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Abstract

Branch predictability characterization not only helps to im-
prove branch prediction but also helps to optimize predicated
execution. Branch taken rate and branch transition rate have
been proposed to characterize the branch predictability. How-
ever, these two metrics may misclassify branches with regular
history patterns as hard-to-predict branches, causing an in-
accurate and ambiguous view of branch predictability. In this
paper, we utilize autocorrelation based analysis of branch his-
tory patterns and present two orthogonal metrics Degree of
Pattern Irregularity (DPI) and Effective Pattern Length (EPL).
Unlike the existing taken rate or transition rate, DPI directly
measures the regularity of the patterns in per-address branch
history, and hence is more accurate in branch classification.
On the other hand, EPL reveals the optimum branch history
length for the easy-to-predict branches. The proposed met-
rics are evaluated with PAs, GAs, and Perceptron branch pre-
dictors, and the results show that on average, DPI improves
the accuracy of hard-to-predict branch classification by up to
17.7% over taken rate and 15.0% over transition rate for the
workloads in this study. It is also able to identify 18.9% more
easy-to-predict branches compared with taken rate and 12.8%
more compared with transition rate. The proposed metrics are
valuable extension to the existing metrics for accurately char-
acterizing branch predictability.

1. Introduction
Classifying branches in terms of their predictability has

been applied in many areas, including branch prediction, pred-
icated execution, and benchmark cloning/synthesizing [12]
etc. The accuracy of branch classification could significantly
impact the outcomes of these applied areas. For example,
branch predictors, especially hybrid branch predictors, lever-
age branch classification to improve prediction accuracy by
steering branches to certain type of predictors most suitable
for those branches [4]. A wrong classification of a branch

may results in the degradation of prediction accuracy. The ef-
fectiveness of predicated execution also relies on accurately
characterizing branch predictability. Predicated execution at-
tempts to eliminate hard-to-predict branches via if-conversion
during compilation [6]. However, if the if-converted branch
can be easily and correctly predicted, predicated execution
could cause significant performance degradation as it wastes
time and energy in fetching and executing instructions from
the false-path of the branch. Therefore, improving the accu-
racy of branch predictability characterization is an important
step to improve the results of many applications.

The existing metrics for characterizing branch behaviors
include branch taken rate and branch transition rate. Branch
taken rate, proposed by Chang et al. [4], measures the taken
frequency of a branch. Intuitively, branches with very high
or very low taken rates are extremely biased toward one di-
rection, therefore requires only a short branch history to pro-
duce high prediction accuracy. Whereas branches with near
50% taken rate may require longer branch history length to
capture the execution pattern, and hence are considered to be
hard-to-predict branches. On the other hand, branch transition
rate, proposed by Haungs et al. [10], captures the frequency
at which a branch changes direction between taken and not
taken. Similar with the branch taken rate metric, branches
with very high or very low transition rates are easy to pre-
dict, and branches with near 50% transition rate are hard to
predict. However, the branch transition rate is able to prevent
branches with history patterns like “101010” (“1” stands for
taken and “0” for not-taken) from being falsely classified as
hard-to-predict branches by branch taken rate, hence branch
transition rate is more accurate and more widely used.

While both of these metrics help to reveal and character-
ize the branch behavior of workloads, they only provide an
indirect and obscure view of the branch predictability, which
causes problems from two aspects. First, these two metrics
may not be able to identify all the easy-to-predict branches.
In other words, some of the easy-to-predict branches may
be misclassified as hard-to-predict by taken rate or transition
rate. As shown in Figure 1(a), among the branches with taken
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Figure 1. Breakdown of static branches according to the number of history bits required to make a
perfect prediction. Programs are from SPEC CPU2006 benchmark suite. (a) Breakdown of branches
with taken rate between 0.05 and 0.95. (b) Breakdown of branches with transition rate between 0.1 and 0.9.
The values of taken rate and transition rate used for this classification follow the ones used in [10].

rate between 0.05 and 0.95, which are typically considered
to be the hard-to-predict branches, a large fraction of them
can be perfectly predicted by using a branch history length
less than 5 bits. The same is true for the branches with tran-
sition rate between 0.1 and 0.9. This observation is due to
the fact that many branches may exhibit regular patterns with
short periods. For instance, milc has a branch history pat-
tern ”110110110...”, which means the branch has 0.667 taken
rate and 0.667 transition rate, and is therefore considered to
be hard-to-predict. Yet, a 3-bit history length is sufficient
to make a perfect prediction for this branch. Neither taken
rate nor transition rate is capable of differentiating these reg-
ular, easy-to-predict branches from the irregular and hard-to-
predict ones, resulting in poor accuracy in identifying hard-
to-predict branches. Second, both metrics suffer from the in-
direct and qualitative connection between their value and the
corresponding history lengths. Specifically, for those branches
classified as easy-to-predict, neither of these two metrics can
provide a quantitative indication as to the number of history
bits required to achieve high prediction rate. Therefore, it is
difficult and inaccurate to estimate the branch predictor com-
plexity from the branch predictability characterized with ei-
ther of these two metrics.

