
CSALT: Context Switch Aware Large TLB ∗

Yashwant Marathe, Nagendra Gulur1, Jee Ho Ryoo, Shuang Song, and Lizy K. John

Department of Electrical and Computer Engineering, University of Texas at Austin
1Texas Instruments

ymarathe@utexas.edu, nagendra@ti.com, {jr45842, songshuang1990}@utexas.edu, ljohn@ece.utexas.edu

ABSTRACT
Computing in virtualized environments has become a com-
mon practice for many businesses. Typically, hosting compa-
nies aim for lower operational costs by targeting high utiliza-
tion of host machines maintaining just enough machines to
meet the demand. In this scenario, frequent virtual machine
context switches are common, resulting in increased TLB
miss rates (often, by over 5X when contexts are doubled) and
subsequent expensive page walks. Since each TLB miss in a
virtual environment initiates a 2D page walk, the data caches
get filled with a large fraction of page table entries (often, in
excess of 50%) thereby evicting potentially more useful data
contents.

In this work, we propose CSALT - a Context-Switch Aware
Large TLB, to address the problem of increased TLB miss
rates and their adverse impact on data caches. First, we
demonstrate that the CSALT architecture can effectively cope
with the demands of increased context switches by its capac-
ity to store a very large number of TLB entries. Next, we
show that CSALT mitigates data cache contention caused by
conflicts between data and translation entries by employing
a novel TLB-Aware Cache Partitioning scheme. On 8-core
systems that switch between two virtual machine contexts
executing multi-threaded workloads, CSALT achieves an av-
erage performance improvement of 85% over a baseline with
conventional L1-L2 TLBs and 25% over a baseline which
has a large L3 TLB.

CCS CONCEPTS
Computer systems organization → Heterogeneous (hy-
brid) systems;

∗Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by
others than the author(s) must be honored. Abstracting with credit
is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

MICRO-50, October 14-18, 2017, Cambridge, MA, USA
c©2017 Copyright is held by the owner/author(s). Publication rights

licensed to ACM.
ACM 978-1-4503-4952-9/17/10...$15.00
https://doi.org/10.1145/3123939.3124549

KEYWORDS
Address Translation, Virtualization, Cache Partitioning

ACM Reference format:
Yashwant Marathe, Nagendra Gulur1, Jee Ho Ryoo,
Shuang Song, Lizy K. John. Department of Electrical
and Computer Engineering, The University of Texas at
Austin 1.Texas Instruments. 2017. CSALT: Context
Switch Aware Large TLB. In Proceedings of MICRO-50,
Cambridge, MA, USA, October 14-18, 2017, 12 pages.
https://doi.org/10.1145/3123939.3124549

1. INTRODUCTION
Computing in virtualized cloud environments [7, 23, 46,

61, 22] has become a common practice for many businesses
as they can reduce capital expenditures by doing so. Many
hosting companies have found that the utilization of their
servers is low (see [39] for example).

In order to keep the machine utilization high, the hosting
companies that maintain the host hardware typically attempt
to keep just enough machines to serve the computing load,
and allowing multiple virtual machines to coexist on same
physical hardware [10, 64, 57]. High CPU utilization has
been observed in many virtualized workloads [44, 45, 42].

0

2

4

6

8

10

12

c
a
n

n
e
a
l

c
a
n

_
c
c
o
m

p

c
a
n

_
s
tr

c
ls

c
c
o
m

p

g
r
a
p

h
5
0
0

g
r
a
p

h
5
0
0
_
g
u

p
s

g
u

p
s

p
a
g
e
r
a
n

k

p
a
g
e
r
a
n

k
_
s
tr

c
ls

s
tr

c
ls

g
e
o
m

e
a
n

L
2
 T

L
B

 M
P

K
I
 R

a
ti

o

Figure 1: Increase in TLB Misses due to Context Switches.
Ratio of L2 TLB MPKIs in Context Switch Case to Non-
Context Switch Case

The aforementioned trend means that the host machines are
constantly occupied by applications from different businesses,
and frequently, different contexts are executed on the same

MICRO-50, October 14-18, 2017, Cambridge, MA, USA Y.Marathe et al.

machine. Although it is ideal for achieving high utilization,
the performance of guest applications suffer from frequent
context switching. The memory subsystem has to maintain
consistency across the different contexts, and hence tradition-
ally, processors used to flush caches and TLBs. However,
modern processors adopt a more efficient approach where
each entry contains Address Space Identifier (ASID) [2].
Tagging the entry with ASID eliminates the needs to flush
the TLB upon a context switch, and when the swapped-out
context returns, some of its previously cached entries will
be present. Although these optimizations worked well with
traditional benchmarks where the working set, or memory
footprint, was manageable between context switches, this
trend no longer holds for emerging workloads. The memory
footprint of emerging workloads is orders of magnitude larger
than traditional workloads, and hence the capacity require-
ment of TLBs as well as data caches is much larger. This
means the cache and TLB contents of previous context will
frequently be evicted from the capacity constrained caches
and TLBs since the applications need a larger amount of
memory. Although there is some prior work that optimizes
context switches [28, 67, 35], there is very little literature that
is designed to handle the context switch scenarios caused by
huge footprints of emerging workloads that flood data caches
and TLBs.

Orthogonally, the performance overhead of address trans-
lation in virtualized systems is considerable as many TLB
misses incur a full 2-dimensional page walk. The page walk
in virtualized system begins with guest virtual address (gVA)
when an application makes a memory request. However,
since the guest and host system keep their own page tables,
the gVA has to be translated to host physical address (hPA).
First, gVA has to be translated to guest physical address
(gPA), which is the host virtual address (hVA). This hVA
is finally translated to gPA. This involves walking down a
2-dimensional page table. Current x86-64 employs a 4-level
page table [24], so the 2-dimensional page walk may require
up to 24 accesses. Making the situation worse, emerging ar-
chitectures [27] introduce a 5-level page table resulting in the
page walk operation to only get longer. Also, even though the
L1-L2 TLBs are constantly getting bigger, they are not large
enough to handle the huge footprint of emerging applications,
and expensive page walks are becoming frequent.

Context switches in virtualized workloads are expensive.
Since both the guest and host processes share the hardware
TLBs, context switches across virtual machines can impact
performance severely by evicting a large fraction of the TLB
entries held by processes executing on any one virtual ma-
chine. To quantify this, we measured the increase in the L2
TLB MPKI of a context-switched system (2 virtual machine
contexts, switched every 10ms) over a non-context-switched
baseline. Figure 1 illustrates the increase in L2 TLB MPKIs
for several multi-threaded workloads, when additional virtual
machine context switches are considered. Despite only two
VM contexts, the impact on the the L2 TLB is severe: an
average increase in TLB MPKI of over 6X . This observation
motivates us to mitigate the adverse impact of increased page
walks due to context switches.

Conventional page walkers as well as addressable large-
capacity translation caches (such as Oracle SPARC TSB [50])

generate accesses that get cached in the data caches. In
fact, these translation schemes rely on successful caching of
translation (or intermediate page walk) entries in order to
reduce the cost of page walks. There has also been some
recent work that attempts to improve the address translation
problem by implementing a very large L3 TLB that is a part of
the addressable memory [62]. The advantage of this scheme
titled POM-TLB is that since the TLB is very large (several
orders of magnitude larger than conventional on-chip TLBs),
it has room to hold most required translations, and hence
most page walks are eliminated. However, since the TLB
request is serviced from the DRAM, the latency suffers. The
POM-TLB entries are cached in fast data caches to reduce the
latency problem, however, all of the aforementioned caching
schemes suffer from the problem of cache contention due
to the additional load on data caches caused by the cached
translation entries.

As L2 TLB miss rates go up, proportionately, the num-
ber of translation-related accesses also go up, resulting in
congestion in the data caches. Since a large number of TLB
entries are stored in data caches, now the data traffic hit rate
is affected. When the cache congestion effects are added
on top of cache thrashing due to context switching, which
is common in modern virtualized systems, the amount of
performance degradation is not negligible.

In this paper, we present CSALT (read as "sea salt”) which
employs a novel dynamic cache partitioning scheme to re-
duce the contention in caches between data and TLB entries.
CSALT employs a partitioning scheme based on monitoring
of data and TLB stack distances and marginal utility princi-
ples. In this paper, we architect CSALT over a large L3 TLB
which can practically hold all required TLB entries. However,
CSALT can be easily architected atop any other translation
scheme. CSALT addresses increased cache congestion when
L3 TLB entries (or entries pertaining to translation in other
translation schemes) are allowed to be cached into L2 and L3
data caches by means of a novel cache partitioning scheme
that separates the TLB and data traffic. This mechanism helps
to withstand the increased memory pressure from emerging
large footprint workloads especially in the virtualized context
switching scenarios.

This paper makes the following contributions:

• To the best of our knowledge, our work is the first
to demonstrate the impact of virtual machine context
switching on L2 TLB performance and page walk over-
heads.

• We identify the cache congestion problem caused by the
data caching of TLB entries and propose TLB-aware
cache allocation algorithms that improve both data and
TLB hit rates in data caches.

• We demonstrate that CSALT effectively addresses
the problem of increased page walks due to context
switches.

• Through detailed evaluation, we show that the CSALT
architecture achieves an average performance improve-
ment of 85% over a conventional architecture with L1-
L2 TLBs, and 25% improvement over a state-of-the-art
large L3 TLB architecture.

CSALT: Context Switch Aware Large TLB MICRO-50, October 14-18, 2017, Cambridge, MA, USA

The rest of this paper is organized as follows: Section 2
briefly discusses background on context switches and ad-
dress translation in virtualized systems and shows the per-
formance bottleneck associated with context switches. Sec-
tion 3 describes the CSALT architecture. Section 4 shows the
experimental platform, followed by performance results in
Section 5. Section 6 discusses the related work and finally
conclude the paper in Section 7.

2. BACKGROUND AND MOTIVATION
In this section, we describe the background on address

translation in virtualized systems and context switches. Cache
contention arising from sharing of data caches with transla-
tion entries is studied.

