
 1

CMP/CMT Scaling of SPECjbb2005 on UltraSPARC T1

Dimitris Kaseridis and Lizy K. John
Department of Electrical and Computer Engineering

The University of Texas at Austin

{kaseridi, ljohn}@ece.utexas.edu

Abstract

The UltraSPARC T1 (Niagara) from Sun

Microsystems is a new multi-threaded processor that

combines Chip Multiprocessing (CMP) and Simultaneous

Multi-threading (SMT) with an efficient instruction

pipeline so as to enable Chip Multithreading (CMT). Its

design is based on the decision not to focus the

performance of single or dual threads, but rather to

optimize for multithreaded performance in a commercial

server environment that tends to feature workloads with

large amounts of thread level parallelism (TLP). This

paper presents a study of Niagara using SPEC’s latest

Java server benchmark (SPECjbb2005) and provides

some insight into the impact of the architectural

characteristics and chip design decisions. According to

our study, we found that adding an additional hardware

thread per core can achieve up to 75% of the performance

of adding an additional core. Moreover, we show that any

additional hardware thread beyond two and up to the limit

of four can achieve approximately 45% of the

improvements of a single core.

1. Introduction

For the past several years, microarchitecture

designers have been using process scaling and aggressive

speculation as the means for improving processors

performance. It is a common belief in the research

community that the performance growth of

microarchitectures will slow substantially due to poor wire

scaling and diminishing improvements in clock rates as

the semiconductor feature size scales down [1]. For this

reason, recent trends in microprocessor architectures have

diverged from previous well-studied designs, basically

driven by the increasing demands for performance along

with power efficiency. Such approaches move away from

single core architectures and experiment with concepts

based on multiple cores and multithreaded designs [2, 3].

Sun's UltraSPARC T1 [4, 5] is such a processor.

A processor like Niagara is designed for favoring

overall throughput by exploiting thread level parallelism.

Niagara implements a combination of chip multi-

processing (CMP) and simultaneous multi-threading

(SMT) design to form a chip multi-threaded organization

(CMT). Sun’s architects selected an eight core CMP with

each core being able to handle four hardware threads,

which results in an equivalent 32-way machine, virtually

presented to the operating system. From this design point,

we can analyze its performance and quantify the benefits

that additional cores and/or additional hardware threads

have on a Java server workload benchmark like

SPECjbb2005 [6] which intents to stress processor and

cache implementation along with system’s scalability and

memory hierarchy performance.

2. Description of UltraSPARC T1 Architecture

In November 2005, SUN released its latest

microprocessor, the UltraSPARC T1, formerly known as

"Niagara" [4, 5]. The distinct design principle of the

processor is the decision to optimize Niagara for

multithreaded performance. This approach promises

increased performance by improving throughput, the total

amount of work done across multiple threads of execution.

This is especially effective in commercial server

applications such as web services and databases that tend

to have workloads with large amounts of thread level

parallelism (TLP).

The Niagara architecture, shown in Figure 1, consists

of eight simple, in-order cores, or individual execution

pipelines, with each one of them being able to handle four

active context threads that share the same pipeline, the

Sparc pipe. This configuration allows the processor to

support up to 32 hardware threads in parallel and

simultaneously execute eight of them per CPU cycle. The

striking feature of the processor that allows it to achieve

higher levels of throughput is that the hardware can hide

the memory and pipeline stalls on a given thread by

effectively scheduling the other threads in a pipeline with

a zero-cycle switch penalty.

Figure 1. UltraSPARC T1 architecture [5]

In addition to the 32-way multi-threaded architecture,

Niagara contains a high-speed, low-latency crossbar that

connects and synchronizes the 8 on-chip cores, L2 cache

memory banks and the other shared resources of the CPU.

Due to this crossbar, the UltraSPARC T1 processor can be

considered a Symmetric Multiprocessor system (SMP)

implemented on chip. Furthermore, in order to achieve

low levels of memory latency and be able to provide the

required volume of data to all of the 8 cores operate in

parallel, SUN included four dual-data rate 2 (DDR2)

 2

DRAM on-chip channels. This memory configuration

achieves a maximum bandwidth in excess of 20GBytes/s,

and a capacity of up to 128 Gbytes.

