreted mode is appreciable. 

An examination of the garbage-collection phase miss 
rates in both modes reveal them to be extremely high 
(ranging from 50% to 74%) in all the benchmarks except 
mtrt, whose miss rate is 4% under the interpreted mode 
and 39% under the JIT mode. High write miss rate in the 
garbage collection phase has an adverse effect on the 
overall miss rates of the benchmarks such as jess (overall 
miss rate of 9% compared to 5% in the execution phase 
under the interpreted mode) and jack (overall miss rate of 
48% compared to 39% in the execution phase under the 
JIT mode). 

Most of the data writes in the garbage collection phase 
are due to allocation of objects. As the heap size grows 
during program execution, more and more of the 
allocations tend to be compulsory misses, which result in 
high miss rate. On the other hand, if the heap size is 
small, the garbage collector would be invoked more 
frequently, leading to more interference between the 
installed native code and the heap objects in the JIT 
mode. As a result, the initial heap size chosen for a Java 
program should be highly program dependent. 

 
Table 6. Data cache (write) performance (% Abs. 
miss indicates absolute miss rate in a particular 
phase and % Total miss indicates the 
contribution of that phase to the total number of 
misses. Cache specifications: Configuration 1) 

Execution Phase Garbage 
Collection Phase Overall 

Benchmark % Abs. 
miss 

%Total 
miss 

% Abs. 
miss 

%Total 
miss 

% Abs. 
miss 

6.18 99.73 74.56 0.26 6.19 Compress (int) 
(jit) 19.61 97.77 67.37 2.20 19.92 

5.68 55.81 65.32 44.17 9.53 Jess (int) 
(jit) 69.86 45.72 63.88 54.26 66.48 

5.18 86.36 60.59 13.63 5.92 Db (int) 
(jit) 12.54 40.34 59.59 59.61 59.61 

1.51 99.85 49.89 0.14 1.51 Mpegaudio (int) 
(jit) 31.91 99.54 50.04 0.44 31.95 

2.44 22.51 4.27 77.47 3.66 Mtrt (int) 
(jit) 39.31 21.85 38.69 78.12 38.82 

2.34 54.90 57.70 44.96 4.12 Jack (int) 
(jit) 39.21 43.56 58.99 56.42 48.35 

 
The runtime characteristics of benchmarks also 

account for the high write miss rate in the garbage 
collection phase. For example, compress spends most of 
its execution time in loops whereby the lifetimes of 
objects are less than the duration of a loop, which leads to 
frequent heap object allocations. The frequent allocations 
cause more interference between different phases and 
result in a poor cache performance. 

 
4.3. Cache performance with increased cache 
sizes 
 

We experiment with different cache sizes to examine if 
the poor data cache performance in the JIT compiled 
mode is a result of mere capacity misses. We examine 
only the miss rates for data cache accesses since programs 
have very good instruction locality and the overall level 1 
cache performance is mainly determined by data cache 
performance. 
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(a) Data cache read misses    (b) Data cache write misses 

Figure 2. Data cache performance of the execution phase under the JIT mode 
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(a) Data cache read misses    (b) Data cache write misses 

Figure 3. Data cache performance of the garbage collection phase under the JIT mode 
 

As cache size increases, for both execution (Figure 2) 
and garbage collection (Figure 3) phases, data cache read 
misses reduce notably, while the reduction in data cache 
write misses is not very substantial. Since most write 
misses are compulsory misses (due to native code 
installation), a larger data cache size helps little on 
reducing compulsory misses. When data cache changes 
from configuration 1 to configuration 2, average cache 
miss reductions are 63% for reads in the execution phase, 
23% for writes in the execution phase, 43% for reads in 
the garbage collection phase, and 12% for writes in the 
garbage collection phase. 

Data cache miss reduction due to a larger cache is 
more substantial in the execution phase than that in the 
garbage collection phase, which holds true for both reads 
and writes. This is mainly due to the facts that the garbage 
collector’s working set, the heap, is too large to fit into the 

L1 data cache for all three configurations, and write 
misses caused by pointer chasing are compulsory misses. 