2.1 Address Translation
The address translation in modern computers requires mul-

tiple accesses to the memory subsystem. Multi-level page
tables are used, and a part of the virtual address is used to
index into each level. In case of today’s x86-64, a four-level
page table is adopted [24]. Intel recently announced that a
newer generation of processors will be able to exploit the
five-level page tables to further increase the reach of the phys-
ical address space [27]. However, in this paper, we focus on
conventional four-level page tables. A five-level page table
will only strengthen the motivation for the proposed CSALT
scheme. The procedure to perform the full translation is
shown in Figure 2a. A part of virtual address (VA) is used
along with the CR3 register to index into the first level of
the page table, which is denoted as L4 in the figure. The
numbers in round parenthesis indicate the step in the address
translation. For example, the step in Figure 2a involving L4
is the first step in computing the physical address, so this
step is denoted as ‘’1” in the figure. In order to compute the
physical address (PA) from virtual address (VA), four steps
are needed. Although there are recent enhancements such as
MMU caches [25, 12] that can reduce the number of walks
by caching partial translation, the address translation incurs
non-negligible performance overhead.

In virtualized systems, the address translation overhead
increases. Table 1 plots the measured page walk cost per L2
TLB miss in both native and virtualized systems on a state-of-
the-art system with extended page tables. While some work-
loads (e.g., streamcluster) have very similar page walk costs
in both native and virtualized, others (e.g., connectedcom-
ponent, gups) show significant increase under virtualization.
The problem in the virtualized system is that guest virtual ma-
chine needs to keep its own page table while the host system
needs to keep its own page table. Therefore, the hypervisor
has to be involved in translating the guest-side addresses to
host-side addresses. Having the hypervisor involved in ev-
ery TLB miss is costly, so modern processors employ nested
page tables [1, 24] where the page walks are done in a two-
dimensional way. Figure 2b shows the full translation starting
from guest virtual address (gVA) to host physical address
(hPA). Such translation requires a two-dimensional radix-4
walk since each level of translation on the guest side needs
the full 4-level translation on the host side. Therefore, in the
worst case, the system has to access the memory subsystem
24 times as shown in Figure 2b. In practice, many of the in-

L4 L3 L2 L1 PA VA

PAGE TABLE WALK CR3

(a) 1-Dimensional Page Table Walk (Native)

hL

4

hL

3

hL

2

hL

1 gL4

hL

4

hL

3

hL

2

hL

1 gL3

hL

4

hL

3

hL

2

hL

1 gL2

hL

4

hL

3

hL

2

hL

1 gL1

hL

4

hL

3

hL

2

hL

1 hPA

gVA

HOST WALK

G
U

E
S

T
 W

A
L

K

gPA

hCR3

hCR3

(b) 2-Dimensional Page Table Walk (Virtualized)

Figure 2: Page Table Walks in Native and Virtualized Systems

Benchmark Native Virtualized
canneal 53 61

connectedcomponent 44 1158
graph500 79 80

gups 43 70
pagerank 51 61

streamcluster 74 76

Table 1: Average Page Walk Cycles Per L2 TLB miss

termediate page table entries are cached in MMU caches and
data caches, so most accesses do not incur expensive off-chip
DRAM accesses; however, having such a large number of
accesses is still expensive.

2.2 Motivation
Today it is common to have multiple VM instances to share

a common host system as cloud vendors try to maximize hard-
ware utilization. Figure 1 shows that the context switching
between virtual machines leads to a significant increase in L2
TLB miss rates in workloads with large working sets. This
leads to an overall degradation in performance of the context-
switched workloads. For instance, when 1 VM instance of
pagerank was context-switched with another VM instance of
the same workload, the total program execution cycles for
each instance went up by a factor of 2.2X .

The higher miss rate of the L2 TLB leads to increased
translation traffic to the data caches. In the conventional radix
tree based page table organization, the additional page walks
result in the caching of intermediate page tables [65]. In the
POM-TLB organization, the caches store translation entries
instead of page table entries1. While caching of TLB entries
inherently causes less congestion (one entry per translation as
opposed to multiple intermediate page table entries), it still re-

1 By translation entry we refer to a TLB entry that stores the trans-
lation of a virtual address to its physical address.

MICRO-50, October 14-18, 2017, Cambridge, MA, USA Y.Marathe et al.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ca
n

n
ea

l

cc
o
m

p
o
n

en
t

g
ra

p
h

5
0
0

g
u

p
s

p
a
g

er
a
n

k

g
eo

m
ea

n

F
ra

ct
io

n
 o

f
C

a
ch

e
C

a
p

a
ci

ty

L2 D$ L3 D$

Figure 3: Fraction of Cache Capacity Occupied by TLB
Entries

sults in polluting the data caches when the L2 TLB miss rates
are high. This scenario creates an undesirable situation where
neither data nor TLB traffic achieves the optimal hit rate in
data caches. A conventional system is not designed to handle
such scenarios as the conventional cache replacement policy
does not distinguish different types of cache contents. This is
no longer true as some contents are data contents while oth-
ers are TLB contents. When a replacement decision is made,
it does not distinguish TLB contents versus data contents.
But the data and TLB contents impact system performance
differently. For example, data requests are overlapped with
other data requests with the help of MSHR. On the other
hand, an address translation request is a blocking access, so
it stalls the pipeline. Although newer processor architectures
such as Skylake [24] have simultaneous page table walkers to
allow up to two page table walks, the page table walk being a
blocking access does not change. In the end, the conventional
content-oblivious cache replacement policy makes both the
TLB and data access performance suffer by making them
compete for entries in capacity constrained data caches. This
problem is exacerbated when frequent context switches occur
between virtual machines.

To quantify the cache congestion problem, we measure
the occupancy of TLB entries in L2 and L3 data caches. We
define occupancy as the average fraction of cache blocks
that hold TLB entries2. Figure 3 plots this data for several
workloads3. We observe that an average of 60% of the cache
capacity holds translation entries. In one workload (con-
nectedcomponent), the TLB entry occupancy is as high as
80%. This is because the L2 TLB miss rate is approximately
10 times the L1 data cache miss rate, as a result of which
translation entries end up dominating the cache capacity.

While caching of the translation entries is useful to avoid
DRAM accesses, the above data suggests that unregulated
caching of translation entries has a flip side of causing cache
pollution or creating capacity conflict with data entries. This
motivates the proposed CSALT architecture that creates a
TLB-aware cache management framework.

2To collect this data, we modified our simulator to maintain a type
field (TLB or data) with each cache block; periodically the simulator
scanned the caches to record the fraction of TLB entries held in
them.
3Refer Section 4 for details of evaluation methodology and work-
loads

Core 0 Core 1 Core N-1

L1 TLB

L2 TLB

L1 TLB

L2 TLB

L1 TLB

L2 TLB

Large L3 TLB

L2 D$

L3 D$

L2 D$ L2 D$

Data Stack

Distance Profiler

TLB Stack

Distance Profiler

legend CSALT

Figure 4: CSALT System Architecture

3. CONTEXT SWITCH AWARE LARGE
TLB

The address translation overhead in virtualized systems
comes from one apparent reason, the lack of TLB capacity.
If the TLB capacity were large enough, most of page table
walks would have been eliminated. The need for a larger
TLB capacity is also seen as a recent generation of Intel pro-
cessors [4] doubled the L2 TLB capacity from the previous
generation. Traditionally, TLBs are designed to be small and
fast, so that the address translation can be serviced quickly.
Yet, emerging applications require much more memory than
traditional server workloads. Some of these applications have
terabytes of memory footprint, so that TLBs, which were
not initially designed for such huge memory footprint, suffer
significantly.

Recent work [62] by Ryoo et al. uses a part of main mem-
ory to be used as a large capacity TLB. They use 16MB of
the main memory, which is negligible considering high-end
servers have terabytes of main memory these days. However,
16MB is orders of magnitude higher than today’s on-chip
TLBs, and thus, it can eliminate virtually all page table walks.
This design achieves the goal of eliminating page table walks,
but now this TLB suffers from slow access latency since
off-chip DRAM is much slower than on-chip SRAMs. Con-
sequently, they make this high-capacity TLB as addressable,
so TLB entries can be stored in data caches. They call this
TLB as POM-TLB (Part of Memory TLB) as the TLB is
given an explicit address space. CSALT uses the POM-TLB
organization as its substrate. It may be noted that CSALT is a
cache management scheme, and can be architected over other
translation schemes such as conventional page tables.

Figure 4 depicts the system architecture incorporating
CSALT architected over the POM-TLB. CSALT encom-
passes L2 and L3 data cache management schemes. The
role of the stack distance profilers shown in the figure is
described in Section 3.1. In the following subsections, we
describe the architecture of our Context-Switch Aware Large
TLB (CSALT) scheme. First, we explain the dynamic parti-
tioning algorithm that helps to find a balanced partitioning
of the cache between TLB and data entries to reduce the
cache contention. In Section 3.2, we introduce a notion of
“criticality” to improve the dynamic partitioning algorithm by
taking into account the relative costs of data cache misses.
We also describe the hardware overheads of these partitioning

CSALT: Context Switch Aware Large TLB MICRO-50, October 14-18, 2017, Cambridge, MA, USA

algorithms.

3.1 CSALT with Dynamic Partitioning
(CSALT-D)

Since prior state-of-the-art work [62] does not distinguish
data and TLB entries when making cache replacement de-
cisions, it achieves a suboptimal performance improvement.
The goal of CSALT is to profile the demand for data and TLB
entries at runtime and adjust the cache capacity needed for
each type of cache entry.

CSALT dynamic partitioning algorithm (CSALT-D) at-
tempts to maximize the overall hit rate of data caches by
allocating an optimal amount of cache capacity to data and
TLB entries. In order to do so, CSALT-D attempts to min-
imize interference between the two entry types. Assuming
that a cache is statically partitioned by half for data and TLB
entries, if data entries have higher miss rates with the current
allocation of cache capacity, CSALT-D would allocate more
capacity for data entries. On the other hand, if TLB entries
have higher miss rates with the current partitioning scheme,
CSALT-D would allocate more cache for TLB entries. The
capacity partitioning is adjusted at a fixed interval, and we re-
fer to this interval as an epoch in this paper. In order to obtain
an estimate of cache hit/miss rate for each type of entry when
provisioned with a certain capacity, we implement a cache
hit/miss prediction model for each type of entry based on
Mattson’s Stack Distance (MSA) algorithm [43]. The MSA
uses the LRU information of set-associative caches. For a
K-way associative cache, LRU stack is an array of (K +1)
counters, namely Counter1 to CounterK+1. Counter1 counts
the number of hits to the Most Recently Used (MRU) po-
sition, and CounterK counts the number of hits to the LRU
position. CounterK+1 counts the number of misses incurred
by the set. Each time there is a cache access, the counter
corresponding to the LRU stack distance where the access
took place is incremented.

