
0018-9162/03/$17.00 © 2003 IEEE34 Computer

Benchmarking 
Internet Servers 
on Superscalar 
Machines

T oday’s demanding Internet applications typ-
ically execute on superscalar microproces-
sors that fetch, decode, and execute multi-
ple instructions in each clock cycle. These
microprocessors contain multiple func-

tional units, generally employ large caches, and tend
to execute instructions in an order different from the
instruction sequence fed to them. 

To finish the job as soon as possible, they look deep
into the instruction stream and execute instructions
from places where sequential execution flow has not
yet reached. With the aid of sophisticated branch pre-
dictors, they identify the program flow’s potential
path to find instructions that can be executed in
advance. At times, however, a processor makes
wrong predictions and must nullify the extra work it
performed speculatively.

Developers designed most of the microprocessors
that execute today’s Internet applications before the
advent of these emerging workloads. CPU-intensive
benchmarks have been widely used in processor per-
formance evaluation but differ in functionality from
emerging commercial applications, which contain sev-
eral Web server and e-commerce software packages,
interfaces, and standards. An end-to-end e-business
transaction typically involves at least a dozen different
software modules, including the front end or portal,
shopping carts, network communication, credit card
or electronic check processing, and security.

Many of these applications involve a Web-based
interface to an underlying database that stores the
data relating to the user inquiry or transaction.
Modern servers use a three-tier approach in which
the back-end tier handles the database access while
the middle tiers and front end implement much of
the business logic and user interface. Some
researchers have studied large database applica-
tions, which are usually used as an Internet server
back end.1-4 Although these studies have revealed
much about the back end, we still do not fully
understand how the front and middle tiers of server-
side workloads behave.

To help fill that knowledge gap, we examined
how the front-end and middle-tier workloads of
Web and Java servers have affected modern micro-
processor architectures. We also compared a num-
ber of server benchmarks with CPU-intensive
benchmarks, such as the Standard Performance
Evaluation Corporation’s SPECint2000, to get a
perspective on their behavior compared to more
traditional and better-understood workloads.

SUPERSCALAR PLATFORMS
We evaluated Internet workloads on three sig-

nificantly different microarchitectures. The IBM
RS64-III5 is a 64-bit, superscalar, in-order specula-
tive-execution processor, while the IBM POWER3-
II6 is a 64-bit, superscalar, out-of-order speculative-
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execution processor. Both have reduced-instruc-
tion-set computing (RISC) architectures. The Intel
Pentium III is an out-of-order superscalar processor
with a complex-instruction-set computing (CISC)
instruction set, but it converts CISC-style instruc-
tions into simple RISC-style micro-operations
before execution.

The IBM processors retire up to four instructions
per cycle, while the Pentium III can retire three
micro-operations per cycle. The POWER3-II and
Pentium III employ dynamic branch prediction; the
RS64-III prefetches up to eight instructions from
the branch target into a branch target buffer dur-
ing normal execution, predicts the branch not
taken, continues to fetch from the instruction
stream, then—once the branch is resolved—either
continues fetching from the current instruction
stream with no penalty or flushes the instructions
after the branch occurs.

The RS64-III has 128-Kbyte level-one instruction
and data caches and a 4-Mbyte level-two cache. The
POWER3-II has 64-Kbyte L1 instruction and data
caches and 8-Mbyte L2 caches. The Pentium III has
16-Kbyte L1 instruction and data caches and 512-
Kbyte L2 caches. 

The Pentium III we used ran Windows NT
Workstation 4.0, while the IBM platforms ran AIX
4.3.3. Our experiments used Apache 1.3.23 as the
Web server. We used the IBM Java Development
Kit 1.1.8 and Sun JDK 1.3.0 with HotSpot Server
as the Java virtual machines on the IBM and Intel
platforms, respectively.

EXPERIMENTAL ENVIRONMENT
Using these three platforms, we ran three server

benchmarks that represent various front-end and
middle-tier Internet services: SPECweb99, Volano-
Mark 2.1.2, and SPECjbb2000. To compare them
to traditional and better-understood applications,
we also experimented with the integer programs in
the SPEC CPU2000 suite (www.spec.org). 