The above characteristics allow the UltraSPARC T1

processor to offer a new thread-rich environment for

developers and promise higher level of throughput by

hiding memory and pipeline stalls and favoring the

execution of multiple threads in parallel. Taking

everything into consideration, the processor has the

potential to scale well with applications that are

throughput oriented, particularly web, transaction

processing, and Java technology services. The classes of

applications that Niagara is expected to scale up are:

multi-threaded applications, multi-process applications,

Java technology-based applications and multi-instance

applications.

3. Description of Performance counters and tools to

extract data

The Niagara processor includes in its design a set of

hardware performance counters [5, 7] that allows the

counting of a series of processor events per hardware

thread context which include cache misses, pipeline stalls

and floating-point operations. Statistics of processor

events can be collected in hardware with little or no

overhead, making these counters a powerful tool for

monitoring an application and analyzing its performance.

The Niagara and the Solaris 10 operating system provide a

set of tools for configuring and accessing these counters.

The basic tools that we used were: cpustat and cputrack

[8]. Table 1 contains the microarchitectural events that all

of theses tools allow us to monitor along with a small

description of each one of them. In addition to these

events mpstat and vmstat [8] tools of Solaris 10 can

provide higher level of statistics for individual hardware-

threads and virtual memory, respectively.

Table 1. Events of instrumented performance counters

Event Name Description

Instr_cnt Number of completed instructions.

SB_full Number of store buffer full cycles

FP_instr_cnt Number of completed floating-point

instructions

IC_miss Number of instruction cache (L1) misses

DC_miss Number of data cache (L1) misses for loads

ITLB_miss Number of instruction TLB miss trap taken.

DTLB_miss Number of data TLB miss trap taken (includes

real_translation misses).

L2_imiss Number of secondary cache (L2) misses due

to instruction cache requests.

L2_dmiss_ld Number of secondary cache (L2) misses due

to data cache load requests.

In addition to the above tools, we used Solaris’ psrset

and psradm [8] administrator tools for changing the

configuration of T1 processor. These tools allow the user

to create custom sets of hardware context thread slots and

specifically bind processes for execution on them. Having

this flexibility, we were able to execute processes in an 8-

way and 16-way like execution by creating sets of one and

two hardware context thread slots for each of the 8

different cores, respectively. By using all of the

aforementioned tools, we were able to monitor the

operation of the UltraSPARC processor in all of the

different phases of the SPECjbb2005 benchmark

execution.

4. SPECjbb2005 overview

Enterprise Java workloads constitute an important

class of applications that feature the creation of numerous

small objects with relatively short life-time. These short-

lived objects, which most of the times process various

kinds of transactions with databases, create a significant

pressure on the garbage collection subsystem of the Java

Virtual Machine (JVM). SPECjbb2005 (Java Server

Benchmark) [6] is the latest iteration from SPEC that

attempts to model a self contained, three-tier system that

includes clients, server and database elements. In this

paper we used SPECjbb2005 as the benchmark for

studying Niagara.

In SPECjbb2005 [6], each client is represented by an

individual thread that sequentially executes a set of

operations on a database emulated by a collection of Java

objects. The database contains approximately 25MB of

data. Every instance of a database is considered as an

individual warehouse. During the execution of the

benchmark the overall number of the individual

warehouses is scaled so as to allow more clients to

connect simultaneously to the available warehouses and

therefore more threads execute in parallel. The

performance measured by SPECjbb covers CPUs, caches

and the memory hierarchy of the system without

generating any I/O disk and network traffic since all of the

three tiers of the modeled system are implemented in the

same JVM. Furthermore, the reported score is a

throughput rate metric that is proportional to the overall

number of transactions that the system is able to serve in a

specific time interval and therefore reflects the ability of

the server to scale to larger number of executed threads.

5. Methodology

The UltraSPARC T1 used for this study was

configured as shown in the table below:

Table 2. Experimental Parameters

Parameter Value

Operating

System
SunOS 5.10 Generic_118833-17

CPU Frequency 1000 MHz

Main Memory

Size
8 Gbytes DDR2 DRAM

JVM version Java(TM) 2 build 1.5.0_06-b05

SPECjbb

Execution

Command

Java -Xmx2560m -Xms2560m -Xmn1536m -

Xss128k -XX:+UseParallelOldGC -

XX:ParallelGCThreads=15 -

XX:+AggressiveOpts -

XX:LargePageSizeInBytes=256m -cp

jbb.jar:check.jar spec.jbb.JBBmain -propfile

SPECjbb.props

In order to quantify the benefits of using additional

cores and/or additional threads on a SPECjbb2005 kind

 3

workload, we conducted a series of experiments using

different system configurations. With the help of Solaris’

processor sets (psrset tool [8]) we created three different

configurations using in any time all of the eight cores and

varying only the number of activated hardware threads per

core. The three selected configurations were: a) eight

cores using one thread per core (equiv. to an 8-way CMP),

b) eight cores, using two threads per core (equiv. to a 16-

way CMT with each core having a virtual 2-way SMT

configuration) and finally c) eight cores using 4 hardware

threads per core (equiv. to a 32–way CMT). To be able to

analyze the microarchitectural impact of the previous

configurations, we used both the microarchitectural

performance counters provided by the processor and the

information provided by the operating system tools.