LRU stack can be used to predict the hit rate of the cache
when the associativity is increased/reduced. For instance,
consider a 16-way associative cache where we record LRU
stack distance for each of the accesses in a LRU stack. If we
decrease the associativity to 4, all the accesses which hit in
positions LRU4−LRU15 in the LRU stack previously would
result in a miss in the new cache with decreased associativity
(LRU0 is the MRU position). Therefore, an estimate of the
hit rate in the new cache with decreased associativity can be
obtained by summing up the hit rates in the LRU stack in
positions LRU0−LRU3.

For a K-way associative cache, our dynamic partitioning
scheme works by allocating certain ways (0 : N−1) for data
entries and the remaining ways for TLB entries (N : K−1)
in each set in order to maximize the overall cache hit rate.
For each cache which needs to be dynamically partitioned,
we introduce two additional structures: a data LRU stack,
and a TLB LRU stack corresponding to data and TLB entries
respectively. The data LRU stack serves as a cache hit rate
prediction model for data entries whereas the TLB LRU stack
serves as as a cache hit rate prediction model for TLB entries.
Estimates of the overall cache hit rates can be obtained by
summing over appropriate entries in the data and TLB LRU
stack. For instance, in a 16-way associative cache with 10

Algorithm 1 Dynamic Partitioning Algorithm

1: N = Number of ways to be allocated for data
2: M = Number of ways to be allocated for TLB
3:
4: for n in Nmin : K−1 do
5: MUn = compute_MU(n)
6:
7: N = arg max

N
(MUNmin ,MUNmin+1, ...,MUK−1)

8: M = K - N

ways allocated for data entries and remaining ways allocated
for TLB entries, an estimate of the overall cache hit rate can
be obtained by summing over LRU0−LRU9 in Data LRU
stack and LRU0−LRU5 in the TLB LRU stack.

This estimate of the overall cache hit rate obtained from
the LRU stack is referred to as the Marginal Utility of the
partitioning scheme [32]. Consider a K-way associative
cache. Let the data LRU stack be represented as D_LRU and
the TLB LRU stack be represented as TLB_LRU. Consider a
partitioning scheme P that allocates N ways for data entries
and K−N ways for TLB entries. Then the Marginal Utility
of P, denoted by MUP

N is given by the following equation,

MUP
N =

N−1

∑
i=0

D_LRU(i)+
K−N−1

∑
j=0

TLB_LRU(j). (1)

CSALT-D attempts to maximize the marginal utility of the
cache at each epoch by comparing the marginal utility of dif-
ferent partitioning schemes. Consider the example shown in
Figure 5 for an 8-way associative cache. Suppose the current
partitioning scheme assigns N = 4 and M = 4. At the end of
an epoch, the D_LRU and TLB_LRU contents are shown in Fig-
ure 5. In this case, the dynamic partitioning algorithm finds
the marginal utility for the following partitioning schemes
(not every partitioning is listed):

MUP1
4 =

3

∑
i=0

D_LRU(i)+
3

∑
j=0

TLB_LRU(j) = 34

MUP2
5 =

4

∑
i=0

D_LRU(i)+
2

∑
j=0

TLB_LRU(j) = 30

MUP3
6 =

5

∑
i=0

D_LRU(i)+
1

∑
j=0

TLB_LRU(j) = 40

MUP4
7 =

6

∑
i=0

D_LRU(i)+
0

∑
j=0

TLB_LRU(j) = 50

Among the computed marginal utilities, our dynamic scheme
chooses the partitioning that yields the best marginal utility.
In the above example, CSALT-D chooses partitioning scheme
P4. This is as elaborated in Algorithm 1 and Algorithm 2.

Once the partitioning scheme Pnew is determined by the
CSALT-D algorithm, it is enforced globally on all cache
sets. Suppose the old partitioning scheme Pold allocated Nold
ways for data entries, and the updated partitioning scheme
Pnew allocates Nnew ways for data entries. We consider two
cases: (a) Nold < Nnew and (b) Nold > Nnew and discuss how
the partitioning scheme Pnew affects the cache lookup and

MICRO-50, October 14-18, 2017, Cambridge, MA, USA Y.Marathe et al.

Algorithm 2 Computing Marginal Utility

1: N = Input
2: D_LRU = Data LRU Stack
3: TLB_LRU = TLB LRU Stack
4: MU = 0
5:
6: for i in 0 : N−1 do
7: MU += D_LRU (i)
8: for j in 0 : K−N−1 do
9: MU += TLB_LRU (j)

10: return MU

cache replacement. While CSALT-D has no affect on cache
lookup, CSALT-D does affect replacement decisions. Here,
we describe the lookup and replacement policies in detail.
Cache Lookup: All K-ways of a set are scanned irrespective
of whether a line corresponds to a data entry or a TLB entry
during cache lookup. In case (a), even after enforcing Pnew,
there might be TLB entries resident in the ways allocated for
data (those numbered Nold to Nnew−1). On the other hand,
in case (b), there might be data entries resident in the ways
allocated for TLB entries (ways numbered Nnew to Nold−1).
This is why all ways in the cache is looked up as done in
today’s system.
Cache Replacement: In the event of a cache miss, consider
the case where an incoming request corresponds to a data
entry. In both case (a) and (b), CSALT-D evicts the LRU
cacheline in the range (0,Nnew−1) and places the incoming
data line in its position. On the other hand, if the incoming
line corresponds to a TLB entry, in both case (a) and (b),
CSALT-D evicts the LRU-line in the range (Nnew,K−1) and
places the incoming TLB line in its position.
Classifying Addresses as Data or TLB: Incoming ad-
dresses can be classified as data or TLB by examining the
relevant address bits. Since the POM-TLB is a memory
mapped structure, the cache controller can identify if the in-
coming address is to the POM-TLB or not. For stored data in
the cache, there are two ways by which this classification can
be done: i) by adding 1 bit of metadata per cache block to
denote data (0) or TLB (1), or ii) by reading the tag bits and
determining if the stored address falls in the L3 TLB address
range or not. We leave this as an implementation choice. In
our work, we assume the latter option as it does not affect

3

11

12

8

9

2

1

4

10

DATA LRU Stack

LRU0

LRU1

LRU2

LRU3

LRU4

LRU5

LRU6

LRU7

LRU8

7

10

12

5

1

0

8

15

1

TLB LRU Stack

LRU0

LRU1

LRU2

LRU3

LRU4

LRU5

LRU6

LRU7

LRU8

Figure 5: LRU Stack Example

metadata storage.

L2 TLB Miss

L2 D$

TLB

Partition

legend

L3 D$

Large L3 TLB

Data SD

Profiler
TLB SD

Profiler

Data SD

Profiler
TLB SD

Profiler

update

miss

miss

miss

Page Walk

update

adjust

partition

if needed

adjust

partition

if needed

Data

Partition

partition

by weight

partition

by weight

epoch

boundary?

epoch

boundary?

CSALT-CD

Addition

Figure 6: CSALT Overall Flowchart

Finally, the overall flow is summarized in Figure 6. Each
private L2 cache maintains its own stack distance profilers
and updates them upon accesses to it. When an epoch com-
pletes, it computes marginal utilities and sets up a (potentially
different) configuration of the partition between data ways
and TLB ways. Misses (and writebacks) from the L2 caches
go to the L3 cache which performs a similar update of its
profilers and configuration outcome. A TLB miss from the
L3 data cache is sent to the L3 TLB. Finally, a miss in the L3
TLB triggers a page walk.

3.2 CSALT with Criticality Weighted Parti-
tioning (CSALT-CD)

CSALT-D assumes that the impact of data cache misses is
equal for both data and TLB entries, and as a result, both the
data and TLB LRU stacks had the same weight when com-
puting the marginal utility. However, this is not necessarily
true since a TLB miss can cause a long latency page walk4.
In order to maximize the performance, the partitioning algo-
rithm needs to take the relative performance gains obtained
by TLB entry hit and the data entry hit in the data caches into
account.

Therefore, we propose a dynamic partitioning scheme
that considers criticality of data entries, called Criticality
Weighted Dynamic Partitioning (CSALT-CD). We use the in-
sight that data and TLB misses incur different penalties on a
miss in the data cache. Hence, the outcome of stack distance
profiler is scaled by its importance or weight, which is the
performance gain obtained by a hit in the data cache. Figure 6
shows an overall flowchart with additional hardware to en-
able such scaling (the red shaded region shows the additional
hardware).

In CSALT-CD, a performance gain estimator is added to
estimate the impact of a TLB entry hit and a data entry hit

4Note that even if the translation request misses in an L3 data cache,
the entry may still hit in the L3 TLB thereby avoiding a page walk.

CSALT: Context Switch Aware Large TLB MICRO-50, October 14-18, 2017, Cambridge, MA, USA

Algorithm 3 Computing CWMU

1: N = Input
2: D_LRU = Data LRU Stack
3: TLB_LRU = TLB LRU Stack
4: CWMU = 0
5:
6: for i in 0 : N−1 do
7: CWMU += SDat×D_LRU (i)
8: for j in 0 : K−N−1 do
9: CWMU += STr×TLB_LRU (j)

10: return CWMU

on performance. In an attempt to minimize hardware over-
heads, CSALT-CD uses existing performance counters. For
estimating the hit rate of the L3 data cache, CSALT-CD uses
performance counters that measures the number of L3 hits
and the total number of L3 accesses that are readily available
on modern processors. For estimating the L3 TLB hit rate,
a similar approach is used. Utilizing this information, the
total number of cycles incurred by a miss for each kind of
entry is computed dynamically. The ratio of the number of
cycles incurred by a miss to the number of cycles incurred
by a hit for each kind of entry is used to estimate the per-
formance gain on a hit to each kind of entry. For instance,
if a data entry hits in the L3 cache, the performance gain
obtained is the ratio of the average DRAM latency to the total
L3 access latency. If a TLB entry hits in the L3 cache, the
performance gain obtained is the ratio of the sum of the TLB
latency and the average DRAM latency to the total L3 access
latency. These estimates of performance gains are directly
plugged in as Criticality Weights which are used to scale the
Marginal Utility from the stack distance profiler. We define a
new quantity called the Criticality Weighted Marginal Utility.
For a partitioning scheme P which allocates N data ways out
of K ways, Criticality Weighted Marginal Utility (CWMU),
denoted as CWMUP

N , is given by the following equation5,

CWMUP
N = SDat×

N−1

∑
i=0

D_LRU(i)+STr×
K−N−1

∑
j=0

TLB_LRU(j).