To address these two issues of the existing metrics, this pa-
per proposes to use autocorrelation analysis for branch pre-
dictability characterization. Autocorrelation analysis treats the
history of a branch as a discrete sequence, and can reveal its
pattern period by simply searching for the peak values in the
autocorrelation of the branch history. Unlike branch taken rate
or transition rate, autocorrelation analysis is able to identify
the regular branch patterns at a much larger scope than taken
rate or transition rate, hence can better differentiate hard-to-
predict branches from easy-to-predict ones. In addition, it
also enables the classification of the easy-to-predict branches
in term of the branch pattern length, bridging the gap between
the branch predictability and the predictor complexity. In par-
ticular, the contributions of this paper are as follows:

1. Autocorrelation based Branch Classification: Based
on the autocorrelation analysis of the branch history, we
propose two novel metrics for branch classification, i.e.,
the Degree of Pattern Irregularity (DPI), which mea-
sures the degree of the branch behavior deviating from
regular branch pattern, and the Effective Pattern Length
(EPL), which indicates the history length requirement for
a conditional branch. We show that on average, DPI im-
proves the accuracy of hard-to-predict branch classifica-
tion by up to 17.7% over taken rate and 15.0% over tran-
sition rate. It also identifies 18.9% more easy-to-predict
branches compared with taken rate and 12.8% more com-
pared with transition rate. These proposed metrics are
an important extension to the existing metrics in branch
classification: taken rate examines the branch history bit
by bit, and transition rate examines the history two-bit by
two-bit; whereas DPI and EPL examine the branch his-
tory at a broader pattern level.

2. Prediction Accuracy Estimation: We present a first or-
der analytical model to estimate the prediction accuracy
of a per-address branch predictor based on the proposed
DPI and EPL metrics. Experimental results show that the
prediction rate estimated by the proposed model has an
average error of 1.5% and a maximum absolute error of
7.1% compared with the simulated prediction rate. This
new capability, for the first time, allows us to evaluate the
impact of branch characteristics on the prediction accu-
racy without detailed simulation.

The rest of the paper is organized as follows. Section 2
gives the background about autocorrelation analysis. Section
3 describes the experiment methodology. Section 4 presents
the DPI and EPL metrics, as well as the results of branch clas-
sification using these metrics. Section 5 lists the applications
of the proposed metrics. Section 6 presents the prediction ac-
curacy estimation model for PAs predictor. Section 7 shows
the related work, and section 8 summarizes this paper.



2 Background
Autocorrelation is widely applied in signal processing and

pattern recognition to find repeating patterns buried under
noise. It is essentially the cross-correlation, i.e., sliding dot
product, of a signal with itself [3]. Specifically, for a real-
value discrete sequence of 𝑛 elements {ℎ(𝑖)}𝑛𝑖=0, the autocor-
relation of this sequence is calculated as:

𝑅ℎℎ(𝑗) =
𝑛∑

𝑖=0

ℎ(𝑖)ℎ(𝑖− 𝑗) (1)

where 𝑗 ∈ [0, 𝑛]. In order to prevent undefined values outside
the window [0, 𝑛] from polluting the calculation, the sequence
{ℎ(𝑖)}𝑛𝑖=0 is typically extended periodically to the left, cre-
ating a rotation effect in the coordinate window [0, 𝑛] as the
sequence slides to the right. As a result, the autocorrelation
holds the following two properties [3]: a). Autocorrelation
reaches its maximum value at the origin. In other words, for
any delay 𝑖, 𝑅ℎℎ(0) ≥ 𝑅ℎℎ(𝑖); b). If the discrete sequence
is periodic with period 𝑇 , its autocorrelation is also periodic
with the same period 𝑇 .

The combination of these two properties leads to the fol-
lowing inference: if the discrete sequence is periodic with pe-
riod 𝑇 , its autocorrelation reaches its maximum value at the
delay 𝑇 . This characteristic allows us to identify the pattern
period in a discrete sequence by simply searching for the peak
value in the autocorrelation of the sequence, which is one of
the key advantages of applying autocorrelation in recognizing
branch behavior patterns.

3 Experiment Methodology
In order to evaluate the proposed metrics, we use PIN [15],

a dynamic x86 instrumentation tool, to instrument the work-
load and obtain the trace of conditional branches. This trace
is then seamlessly fed to our branch analyzer, which is able
to perform autocorrelation analysis on each static branch and
simulate different types of branch predictors simultaneously.

The workloads of the experiment are composed of 27 pro-
grams from SPEC CPU2006 benchmark suite [1]. Each pro-
gram is compiled to x86-ISA with base configurations. To re-
duce the simulation time, we use PinPoints [16], a SimPoint-
like [9] tool built on top of PIN, to identify the representative
simulation points. For each program, we simulate the domi-
nant simulation points that cover 90% of the total weights, and
each simulation point contains 100 million instructions. The
aggregated statistics of the simulation points for each program
are shown in Table 1. Note that two programs (tonto, gamess)
from the benchmark suite are not included in this study be-
cause the PIN-based trace generator has some errors in these
programs. Nevertheless, the listed programs are still represen-
tative for the entire benchmark suite according to benchmark
similarity studied by Phansalkar et al. [17].

