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Abstract 

The UltraSPARC T1 (Niagara) from Sun 

Microsystems is a new multi-threaded processor that 

combines Chip Multiprocessing (CMP) and Simultaneous 

Multi-threading (SMT) with an efficient instruction 

pipeline so as to enable Chip Multithreading (CMT). Its 

design is based on the decision not to focus the 

performance of single or dual threads, but rather to 

optimize for multithreaded performance in a commercial 

server environment that tends to feature workloads with 

large amounts of thread level parallelism (TLP). This 

paper presents a study of Niagara using SPEC’s latest 

Java server benchmark (SPECjbb2005) and provides 

some insight into the impact of the architectural 

characteristics and chip design decisions. According to 

our study, we found that adding an additional hardware 

thread per core can achieve up to 75% of the performance 

of adding an additional core. Moreover, we show that any 

additional hardware thread beyond two and up to the limit 

of four can achieve approximately 45% of the 

improvements of a single core. 

 

1. Introduction 

For the past several years, microarchitecture 

designers have been using process scaling and aggressive 

speculation as the means for improving processors 

performance. It is a common belief in the research 

community that the performance growth of 

microarchitectures will slow substantially due to poor wire 

scaling and diminishing improvements in clock rates as 

the semiconductor feature size scales down [1]. For this 

reason, recent trends in microprocessor architectures have 

diverged from previous well-studied designs, basically 

driven by the increasing demands for performance along 

with power efficiency. Such approaches move away from 

single core architectures and experiment with concepts 

based on multiple cores and multithreaded designs [2, 3]. 

Sun's UltraSPARC T1 [4, 5] is such a processor.  

A processor like Niagara is designed for favoring 

overall throughput by exploiting thread level parallelism. 

Niagara implements a combination of chip multi-

processing (CMP) and simultaneous multi-threading 

(SMT) design to form a chip multi-threaded organization 

(CMT). Sun’s architects selected an eight core CMP with 

each core being able to handle four hardware threads, 

which results in an equivalent 32-way machine, virtually 

presented to the operating system. From this design point, 

we can analyze its performance and quantify the benefits 

that additional cores and/or additional hardware threads 

have on a Java server workload benchmark like 

SPECjbb2005 [6] which intents to stress processor and 

cache implementation along with system’s scalability and 

memory hierarchy performance.  

 

2. Description of UltraSPARC T1 Architecture 

In November 2005, SUN released its latest 

microprocessor, the UltraSPARC T1, formerly known as 

"Niagara" [4, 5]. The distinct design principle of the 

processor is the decision to optimize Niagara for 

multithreaded performance. This approach promises 

increased performance by improving throughput, the total 

amount of work done across multiple threads of execution. 

This is especially effective in commercial server 

applications such as web services and databases that tend 

to have workloads with large amounts of thread level 

parallelism (TLP). 

The Niagara architecture, shown in Figure 1, consists 

of eight simple, in-order cores, or individual execution 

pipelines, with each one of them being able to handle four 

active context threads that share the same pipeline, the 

Sparc pipe. This configuration allows the processor to 

support up to 32 hardware threads in parallel and 

simultaneously execute eight of them per CPU cycle. The 

striking feature of the processor that allows it to achieve 

higher levels of throughput is that the hardware can hide 

the memory and pipeline stalls on a given thread by 

effectively scheduling the other threads in a pipeline with 

a zero-cycle switch penalty.  

 

Figure 1. UltraSPARC T1 architecture [5] 

In addition to the 32-way multi-threaded architecture, 

Niagara contains a high-speed, low-latency crossbar that 

connects and synchronizes the 8 on-chip cores, L2 cache 

memory banks and the other shared resources of the CPU. 

Due to this crossbar, the UltraSPARC T1 processor can be 

considered a Symmetric Multiprocessor system (SMP) 

implemented on chip. Furthermore, in order to achieve 

low levels of memory latency and be able to provide the 

required volume of data to all of the 8 cores operate in 

parallel, SUN included four dual-data rate 2 (DDR2) 
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DRAM on-chip channels. This memory configuration 

achieves a maximum bandwidth in excess of 20GBytes/s, 

and a capacity of up to 128 Gbytes.  