(2)
The partitioning scheme with the highest CWMU is used

for the next epoch. Figure 6 shows the overall flow chart of
CSALT-CD with the additional step required (the red shaded
is the addition for CSALT-CD). We have used separate per-
formance estimators for L2 and L3 data caches as the per-
formance impact of L2 and L3 data caches is different. Al-
gorithm 3 shows the pseudocode of CSALT-CD. For a data
entry, this performance gain is denoted by SDat , and for a
TLB entry, by STr. These criticality weights are dynamically
estimated using the approach elaborated earlier. The rest of
the flow (cache accesses, hit/miss evaluation, replacement
decisions) is the same as in CSALT-D.

3.3 Hardware Overhead
Both CSALT-D and CSALT-CD algorithms use stack dis-

5We could normalize the values in the LRU stack with respect to
the number of data and TLB entry accesses, but we do not do so for
the sake of simplicity

tance profilers for both data and TLB. The area overhead
for each stack distance profiler is negligible. This structure
requires the MSA LRU stack distance structure, which is
equal to the number of ways, so in case of L3 data cache, it
is 16 entries. Computing the marginal utility only requires a
few adders that will accumulate the sum of a few entries in
the stack distance profiler. Both CSALT-D and CSALT-CD
also require an internal register per partitioned cache which
contains information about the current partitioning scheme,
specifically, N, the number of ways allocated for data in
each set. The overhead of such a register is minimal, and
depends on the associativity of the cache. Furthermore, the
CSALT-CD algorithm uses a few additional hardware struc-
tures, which include the hit rates of L3 data cache and L3
TLB. However, these counters are already available on mod-
ern processors as performance monitoring counters. Thus,
estimating the performance impact of data caches and TLBs
will only require a few multipliers that will be used to scale
the marginal utility by weight. Therefore, we observe that the
additional hardware overhead required to implement CSALT
with criticality weighted partitioning is minimal.

3.4 Effect of Replacement Policy
Until this point, we assumed a True-LRU replacement

policy for the purpose of cache partitioning. However, True-
LRU is quite expensive to implement, and is rarely used
in modern processors. Instead, replacement policies like
Not Recently Used (NRU) or Binary Tree (BT) pseudo-LRU
are used [33]. Fortunately, the cache partitioning algorithms
utilized by CSALT are not dependent on the existence of True-
LRU policy. There has been prior research to adapt cache
partitioning schemes to Pseudo-LRU replacement policies
[33], and we leverage it to extend CSALT.

For NRU replacement policy, we can easily estimate the
LRU stack positions depending on the value of the NRU bit on
the accessed cache line. For Binary Tree-pseudoLRU policy,
we utilize the notion of an Identifier (ID) to estimate the
LRU stack position. Identifier bits for a cache line represent
the value that the the binary tree bits would assume if a
given line held the LRU position. In either case, estimates
of LRU stack positions can be used to update the LRU stack.
It has been shown that using these estimates instead of the
actual LRU stack position results in only a minor performance
degradation [33].

4. EXPERIMENTAL SET-UP
We evaluate the performance of CSALT using a combina-

tion of real system measurements, Pin tool [40], and heav-
ily modified Ramulator [34] simulation. The virtualization
platform is QEMU [11] 2.0 with KVM [20] support. Our
host system is Ubuntu 14.04 running on Intel Skylake [24]
with Transparent Huge Pages (THP) [8] turned on. The
system also has Intel VT-x with support for Extended Page
Tables [26]. The host system parameters are shown in Table 2
under Processor, MMU, and PSC categories. The guest sys-
tem is Ubuntu 14.04 also with THP turned on. Although the
host system has a separate L1 TLBs for 1GB pages, we do not
make use of it. The L2 TLB is a unified TLB for both 4KB
and 2MB pages. In order to measure page walk overheads,
we use specific performance counters (e.g., 0x0108, 0x1008,

MICRO-50, October 14-18, 2017, Cambridge, MA, USA Y.Marathe et al.

Processor Values
Frequency 4 GHz
Number of Cores 8
L1 D-Cache 32KB, 8 way, 4 cycles
L2 Unified Cache 256KB, 4 way, 12 cycles
L3 Unified Cache 8MB, 16 way, 42 cycles
MMU Values
L1 TLB (4KB) 64 entry, 9 cycles
L1 TLB (2MB) 32 entry, 9 cycles

L1 TLBs 4 way associative
L2 Unified TLB 1536 entry, 17 cycles

L2 TLBs 12 way associative
PSC Values
PML4 2 entries, 2 cycle
PDP 4 entries, 2 cycle
PDE 32 entries, 2 cycle
Die-Stacked DRAM Values
Bus Frequency 1 GHz (DDR 2 GHz)
Bus Width 128 bits
Row Buffer Size 2KB
tCAS-tRCD-tRP 11-11-11
DDR Values
Type DDR4-2133
Bus Frequency 1066 MHz

(DDR 2133 MHz)
Bus Width 64 bits
Row Buffer Size 2KB
tCAS-tRCD-tRP 14-14-14

Table 2: Experimental Parameters
VM1 VM2

canneal_x8 connected component_x8
canneal_x8 streamcluster_x8

graph500_x8 gups_x8
pagerank_x8 streamcluster_x8

Table 3: Heterogeneous Workloads Composition

0x0149, 0x1049), which take MMU caches into account. The
page walk cycles used in this paper are the average cycles
spent after a translation request misses in L2 TLB.

4.1 Workloads
The main focus of this work is on memory subsystems, and

thus, applications, which do not spend a considerable amount
of time in memory, are not meaningful. Consequently, we
chose a subset of PARSEC [15] applications that are known
to be memory intensive. In addition, we also ran graph bench-
marks such as the graph500 [5] and big data benchmarks
such as connected component [36] and pagerank [51]. We
paired two multi-threaded benchmarks (two copies of the
same program, or two different programs) to study the prob-
lems introduced by context switching. The heterogeneous
workload composition is listed in Table 3. The x8 denotes
the fact that all our workloads are run with 8 threads.

4.2 Simulation
Our simulation methodology is different from prior

work [56, 55] that relied on a linear additive performance

model. The drawback of the linear model is that it does not
take into account the overlap of instructions and address trans-
lation traffic, but merely assumes that an address translation
request is blocking that the processor immediately stalls upon
a TLB miss. This is not true in modern hardware as the re-
maining instructions in the ROB can continue to retire as well
as some modern processors [24] allow simultaneous page
walkers. Therefore, we use a cycle accurate simulator that
uses a heavily modified Ramulator. We ran each workload
10 billion instructions. The front-end of our simulator uses
the timed traces collected from real system execution using
the Pin tool. During playback, we simulate two contexts by
switching between two input traces every 10ms. We choose
10ms as the context switch granularity based on measured
data from prior works [37, 38].

In our simulation, we model the TLB datapath where the
TLB miss still lets the processor to flush the pipeline, so
the overlap aspect is well modeled. We simulate the entire
memory system accurately, including the effects of translation
accesses on L2 and L3 data caches as well as the misses
from data caches that are serviced by POM-TLB or off-chip
memory. The timing details of our simulator are summarized
in Table 2.

The performance improvement is calculated by using the
ratio of improved IPC (geometric mean across all cores)
over the baseline IPC (geometric mean across all cores), and
thus, higher normalized performance improvement indicates
a higher performing scheme.

5. RESULTS
This section presents simulation results from a conven-

tional system with only L1-L2 TLBs, a POM-TLB sys-
tem, and various CSALT configurations. POM-TLB is
the die-stacked TLB organization using the LRU replace-
ment scheme in L2 and L3 caches [62]. CSALT-D refers
to proposed scheme with dynamic partitioning in L2, L3
data caches. CSALT-CD refers to proposed scheme with
Criticality-Weighted dynamic partitioning in L2, L3 data
caches.

5.1 CSALT Performance
We compare the performance (normalized IPC) of the base-

line, POM-TLB, CSALT-D and CSALT-CD in this section.
Figure 7 plots the performance of these schemes. Note that
we have normalized the performance of all schemes using
the POM-TLB. POM-TLB, CSALT-D and CSALT-CD all
gain over the conventional system in every workload. The
large shared TLB organization helps reduce expensive page
walks and improves performance in the presence of context
switches and high L2 TLB miss rates. This is confirmed by
Figure 8 which plots the reduction in page walks after the
POM-TLB is added to the system. In the presence of context
switches (that cause L2 TLB miss rates to go up by 6X), the
POM-TLB eliminates the vast majority of page walks, with
average reduction of 97%. It may be emphasized that no prior
work has explored the use of large L3 TLBs to mitigate the
page walk overhead due to context switches.

Both CSALT-D and CSALT-CD outperform POM-TLB,
with average performance improvements of 11% and 25% re-

CSALT: Context Switch Aware Large TLB MICRO-50, October 14-18, 2017, Cambridge, MA, USA

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

ca
n

n
ea

l

ca
n

_c
co

m
p

ca
n

_s
tr

ea
m

cc
om

p

gr
ap

h
50

0

gr
ap

h
50

0_
gu

p
s

gu
p

s

p
ag

er
an

k

p
ag

e_
st

re
am

st
re

am
cl

u
st

er

ge
om

ea
n

P
er

fo
rm

an
ce

 i
m

p
ro

ve
m

en
t

Conventional POM-TLB CSALT-D CSALT-CD

2.24

Figure 7: Performance Improvement of CSALT (normalized to POM-TLB)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

c
a
n
n
e
a
l

c
a
n
_
c
c
o
m

p

c
a
n
_
st

re
a
m

c
c
o
m

p

g
ra

p
h
5
0
0

g
ra

p
h
5
0
0
_
g
u
p
s

g
u
p
s

p
a
g
e
ra

n
k

p
a
g
e
_
st

re
a
m

st
re

a
m

c
lu

st
e
r

g
e
o
m

e
a
n

F
r
a

c
ti

o
n

 o
f

P
a

g
e
 W

a
lk

s

E
li

m
in

a
te

d

Figure 8: POM-TLB: Fraction of Page Walks Eliminated

spectively. Both the dynamic schemes6 show steady improve-
ments over POM-TLB highlighting the need for cache de-
congestion on top of reducing page walks. In the connected-
component workload7, CSALT-CD improves performance by
a factor of 2.2X over POM-TLB demonstrating the benefit
of carefully balancing the shared cache space to TLB and
data storage. In gups and graph500, just having a large L3
TLB improves performance significantly but then there is no
additional improvement obtained by partitioning the caches.