After developing the proposed metrics, we evaluate them
using three different types of branch predictors to ensure that

Table 1. Workloads and Branch Statistics
SPECCPU2006 Input Static Dynamic

(Points cover 90%weights) Branch # Branch #

CINT2006

mcf ref 470 153353091
gcc 166 7135 145078280
perlbench checkspam 46634 195356421
bzip2 combined 2047 170176113
gobmk trevord 35005 161864828
sjeng ref 10830 208957597
hmmer retro 2923 224433233
libquantum 1397 354 220161973
h264ref sss 13288 50744561
omnetpp ref 3870 74803965
astar rivers 918 83837997
xalancbmk xalanc 13426 244632666

CFP2006

bwaves ref 565 63379429
milc ref 478 59817869
zeusmp ref 378 22270535
gromacs ref 321 23282041
cactusADM ref 763 3070633
leslie3d ref 3295 52895367
namd ref 1493 64360181
soplex ref 1596 64826986
GemsFDTD ref 241 12832561
sphinx3 ref 5651 118766972
calculix ref 120 85279203
dealII ref 7700 186902861
lbm ref 48 9597189
wrf ref 2259 12007854
povray ref 1459 29840134

the observed properties are general and are not tied to a spe-
cific predictor. These branch predictors are: a per-address his-
tory predictor (PAs), a global two-level predictor (GAs) [21]
and a global neural network predictor (Perceptron) [11], each
with history length ranging from 1 to 16. (While there are
many other branch predictors, we believe these three predic-
tors provide enough confidence for the generality of the pro-
posed metrics. Note that the goal of this paper is NOT to
compete the existing branch predictors for higher prediction
accuracy, but to create improved characterization metrics that
could be applied in many areas.) For PAs and GAs, the size
of Pattern History Table (PHT) is set to 64K entries, and re-
mains constant across all history lengths, which means when
history length is smaller than 16, the lower bits from branch
address are combined together with branch history to index
into the 64K-entry PHT. The branch history table (BHT) of
PAs has 1024 entries, and also remains constant across all his-
tory lengths. To be consistent with PAs and GAs, the Percep-
tron predictor also contains 64K entries for the weights (which
are used to dot-product with the branch history), with each
weight 8-bit wide. In this paper, we only consider the condi-
tional branches.

4 Autocorrelation Based Branch Classification

4.1 Branch History Autocorrelation

The unique properties of autocorrelation allow us to effec-
tively identify the regular patterns inside a discrete sequence.



Figure 2. Autocorrelation Analysis for Branch
History. (a) Autocorrelation for regular branch
history with pattern ”11010”. The history has
a length of 10, and has been extended. (b) Au-
tocorrelation for irregular branch history. The
deviating bit is highlighted with dark grey.

However, when it comes to branch behavior analysis, the dis-
crete sequence becomes the branch history comprised of ”0”
(as not taken) and ”1” (as taken). The autocorrelation of such
history bit sequence preserves all the properties of a normal
autocorrelation, yet it also brings two new implications per-
taining to the context of branch prediction.

First, for the autocorrelation of periodic branch histories,
the period of the history pattern indicates the required history
length for accurately predicting the branch behavior. This is
because by setting the history length to the pattern period, the
branch predictor is guaranteed to be trained and accessed by
the repetitive pattern, leading to near perfect prediction accu-
racy for these regular branches. The pattern period, on the
other hand, can be easily identified by searching the autocor-
relation of the branch history for the nearest maximum value
around the origin. For example, as shown in Figure 2(a), the
nearest maximum value around the origin of the autocorrela-
tion occurs at the delay 5, which is the period of the regular
pattern ”11010”, indicating the desired history length for this
branch is 5. This value is essentially the 𝑥-coordinate dif-
ference between the origin and the nearest maximum value,
which we refer to as the Effective Pattern Length (EPL).

Second, for the autocorrelation of irregular branch histo-
ries, the difference between the maximum value at the origin
and the largest value off the origin reflects the amount of ir-
regularity in the branch history. This can be understood by
treating an irregular branch history as a regular branch history
XORed with one or more history bits deviating from the reg-
ular pattern. Generally speaking, the more deviating history
bits, the larger amount of irregularity in the history pattern.
Meanwhile, the number of these deviating bits is reflected on

Pseudocode 1 Autocorrelation analysis of branch history

#define 𝐻 /*the upper limit of pattern period*/
#define 𝑛 /*dynamic accesses of branch 𝑖 (𝑛 > 2 ⋅𝐻)*/
#define ℎ𝑖(𝑛) /*history pattern of branch 𝑖 */
#define 𝐸𝑃𝐿𝑖 /*EPL of branch 𝑖*/
#define 𝐷𝑃𝐼𝑖 /*DPI of branch 𝑖*/

extend ℎ𝑖(𝑛) periodically until it’s size is larger than 𝑛+𝐻;
for 𝑗 in ( 0 .. 𝐻)
{ 𝑅ℎℎ(𝑗) =