The above characteristics allow the UltraSPARC T1 

processor to offer a new thread-rich environment for 

developers and promise higher level of throughput by 

hiding memory and pipeline stalls and favoring the 

execution of multiple threads in parallel. Taking 

everything into consideration, the processor has the 

potential to scale well with applications that are 

throughput oriented, particularly web, transaction 

processing, and Java technology services. The classes of 

applications that Niagara is expected to scale up are: 

multi-threaded applications, multi-process applications, 

Java technology-based applications and multi-instance 

applications. 

 

3. Description of Performance counters and tools to 

extract data 

The Niagara processor includes in its design a set of 

hardware performance counters [5, 7] that allows the 

counting of a series of processor events per hardware 

thread context which include cache misses, pipeline stalls 

and floating-point operations. Statistics of processor 

events can be collected in hardware with little or no 

overhead, making these counters a powerful tool for 

monitoring an application and analyzing its performance. 

The Niagara and the Solaris 10 operating system provide a 

set of tools for configuring and accessing these counters. 

The basic tools that we used were: cpustat and cputrack 

[8]. Table 1 contains the microarchitectural events that all 

of theses tools allow us to monitor along with a small 

description of each one of them. In addition to these 

events mpstat and vmstat [8] tools of Solaris 10 can 

provide higher level of statistics for individual hardware-

threads and virtual memory, respectively.  

Table 1. Events of instrumented performance counters 

Event Name Description 

Instr_cnt   Number of completed instructions.  

SB_full Number of store buffer full cycles  

FP_instr_cnt Number of completed floating-point 

instructions 

IC_miss Number of instruction cache (L1) misses 

DC_miss Number of data cache (L1) misses for loads  

ITLB_miss Number of instruction TLB miss trap taken. 

DTLB_miss Number of data TLB miss trap taken (includes 

real_translation misses). 

L2_imiss Number of secondary cache (L2) misses due 

to instruction cache requests. 

L2_dmiss_ld Number of secondary cache (L2) misses due 

to data cache load requests. 

 

In addition to the above tools, we used Solaris’ psrset 

and psradm [8] administrator tools for changing the 

configuration of T1 processor. These tools allow the user 

to create custom sets of hardware context thread slots and 

specifically bind processes for execution on them. Having 

this flexibility, we were able to execute processes in an 8-

way and 16-way like execution by creating sets of one and 

two hardware context thread slots for each of the 8 

different cores, respectively. By using all of the 

aforementioned tools, we were able to monitor the 

operation of the UltraSPARC processor in all of the 

different phases of the SPECjbb2005 benchmark 

execution. 

 

4. SPECjbb2005 overview 

Enterprise Java workloads constitute an important 

class of applications that feature the creation of numerous 

small objects with relatively short life-time. These short-

lived objects, which most of the times process various 

kinds of transactions with databases, create a significant 

pressure on the garbage collection subsystem of the Java 

Virtual Machine (JVM). SPECjbb2005 (Java Server 

Benchmark) [6] is the latest iteration from SPEC that 

attempts to model a self contained, three-tier system that 

includes clients, server and database elements. In this 

paper we used SPECjbb2005 as the benchmark for 

studying Niagara.  

In SPECjbb2005 [6], each client is represented by an 

individual thread that sequentially executes a set of 

operations on a database emulated by a collection of Java 

objects. The database contains approximately 25MB of 

data. Every instance of a database is considered as an 

individual warehouse. During the execution of the 

benchmark the overall number of the individual 

warehouses is scaled so as to allow more clients to 

connect simultaneously to the available warehouses and 

therefore more threads execute in parallel. The 

performance measured by SPECjbb covers CPUs, caches 

and the memory hierarchy of the system without 

generating any I/O disk and network traffic since all of the 

three tiers of the modeled system are implemented in the 

same JVM. Furthermore, the reported score is a 

throughput rate metric that is proportional to the overall 

number of transactions that the system is able to serve in a 

specific time interval and therefore reflects the ability of 

the server to scale to larger number of executed threads.  