In order to analyze how well our CSALT scheme works,
we deep dive into one workload, connected_component. Fig-
ure 9 plots the fraction of L2 and L3 cache capacity allo-
cated to TLB entries during the course of execution for con-
nected_component. The TLB capacity allocation follows
closely with the application behaviors. For example, the
workload processes a list of active vertices (a segment of
graph) in each iteration. Then, a new list of active vertices
is generated based on the edge connections of vertices in
the current list. Since vertices in the active list are placed in
random number of pages, this workloads produces different
6We also implemented static cache partitioning schemes and found
that no one static scheme performed well across all the workloads.
7When we refer to a single benchmark, we refer to two instances of
the benchmark co-scheduled.

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1

F
r
a

c
ti

o
n

 o
f

C
a

c
h

e

C
a

p
a

c
it

y

Fraction of Total Execution Time

L2 D$ TLB Partition L3 D$ TLB Partition

Figure 9: Fraction of TLB Allocation in Data Caches

levels of TLB pressure when a new list is generated. This is
apparent that the L2 data cache, which is more performance
critical, favors TLB entries in some execution phases. This
phase is when the new list is generated. By dynamically
assessing and weighing the data and TLB traffic, CSALT-CD
is able to vary the proportion allocated to TLB, which sat-
isfies the requirements of application. Interestingly, when
more of L2 data cache capacity is allocated to TLB entries,
we see a drop in L3 allocation for TLB entries. Since a
larger L2 capacity for TLB entries reduces the number of
TLB entry misses, the L3 data cache needs lesser capacity for
TLB entries. Even though L2 and L3 data cache partitioning
works independently, our stack distance profiler as well as
performance estimators work cooperatively and optimize the
overall system performance. The significant improvement
in performance of CSALT over POM-TLB can be quantita-
tively explained by examining the reduction in the L2 and L3
MPKIs. Figures 10 and 11 plot the relative MPKIs of POM-
TLB, CSALT-D and CSALT-CD in L2 and L3 data caches
respectively (relative to POM-TLB MPKI). Both CSALT-D
and CSALT-CD achieve MPKI reductions in both L2 and L3
data caches. In connected-component, both CSALT-D and
CSALT-CD reduce MPKI of the L2 cache by as much as 30%.
CSALT-CD achieves a reduction of 26% in the L3 MPKI as

MICRO-50, October 14-18, 2017, Cambridge, MA, USA Y.Marathe et al.

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10

P
O

M
-T

L
B

C
SA

L
T

-D

C
SA

L
T

-C
D

P
O

M
-T

L
B

C
SA

L
T

-D

C
SA

L
T

-C
D

P
O

M
-T

L
B

C
SA

L
T

-D

C
SA

L
T

-C
D

P
O

M
-T

L
B

C
SA

L
T

-D

C
SA

L
T

-C
D

P
O

M
-T

L
B

C
SA

L
T

-D

C
SA

L
T

-C
D

P
O

M
-T

L
B

C
SA

L
T

-D

C
SA

L
T

-C
D

P
O

M
-T

L
B

C
SA

L
T

-D

C
SA

L
T

-C
D

P
O

M
-T

L
B

C
SA

L
T

-D

C
SA

L
T

-C
D

P
O

M
-T

L
B

C
SA

L
T

-D

C
SA

L
T

-C
D

P
O

M
-T

L
B

C
SA

L
T

-D

C
SA

L
T

-C
D

P
O

M
-T

L
B

C
SA

L
T

-D

C
SA

L
T

-C
D

canneal can_ccomp can_stream ccomp graph500graph500_gups gups pagerank page_streamstreamcluster geomean

R
el

at
iv

e
M

P
K

I

Figure 10: Relative L2 Data Cache MPKI over POM-TLB

0.50

0.60

0.70

0.80

0.90

1.00

1.10

PO
M

-T
L

B

C
SA

L
T

-D

C
SA

L
T

-C
D

PO
M

-T
L

B

C
SA

L
T

-D

C
SA

L
T

-C
D

PO
M

-T
L

B

C
SA

L
T

-D

C
SA

L
T

-C
D

PO
M

-T
L

B

C
SA

L
T

-D

C
SA

L
T

-C
D

PO
M

-T
L

B

C
SA

L
T

-D

C
SA

L
T

-C
D

PO
M

-T
L

B

C
SA

L
T

-D

C
SA

L
T

-C
D

PO
M

-T
L

B

C
SA

L
T

-D

C
SA

L
T

-C
D

PO
M

-T
L

B

C
SA

L
T

-D

C
SA

L
T

-C
D

PO
M

-T
L

B

C
SA

L
T

-D

C
SA

L
T

-C
D

PO
M

-T
L

B

C
SA

L
T

-D

C
SA

L
T

-C
D

PO
M

-T
L

B

C
SA

L
T

-D

C
SA

L
T

-C
D

canneal can_ccomp can_stream ccomp graph500 graph500_gups gups pagerank page_streamstreamcluster geomean

R
el

at
iv

e
M

PK
I

Figure 11: Relative L3 Data Cache MPKI over POM-TLB

well. These reductions indicate that CSALT is successfully
able to reduce cache misses by making use of the knowledge
of the two streams of traffic.

These results also show the effectiveness of our Criticality-
Weighted Dynamic partitioning. In systems subject to virtual
machine context switches, since the L2 TLB miss rate goes
up significantly, a careful management of cache capacity fac-
toring in the TLB traffic becomes important. While TLB
traffic is generally expected to be a small fraction in com-
parison to data traffic, our investigation shows that this is
not always the case. In workloads with large working sets,
frequent context switches can result in generating significant
TLB traffic to the caches. CSALT-CD is able to handle this
increased demand by judiciously allocating cache ways to
TLB and data.

5.1.1 CSALT Performance in Native Systems
While CSALT is motivated by the problem of high trans-

lation overheads in context switched virtualized workloads,
it is equally applicable to native workloads that suffer high
translation overheads. Figure 12 shows that CSALT achieves
an average performance improvement of 5% in native context-
switched workloads with as much as 30% improvement in
the connectedcomponent benchmark.

5.2 Comparison to Prior Works
Since CSALT uses a combination of an addressable TLB

and a dynamic cache partitioning scheme, we compare its
performance against two relevant existing schemes: i) Trans-
lation Storage Buffers (TSB, implemented in Sun Ultrasparc
III, see [50]), and ii) DIP [58], a dynamic cache insertion
policy which we implemented on top of POM-TLB.

We chose TSB for comparison as it uses addressable
software-managed buffers to hold translation entries. Like
POM-TLB, TSB entries can be cached. However, unlike

0.8
0.9

1
1.1
1.2
1.3
1.4

ca
nn

ea
l

ca
n_

cc
om

p

ca
n_

st
re

am

cc
om

p

gr
ap

h5
00

gr
ap

h5
00

_g
up

s

gu
ps

pa
ge

ra
nk

pa
ge

_s
tr

ea
m

st
re

am
cl

us
te

r

ge
om

ea
n

P
er

fo
rm

an
ce

 I
m

pr
ov

em
en

t

Figure 12: Performance Improvement of CSALT-CD in the
native context

POM-TLB, the TSB organization requires multiple look-ups
to perform guest-virtual to host-physical translation.

DIP is a cache insertion policy, which uses two competing
cache insertion policies and selects the better one to reduce
conflicts in order to improve cache performance. We chose
DIP for comparison as we believed that the TLB entries may
have different reuse characteristics that would be exploited
by DIP (such as inserting such entries into cache sets at
non-MRU positions in the recency stack). As DIP is not a
page-walk reduction scheme, for a fair comparison, we imple-
mented DIP on top of POM-TLB. By doing so, this scheme
leverages the benefits of POM-TLB (page walk reduction)
while also incorporating a dynamic cache insertion policy
that is implemented based on examining all of the incoming
traffic (data + TLB) into the caches.

Figure 13 compares the performance of TSB, DIP and
CSALT-CD on context-switched workloads. Clearly, CSALT-
CD outperforms both TSB and DIP. Since TSB requires
multiple cacheable accesses to perform guest-virtual to host-

CSALT: Context Switch Aware Large TLB MICRO-50, October 14-18, 2017, Cambridge, MA, USA

0.5

0.7

0.9

1.1

1.3

1.5

1.7

c
a

n
n

e
a

l

c
a

n
_

c
c
o

m
p

c
a

n
_

s
tr

e
a

m

c
c
o

m
p

g
r
a

p
h

5
0
0

g
r
a

p
h

5
0

0
_

g
u

p
s

g
u

p
s

p
a

g
e
r
a

n
k

p
a

g
e
_
s
tr

e
a

m

s
tr

e
a
m

c
lu

s
te

r

g
e
o

m
e
a
n

P
e
r
fo

r
m

a
n

c
e
 I

m
p

r
o

v
e
m

e
n

t

TSB DIP CSALT-CD

2.24

Figure 13: Performance Comparison of CSALT with Other
Comparable Schemes

physical translation, it causes greater congestion in the shared
caches. Since it has no cache-management scheme that
is aware of the additional traffic caused by accesses to
the software translation buffers, the TSB suffers from in-
creased load on the cache, often evicting useful data to make
room for translation buffer entries. This results in the TSB
under-performing all other schemes (except in connected-
component, where it performs superior to DIP, but inferior to
CSALT-CD). It may also be noted that the TSB system orga-
nization can leverage CSALT cache partitioning schemes.

As such, DIP does not distinguish between data and TLB
entries in the incoming traffic and is unable to exploit this
distinction for cache management. As a result, DIP achieves
nearly the same performance as that of POM-TLB. This is
not surprising considering that we implemented DIP on top
of POM-TLB. CSALT-CD, by virtue of its TLB-conscious
cache allocation, leverage cache capacity much more effec-
tively and as a result, performs 30% better than DIP, on
average.