∑𝑛+𝐻
𝑘=𝐻 ℎ(𝑘)ℎ(𝑘 − 𝑗); }

for 𝑗 in ( 1 .. 𝐻) /* searching for the maximum off-origin value */
{ if( 𝑚𝑎𝑥 < 𝑅ℎℎ(𝑗) )

{𝑚𝑎𝑥 = 𝑅ℎℎ(𝑗); 𝐸𝑃𝐿𝑖 = 𝑗; } }
𝐷𝑃𝐼𝑖 = (𝑅ℎℎ(0)−𝑚𝑎𝑥)/𝑛;

the difference between the two largest values of the autocor-
relation. As shown in Figure 2(b), one bit highlighted with
dark grey deviates from the periodic pattern, which causes the
difference between the two largest autocorrelation values to be
one. The irregularity measured by such difference is one of the
main sources of branch misprediction. Therefore, the fraction
of the irregularity over the total number of the branch dynamic
accesses is the direct indicator of branch predictability, which
we refer to as the Degree of Pattern Irregularity (DPI). Note
that a regular branch history has a zero DPI value.

Both EPL and DPI of each conditional branch can be easily
obtained with the autocorrelation analysis of branch history,
as shown in Pseudocode 1. We only consider branches with
a reasonably large number of dynamic accesses, preferably
larger than twice the upper limit of the investigated pattern
period. This is to prevent the artifacts created by the periodic
extension of the history length from being mistakenly identi-
fied as history pattern by autocorrelation analysis. The com-
plexity of the autocorrelation analysis involves computation
and storage requirements. The calculation of autocorrelation
appears to have (𝑛 + 1) ⋅ 𝐻 multiply-accumulate operations,
where 𝑛 is the length of branch history, and 𝐻 is the specified
upper limit of history pattern period. However, since branch
history only consists of 0’s and 1’s, the multiplication can be
replaced with simple logic AND operation. On the other hand,
since we are only interested in the autocorrelation between 0
and 𝐻 , it is not necessary to store the entire history of a branch
before calculating the autocorrelation. In fact, the autocorre-
lation can be calculated based on slices of branch history, with
each slice size less than 𝐻+1. It can be understood by trans-
forming equation (1) to the following form:

𝑅ℎℎ(𝑗) =
𝑛+𝐻∑
𝑘=𝐻

ℎ(𝑘)ℎ(𝑘 − 𝑗) =
𝐻+𝐻∑
𝑘=𝐻

ℎ(𝑘)ℎ(𝑘 − 𝑗)+

2𝐻+𝐻∑
𝑘=2𝐻+1

ℎ(𝑘)ℎ(𝑘 − 𝑗) + ..+
𝑛+𝐻∑

𝑘=𝑚⋅𝐻+1

ℎ(𝑘)ℎ(𝑘 − 𝑗)

where 0 ≤ 𝑗 ≤ 𝐻 , and 𝑚 ⋅ 𝐻 < 𝑛 < (𝑚 + 1) ⋅ 𝐻 . The
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Figure 3. (a) Percentage of dynamic branches
per DPI class. (b) Prediction accuracy of the
branches in each DPI class for PAs, GAs, and
Perceptron.

calculation of each item in the equation requires the storage of
current history slice and the immediate previous history slice.
This storage can be organized as a two-entry FIFO, with each
entry size of (𝐻 + 1) bits, resulting in a total storage require-
ment of 2(𝐻 + 1) bits for each static branch. As we finish
calculating the autocorrelation of one history slice and move
to the next, the new history slice is pushed in the FIFO. To-
gether with the old history slice, we are able to calculate the
autocorrelation of the new history slice. Compared to the stor-
age requirements of taken rate ( 1 bit per static branch ) and
transition rate ( 2 bits per static branch ), autocorrelation anal-
ysis requires more storage space, yet its impact on the profiling
speed is insignificant as long as H is within a reasonable range.

With the two metrics DPI and EPL, we are able to clas-
sify branches from two orthogonal aspects simultaneously,
and gain new insights into the branch behaviors in terms of
their predictability and their implications on the requirement
of branch history lengths.

4.2 Branch Classification

We now investigate the branch behaviors by classifying
branches according to the proposed DPI and EPL metrics. The
results shown in this subsection are based on the aggregated
branch behaviors of all programs listed in Table 1.

In Figure 3(a), we classify the branches into 10 groups in
terms of their DPI values. Class 1 has DPI value 0, repre-
senting the branches with regular history pattern. Class 2 to 6
have DPI values covering the ranges of (0,0.01], (0.01,0.02],
(0.02,0.03], (0.03,0.04], (0.04,0.05], respectively; and class 7
to 10 have DPI values with the ranges of (0.05-0.10], (0.10-
0.15], (0.15-0.20], (0.20-1] respectively. As shown in the fig-
ure, 40.0% of the total dynamic conditional branches fall in
class 1, and 31.6% of them fall in class 2, making a total of
71.6% of dynamic branches with 𝐷𝑃𝐼 ≤ 0.01. The occu-
pancies of the other classes are significantly lower, with each
class less than 6.0%, meaning that most branches exhibit very
small irregularity. Figure 3(b) shows the misprediction rate of
the branches in each DPI class for PAs, GAs, and Perceptron
predictors. As expected, there is an overall trend that the mis-
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Figure 4. (a) Dynamic branch classification ac-
cording to EPL. (b) PAs misprediction rate for
each EPL class. (c) GAs misprediction rate for
each EPL class. (d) Perceptron misprediction
rate for each EPL class.