Data cache miss reduction diminishes as cache size 
increases. When data cache changes from configuration 2 
to configuration 3, average cache miss reductions are 47% 
for reads in the execution phase, 16% for writes in the 
execution phase, 21% for reads in the garbage collection 
phase, and 3% for writes in the garbage collection phase 
respectively. All those reductions are smaller than 
corresponding ones when the data cache changes from 
configuration 1 to configuration 2. 

 
4.4. Cache performance for the different data sets 
 

As the data set for the SPECjvm98 benchmarks varies, 
different JVM components perform differently. For 
instance, the number of classes loaded for the s1 data set 



roughly equals those loaded for the s100 data set for all 
SPECjvm98 benchmarks. Hence the occurrences of class 
loading and verification vary little as data set changes 
from s1 to s100. Another example is the JIT compiler. As 
the data set increases, methods are invoked more times to 
process the larger data. On the other hand, the number of 
method compilations holds constant since methods are 
compiled only in their first invocations. Consequently, the 
impact of JIT compilation on the overall cache miss rate 
diminishes. 

The cache performance of programs using the s1 and 
s100 data sets is compared for the execution (Table 7) and 
garbage collection (Table 8) phases respectively. The L1 
cache miss rates are compared as well for both interpreted 
and JIT execution modes. 

 
Table 7. Execution engine cache miss rates 
under s1 and s100 data sets (Cache 
specifications: Configuration 1) 

I-cache D-cache Read D-cache WriteMiss Rates (%) 
s1 s100 s1 s100 s1 s100 

0.01 1.3 0.24 2.03 0.75 6.18 Compress (int)  
(jit) 0.58 0.07 8.03 8.78 25.89 19.61

1.43 1.35 7.75 4.92 8.18 5.68 Jess (int) 
(jit) 1.95 1.48 9.46 10.92 61.2 69.86

0.45 0.16 2.05 3.67 5.17 5.18 Db (int) 
(jit) 1.79 0.12 8.87 18.83 54.77 12.54

1.02 0.6 2.17 0.94 1.66 1.51 Mpegaudio (int) 
(jit) 1.7 0.18 9.01 5.75 47.48 31.91

0.59 0.42 3.18 4.09 3.77 2.44 Mtrt (int) 
(jit) 1.78 1.21 9.04 13.83 55.41 39.31

0.7 0.72 2.64 2.68 2.41 2.34 Jack (int) 
(jit) 1.78 1.31 10.01 9.48 54.59 39.21

 
Under the JIT execution mode, the instruction cache 

performs better when using the s100 data set than the s1 
data set since a higher method reuse results in a better 
instruction locality. The same trend is seen for data cache 
writes. Since one method needs to be compiled only in its 
first invocation, increasing the data set does not cause an 
increase in the number of method compilations. At the 
same time, application-specific data writes increase as the 
data set increases. As a result, compulsory misses caused 
by code installation have a smaller impact over the data 
cache writes when using s100 as opposed to s1. Contrary 
to the decreases in instruction and data cache write miss 
rates, data cache reads perform worse in s100 than in s1. 
This is a result of more capacity and conflict misses due to 
larger data set. 

Cache performance under the interpreted mode varies 
little as data set increases. Under the interpreted mode, 
bytecodes of a method are interpreted whenever the 
method is invoked, and those bytecodes are treated as 
data. Hence in both s1 and s100 data sets, the interpreter 
dominates instruction cache accesses; bytecode accesses 
and stack operations of the interpreter dominate data 
cache reads; and stack operations of the interpreter 

dominates data cache writes. As a result, data set sizes 
have little impact on the cache performance in the 
interpreted mode. 