5.3 Sensitivity Studies
In this section, we vary some of our design parameters to

see their performance effects.
Number of contexts sensitivity: The number of contexts
that can run on a host system vary across different cloud ser-
vices. Some host machines can choose to have more contexts
running than others depending on the resource allocations. In
order to simulate such effects, we vary the number of con-
texts that run on each core. We have used a default value
of 2 contexts per core, but in this sensitivity analysis, we
vary it to 1 context and 4 contexts per core. We present the
results on how well CSALT is able to handle the increased
resource pressure. Figure 14 shows the performance improve-
ment results for varying number of contexts. The results are
normalized to POM-TLB. As expected, 1 context achieves
the lowest performance improvement as there is no resource
contention between multiple threads. Likewise, when we
further increased the pressure by executing 4 contexts (dou-
bled the default 2 context case), the performance increase is
only 33%. This study shows that CSALT is very effective
at withstanding increased system pressure by reducing the
degree of contention in shared resources such as data caches.
Epoch length sensitivity: The dynamic partitioning deci-
sion is made in CSALT at regular time intervals, referred to

0.0

0.5

1.0

1.5

2.0

2.5

c
a

n
n

e
a

l

c
a

n
_

c
c
o

m
p

c
a

n
_

st
r
e
a

m

c
c
o

m
p

g
r
a

p
h

5
0

0

g
r
a

p
h

5
0
0

_
g
u

p
s

g
u

p
s

p
a

g
e
r
a

n
k

p
a

g
e
_
st

r
e
a

m

st
r
e
a
m

c
lu

st
e
r

g
e
o

m
e
a

n

P
e
r
fo

r
m

a
n

c
e
 I

m
p

r
o

v
e
m

e
n

t

1 context 2 contexts 4 contexts

Figure 14: Performance of CSALT with Different Number of
Contexts

0.8

0.9

1.0

1.1

1.2

1.3

c
a
n

n
e
a

l

c
a
n

_
c
c
o
m

p

c
a
n

_
s
tr

e
a

m

c
c
o

m
p

g
r
a

p
h

5
0
0

g
r
a
p

h
5

0
0

_
g
u

p
s

g
u

p
s

p
a

g
e
r
a

n
k

p
a

g
e
_
s
tr

e
a
m

s
tr

e
a
m

c
lu

s
te

r

g
e
o

m
e
a
n

P
e
r
fo

r
m

a
n

c
e
 I

m
p

r
o

v
e
m

e
n

t

128K 256K 512K

Figure 15: Performance of CSALT with Different Epoch
Lengths

0.95
1

1.05
1.1

1.15
1.2

1.25
1.3

1.35
1.4

ca
nn

ea
l

ca
n_

cc
om

p

ca
n_

st
re

am

cc
om

p

gr
ap

h5
00

gr
ap

h5
00

_g
up

s

gu
ps

pa
ge

ra
nk

pa
ge

_s
tr

ea
m

st
re

am
cl

us
te

r

ge
om

ea
n

Pe
rf

or
m

an
ce

 I
m

pr
ov

em
en

t 5ms 10ms 30ms
1.731.92 1.60

Figure 16: Performance of CSALT with Different Context
Switch Intervals

as epochs. Throughout this paper, the default epoch length
was 256,000 accesses for both L2 and L3 data cache. The
epoch length at which the partitioning decision is made de-
termines how quickly our scheme reacts to changes in the
application phases. We change this epoch length after ex-
perimental evaluation. Figure 15 shows the performance
improvement normalized to our default epoch length of 256K
accesses when the epoch length, at which the dynamic parti-
tioning decision is made, is changed. In some cases such as
connected_component and streamcluster, shorter and longer
epoch length achieve higher performance improvement than
our default case. This indicates that our default epoch length
is not chosen well for these workloads as it results in making

MICRO-50, October 14-18, 2017, Cambridge, MA, USA Y.Marathe et al.

a partitioning decision based on non-representative regions
of workloads. However, in all other workloads, our default is
able to achieve the highest performance improvement. There-
fore, in this paper, we chose the default of 256K accesses as
the epoch length.
Context Switch Interval Sensitivity: The rate of context
switching affects the congestion/interference on data caches
and results in eviction of useful data/TLB entries. Figure 16
plots the performance gain achieved by CSALT (relative
to POM-TLB) at context-switch intervals of 5,10, and 30
ms. CSALT exhibits steady performance improvement at
each of these intervals, with a slightly lower (8%) average
improvement at 30 ms in comparison to 10 ms.

6. RELATED WORK
Virtual Memory: Oracle UltraSPARC mitigates expensive
software page walks by using TSB [50]. Upon TLB misses,
the trap handling code quickly loads the TLB from TSB
where the entry can reside anywhere from the L2 cache to
off-chip DRAM. However, TSB requires multiple memory
accesses to load the TLB entry in virtualized environments
as opposed to a single access in our scheme (refer to Figure
15 in [73] for an overview of the TSB address translation
steps in virtualized environments). Further, our TLB-aware
cache partitioning scheme is applicable to the TSB as well,
and as demonstrated in Section 5, TSB architecture also sees
performance improvement.

Modern processors implement MMU caches such as Intel’s
PSC [24] and AMD’s PWC [12] that store partial translation
to eliminate page walks. However, the capacity is still much
smaller than application footprints that a large number of page
walks are still inevitable. Other proposals like cooperative
caching [16], shared last level TLBs [13], and cooperative
TLBs [14] exploit predictable memory access patterns across
cores. These techniques are orthogonal to our approach and
can be applied on top of our scheme since we use a shared
TLB implemented in DRAM. Although software-managed
TLBs have been proposed for virtualized contexts [18], we
limit our work on hardware managed TLBs.

Speculation schemes [9, 56] continue the processor execu-
tion with speculated page table entries and invalidate specu-
lated instructions upon detecting the mispeculation. These
schemes can effectively hide the overheads of page table
walks. On the other hand, our scheme addresses more a fun-
damental that the TLB capabity is not enough, so we aim
to reduce the number of page walks significantly by having
much larger capacity.

Huge pages (e.g., 2MB or 1GB in x86-64) can reduce TLB
misses by having a much larger TLB reach [19, 49, 53]. Our
approach is orthogonal to huge pages since our TLB supports
caching TLB entries for multiple page sizes. Various prefetch-
ing mechanisms [31, 14] have been explored to fetch multiple
TLB or PTE entries to hide page walk miss latency. However,
the fundamental problem that the TLB capacity is not enough
is not addressed in prior work. Hybrid TLB coalescing [54]
aims to increase TLB coverage by encoding memory con-
tiguity information and does not deal with managing cache
capacity. Page Table Walk Aware Cache Management [3]
uses a cache replacement policy to preferentially store page
table entries on caches and does not use cache partitioning.

Cache Replacement: Recent cache replacement policy work
such as DIP [59], DRRIP [29], SHiP [71] focuses on homo-
geneous data types, which means they are not designed to
achieve the optimal performance when different data types
of data (e.g., POM-TLB and data entries) coexist. Hawk-
eye cache replacement policy [6], also targets homogeneous
data types, has a considerable hardware budget for LLC, and
cannot be implemented for L2 data caches. EVA cache re-
placement policy [48] cannot be used in this case due to a
similar problem.
Cache Partitioning: Cache partitioning is an extensively
researched area. Several previous works ([60, 69, 66, 74, 47,
70, 30, 68, 21, 63, 75, 52, 17, 72, 41]) have proposed mech-
anisms and algorithms for partitioning shared caches with
diverse goals of latency improvement, bandwidth reduction,
energy saving, ensuring fairness and so on. However, none
of these works take into account the adverse impact of higher
TLB miss rates due to virtualization and context switches.
As a result, they fail to take advantage of this knowledge to
effectively address the TLB related cache congestion.

7. CONCLUSION
In this work, we study the problem of TLB misses and

cache contention caused by context-switching between vir-
tual machines. We show that with just two contexts, L2 TLB
MPKI goes up by a factor of 6X on average across a vari-
ety of large-footprint workloads. We presented CSALT - a
dynamic partitioning scheme that adaptively partitions the
L2-L3 data caches between data and TLB entries. CSALT
achieves page walk reduction of over 97% by leveraging the
large L3 TLB. By designing a TLB-aware dynamic cache
management scheme in L2 and L3 data caches, CSALT is
able to improve performance. CSALT-CD achieves a perfor-
mance improvement of 85% on average over a conventional
system with L1-L2 TLBs and 25% over the POM-TLB base-
line. The proposed partitioning techniques are applicable for
any designs that cache page table entries or TLB entries in
L2-L3 caches.

8. ACKNOWLEDGEMENTS
The researchers are supported in part by National Sci-

ence Foundation grants 1337393. The authors would also
like to thank Texas Advanced Computing Center (TACC) at
UT Austin for providing compute resources. Any opinions,
findings, conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of NSF, or any other sponsors.

9. REFERENCES
[1] “AMD Nested Paging,”

http://developer.amd.com/wordpress/media/2012/10/NPT-WP-
1%201-final-TM.pdf.

[2] “ARM1136JF-S and ARM1136J-S,” http://infocenter.arm.com/help/
topic/com.arm.doc.ddi0211k/ddi0211k_arm1136_r1p5_trm.pdf.

[3] “bpoe8-eishi-arima,”
http://prof.ict.ac.cn/bpoe_8/wp-content/uploads/arima.pdf,
(Accessed on 08/24/2017).

[4] “Intel(R) 64 and IA-32 Architectures Optimization Reference Manual,”
http://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-optimization-manual.pdf.

http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://developer.amd.com/wordpress/media/2012/10/NPT-WP-1%201-final-TM.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0211k/ddi0211k_arm1136_r1p5_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0211k/ddi0211k_arm1136_r1p5_trm.pdf
http://prof.ict.ac.cn/bpoe_8/wp-content/uploads/arima.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf

[5] The Graph500 List. [Online]. Available:
Graph500:http://www.graph500.org/

[6] C. L. Akanksha Jain, “Back to the Future: Leveraging Belady‘s
Algorithm for Improved Cache Replacement,”
https://www.cs.utexas.edu/~lin/papers/isca16.pdf, 2016.

[7] Amazon, “Amazon EC2 - Virtual Server Hosting,”
https://aws.amazon.com/ec2/.

[8] A. Arcangeli, “Transparent hugepage support,” in KVM Forum, vol. 9,
2010.