prediction rate increases as the branch DPI increases. This
trend holds true for all three different types of branch pre-
dictors, which demonstrates that DPI is an appropriate met-
ric for branch predictability. More importantly, this figure
also shows that the misprediction rates of the branches in DPI
class 1 and 2 are drastically smaller than that of the branches
in the rest DPI classes, which means branches with DPI less
than 0.01 are the easy-to-predict branches. In addition, for
these branches, there is very little difference between the mis-
prediction rates achieved by different predictors. However,
for branches with DPI larger than 0.01, PAs predictor consis-
tently exhibits largest misprediction rate, followed by GAs and
perceptron predictors. This is because the irregularity of the
branches in these classes mainly comes from the correlation
among multiple different branches, which can be captured by
the global history [7], making global predictors more prefer-
able over the per-address predictor for these branches. As a
result, DPI allows us to classify the branch predictability in
a clear and coherent way: branches with DPI less than 0.01
are the easy-to-predict branches, and are suitable for any type
of predictors, preferably, the per-address predictor; whereas
branches with DPI larger than 0.01 are the hard-to-predict
branches, and are suitable for global branch predictors.

In Figure 4(a), we classify the branches according to the
EPL values ranging from 1 to 16. Like the branch distribu-
tion in DPI, most of the branches have small effective pat-
tern length, and 62.4% of them have EPL of 1. Among these
branches with EPL of 1, 80.4% of them are with DPI no larger
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Figure 5. Colormap of prediction accuracy. The
values associated with the colors are the mis-
prediction rate.

than 0.01, meaning that these branches can be predicted ac-
curately with very short branch history length. Figure 4(b)-
(c) illustrate the optimal misprediction rates under PAs, GAs,
and Perceptron predictors for the branches with different ef-
fective pattern lengths. These figures provide an additional
view of the distribution of misprediction rate across the spec-
trum of EPL. Moreover, it also shows that EPL is irrelevant
with minimum achievable misprediction rate for either regular
or irregular branches. However, EPL does establish a connec-
tion between the easy-to-predict branches and their optimal
history lengths, as shown in the colormap in Figure 5(a) (the
darker the color, the higher the misprediction rate). When the
history length of PAs reaches the effective pattern length of
an easy-to-predict branch (𝐷𝑃𝐼 <= 0.01), the misprediction
rate drops dramatically, meaning that EPL represents the opti-
mal branch history length in PAs. Because of that, one can ob-
serve a clear diagonal edge in this colormap. However, when
it comes to global predictors, such as GAs or perceptron pre-
dictor, the diagonal edge becomes blurred, as shown in Figure

5(c) and Figure 5(e). Yet, by setting the history length to EPL,
one can still get a reasonable, though not necessary optimal,
misprediction rate for the branches in that EPL class. On the
contrary, for the hard-to-predict branches (𝐷𝑃𝐼 > 0.01), the
optimal branch history length is irrelevant to EPL. As shown
in Figure 5(b), 5(d) and 5(f), there is no clear cut value for op-
timal history length, and a large branch history length, prefer-
ably no less than 10, is always desirable for all three types of
predictors. The relationship between EPL and the optimal his-
tory length of an easy-to-predict branch opens the possibility
to precisely tailor the complexity of branch predictors.

4.3 Comparison with Conventional Metrics

Now that we have demonstrated that DPI is a useful met-
ric for branch classification, we compare this metric with the
conventional taken rate and transition rate metrics.

Figure6(a) shows the percentage of the branches classified
as easy-to-predict branches among the branches with predic-
tion rate larger than 95%. (In this paper, branches with more
than 95% prediction rate are regarded as truly easy-to-predict,
which is in line with the study by Kim et al. [13].) The higher
the percentage, the more effective the metric in identifying the
easy-to-predict branches. As shown in this figure, DPI consis-
tently yields larger percentage than transition rate or taken rate
across all three types of branch predictors, meaning that DPI
is able to identify more truly easy-to-predict branches than
taken rate or transition rate. In particular, for PAs prediction,
DPI covers 12.1% more dynamic branches than taken rate and
8.7% more than transition rate. On the other hand, to eval-
uate the false-positives in branch classification, we also mea-
sure the percentages of the branches with prediction rate larger
than 95% over the branches classified as easy-to-predict, as
well as the percentages of the branches with prediction rate
less than 95% over the branches classified as hard-to-predict.
The higher the percentage, the more accurate the metric is,
since less branches would be misclassified. As shown in fig-
ure 6(b), taken rate has slightly higher percentage than the
other two metrics, meaning that taken rate has the least false-
positives in classifying easy-to-predict branches. DPI has the
lowest accuracy in classifying easy-to-predict branches, and
its accuracy is less than 3.8% smaller than that of taken rate.
However, considering the significant improvement in the ef-
fectiveness of classifying easy-to-predict branches, DPI is still
able to correctly identify significant amount of truly easy-to-
predict branches that otherwise would have been misclassi-
fied as hard-to-predict branches by taken rate, improving the
accuracy in classifying hard-to-predict branches. As shown
in Figure 6(c), DPI improves the accuracy of the hard-to-
predict branch classification by up to 17.7% over taken rate,
and 15.0% over transition rate. Overall, DPI, as a metric, is
more effective and accurate in branch classification than the
existing metrics.