6. Results and Analysis

In the first experiment we evaluate the performance

benefits of adding additional cores in a CMP

configuration for the case of SPECjbb. For doing so, we

configured our processor according to the first

configuration, which has only one active hardware context

thread per core, and therefore models a CMP system.

Since SPECjbb gradually increases the overall number of

warehouses during a regular run, we were able to analyze

the effect of increasing the actual number of cores being

used. Figure 2 shows the SPECjbb score for gradually

increasing number of warehouses for the first case study.

0.00

5000.00

10000.00

15000.00

20000.00

25000.00

30000.00

35000.00

40000.00

45000.00

0 2 4 6 8 10 12 14 16 18

Number of warehouses

S
P

E
C

jb
b

 s
c
o

re
s

SPECJbb Score

Linear interpolation

Region 2

Benchmark

Saturation
Region 1

2521x per

additional core

Figure 2. SPECjbb scores for 8 cores x 1 thread per core

As we scale the number of warehouses there is the

possibility that the OS could schedule multiple threads per

core or even migrates threads during the execution of the

benchmark between different available cores. In order to

analyze the behavior of the threads throughout the

execution of the benchmark, we measured the involuntary

context switches that took place in every core. Notice that

for the case of Niagara, only one thread is executed in

every core per cycle. When a memory or pipeline stall

takes place in a core, the execution is switched to another

available thread so as to hide the stall penalty and improve

the overall throughput. For the case of Niagara, this kind

of context switches is called voluntary context switches.

In addition to that, the scheduler can force the switch

between threads when more than one thread is available

for execution and the one executing has exceeded a

specific time interval. These switches are named

involuntary context switches. When using only one thread

per core, according to the first used configuration, an

involuntary context switch forces the executing thread out

of the core in order to execute another available thread.

Therefore, for the cases of one up to eight warehouses in

which cases there are at most eight available threads, the

number of involuntary switches can show if a thread

migrates between the available cores throughout the

benchmark execution. This number of involuntary context

switches for the cases of one up to eight warehouses was

found extremely low. On the other hand, when the number

of warehouses goes beyond eight and therefore more than

one thread has to be executed on some of the cores, this

number of switches increases significantly. This provides

confidence that for the cases of one up to eight

warehouses, the threads do not migrate between cores,

allowing us in this way to study the effectiveness of using

additional cores. Moreover, such a behavior shows that all

of the cores are equally utilized in the cases of more than

eight warehouses as benchmark scales up to more

warehouses and therefore more than two threads have to

be executed in some of the cores.

From Figure 2 we can clearly see that there are two

distinct regions: The first one covers the cases between 1

to 8 warehouses while the second one covers the cases

from 9 up to 16 warehouses. In the first region we can see

that the addition of an extra workload thread (allocated to

a new core since every core uses only one hardware

context thread) forms a linear relation with the SPECjbb

score. By analyzing the data we found that each additional

core adds approximately 2520 additional SPECjbb points

to the overall score. To verify this behavior, we run the

benchmark only on one core using one thread, which is

equivalent to an in-order, single thread processor. Figure 3

shows the result of the execution. From this figure we can

see that the score for a small number of warehouses is

constant and close to 2500 which is in agreement with the

previous regression analysis. Moreover, since the score is

a rate metric of completed transactions in a given time

interval, the addition of extra threads although decreases

the completed transactions per thread, does not have a big

effect on the score since the core is almost fully utilized

and completes the same overall transactions along all

concurrent executed warehouses. This is an indication that

the memory hierarchy is capable of keeping the core busy

by providing data to all the threads and the small decrease

in score, according to our measurements using mpstat tool

[8], is due to the gradually increasing number of

involuntary context switches. We should note that the

initial improvement from the first up to the third

warehouse is due to the Just-in Time (JIT) compilation of

JVM which translates the workloads bytecode into native

machine code and therefore accelerates the execution of

each Java thread.