[9] T. W. Barr, A. L. Cox, and S. Rixner, “SpecTLB: A Mechanism for
Speculative Address Translation,” in Proceedings of the 38th Annual
International Symposium on Computer Architecture, ser. ISCA ’11.
New York, NY, USA: ACM, 2011, pp. 307–318. [Online]. Available:
http://doi.acm.org/10.1145/2000064.2000101

[10] K. Begnum, N. A. Lartey, and L. Xing, “Cloud-Oriented Virtual
Machine Management with MLN,” in Cloud Computing: First
International Conference, CloudCom 2009, Beijing, China, December
1-4, 2009. Proceedings. Springer Berlin Heidelberg, 2009.

[11] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in
Proceedings of the Annual Conference on USENIX Annual Technical
Conference, ser. ATEC ’05. Berkeley, CA, USA: USENIX
Association, 2005, pp. 41–41. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1247360.1247401

[12] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, “Accelerating
Two-dimensional Page Walks for Virtualized Systems,” in
Proceedings of the 13th International Conference on Architectural
Support for Programming Languages and Operating Systems, ser.
ASPLOS XIII. New York, NY, USA: ACM, 2008, pp. 26–35.
[Online]. Available: http://doi.acm.org/10.1145/1346281.1346286

[13] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared last-level
TLBs for chip multiprocessors.” in HPCA. IEEE Computer Society,
2011, pp. 62–63. [Online]. Available: http://dblp.uni-
trier.de/db/conf/hpca/hpca2011.html#BhattacharjeeLM11

[14] A. Bhattacharjee and M. Martonosi, “Inter-core Cooperative TLB for
Chip Multiprocessors,” in Proceedings of the Fifteenth Edition of
ASPLOS on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS XV. New York, NY, USA: ACM,
2010, pp. 359–370. [Online]. Available:
http://doi.acm.org/10.1145/1736020.1736060

[15] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC Benchmark
Suite: Characterization and Architectural Implications,” in
Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques, ser. PACT ’08. New
York, NY, USA: ACM, 2008, pp. 72–81. [Online]. Available:
http://doi.acm.org/10.1145/1454115.1454128

[16] J. Chang and G. S. Sohi, Cooperative caching for chip
multiprocessors. IEEE Computer Society, 2006, vol. 34, no. 2.

[17] J. Chang and G. S. Sohi, “Cooperative Cache Partitioning for Chip
Multiprocessors,” in ACM International Conference on
Supercomputing 25th Anniversary Volume. New York, NY, USA:
ACM, 2014, pp. 402–412. [Online]. Available:
http://doi.acm.org/10.1145/2591635.2667188

[18] X. Chang, H. Franke, Y. Ge, T. Liu, K. Wang, J. Xenidis, F. Chen, and
Y. Zhang, “Improving virtualization in the presence of software
managed translation lookaside buffers,” in ACM SIGARCH Computer
Architecture News, vol. 41, no. 3. ACM, 2013, pp. 120–129.

[19] N. Ganapathy and C. Schimmel, “General purpose operating system
support for multiple page sizes.” in USENIX Annual Technical
Conference, no. 98, 1998, pp. 91–104.

[20] I. Habib, “Virtualization with KVM,” Linux J., vol. 2008, no. 166, Feb.
2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1344209.1344217

[21] W. Hasenplaugh, P. S. Ahuja, A. Jaleel, S. Steely Jr., and J. Emer,
“The Gradient-based Cache Partitioning Algorithm,” ACM Trans.
Archit. Code Optim., vol. 8, no. 4, pp. 44:1–44:21, Jan. 2012. [Online].
Available: http://doi.acm.org/10.1145/2086696.2086723

[22] HP, “HPE Cloud Solutions,”
https://www.hpe.com/us/en/solutions/cloud.html.

[23] IBM, “SmartCloud Enterprise,” https://www.ibm.com/cloud/.

[24] Intel, “ Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 3A: System Programming Guide Part 1.”

[25] Intel. Intel(R) 64 and IA-32 Architectures Software DeveloperâĂŹs
Manual Volume 3A: System Programming Guide, Part 1. [Online].
Available:
http://www.intel.com/Assets/en_US/PDF/manual/253668.pdf

[26] Intel, “Intel(R) Virtualization Technology,”
http://www.intel.com/content/www/us/en/virtualization/
virtualization-technology/intel-virtualization-technology.html.

[27] Intel, “5-Level Paging and 5-Level EPT,” 2016,
https://software.intel.com/sites/default/files/managed/2b/80/5-
level_paging_white_paper.pdf,.

[28] P. Jääskeläinen, P. Kellomäki, J. Takala, H. Kultala, and M. Lepistö,
“Reducing context switch overhead with compiler-assisted threading,”
in Embedded and Ubiquitous Computing, 2008. EUC’08. IEEE/IFIP
International Conference on, vol. 2. IEEE, 2008, pp. 461–466.

[29] A. Jaleel, K. B. Theobald, S. C. Steely Jr, and J. Emer, “High
performance cache replacement using re-reference interval prediction
(RRIP),” in ACM SIGARCH Computer Architecture News, vol. 38,
no. 3. ACM, 2010, pp. 60–71.

[30] R. Kandemir, Mahmut a nd Prabhakar, M. Karakoy, and Y. Zhang,
“Multilayer Cache Partitioning for Multiprogram Workloads,” in
Proceedings of the 17th International Conference on Parallel
Processing - Volume Part I, ser. Euro-Par’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 130–141. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2033345.2033360

[31] G. B. Kandiraju and A. Sivasubramaniam, Going the distance for TLB
prefetching: an application-driven study. IEEE Computer Society,
2002, vol. 30, no. 2.

[32] D. Kaseridis, J. Stuecheli, and L. K. John, “Bank-aware dynamic
cache partitioning for multicore architectures,” in Parallel Processing,
2009. ICPP’09. International Conference on. IEEE, 2009, pp. 18–25.

[33] K. Kędzierski, M. Moreto, F. J. Cazorla, and M. Valero, “Adapting
cache partitioning algorithms to pseudo-lru replacement policies,” in
Parallel & Distributed Processing (IPDPS), 2010 IEEE International
Symposium on. IEEE, 2010, pp. 1–12.

[34] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible
DRAM Simulator,” IEEE Comput. Archit. Lett., vol. 15, no. 1, pp.
45–49, Jan. 2016. [Online]. Available:
http://dx.doi.org/10.1109/LCA.2015.2414456

[35] A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, and
V. Zolotarov, “Osv—Optimizing the Operating System for Virtual
Machines,” in 2014 USENIX Annual Technical Conference (USENIX
ATC 14). Philadelphia, PA: USENIX Association, 2014, pp. 61–72.
[Online]. Available:
https://www.usenix.org/conference/atc14/technical-
sessions/presentation/kivity

[36] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-scale
Graph Computation on Just a PC,” in Conference on Operating
Systems Design and Implementation (OSDI). USENIX Association,
2012, pp. 31–46.

[37] C. Li, C. Ding, and K. Shen, “Quantifying the Cost of Context Switch,”
in Proceedings of the 2007 Workshop on Experimental Computer
Science, ser. ExpCS ’07. New York, NY, USA: ACM, 2007. [Online].
Available: http://doi.acm.org/10.1145/1281700.1281702

[38] F. Liu and Y. Solihin, “Understanding the Behavior and Implications
of Context Switch Misses,” ACM Trans. Archit. Code Optim., vol. 7,
no. 4, pp. 21:1–21:28, Dec. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1880043.1880048

[39] H. Liu, “A Measurement Study of Server Utilization in Public Clouds,”
2011, http://ieeexplore.ieee.org/document/6118751/media.

[40] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building
Customized Program Analysis Tools with Dynamic Instrumentation,”
in Proceedings of the 2005 ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’05.
New York, NY, USA: ACM, 2005, pp. 190–200. [Online]. Available:
http://doi.acm.org/10.1145/1065010.1065034

[41] R. Manikantan, K. Rajan, and R. Govindarajan, “Probabilistic Shared
Cache Management (PriSM),” in Proceedings of the 39th Annual
International Symposium on Computer Architecture, ser. ISCA ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 428–439.
[Online]. Available:
http://dl.acm.org/citation.cfm?id=2337159.2337208

Graph500 : http://www.graph500.org/
https://www.cs.utexas.edu/~lin/papers/isca16.pdf
https://aws.amazon.com/ec2/
http://doi.acm.org/10.1145/2000064.2000101
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://doi.acm.org/10.1145/1346281.1346286
http://dblp.uni-trier.de/db/conf/hpca/hpca2011.html#BhattacharjeeLM11
http://dblp.uni-trier.de/db/conf/hpca/hpca2011.html#BhattacharjeeLM11
http://doi.acm.org/10.1145/1736020.1736060
http://doi.acm.org/10.1145/1454115.1454128
http://doi.acm.org/10.1145/2591635.2667188
http://dl.acm.org/citation.cfm?id=1344209.1344217
http://doi.acm.org/10.1145/2086696.2086723
https://www.hpe.com/us/en/solutions/cloud.html
https://www.ibm.com/cloud/
http://www.intel.com/Assets/en_US/PDF/manual/253668.pdf
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
http://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
http://dl.acm.org/citation.cfm?id=2033345.2033360
http://dx.doi.org/10.1109/LCA.2015.2414456
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
https://www.usenix.org/conference/atc14/technical-sessions/presentation/kivity
http://doi.acm.org/10.1145/1281700.1281702
http://doi.acm.org/10.1145/1880043.1880048
http://ieeexplore.ieee.org/document/6118751/media
http://doi.acm.org/10.1145/1065010.1065034
http://dl.acm.org/citation.cfm?id=2337159.2337208

[42] Z. A. Mann, “Allocation of virtual machines in cloud data
centers—a survey of problem models and optimization
algorithms,” ACM Comput. Surv., vol. 48, no. 1, pp. 11:1–11:34, Aug.
2015. [Online]. Available: http://doi.acm.org/10.1145/2797211

[43] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
Techniques for Storage Hierarchies,” IBM Syst. J., vol. 9, no. 2, pp.
78–117, Jun. 1970. [Online]. Available:
http://dx.doi.org/10.1147/sj.92.0078

[44] Y. Mei, L. Liu, X. Pu, S. Sivathanu, and X. Dong, “Performance
analysis of network I/O workloads in virtualized data centers,” IEEE
Trans. Services Computing, vol. 6, no. 1, pp. 48–63, 2013. [Online].
Available: https://doi.org/10.1109/TSC.2011.36

[45] X. Meng, C. Isci, J. Kephart, L. Zhang, E. Bouillet, and D. Pendarakis,
“Efficient resource provisioning in compute clouds via VM
multiplexing,” in Proceedings of the 7th International Conference on
Autonomic Computing, ser. ICAC ’10. New York, NY, USA: ACM,
2010, pp. 11–20. [Online]. Available:
http://doi.acm.org/10.1145/1809049.1809052

[46] Microsoft, “Microsoft Azure,” https://www.microsoft.com/en-
us/cloud-platform/server-virtualization.