 

5. Methodology 

 

The UltraSPARC T1 used for this study was 

configured as shown in the table below: 

Table 2. Experimental Parameters 

Parameter Value 

Operating 

System 
SunOS 5.10 Generic_118833-17 

CPU Frequency 1000 MHz 

Main Memory 

Size 
8 Gbytes DDR2 DRAM 

JVM version Java(TM) 2 build 1.5.0_06-b05 

SPECjbb 

Execution 

Command 

Java -Xmx2560m -Xms2560m -Xmn1536m -

Xss128k -XX:+UseParallelOldGC -

XX:ParallelGCThreads=15 -

XX:+AggressiveOpts -

XX:LargePageSizeInBytes=256m -cp 

jbb.jar:check.jar spec.jbb.JBBmain -propfile 

SPECjbb.props 

 

In order to quantify the benefits of using additional 

cores and/or additional threads on a SPECjbb2005 kind 
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workload, we conducted a series of experiments using 

different system configurations. With the help of Solaris’ 

processor sets (psrset tool [8]) we created three different 

configurations using in any time all of the eight cores and 

varying only the number of activated hardware threads per 

core. The three selected configurations were: a) eight 

cores using one thread per core (equiv. to an 8-way CMP), 

b) eight cores, using two threads per core (equiv. to a 16-

way CMT with each core having a virtual 2-way SMT 

configuration) and finally c) eight cores using 4 hardware 

threads per core (equiv. to a 32–way CMT). To be able to 

analyze the microarchitectural impact of the previous 

configurations, we used both the microarchitectural 

performance counters provided by the processor and the 

information provided by the operating system tools. 

 

6. Results and Analysis 

In the first experiment we evaluate the performance 

benefits of adding additional cores in a CMP 

configuration for the case of SPECjbb. For doing so, we 

configured our processor according to the first 

configuration, which has only one active hardware context 

thread per core, and therefore models a CMP system. 

Since SPECjbb gradually increases the overall number of 

warehouses during a regular run, we were able to analyze 

the effect of increasing the actual number of cores being 

used. Figure 2 shows the SPECjbb score for gradually 

increasing number of warehouses for the first case study.  
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Figure 2. SPECjbb scores for 8 cores x 1 thread per core 

As we scale the number of warehouses there is the 

possibility that the OS could schedule multiple threads per 

core or even migrates threads during the execution of the 

benchmark between different available cores. In order to 

analyze the behavior of the threads throughout the 

execution of the benchmark, we measured the involuntary 

context switches that took place in every core. Notice that 

for the case of Niagara, only one thread is executed in 

every core per cycle. When a memory or pipeline stall 

takes place in a core, the execution is switched to another 

available thread so as to hide the stall penalty and improve 

the overall throughput. For the case of Niagara, this kind 

of context switches is called voluntary context switches. 

In addition to that, the scheduler can force the switch 

between threads when more than one thread is available 

for execution and the one executing has exceeded a 

specific time interval. These switches are named 

involuntary context switches. When using only one thread 

per core, according to the first used configuration, an 

involuntary context switch forces the executing thread out 

of the core in order to execute another available thread. 

Therefore, for the cases of one up to eight warehouses in 

which cases there are at most eight available threads, the 

number of involuntary switches can show if a thread 

migrates between the available cores throughout the 

benchmark execution. This number of involuntary context 

switches for the cases of one up to eight warehouses was 

found extremely low. On the other hand, when the number 

of warehouses goes beyond eight and therefore more than 

one thread has to be executed on some of the cores, this 

number of switches increases significantly. This provides 

confidence that for the cases of one up to eight 

warehouses, the threads do not migrate between cores, 

allowing us in this way to study the effectiveness of using 

additional cores. Moreover, such a behavior shows that all 

of the cores are equally utilized in the cases of more than 

eight warehouses as benchmark scales up to more 

warehouses and therefore more than two threads have to 

be executed in some of the cores.  