The second region of Figure 2 shows a constant

behavior when executing more than one thread per core

and context switching takes place. This behavior shows

that there is very small performance degradation due to

the necessary context switches that have to take place in

order to execute the additional threads. Table 3 contains

the characteristics throughout the execution of benchmark

 4

for the first configuration as were captured using the

provided performance counters. We should note that

throughout the analysis, the IPC calculated as an average

IPC across all the cores that is the actual number of

instruction executed per core divided by the number of

CPU cycles and the number of overall used cores.

500

1000

1500

2000

2500

3000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Number of warehouses

S
P

E
C

jb
b

2
 s

c
o

re

Figure 3. SPECjbb scores for 1 core x 1 thread per core

Table 3. Performance Counters for 8 cores x 1 thread

Characteristic Average Value

IPC 0.27

IC_misses 1.37 %

DC_misses 3 %

DTLB_misses 0.0001 %

L2_imisses 0.01 %

L2_dmisses_ld 0.66%

SB_full 21%

From Table 3 we can see that all the percentages of

the performance counters are very low which shows that

the processor is able to feed the eight cores with the

required data and can follow the benchmark memory

footprint. This behavior was expected since every core

handles only one thread and there is no resource sharing

per core for fetching the needed data, allowing in that way

the executed threads to take advantage of the high

memory bandwidth the processor provides. In all of the

cases the value of gathered events follows the same

pattern as the one shown in Figure 4 for the case of DC

misses. Initially we have a high percentage of misses,

which are caused by the compulsory misses and the

execution of JIT. After that initial area, we could see cases

that are different from the average value only when the

benchmark finishes a set of warehouses and moves to the

next one by loading a new set. This static behavior is

another indication that in the case of the second region of

Figure 2, the benchmark score saturates because each core

runs in full speed and not due to a bottleneck in one of the

memory or communication resources.

In order to examine the impact of SMT and the

benefits of adding additional hardware context threads, we

configured Niagara as a 16-way CMT machine by

enabling two hardware context slots per core. Figure 5

shows the measured scores for each individual number of

warehouses for the case of having two hardware threads

per core. In this case, we can separate the figure in three

different regions of interest. The first one, which is

actually the same region with the first region of the

previous analyzed case, has in this case a benefit of

approximately 2540 SPECjbb marks per inserted core in

the final reported scores. The second region is of more

interest in this experiment since in this region, which

covers the cases of 8 to 16 warehouses, by increasing the

number of warehouses we gradually increase the number

of hardware threads that are used by the benchmark to

service the request for the warehouses. Following the

same analysis as before we found that every additional

hardware thread yields to almost 1960 SPECjbb points,

which is lower than the benefit we have for the case of

every additional core of region 1. Since in this case each

core handles more than one thread the communication

infrastructure is shared between the two threads and it is

expected to have a small degradation in the benefit of

adding an additional hardware thread. Despite this

degradation, we can see that every additional hardware

thread can achieve 75% of the performance benefit of

adding an additional single core. Additional hardware

threads achieve this gain with significantly less area and

power requirements compared to using additional cores.

Figure 4. DC misses for the case of 8 cores x 1 thread

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Number of Warehouses

S
P

E
C

jb
b

 s
c
o

re

Region 2

1957 per

thread

Region 1

2537 per

core

Region 3

Benchmark Saturation

Figure 5. SPECjbb scores for 8 cores x 2 threads per core

In Table 4 we can see the average performance

characteristics throughout the execution of the benchmark

for the second studied configuration. As for the case of

Table 3, the values of the performance counters of Table 4

are relatively low which shows that the characteristics

captured by the counters do not significantly affect the

performance of the benchmark. Therefore, the only reason

for the benchmark saturation in the region 3 of Figure 5 is

again the fact that all of the cores are fully utilized. During

region 2 we measured an increase in the involuntary

context switches per core, which is actually the number of

times each simple core that can execute only one hardware

thread per cycle freezes the currently executing hardware

thread and switches the execution to a new available one.

This increased number of context switches was expected

 5

since each simple core can now execute two threads and

have to switch between them, ending up in this way in a

smaller benefit per extra used thread. Moreover the

performance data show that adding an extra thread can

effectively keep a high throughput for twice the number of

warehouses resulting in almost twice the score.