[47] M. Moreto, F. J. Cazorla, A. Ramirez, and M. Valero, “Transactions on
High-performance Embedded Architectures and Compilers III,”
P. Stenström, Ed. Berlin, Heidelberg: Springer-Verlag, 2011, ch.
Dynamic Cache Partitioning Based on the MLP of Cache Misses, pp.
3–23. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1980776.1980778

[48] D. S. Nathan Beckmann, “Maximizing Cache Performance Under
Uncertainty,”
http://people.csail.mit.edu/sanchez/papers/2017.eva.hpca.pdf, 2017.

[49] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical, transparent
operating system support for superpages,” ACM SIGOPS Operating
Systems Review, vol. 36, no. SI, pp. 89–104, 2002.

[50] Oracle. Translation Storage Buffers. [Online]. Available:
https://blogs.oracle.com/elowe/entry/translation_storage_buffers

[51] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank
citation ranking: Bringing order to the web,” 1999.

[52] A. Pan and V. S. Pai, “Imbalanced Cache Partitioning for Balanced
Data-parallel Programs,” in Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture, ser.
MICRO-46. New York, NY, USA: ACM, 2013, pp. 297–309.
[Online]. Available: http://doi.acm.org/10.1145/2540708.2540734

[53] M.-M. Papadopoulou, X. Tong, A. Seznec, and A. Moshovos,
“Prediction-based superpage-friendly TLB designs,” in High
Performance Computer Architecture (HPCA), 2015 IEEE 21st
International Symposium on. IEEE, 2015, pp. 210–222.

[54] C. H. Park, T. Heo, J. Jeong, and J. Huh, “Hybrid tlb coalescing:
Improving tlb translation coverage under diverse fragmented memory
allocations,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture. ACM, 2017, pp. 444–456.

[55] B. Pham, J. Veselý, G. H. Loh, and A. Bhattacharjee, “Large Pages
and Lightweight Memory Management in Virtualized Environments:
Can You Have It Both Ways?” in Proceedings of the 48th
International Symposium on Microarchitecture, ser. MICRO-48.
New York, NY, USA: ACM, 2015, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/2830772.2830773

[56] B. Pham, J. Vesely, G. H. Loh, and A. Bhattacharjee, “Using TLB
Speculation to Overcome Page Splintering in Virtual Machines,” 2015.

[57] G. C. Platform, “Load Balancing and Scaling.” [Online]. Available:
https://cloud.google.com

[58] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer,
“Adaptive Insertion Policies for High Performance Caching,” in
Proceedings of the 34th Annual International Symposium on
Computer Architecture, ser. ISCA ’07. New York, NY, USA: ACM,
2007, pp. 381–391. [Online]. Available:
http://doi.acm.org/10.1145/1250662.1250709

[59] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer,
“Adaptive insertion policies for high performance caching,” in ACM
SIGARCH Computer Architecture News, vol. 35, no. 2. ACM, 2007,
pp. 381–391.

[60] M. K. Qureshi and Y. N. Patt, “Utility-Based Cache Partitioning: A

Low-Overhead, High-Performance, Runtime Mechanism to Partition
Shared Caches,” in Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO 39.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 423–432.
[Online]. Available: http://dx.doi.org/10.1109/MICRO.2006.49

[61] Rackspace, “OPENSTACK - The Open Alternative To Cloud Lock-In,”
https://www.rackspace.com/en-us/cloud/openstack.

[62] J. H. Ryoo, N. Gulur, S. Song, and L. K. John, “Rethinking TLB
Designs in Virtualized Environments: A Very Large Part-of-Memory
TLB,” in Computer Architecture, 2017 IEEE International Symposium
on, ser. ISCA ’17. ACM, 2017. [Online]. Available:
http://lca.ece.utexas.edu/pubs/isca2017.pdf

[63] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and Efficient
Fine-grain Cache Partitioning,” in Proceedings of the 38th Annual
International Symposium on Computer Architecture, ser. ISCA ’11.
New York, NY, USA: ACM, 2011, pp. 57–68. [Online]. Available:
http://doi.acm.org/10.1145/2000064.2000073

[64] A. W. Services, “High Performance Computing,”
https://aws.amazon.com/hpc/,.

[65] SUN, “The SPARC Architecture Manual,”
http://www.sparc.org/standards/SPARCV9.pdf.

[66] K. T. Sundararajan, T. M. Jones, and N. P. Topham, “Energy-efficient
Cache Partitioning for Future CMPs,” in Proceedings of the 21st
International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’12. New York, NY, USA: ACM, 2012, pp.
465–466. [Online]. Available:
http://doi.acm.org/10.1145/2370816.2370898

[67] V. Vasudevan, D. G. Andersen, and M. Kaminsky, “The Case for VOS:
The Vector Operating System,” in Proceedings of the 13th USENIX
Conference on Hot Topics in Operating Systems, ser. HotOS’13.
Berkeley, CA, USA: USENIX Association, 2011, pp. 31–31. [Online].
Available: http://dl.acm.org/citation.cfm?id=1991596.1991638

[68] P.-H. Wang, C.-H. Li, and C.-L. Yang, “Latency Sensitivity-based
Cache Partitioning for Heterogeneous Multi-core Architecture,” in
Proceedings of the 53rd Annual Design Automation Conference, ser.
DAC ’16. New York, NY, USA: ACM, 2016, pp. 5:1–5:6. [Online].
Available: http://doi.acm.org/10.1145/2897937.2898036

[69] R. Wang and L. Chen, “Futility Scaling: High-Associativity Cache
Partitioning,” in Proceedings of the 47th Annual IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO-47.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 356–367.
[Online]. Available: http://dx.doi.org/10.1109/MICRO.2014.46

[70] W. Wang, P. Mishra, and S. Ranka, “Dynamic Cache Reconfiguration
and Partitioning for Energy Optimization in Real-time Multi-core
Systems,” in Proceedings of the 48th Design Automation Conference,
ser. DAC ’11. New York, NY, USA: ACM, 2011, pp. 948–953.
[Online]. Available: http://doi.acm.org/10.1145/2024724.2024935

[71] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely Jr,
and J. Emer, “SHiP: Signature-based hit predictor for high
performance caching,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 2011, pp.
430–441.

[72] Y. Xie and G. H. Loh, “PIPP: Promotion/Insertion Pseudo-partitioning
of Multi-core Shared Caches,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture, ser. ISCA ’09.
New York, NY, USA: ACM, 2009, pp. 174–183. [Online]. Available:
http://doi.acm.org/10.1145/1555754.1555778

[73] C.-H. Yen, “SOLARIS OPERATING SYSTEM HARDWARE
VIRTUALIZATION PRODUCT ARCHITECTURE,” 2007. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=
3F5AEF9CE2ABE7D1D7CC18DC5208A151?doi=10.1.1.110.
9986&rep=rep1&type=pdf

[74] C. Yu and P. Petrov, “Off-chip Memory Bandwidth Minimization
Through Cache Partitioning for Multi-core Platforms,” in Proceedings
of the 47th Design Automation Conference, ser. DAC ’10. New York,
NY, USA: ACM, 2010, pp. 132–137. [Online]. Available:
http://doi.acm.org/10.1145/1837274.1837309

[75] M. Zhou, Y. Du, B. Childers, R. Melhem, and D. Mossé,
“Writeback-aware Partitioning and Replacement for Last-level Caches
in Phase Change Main Memory Systems,” ACM Trans. Archit. Code

Optim., vol. 8, no. 4, pp. 53:1–53:21, Jan. 2012.

http://doi.acm.org/10.1145/2797211
http://dx.doi.org/10.1147/sj.92.0078
https://doi.org/10.1109/TSC.2011.36
http://doi.acm.org/10.1145/1809049.1809052
https://www.microsoft.com/en-us/cloud-platform/server-virtualization
https://www.microsoft.com/en-us/cloud-platform/server-virtualization
http://dl.acm.org/citation.cfm?id=1980776.1980778
http://people.csail.mit.edu/sanchez/papers/2017.eva.hpca.pdf
https://blogs.oracle.com/elowe/entry/translation_storage_buffers
http://doi.acm.org/10.1145/2540708.2540734
http://doi.acm.org/10.1145/2830772.2830773
https://cloud.google.com
http://doi.acm.org/10.1145/1250662.1250709
http://dx.doi.org/10.1109/MICRO.2006.49
https://www.rackspace.com/en-us/cloud/openstack
http://lca.ece.utexas.edu/pubs/isca2017.pdf
http://doi.acm.org/10.1145/2000064.2000073
https://aws.amazon.com/hpc/
http://www.sparc.org/standards/SPARCV9.pdf
http://doi.acm.org/10.1145/2370816.2370898
http://dl.acm.org/citation.cfm?id=1991596.1991638
http://doi.acm.org/10.1145/2897937.2898036
http://dx.doi.org/10.1109/MICRO.2014.46
http://doi.acm.org/10.1145/2024724.2024935
http://doi.acm.org/10.1145/1555754.1555778
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=3F5AEF9CE2ABE7D1D7CC18DC5208A151?doi=10.1.1.110.9986&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=3F5AEF9CE2ABE7D1D7CC18DC5208A151?doi=10.1.1.110.9986&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=3F5AEF9CE2ABE7D1D7CC18DC5208A151?doi=10.1.1.110.9986&rep=rep1&type=pdf
http://doi.acm.org/10.1145/1837274.1837309

	Introduction
	Background and Motivation
	Address Translation
	Motivation

	Context Switch Aware Large TLB
	CSALT with Dynamic Partitioning (CSALT-D)
	CSALT with Criticality Weighted Partitioning (CSALT-CD)
	Hardware Overhead
	Effect of Replacement Policy

	Experimental Set-Up
	Workloads
	Simulation

	Results
	CSALT Performance
	CSALT Performance in Native Systems

	Comparison to Prior Works
	Sensitivity Studies

	Related Work
	Conclusion
	Acknowledgements
	References