Web server
SPECweb99 (www.spec.org/web99/) provides

SPEC’s current benchmark for measuring Web
server performance. The SPECweb99 workload,
shown in Figure 1a, simulates accesses to an Inter-
net service provider, wherein the server supports
Web pages for several different organizations. 

Each homepage in the benchmark contains a col-
lection of files that range from small icons to large
documents and images. The workload simulates
dynamic operations such as rotating advertisements
on a Web page and customized Web page creation.

The file accesses closely match today’s real-world
Web server access patterns. SPECweb99 supports
the HTTP1.0 and HTTP1.1 protocols.

Internet chat server
VolanoMark (www.volano.com/benchmarks.

html), a pure Java chat server benchmark, has long-
lasting network connections and high thread
counts. It is based on VolanoChat, a commercial
chat server application deployed in several coun-
tries. Although provided as a single package, it can
be divided into a server and a client. The server
accepts connections from the chat client, as shown
in Figure 1b. This client simulates many chat
rooms, with multiple users in each room. The client
continuously sends messages to the server and
waits for the server to broadcast them to users in
the same chat room. The VolanoMark server cre-
ates two threads for each client connection.

E-commerce application 
SPECjbb2000 (www.spec.org/jbb2000/), SPEC’s

first e-business benchmark, also provides the first
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benchmark for evaluating the performance of
server-side Java. The Java Business Benchmark
(JBB) emulates an electronic commerce workload in
a three-tier system. It contains business logic and
object manipulation, primarily representing the
activities of the middle tier in an actual business
server. 

The benchmark models a wholesale company
with warehouses that serve several districts.
Customers initiate a set of operations, such as plac-
ing new orders and checking the status of existing
orders. The benchmark generates additional oper-
ations within the company, such as processing
orders for delivery, entering customer payments,
and checking stock levels.

Written in Java, SPECjbb2000 is an adaptation 
of IBM’s portable business-oriented benchmark,
pBOB. Although it emulates business transactions,
SPECjbb2000 differs significantly from the Trans-
action Processing Council benchmarks (www.tpc.
org). For example, as shown in Figure 1c, it substi-
tutes driver threads for actual clients. Similarly,
instead of providing actual database access, it stores
data as binary trees of objects. Memory-resident and
thus without inherent disk I/O, SPECjbb2000
assigns one active customer per warehouse, each of
which involves 25 Mbytes of data. 

Hardware performance monitors
We used the hardware performance monitors

built into the microprocessors to measure proces-
sor performance. The “On-Chip Performance
Monitoring Counters” sidebar describes perfor-
mance monitors in detail. For the IBM machines,
we used the IBM-supplied performance monitor
API and IBM’s pmcount—both AIX kernel exten-
sions—to interface with the PowerPC performance
monitors. On the Intel processor, we used PMON
to access these counters. We measured the server
only, and only when it was handling client requests,
thus excluding startup and shutdown operations.

WORKLOAD COMPARISON
We compared the three server benchmarks with

SPECint on the three different microarchitectures.
Table 1 shows the results from VolanoMark runs
with 10 and 30 chat rooms as volano10 and
volano30, and SPECjbb runs with 10 and 25 ware-
houses as SPECjbb10 and SPECjbb25. For Volano-
Mark, we used the default configuration of 20 users
per room.

Throughout, we strove to make the metrics com-
mon across all three platforms. However, not all
the platforms can monitor all the microarchitec-
ture events. Therefore, we compared some related
metrics when identical metrics could not be col-
lected from all three. Further, the differences in the
processors and platforms forced us to focus on the
performance differences between server and tradi-
tional CPU-intensive benchmarks on each plat-
form, rather than comparing the platforms directly. 

On-Chip Performance Monitoring Counters 

Most high-performance microprocessors incorporate on-chip perfor-
mance monitoring counters. Developers can use these counters to under-
stand how microprocessors perform when running complex, real-world
workloads. 

Previously, workload analysis used simulators and profilers, which
either ignored operating system activity or resulted in prohibitively long
slowdowns. Using on-chip performance counters now makes it possible
to evaluate and monitor complex runtime systems involving multiple
software applications at execution speed. Performing this type of mea-
surement on binaries helps developers analyze the behavior of propri-
etary software for which no source code is available.