Table 4. Performance Counters for 8 cores x 2 threads case

Characteristic Average Value

IPC 0.44

IC_misses 1.6 %

DC_misses 3.3 %

DTLB_misses 0.0001 %

L2_imisses 0.01%

L2_dmisses_ld 0.75 %

SB_full 20.2 %

The final case of study shown in Figure 6, concerns

the execution of the benchmark using the processor

without any restrictions that is using 8 cores with 4

hardware threads activated per core. Following the same

analysis we can divide the SPECjbb score curve of figure

6 in 5 distinct regions with the first two cases being the

same as the previously analyzed one. The third region in

this case shows the SMT benefits of adding more than two

hardware threads per core. In this case our analysis

showed that each additional thread yields to

approximately 1150 SPECjbb score points. That is 45% of

the score benefit of region 1 for adding an additional core.

Therefore from this figure we can see that by using more

than two threads per core we gradually have diminishing

returns in terms of SMT efficiency of using more

hardware threads. Especially for the case of higher

number of warehouses the performance counter analysis

along with the profiling of each cores showed that each

core is highly utilized and has fewer opportunities to hide

latency through zero delay switching between threads

ready for execution.

8 cores x 4 thread per core

0

10000

20000

30000

40000

50000

60000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Number of warehouses

S
P

E
C

jb
b
 s

c
o
re

s

Region 1

2511 per

core

Region 2

1845 per

H/W

thread

Region 3

1150 per

H/W

thread

Region 4

Saturation

-100 per

S/W thread

Region 5

saturation

region

Figure 6. SPECjbb scores for 8 cores x 4 threads per core

Regions 1 up to 3 show the same behavior as in the

previously analyzed cases. The reason that performance

counter statistics are slightly increased for these regions is

due to the philosophy of the execution of the benchmark.

SPECjbb2005 follows a ramp up procedure during which

the initial set of warehouses are executed for only 30

seconds [6]. On the other hand the statistic for the

previous cases concern the overall execution that includes

the execution in the cases after each peak performance

where the benchmark execution saturates and each set of

warehouses is executed for 4 minutes [6].

Table 5. Performance Counters for 8 cores x 4 threads case

Characteristic
Region

1

Region

2

Region

3

Region

4

Region

5

IPC 0.21 0.54 0.55 0.67 0.43

IC_misses 3.9 % 1.9 % 1.9 % 2.1 % 2.2 %

DC_misses 3.4 % 3.4 % 3.4 % 3.5 % 2.7 %

DTLB_misses 0.0001% 0.001% 0.013 0.01 % 0.06 %

L2_imisses 0.048 % 0.01% 0.04 % 0.02 % 0.2 %

L2_dmisses_ld 0.8% 0.78 % 0.8 % 0.79 % 0.55 %

Region 4 represents the area were the benchmark is

saturated. In this region every additional software thread

causes degradation in the overall score due to the fact that

the processor has to execute more threads than the

available hardware context threads can handle

simultaneously. In this case, by using mpstat, we saw that

more threads cause the invocation of more context

switches between the threads already assigned and the

one waiting to be scheduled. As in the previous cases, in

this region the utilatization of the cores is kept high since

there are many available for execution threads, which is

reflected by the increased average number of IPC in this

region.

Region 5 shows a big degradation in the overall score,

which is mainly caused by the high number of threads

available for execution. In addition to that, in region 4 we

can observe a couple of dips in the score. After analyzing

the performance counters along with the available system-

level information provided by OS and JVM, we concluded

that this big gap in score along with the dips of region 4 is

due to the invocation of the garbage collector (GC) of

JVM. We profiled the operation of GC and saw that after

the point of 44 warehouses the GC invokes a lot of times.

Every time GC invokes, JVM freezes the execution of the

Java thread and therefore the actual number and duration

of GC invocation in seconds is inversely proportional to

the overall performance of execution of threads. Each

transaction in SPECjbb creates short-lived objects that

after the completion of their operation persist in heap

memory until the GC takes action and frees the occupied

memory space. The more warehouses, the more short-

lived data created in the time interval of the execution of a

set of warehouses. In the case of 38 and 41 warehouses

the number of threads is high enough to create a large

number of short-lived data, pushing in that way the usage

of heap memory close to 100%. In order to handle this

situation, JVM calls GC several times so as to free

memory space. The point of 44 simultaneous warehouse

hits the limit that the temporal data reaches the maximum

limit of heap many times through the execution of the

warehouses and therefore the GC is called multiple time.