Figure 7 further shows the comparison between the met-
rics on a per-program basis. Figure 7(a) shows the dynamic
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Figure 6. (a) The branches classified easy-to-predict among the branches with prediction rate >
95%. The easy-to-predict branches are classified by taken rate ∈ [0, 0.05)

∪
(0.95, 0.1], transition rate

∈ [0, 0.1)
∪
(0.9, 0.1], or DPI∈ [0, 0.01]. (b) The percentage of the branches with prediction rate > 95%

among the branches classified as easy-to-predict. (c) The percentage of the branches with prediction
rate < 95% among the branches classified as hard-to-predict.

(a) (b)

(c) (d)

Figure 7. (a) Percentages of branches with DPI≤ 0.01 among the branches with 0.05 <taken rate< 0.95.
(b) Percentages of branches with DPI≤ 0.01 among branches with taken rate< 0.05 or > 0.95. (c) Percent-
ages of branches with DPI≤ 0.01 among the branches with 0.1 <transition rate< 0.9. (d) Percentages of
branches with DPI≤ 0.01 among the branches with transition rate < 0.1 or > 0.9.

branch breakdown for branches with taken rate between 0.05
and 0.95. These dynamic branches are considered to be rela-
tively hard-to-predict according to the taken rate metric [10].
However, a large fraction of these branches are classified as
easy-to-predict according to the DPI metric. In particular,
for milc, bwaves, zeusmp, leslie3d,GemsFDTD and calculix,
all of the conditional branches that are initially classified as
hard-to-predict according to taken rate are classified as easy-
to-predict according to DPI. These branches have regular his-
tory patterns, and can reach near-zero misprediction rate with
PAs predictor, which means they have been indeed misclas-
sified by the taken rate. On average, we observe 37.7% of
the branches with taken rate between 0.05 and 0.95 are mis-

classified as hard-to-predict. Similarly, for the transition rate,
we observe an average of 36.5% of the branches with tran-
sition rate between 0.1 and 0.9 are misclassified as hard-to-
predict according to DPI, as shown in the Figure 7(c). Figure
7(b) further illustrates how much DPI is in agreement with
the taken rate when it comes to the classification of easy-to-
predict branches. We observe an average 6.3% of the branches
with taken rate larger than 0.95 or smaller than 0.05 are clas-
sified as hard-to-predict according to DPI. For transition rate,
the number increases to 9.9%. This is inline with the pre-
vious observation that taken rate is more accurate in classi-
fying easy-to-predict branches than transition rate. Overall,
71.6% of the total conditional branches are classified as easy-



to-predict with DPI, 60.2% with taken rate, and 63.5% with
transition rate. That gives us 18.9% improvement over the
taken rate, and 12.8% improvement over the transition rate.
The largest observed improvement happens in program milc,
where taken rate or transition rate can only identify 14.2%
of the dynamic branches that are classified as easy-to-predict
by DPI. In other words, DPI identifies 7.0 times more easy-to-
predict branches than taken rate or transition rate does for milc.
The reason that DPI is superior in branch classification is that
it has a broader view of branch history when characterizing
the branch behaviors. In fact, taken rate examines the branch
history bit by bit, and transition rate examines the history two-
bit by two-bit; whereas DPI examines the branch history at a
broader pattern level. In that sense, DPI is a superset of the
taken rate and transition rate, hence is able to achieve better
branch classification results than the existing metrics.

5 Applications
As an important extension to the existing metrics, the pro-

posed DPI and EPL metrics significantly improve the quality
of branch classification, and can be applied in the fields where
the conventional branch classification metrics are used. These
fields include, but not limited to, the following.

Branch Prediction: The hybrid branch predictor is an im-
portant type of branch predictor that is able to achieve high
prediction accuracy. Yet, the design space exploration for hy-
brid branch predictors is non-trivial. Haungs et al. suggests
to use branch taken rate and transition rate to accelerate the
design space exploration process [10]. Our proposed DPI and
EPL metrics could also be applied in this area. More impor-
tantly, EPL provides a straightforward indication of the proper
history length for each branch.

Predication: Predication attempts to improve the per-
formance by eliminating hard-to-predict branches using if-
conversion. Its benefit largely depends on the accuracy in
identifying those branches. Compilers typically identify the
candidates for predication by profiling the program and col-
lecting the branches with taken rate near 50% [8] or with low
prediction accuracy for a certain branch predictor [13][19].
Since the proposed DPI metric has higher accuracy in identi-
fying hard-to-predict branches than taken/transition rate, it can
replace taken rate or transition rate in identifying the hard-to-
predict branches and improve the effectiveness of predication.