Various performance events can be measured using counters. Usually,
they include 

• total cycles,
• instructions fetched,
• instructions retired,
• number of loads and stores,
• cache misses at various levels,
• number of branch instructions,
• number of mispredicted branches, and
• number of branches not predicted.1

Counters can be read with special instructions and configured to mea-
sure user and kernel activity in combination or isolation. For design sim-
plicity, most microprocessors severely limit the number of events that can
be measured simultaneously. At times, certain events can be accessed only
through a particular counter. Microprocessor developers have found such
steps to reduce the overhead associated with on-chip performance mon-
itoring. Performance counters consume on-chip real estate and, if not
carefully implemented, can detrimentally affect processor cycle time. 

Among the many available software tools to access performance coun-
ters are VTune (developer.intel.com/software/products/vtune/vtune60/
vtune_oview.htm) and PMON (www.ece.utexas.edu/projects/ece/lca/
pmon) on Windows/x86, the Compaq Continuous Profiling Infrastruc-
ture (www.research.compaq.com/SRC/ dcpi/) on Alpha, the perf-monitor
utility (www.sics.se/~mch/perf-monitor/index.html) on UltraSparc, Brink/
Abyss (www.eg.bucknell.edu/~bsprunt/emon/brink_abyss/brink_abyss.
shtm) on Pentium 4, and Rabbit for Intel and AMD processor on Linux
systems (www.scl.ameslab.gov/Projects/Rabbit). 

Developers using these counters must be sure to have as few undesired
processes running during an experiment as possible to minimize the inter-
ference from these processes.

Reference
1. L.K. John, “Performance Evaluation: Techniques, Tools and Benchmarks,”

The Computer Engineering Handbook, V.G. Oklobdzija, ed., CRC Press,
2001, pp. 8-21 to 8-37.



As Table 1 shows, on all three platforms the
server applications generally exhibit higher cycles
per instruction than most SPECint programs. CPI
reflects the execution efficiency of the processor
pipelines and their ability to extract instruction-
level parallelism. Our results indicate that the plat-
forms have more difficulty exploiting ILP in the
server benchmarks than in the SPECint bench-
marks. On the IBM platforms, we found that for
more than half the execution cycles in the server
applications the system dispatched no instructions.
Similarly, no operations can be retired in more than
60 percent of the Pentium III’s execution cycles.7

Operating system activity
Database and file servers reportedly devote a

higher percentage of their execution time to the priv-
ileged operating system (kernel) mode than techni-
cal workloads do,8 an observation we confirmed 
for Web servers as well, as Table 1 shows. The
SPECweb and VolanoMark programs spend 30 to
65 percent of their execution cycles in OS mode. In
contrast, most programs in the SPECint2000 suite
spend negligible time in this mode.

Processors typically enter the OS mode when the
user application invokes a system call requesting the
operating system to perform some task on its behalf,
such as creating another process, requesting syn-
chronization with another kernel-level thread, or
sending a packet to the network. VolanoMark
spends most of its time receiving and sending net-
work messages, which is mainly the OS’s task. Also,
to handle simultaneous client connections, a server
usually spawns multiple threads. Scheduling and
synchronizing these threads, in addition to network
communication, result in VolanoMark spending
more than half its execution time in OS mode.

Network communication is a major part of
SPECweb. In addition, its execution incurs many
disk accesses. SPECjbb, on the other hand, lacks
the network communications and disk accesses typ-
ical of servers. It thus does a poor job of repre-
senting server applications in this respect. For
example, it spends less than 0.7 percent of the total
execution time in OS mode, which is little differ-
ent from SPECint. 

Cache performance
Modern processors devote much of their real

estate to on-chip caches designed to capture the
instruction and data working sets and reduce the
average memory access time.

L1 instruction cache. Figure 2 shows the L1 instruc-
tion cache misses per 1,000 instructions for the

various workloads. The server applications exhib-
ited poorer instruction cache performance than
SPECint programs on all three machines. The
instruction translation lookaside buffer (ITLB)
misses also exhibited a similar trend.7

The use of dynamically linked libraries (DLLs)
strongly influences servers’ instruction access
behavior in emerging applications. To streamline
the development of complex software, developers
now adhere to the principle of modularity at both
the source code and binary levels. Most Web server
functions are implemented as DLL modules on the
Windows platform.