From Figure 2 we can clearly see that there are two 

distinct regions: The first one covers the cases between 1 

to 8 warehouses while the second one covers the cases 

from 9 up to 16 warehouses. In the first region we can see 

that the addition of an extra workload thread (allocated to 

a new core since every core uses only one hardware 

context thread) forms a linear relation with the SPECjbb 

score. By analyzing the data we found that each additional 

core adds approximately 2520 additional SPECjbb points 

to the overall score. To verify this behavior, we run the 

benchmark only on one core using one thread, which is 

equivalent to an in-order, single thread processor. Figure 3 

shows the result of the execution. From this figure we can 

see that the score for a small number of warehouses is 

constant and close to 2500 which is in agreement with the 

previous regression analysis. Moreover, since the score is 

a rate metric of completed transactions in a given time 

interval, the addition of extra threads although decreases 

the completed transactions per thread, does not have a big 

effect on the score since the core is almost fully utilized 

and completes the same overall transactions along all 

concurrent executed warehouses. This is an indication that 

the memory hierarchy is capable of keeping the core busy 

by providing data to all the threads and the small decrease 

in score, according to our measurements using mpstat tool 

[8], is due to the gradually increasing number of 

involuntary context switches. We should note that the 

initial improvement from the first up to the third 

warehouse is due to the Just-in Time (JIT) compilation of 

JVM which translates the workloads bytecode into native 

machine code and therefore accelerates the execution of 

each Java thread. 

The second region of Figure 2 shows a constant 

behavior when executing more than one thread per core 

and context switching takes place. This behavior shows 

that there is very small performance degradation due to 

the necessary context switches that have to take place in 

order to execute the additional threads. Table 3 contains 

the characteristics throughout the execution of benchmark 
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for the first configuration as were captured using the 

provided performance counters. We should note that 

throughout the analysis, the IPC calculated as an average 

IPC across all the cores that is the actual number of 

instruction executed per core divided by the number of 

CPU cycles and the number of overall used cores. 
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Figure 3. SPECjbb scores for 1 core x 1 thread per core 

Table 3. Performance Counters for 8 cores x 1 thread 

Characteristic Average Value 

IPC   0.27 

IC_misses 1.37 % 

DC_misses 3 % 

DTLB_misses 0.0001 % 

L2_imisses 0.01 % 

L2_dmisses_ld 0.66% 

SB_full 21% 

 

From Table 3 we can see that all the percentages of 

the performance counters are very low which shows that 

the processor is able to feed the eight cores with the 

required data and can follow the benchmark memory 

footprint. This behavior was expected since every core 

handles only one thread and there is no resource sharing 

per core for fetching the needed data, allowing in that way 

the executed threads to take advantage of the high 

memory bandwidth the processor provides. In all of the 

cases the value of gathered events follows the same 

pattern as the one shown in Figure 4 for the case of DC 

misses. Initially we have a high percentage of misses, 

which are caused by the compulsory misses and the 

execution of JIT. After that initial area, we could see cases 

that are different from the average value only when the 

benchmark finishes a set of warehouses and moves to the 

next one by loading a new set. This static behavior is 

another indication that in the case of the second region of 

Figure 2, the benchmark score saturates because each core 

runs in full speed and not due to a bottleneck in one of the 

memory or communication resources.  

In order to examine the impact of SMT and the 

benefits of adding additional hardware context threads, we 

configured Niagara as a 16-way CMT machine by 

enabling two hardware context slots per core. Figure 5 

shows the measured scores for each individual number of 

warehouses for the case of having two hardware threads 

per core. In this case, we can separate the figure in three 

different regions of interest. The first one, which is 

actually the same region with the first region of the 

previous analyzed case, has in this case a benefit of 

approximately 2540 SPECjbb marks per inserted core in 

the final reported scores. The second region is of more 

interest in this experiment since in this region, which 

covers the cases of 8 to 16 warehouses, by increasing the 

number of warehouses we gradually increase the number 

of hardware threads that are used by the benchmark to 

service the request for the warehouses. Following the 

same analysis as before we found that every additional 

hardware thread yields to almost 1960 SPECjbb points, 

which is lower than the benefit we have for the case of 

every additional core of region 1. Since in this case each 

core handles more than one thread the communication 

infrastructure is shared between the two threads and it is 

expected to have a small degradation in the benefit of 

adding an additional hardware thread. Despite this 

degradation, we can see that every additional hardware 

thread can achieve 75% of the performance benefit of 

adding an additional single core. Additional hardware 

threads achieve this gain with significantly less area and 

power requirements compared to using additional cores.  
 