Benchmark Cloning and Synthesizing: Recently, bench-
mark cloning/synthesizing has become attractive as it minia-
turizes the prohibitively large and ever-expanding benchmark
programs meanwhile protects the proprietary workload infor-
mation [12]. The quality of benchmark cloning relies on faith-
fully characterizing the control flow predictability of the origi-
nal programs. To do so, taken rate was initially used by Bell et
al. [2], and later replaced by transition rate in order to improve
the quality of control flow cloning [12]. We argue that using
DPI could further improve the quality of benchmark cloning

Figure 8. Misprediction mechanism on a Per-
address Predictor with 5-bit history length.

since DPI metric has less false-positives in branch classifica-
tion than existing metrics.

The proposed metrics could also be applied in the fields of
benchmark subsetting and program similarity analysis[17], as
well as program-core mapping for heterogeneous multi-core
processors [5]. Besides these existing application areas, the
combination of DPI and EPI also opens the new possibility
to estimate the prediction accuracy of a per-address predictor
based on branch characteristics.

6 Case Study: Prediction Accuracy Estimation
As a case study, this section presents a first-order analytical

model to estimate the prediction accuracy of a PAs predictor
using the proposed EPL and DPI metrics. Such model decou-
ples the estimation of branch misprediction from simulation,
and is very useful in analytical performance modeling.

As mentioned previously, DPI measures the fraction of the
history bits deviating from regular history pattern. These de-
viating bits are the major source of the misprediction in the
per-address predictor, because the predictor is trained with
repetitive patterns and will cause misprediction every time it
runs into the deviating bit. For example, Figure 8 shows a
branch history sequence with repetitive pattern ”10110”, and
a deviating bit highlighted with grey color. The predictor will
mispredict the deviating bit since the entry in PHT learns the
pattern and predicts the next outcome should be ”1” instead
of ”0”. The deviating bit then enters branch history buffer,
which will point to a PHT entry never visited by this branch
before. This entry may be a cold entry that has never been vis-
ited by any other branches, or may be an entry already trained
by other branches. Either way, there is a certain amount of
probability that the prediction of the next outcome could be
wrong. Note that such situation remains until the deviating bit
has been shifted outside the history buffer if the history buffer
is smaller than EPL of that branch. In this case, one deviating
history bit could cause 𝑃 ⋅ ℎ+ 1 mispredictions (ℎ stands for
the branch history length of the predictor and 𝑃 for the prob-
ability of the misprediction). Therefore, we can estimate the



number of mispredictions with the following equation:

𝑀𝑖𝑠𝑠𝑐𝑎𝑠𝑒1 =
∑
𝑖

𝐷𝑃𝐼𝑖 ⋅𝑁𝑖 ⋅ (𝑃𝑖 ⋅ ℎ+ 1) (2)

where 𝑁𝑖 is the dynamic access number of branch 𝑖 and 𝑃𝑖

is the probability of the misprediction caused by the deviating
bit. This equation gives reasonable estimation of the number
of mispredictions only when ℎ, though smaller than EPL of the
branch, is still relatively large. Extremely small branch history
length makes the predictor trained by only a small fraction of
the history pattern, causing a large number of aliasing and in-
terference unable to be modeled with this equation. In this
study, we set ℎ to be larger than 6. On the other hand, if the
history buffer size is larger than the EPL of the branch, once
the deviating bit has been shifted more than EPL bits in the
buffer, the misprediction probability of the next outcomes of
the branch would drop significantly, as shown in Figure 5(a).
This is because the most recent history bits are now filled with
basic regular pattern, which statistically dominates the predic-
tion of the next outcome. Therefore, the estimation of the mis-
prediction number in this case can be made by the following:

𝑀𝑖𝑠𝑠𝑐𝑎𝑠𝑒2 =
∑
𝑖

𝐷𝑃𝐼𝑖 ⋅𝑁𝑖 ⋅ (𝑃𝑖 ⋅ 𝐸𝑃𝐿𝑖 + 1) (3)

Let 𝑈(𝑛) be the unit step function, which equals 0 when 𝑛 <
0, and 1 when 𝑛 ≥ 0. The total number of misprediction can
be written as follows:

𝑀𝑖𝑠𝑠𝑡 =
∑
𝑖

𝐷𝑃𝐼𝑖 ⋅𝑁𝑖 ⋅ (𝑃𝑖 ⋅ 𝐸𝑃𝐿𝑖 + 1) ⋅ 𝑈(ℎ− 𝐸𝑃𝐿𝑖)+

(4)∑
𝑖

𝐷𝑃𝐼𝑖 ⋅𝑁𝑖 ⋅ (𝑃𝑖 ⋅ ℎ+ 1) ⋅ 𝑈(𝐸𝑃𝐿𝑖 − ℎ)