 
Table 8. Garbage collection cache miss rates 
under s1 and s100 data sets (Cache 
specifications: Configuration 1) 

I-cache D-cache Read D-cache WriteMiss Rates (%)
s1 s100 s1 s100 s1 s100 

0.04 0.15 3.3 16.14 52.17 74.56 Compress (int) 
(jit) 0.25 0.16 6.73 12.99 51.49 67.37 

0.73 1.03 4.04 14.74 59.8 65.32 Jess (int)
(jit) 0.38 0.68 4.92 12.74 50.99 63.88 

0.05 0.1 0.96 19.39 47.15 60.59 Db (int)
(jit) 0.28 0.03 5.49 18.76 47.99 59.59 

0.51 0.45 4.17 3.88 49.89 49.89 Mpegaudio (int)
(jit) 0.31 0.31 6.64 6.66 50.07 50.04 

0.29 0.47 13.29 4.31 65.68 4.27 Mtrt (int)
(jit) 0.17 0.51 10.52 17.04 62.62 38.69 

0.69 0.89 6.37 8.24 60.35 57.7 Jack (int)
(jit) 0.29 0.27 6.18 7.86 57.21 58.99 

 
As the data set increases from s1 to s100, data cache 

read and write miss rates for the garbage collection phase 
increase under both the interpreted and JIT modes (Table 
8). This is mainly due to the increase in capacity and 
conflict misses of the garbage collector that comes as a 
result of the larger data set residing in the L1 data cache. 
On the other hand, instruction cache miss rates for the 
garbage collector on both execution modes vary little as 
the data set changes. 

 
5. Conclusion 
 

At the heart of Java technology lays the Java Virtual 
Machine. The design of efficient JVM implementations 
on diverse hardware platforms is critical to the success of 
Java technology. An efficient JVM involves addressing 
issues in compilation technology, software design and 
hardware-software interaction. 

This study has focused on understanding the L1 cache 
performance of the JVM. We study in detail the cache 
performance of the different access types (instruction 
read, and data read and write) for Java applications. We 
look at three JVM phases (class loading, execution 
engine, and garbage collection), under two execution 
engines (interpretation and JIT compilation), using three 
cache configurations and two application data sets (s1 and 
s100) of the SPECjvm98 benchmark [4]. This multi-
dimensional study enables us to analyze the impact of 
different JVM and application features on cache 
performance, and we find that JIT compilation’s 
double-caching and pointer chasing together with the 
large working set of garbage collection affect cache 
performance in several aspects. The major observations of 
the paper are as follows: 



• For most Java applications, L1 instruction cache 
performance is mainly determined by the execution 
engine. 

• Garbage collection in the JIT execution mode is more 
frequent than in the interpreted mode since in JIT 
mode compiled native code also resides in the heap 
and increases the memory footprint substantially. 

• Both data cache read and write miss rates in the 
garbage collection are much higher than those in the 
execution engine. Two factors account for the high 
miss rate in the garbage collection phase. First, 
garbage collector’s working set (the heap) is too large 
to fit into the L1 data cache, which means that 
garbage collector has more conflict and capacity 
misses than the execution engine. Second, the pointer 
chasing algorithm used in the garbage collector 
module causes many compulsory misses in the data 
cache. 

• Data cache performance in the JIT mode is worse 
than in the interpreted mode. The performance 
deterioration of data cache reads in the JIT mode is 
due to the decreasing of method bytecode locality 
since in the JIT mode bytecodes are read into the L1 
data cache only for compilation, while in the 
interpreted mode bytecodes of a method are fetched 
into the L1 data cache whenever the method is 
interpreted. As the result of decreasing bytecode 
reads in the L1 data cache, data cache read miss rate 
increases. The performance deterioration of data 
cache writes in the JIT mode is due to compiled code 
installation, which incurs compulsory write misses. 

• As cache size increases, data cache performance in 
the execution phase improves more than in the 
garbage collection phase, and a larger data cache is 
more effective on eliminating read misses than write 
misses in both the execution engine and the garbage 
collection. 

• The impact that a change in the data set has over 
cache performance varies depending on the JVM 
phase and cache access type. In JIT mode, as the data 
set changes from s1 to s100, the instruction cache and 
data cache write miss rates of the execution engine 
decrease, while data cache read miss rate of the 
execution engine increases. Contrary to the notable 
cache performance differences in the JIT mode, in the 
interpreted mode, cache performance of the execution 
engine varies little as data set increases on most 
applications. For the garbage collection in either 
execution mode, data cache performance deteriorates 
when data set increases from s1 to s100, while 
varying data set affects little the instruction cache 
performance. 
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