 
Figure 4. DC misses for the case of 8 cores x 1 thread 
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Figure 5. SPECjbb scores for 8 cores x 2 threads per core 

In Table 4 we can see the average performance 

characteristics throughout the execution of the benchmark 

for the second studied configuration. As for the case of 

Table 3, the values of the performance counters of Table 4 

are relatively low which shows that the characteristics 

captured by the counters do not significantly affect the 

performance of the benchmark. Therefore, the only reason 

for the benchmark saturation in the region 3 of Figure 5 is 

again the fact that all of the cores are fully utilized. During 

region 2 we measured an increase in the involuntary 

context switches per core, which is actually the number of 

times each simple core that can execute only one hardware 

thread per cycle freezes the currently executing hardware 

thread and switches the execution to a new available one. 

This increased number of context switches was expected 
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since each simple core can now execute two threads and 

have to switch between them, ending up in this way in a 

smaller benefit per extra used thread. Moreover the 

performance data show that adding an extra thread can 

effectively keep a high throughput for twice the number of 

warehouses resulting in almost twice the score.  

Table 4. Performance Counters for 8 cores x 2 threads case 

Characteristic Average Value 

IPC   0.44 

IC_misses 1.6 % 

DC_misses 3.3 % 

DTLB_misses 0.0001 % 

L2_imisses 0.01% 

L2_dmisses_ld 0.75 %  

SB_full 20.2 % 
 

The final case of study shown in Figure 6, concerns 

the execution of the benchmark using the processor 

without any restrictions that is using 8 cores with 4 

hardware threads activated per core. Following the same 

analysis we can divide the SPECjbb score curve of figure 

6 in 5 distinct regions with the first two cases being the 

same as the previously analyzed one. The third region in 

this case shows the SMT benefits of adding more than two 

hardware threads per core. In this case our analysis 

showed that each additional thread yields to 

approximately 1150 SPECjbb score points. That is 45% of 

the score benefit of region 1 for adding an additional core. 

Therefore from this figure we can see that by using more 

than two threads per core we gradually have diminishing 

returns in terms of SMT efficiency of using more 

hardware threads. Especially for the case of higher 

number of warehouses the performance counter analysis 

along with the profiling of each cores showed that each 

core is highly utilized and has fewer opportunities to hide 

latency through zero delay switching between threads 

ready for execution. 
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Figure 6. SPECjbb scores for 8 cores x 4 threads per core 

Regions 1 up to 3 show the same behavior as in the 

previously analyzed cases. The reason that performance 

counter statistics are slightly increased for these regions is 

due to the philosophy of the execution of the benchmark. 

SPECjbb2005 follows a ramp up procedure during which 

the initial set of warehouses are executed for only 30 

seconds [6]. On the other hand the statistic for the 

previous cases concern the overall execution that includes 

the execution in the cases after each peak performance 

where the benchmark execution saturates and each set of 

warehouses is executed for 4 minutes [6].  

Table 5. Performance Counters for 8 cores x 4 threads case 

Characteristic 
Region 

1 

Region 

2 

Region 

3 

Region 

4 

Region 

5 

IPC   0.21 0.54 0.55 0.67 0.43 

IC_misses 3.9 % 1.9 % 1.9 % 2.1 % 2.2 % 

DC_misses 3.4 % 3.4 % 3.4 % 3.5 % 2.7 % 

DTLB_misses 0.0001% 0.001%  0.013 0.01 % 0.06 % 

L2_imisses 0.048 % 0.01% 0.04 % 0.02 % 0.2 % 

L2_dmisses_ld 0.8% 0.78 %  0.8 %  0.79 % 0.55 % 

 

Region 4 represents the area were the benchmark is 

saturated. In this region every additional software thread 

causes degradation in the overall score due to  the fact that 

the processor has to execute more threads than the 

available hardware context threads can handle 

simultaneously. In this case, by using mpstat, we saw that 

more threads cause the invocation of more context 

switches between the threads already assigned  and the 

one waiting to be scheduled. As in the previous cases, in 

this region the utilatization of the cores is kept high since 

there are many available for execution threads, which is 

reflected by the increased average number of IPC in this 

region.  