Now the problem comes down to determine the probability
of misprediction 𝑃𝑖. Although this probability is dependent
on the nature of interference (constructive or destructive), if
we treat the interference as unbiased random process, 50% is
a statistically reasonable estimate for 𝑃𝑖. Therefore, with 𝑃𝑖

being set to 50%, we are able to estimate the branch mispre-
diction rate of PAs predictors using equation (4). Figure 9(a)
shows the comparison between the simulated prediction rate
and the estimated one at history length 15. The estimated pre-
diction rate closely matches the simulated one. Figure 9(b)
shows the average difference between the simulated predic-
tion rate and the estimated one with history length ranging
from 6 to 15. The smallest observed error is 0, and it occurs in
milc. This is because milc has regular branch patterns that can
be perfectly predicted with PAs predictor; meanwhile, regular
patterns have zero DPI, leading to zero misprediction in our
model. In addition, we also estimate the prediction rate us-
ing a heuristic based on transition rate. This heuristic assumes
the branches with transition rate between 0.4 and 0.6 are pre-
dicted with 50% accuracy, and other branches are predicted

(a)

(b)

Figure 9. (a) Comparison of estimated and sim-
ulated prediction rate (History length 15). (b)
Average prediction rate difference. The error
bar shows the min and max difference in pre-
diction rate (History length from 6 to 15).

perfectly. As shown in Figure 9(b), the estimation error of
this heuristic varies significantly between programs, from less
than 1% to 19%, indicating this heuristic is not stable. This is
because for some programs, e.g. calculix, a large amount of
branches with transition rate between 0.4 and 0.6 can be eas-
ily predicted, but this heuristic treats them as hard-to-predict
branches. In contrast, the accuracy of our DPI-EPL-based
model is not only higher, but more consistent across different
programs. The average prediction rate error is 1.5%, about
half of that of the transition-rate-based heuristic. Overall, the
proposed analytical model estimates the prediction rate of PAs
predictor with reasonable accuracy, and automatically lends it-
self to micro-architecture independent performance modeling.
It also demonstrates the capability of EPL and DPI in under-
standing and characterizing the branch behavior.

7 Related Work
Our work is most related to the work done by Chang et

al. [4] and by Haungs et al. [10]. Chang et al. [4] first applied
branch classification to improve the performance of branch
predictors. They used taken rate to differentiate branches and
suggested to use static predictors for the extremely biased
branches. Haungs et al. [10] proposed to use branch transition
rate to classify branches. They demonstrated that the transition
rate is able to discover easy-to-predict branches that otherwise
would be misclassified by taken rate. However, taken rate and
transition rate may not able to discover branches with regular
behavior patterns that are easy-to-predict. Our proposed DPI



metric has a much broader view of branch behavior, and hence
can characterize branch predictability more accurately.

Evers et al. [7] categorized the per-address branch pre-
dictability into three classes: loop-type branches, branches
with repeating patterns, and branches with non-repeating pat-
terns. They classified the branches by using a set of branch
predictors to inspect the branch history patterns, but no general
metrics were developed in their work. Our work shares some
common grounds as both of these work recognize the impor-
tance of history pattern in classifying branch predictability.
However, we develop a general metric to measure the branch
pattern regularity, which provides a more efficient, accurate
and coherent interface for branch classification.

Kim and Tyson [14] employed the dynamic working set
characteristics of branches to classify branches. This work-
ing set metric attempts to characterize the path-based global
branch correlation, whereas our proposed metrics target at
measuring per-address branch patterns.

Thomas et al. [20] identified correlated branches by us-
ing runtime dataflow information, then used these correlated
branches to improve prediction accuracy. Sazeides et al. [18]
followed this line of research and used the subset of history
most highly correlated with a given branch to improve predic-
tor accuracy. These work targets at improving prediction ac-
curacy by exploiting the branch correlation characteristics. In
contrast, this paper does NOT attempt to devise a new scheme
for prediction accuracy improvement, but rather to develop
improved metrics for branch predictability characterization,
which could be applied in a broad set of areas.

8 Conclusions
Branch predictability characterization is an important tech-

nique to understand branch behaviors. It is widely applied
in the fields such as predicated execution and benchmark
cloning. Based on the autocorrelation analysis of branch his-
tory patterns, this paper presents two new metrics, Degree of
Pattern Irregularity (DPI) and Effective Pattern Length(EPL),
for branch predictability characterization. Unlike existing
taken rate or transition rate metrics, DPI directly measures
the regularity of the patterns in per-address branch history,
and hence is able to identify more easy-to-predict branches
and significantly improve the accuracy of the classification
of hard-to-predict branches. On the other hand, EPL reveals
the optimum branch history length for the easy-to-predict
branches. The combination of DPI and EPL provides a deeper
insight into the branch behavior and allows us to accurately
estimate prediction rate for a per-address predictor based on
these metrics without detailed simulation. Our experiments
show that DPI improves the classification of easy-to-predict
branches by 18.9% compared with taken rate and 12.8% com-
pared with transition rate for the workloads in this study. It
also improves the accuracy of hard-to-predict branch classifi-
cation by up to 17.7% over taken rate and 15.0% over tran-
sition rate. Overall, these proposed metrics significantly im-

prove the quality of branch classification, and are valuable ex-
tension of the existing metrics.
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