After that point GC calls are significantly increased and

take more time to complete. To be more specific, our

measurements showed that beyond the point of 44

warehouses the execution of GC consumes almost one

third of the four minutes execution time interval of

SPECjbb [6]. Moreover, after this specific point, every

 6

execution of GC last almost 6 seconds when in the case of

the previous regions GC duration is limited to 0.2 seconds.

Such a radical change in memory mapping is shown by

the increased value of DTLB_misses in region 5 with

L2_dmisses being on average unchanged. This significant

consumption of time in GC in order to keep the used heap

memory in its limits is reflected by the big degradation in

SPECjbb score. Notice that the limits of regions 4 and 5

depend on the JVM heap size and the available main

memory of the system under study. Therefore, the

previous limits mainly concern the specific system that we

used for our study and its configuration and cannot

summarize the scaling limits of the UltraSPARC T1 in

general.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

8 Cores x 1 thread 8 Cores x 2 threads 8 Cores x 4 threads

IP
C

 p
e

r
c

o
re

Figure 7. IPC of three configurations

Figure 7 shows the average IPC per core, measured

for all of the three different configurations used during the

previous analysis when executing SPECjbb. As we can

see from the graph, the simplest SMP configuration of

every core using two threads gives on average 1.8x

speedup over the CMP configuration and when every core

is configured as a SMT with four hardware threads we can

see an average 1.27x and 2.3x speedup over the 2-way

SMT per core and the single-threaded CMP, respectively.

0

5

10

15

20

25

0 10 20 30

Number of virtual processors used

N
o

rm
.

S
P

E
C

jb
b

 s
c
o

re
 c

o
re

Figure 8. Best case SPECjbb score speedup

Finally, Figure 8 shows the SPECjbb score speedup

over the number of virtual processors used. The first point

represents the case of using one core and only one thread

per core that is a single-threaded, in-order processor and

the next three points represent the three different

configurations we analyzed throughout the previous

analysis section. This speedup is an indication of the top

performance we can gain from Niagara and its scalability

when switching between the different configurations.

According to this figure, using all of the hardware context

threads of all the cores can achieve a speedup of almost

20x the performance of the single thread.

6. Conclusions

In this paper we analyzed the impact of the

architectural characteristics and chip design decisions of

the Niagara CMT processor, which is designed for

favoring overall throughput by exploiting thread level

parallelism in combination with multiple cores. Through

our experiments we quantify the benefits of using

additional cores and/or threads on a well-known Java

server workload. Our experiments showed that Niagara

can achieve 75% of the performance improvement of

adding an additional simple core by simple adding only an

additional hardware thread per core. Moreover, we

showed that adding more than two hardware threads per

core we can achieve a 45% of the improvement for adding

a single threaded core.

Acknowledgements

The authors would like to thank the anonymous

reviewers for their valuable comments. This research was

supported in part by NSF grant 0429806. We would like

to thank Sun Microsystems for providing us an

UltraSPARC T1 (Niagara) machine to conduct this study.

References

[1] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, D.

Burger, “Clock Rate versus IPC: The End of the Road

for Conventional Microarchitectures”, Annual

International Symposium on Computer Architecture,

2000, VOL 27, pages 248-259.

[2] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson,

and K. Chang, “The case for a single-chip

multiprocessor”, In Proceedings of the Seventh

international Conference on Architectural Support

For Programming Languages and Operating Systems,

October, 1996. ASPLOS-VII. pp 2-11

[3] L. Spracklen , S. G. Abraham, “Chip Multithreading:

Opportunities and Challenges”, Proceedings of the

HPCA ’05, pp. 248-252

[4] P. Kongetira, K. Aingaran and K. Olukotun,

“NIAGARA: A 32-way Multithreaded SPARC

processor”, IEEE Micro, Volume 25, Issue 2, March-

April 2005 Page(s):21 - 29 2005

[5] UltraSPARC T1 Supplement to the UltraSPARC

Architecture2005 http://opensparc.sunsource.net/

specs/UST1UASuppl-current-draft-HP-EXT.pdf

[6] SPECjbb2005, http://www.spec.org/jbb2005/

[7] A. Singhal, A. J. Goldberg, “Architectural Support for

Performance Tuning: A Case Study on the

SPARCcenter 2000”, Proceedings of the 21st Annual

International Symposium on Computer Architecture,

Chicago, IL, April, 1994, pp. 48-59.

[8] Solaris 10 Reference Manual,

http://docs.sun.com/app/docs/prod/solaris.10