Region 5 shows a big degradation in the overall score, 

which is mainly caused by the high number of threads 

available for execution. In addition to that, in region 4 we 

can observe a couple of dips in the score. After analyzing 

the performance counters along with the available system-

level information provided by OS and JVM, we concluded 

that this big gap in score along with the dips of region 4 is 

due to the invocation of the garbage collector (GC) of 

JVM. We profiled the operation of GC and saw that after 

the point of 44 warehouses the GC invokes a lot of times. 

Every time GC invokes, JVM freezes the execution of the 

Java thread and therefore the actual number and duration 

of GC invocation in seconds is inversely proportional to 

the overall performance of execution of threads. Each 

transaction in SPECjbb creates short-lived objects that 

after the completion of their operation persist in heap 

memory until the GC takes action and frees the occupied 

memory space. The more warehouses, the more short-

lived data created in the time interval of the execution of a 

set of warehouses. In the case of 38 and 41 warehouses 

the number of threads is high enough to create a large 

number of short-lived data, pushing in that way the usage 

of heap memory close to 100%. In order to handle this 

situation, JVM calls GC several times so as to free 

memory space. The point of 44 simultaneous warehouse 

hits the limit that the temporal data reaches the maximum 

limit of heap many times through the execution of the 

warehouses and therefore the GC is called multiple time. 

After that point GC calls are significantly increased and 

take more time to complete. To be more specific, our 

measurements showed that beyond the point of 44 

warehouses the execution of GC consumes almost one 

third of the four minutes execution time interval of 

SPECjbb [6]. Moreover, after this specific point, every 
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execution of GC last almost 6 seconds when in the case of 

the previous regions GC duration is limited to 0.2 seconds. 

Such a radical change in memory mapping is shown by 

the increased value of DTLB_misses in region 5 with 

L2_dmisses being on average unchanged. This significant 

consumption of time in GC in order to keep the used heap 

memory in its limits is reflected by the big degradation in 

SPECjbb score. Notice that the limits of regions 4 and 5 

depend on the JVM heap size and the available main 

memory of the system under study. Therefore, the 

previous limits mainly concern the specific system that we 

used for our study and its configuration and cannot 

summarize the scaling limits of the UltraSPARC T1 in 

general.   
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Figure 7. IPC of three configurations 

Figure 7 shows the average IPC per core, measured 

for all of the three different configurations used during the 

previous analysis when executing SPECjbb. As we can 

see from the graph, the simplest SMP configuration of 

every core using two threads gives on average 1.8x 

speedup over the CMP configuration and when every core 

is configured as a SMT with four hardware threads we can 

see an average 1.27x and 2.3x speedup over the 2-way 

SMT per core and the single-threaded CMP, respectively.  
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Figure 8.  Best case SPECjbb score speedup 

Finally, Figure 8 shows the SPECjbb score speedup 

over the number of virtual processors used. The first point 

represents the case of using one core and only one thread 

per core that is a single-threaded, in-order processor and 

the next three points represent the three different 

configurations we analyzed throughout the previous 

analysis section. This speedup is an indication of the top 

performance we can gain from Niagara and its scalability 

when switching between the different configurations. 

According to this figure, using all of the hardware context 

threads of all the cores can achieve a speedup of almost 

20x the performance of the single thread. 

 

6. Conclusions 

In this paper we analyzed the impact of the 

architectural characteristics and chip design decisions of 

the Niagara CMT processor, which is designed for 

favoring overall throughput by exploiting thread level 

parallelism in combination with multiple cores. Through 

our experiments we quantify the benefits of using 

additional cores and/or threads on a well-known Java 

server workload. Our experiments showed that Niagara 

can achieve 75% of the performance improvement of 

adding an additional simple core by simple adding only an 

additional hardware thread per core. Moreover, we 

showed that adding more than two hardware threads per 

core we can achieve a 45% of the improvement for adding 

a single threaded core.  
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