For example, consider the Apache server in the
SPECweb benchmark. This server has a main exe-
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Table 1. Workload cycles per instruction and percentage of cycles spent in
OS mode.

Average kernel 
cycle percentage

Cycles per instruction on all three 
Benchmark* RS64-III POWER3-II Pentium III platforms    

SPECweb 1.45 1.19 2.10 33.53  
volano30 1.76 1.44 3.03 55.50  
volano10 2.17 1.59 3.72 60.85  
SPECjbb25 1.52 1.27 2.31 0.46  
SPECjbb10 1.45 1.25 2.29 0.48  
vortex 1.45 0.64 1.27 0.59  
twolf 1.41 1.23 2.25 0.24  
gcc 1.07 0.78 2.25 0.92  
eon 1.27 1.04 1.36 0.23  
crafty 0.77 0.63 1.22 0.20  
perlbmk 1.16 0.85 1.13 0.53  
parser 1.04 0.93 1.64 0.26  
gap 1.19 0.82 1.32 0.38  
bzip2 0.98 0.97 1.36 0.75  
vpr 1.32 1.29 1.79 0.28  
mcf 4.66 3.08 6.65 0.36  
gzip 0.80 0.68 1.24 0.67  

*Server benchmarks appear in roman type, SPECint2000 benchmarks in italic.

0

10

20

30

40

50

60

70

80

M
is

se
s 

pe
r 1

,0
00

 in
st

ru
ct

io
ns

gz
ip mcf vp

r
bz

ip2 ga
p
pa

rse
r

pe
rlb

mk
cra

fty eo
n

gc
c

tw
olf

vo
rte

x

vo
lan

o1
0

vo
lan

o3
0

SPEC
web

SPEC
jbb

25

SPEC
jbb

10

RS64-III

POWER3-II

Pentium III

Figure 2. Level-one
instruction cache
misses per 1,000
instructions, for var-
ious workloads. The
server applications
exhibited poorer
instruction cache
performance than
SPECint programs on
all three machines.



38 Computer

cutable of only about 20 Kbytes, and its core func-
tions—implemented in the ApacheCore.dll—com-
prise 320 Kbytes. The SPECint programs, on the
other hand, are compiled into self-contained stand-
alone executables. In addition, SPECint programs
seldom request services from the operating system
or other applications, except for reading some input
files at the beginning and printing the results at the
end. Thus, few DLLs become involved in the exe-
cution of SPECint programs. 

The dynamic invocation and loading of libraries
affects the server program’s instruction footprint
and access nature. Because each shared library
loads to a different memory page, calling a func-
tion in another library causes the control flow to
transfer to another memory page, resulting in poor
ITLB performance. Similar behavior has been
observed in Windows desktop applications.9

Further, many server applications or components
are written in Java and compiled by just-in-time
compilers at runtime. This dynamically compiled
code for consecutively invoked methods may not
occupy contiguous address spaces.10 All of these
effects explain the difference in instruction access
behavior between server applications and the
SPECint suite.

High instruction cache miss rates have been
observed in traditional database server applications
as well.1,2

L1 data cache. The miss rates in the level-one data
cache do not differ significantly enough between
the server and the SPECint applications to warrant
presentation here.

L2 cache. Figure 3 shows level-two cache misses
per 1,000 instructions. On the Pentium III, the
server applications’ L2 cache misses are compara-
ble to SPECint’s. On the PowerPC machines, which
have much larger L2 caches, the servers’ L2 cache
miss rates are higher than SPECint’s, except for
mcf, which has extraordinarily high L2 cache miss
rates on all platforms.

The high server miss rates on the IBM platforms,
even with relatively large L2 caches, indicate that
the data footprint of server applications is hard to
capture with ordinarily large caches. Servers usually
manage large data sets, as in the case of SPECjbb,
in which each warehouse holds 25 Mbytes of data.
Because each client thread accesses a different ware-
house, the large number of clients creates a large
and scattered data footprint.

Branch predictor behavior
State-of-the-art high-performance microproces-

sors employ speculative execution to enhance per-
formance. The Pentium III and POWER3-II employ
dynamic branch prediction to predict branch direc-
tion and the branch target at runtime based on exe-
cution history. Although branch misprediction rates
are similar for both server and SPECint workloads
on the Pentium III, branch target buffer misses
run higher for server applications than for
SPECint2000. The POWER3-II behaves similarly,
although the difference between SPECint and server
branch prediction performance is less pronounced
than on the Pentium III. 

Further, one SPECint program, eon, that shows
poor target prediction performance is written in
C++ and makes heavy use of virtual functions, a
common feature of object-oriented programming.
Java programs have been seen to demonstrate poor
branch target predictability, often because of indi-
rect branches that result from virtual function calls
and code interpretation.11

WHERE DO THE CYCLES GO?
We used the processor performance counters to

shed more light on the various CPI components and
their individual contributions. Given the differences
in the processors’ counters, we used slightly differ-
ent approaches. 

Pentium III
On the Pentium III, we measured cycles with

instruction stream stalls and resource stalls.
Instruction stream stalls are mainly the result of
instruction cache misses and ITLB misses. Resource
stalls indicate the number of cycles in which
resources such as reorder buffer entries, memory
buffer entries, or execution units are unavailable.12

We then estimated the computation CPI using a
tested methodology.3 As Figure 4a shows, the server
applications and SPECint programs experienced
resource stalls in similar ranges, while the former’s
instruction stream stalls are much higher than the
latter’s.
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Determining the contribution of each stall com-
ponent to the CPI is difficult, especially in an out-
of-order superscalar processor like the Pentium III,
which tolerates latencies well by overlapping them.
Therefore, we conducted a linear regression analy-
sis and statistically isolated the contributions of
resource and instruction stream stalls to the CPI. 

We found that for server applications, instruc-
tion stream stalls contribute from 33 to 62 percent
to the CPI, while for SPECint such stalls contribute
less than 33 percent overall and for half the suite
are negligible—less than 1 percent. Further analy-
sis showed that resource stalls highly correlate with
data cache misses. 

RS64-III
Because the POWER3-II performance monitor

lacks the stall events necessary to perform a detailed
CPI component analysis, we explored only the
RS64-III’s CPI components. The RS64-III offers a
single countable event that indicates the nonover-
lapped total amount of storage-related stalls—in
effect, it counts multiple storage-related stalls in
one cycle as a single stall. Figure 4b compares CPI
components of the server and SPECint benchmarks
on the RS64-III.

To put these results in perspective, we first esti-
mated an approximate ideal CPI—one with a per-
fect memory system—using the measured overall
CPI and storage-related stalls. We then constructed
a CPI stack with this ideal CPI and major storage-
stall components such as instruction cache, data
cache, and L2 cache stalls.

Our results clearly show that the server bench-
marks incur significantly more storage-related stalls
than the SPECint benchmarks. Storage-related
stalls also have a high impact on CPI in the server
programs and a few of the SPEC programs, but
only a negligible effect on half of the SPECint pro-
grams. Despite the large number of storage stall
cycles for the server benchmarks, their CPIs are
lower than the sum total of the CPI components,
which indicates the effectiveness of the RS64-III’s
pipelined architecture in hiding some of the stor-
age latency.

Given that the RS64-III instruction cache is
eight times as large as the Pentium III’s, we can
expect instruction stream stalls to be a less seri-
ous contributor to overall CPI in the RS64-III. The
contrast in these two platforms’ performance sug-
gests that server applications can benefit from
large instruction caches. L2 cache miss stalls con-
stitute a major stall component of CPI on the
RS64-III.

O ur study demonstrates that many of the
benchmarking results hold across all three
architectures, irrespective of their different

designs. This leaves no doubt that, to maximize
performance on Internet server applications, mod-
ern processor architectures need further enhance-
ments and optimizations, particularly in memory
system design. Increased memory requirements
coupled with interacting software packages will
lead to more complex memory access stream
behavior for instruction and data memory access.
While increased cache sizes may help, concerns
about large memory access times, increased wire
delays, and increased power consumption could
arise. Designing microprocessors for emerging
Internet servers will continue to be a challenge. �
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