
MediaBreeze: A Decoupled Architecture for
Accelerating Multimedia Applications

Deependra Talla and Lizy K. John

Laboratory for Computer Architecture

Department of Electrical and Computer Engineering
The University of Texas, Austin, TX 78712

{deepu, ljohn}@ece.utexas.edu

Abstract

Decoupled architectures are fine-grain processors that
partition the memory access and execute functions in a
computer program and exploit the parallelism between
the two functions. Although some concepts from the
traditional decoupled access execute paradigm made its
way into commercial processors, they encountered
resistance in general-purpose applications because these
applications are not very structured and regular.
However, multimedia applications have recently become
a dominant workload on desktops and workstations.
Media applications are very structured and regular and
lend themselves well to the decoupling concept. In this
paper, we present an architecture that decouples the
useful/true computations from the overhead/supporting
instructions in media applications. The proposed scheme
is incorporated into an out-of-order general-purpose
processor enhanced with SIMD extensions. Explicit
hardware support is provided to exploit instruction level
parallelism in the overhead component. Performance
evaluation shows that such hardware can significantly
improve performance over conventional SIMD enhanced
general-purpose processors. Results on nine multimedia
benchmarks show that the proposed MediaBreeze
architecture provides a 1.05x to 16.7x performance
improvement over a 2-way out-of-order SIMD machine.
On introducing slip-based data prefetching, a
performance improvement up to 28x is observed.

Keywords: decoupling, access and execute mechanisms,
microprocessor design, multimedia, SIMD, prefetching,
general-purpose processors, hardware accelerators.

L. John is supported in part by the State of Texas Advanced Technology
Program grant #403, the National Science Foundation under grants
CCR-9796098 and EIA-9807112, and by Dell, Intel, Microsoft, and
IBM.

1. Introduction

Decoupled access/execute (DAE) architectures split a
program into memory access and execute functions.
These architectures make use of an access processor to
perform the data fetch ahead of demand by possibly alle-
viating delays due to memory latency. The access proces-
sor also performs indexing and other addressing opera-
tions. The execute processor operates on the data to pro-
duce results. The concept of access execute decoupling
present in the IBM System 360/370, CDC 6600 [8],
CDC7600, CRAY-1, CSPI MAP-200, SDP [6], PIPE [7],
SMA [5], WM [10], DS [9], etc demonstrated the poten-
tial of decoupling memory access and computations
[1][2].

A conventional decoupled architecture is illustrated
in Fig. 1. Typically there are two instruction streams
which may either be fetched from memory separately, or
which may be split from a single instruction stream early
in instruction processing [1][2]. The access and execute
processors (AP and EP) communicate through architec-
tural queues, which allow the two processors to slip with
respect to each other. Slip is an architectural attribute that
allows concurrency between the two processors, by allow-
ing the AP to forward information to the EP, while the EP
performs operations on previous information. Slip indi-
cates the distance the access process is running ahead of
the execute process.

In addition to the two processors, the system includes
a number of first-in-first-out (FIFO) buffers or queues –
for instance the load queue, store queue, load address
queue, store address queue, branch queues (AEBQ and
EABQ), and copy queues (AECQ and EACQ). Data to be
used in EP computations are loaded by AP instruction
into the load queue. The EP performs computations using
the data and deposits any results to be stored into memory
into the store queue. These addresses wait in the queue
until a corresponding data item appears in the store queue.

The branch queues are used to coordinate the two instruc-
tion streams. The AP and EP have their own set of condi-
tional branch instructions. The processor that evaluates
the branch condition places a token in the branch queue.
The other processor iterates its operation until the token
appears in the queue. The copy queue is useful if data is
to be transferred between the two processors.

Some of the concepts from the traditional DAE para-
digm made its way into commercial processors. However,
the decoupling concept encountered resistance in general-
purpose applications because these applications are not
very structured and regular. Multimedia applications have
recently become a dominant workload on desktops and
workstations. Contemporary computer applications are
multimedia-rich, involving significant amounts of audio
and video compression, 2D image processing, 3D graph-
ics, speech and character recognition, communications,
and signal processing. Media applications are very struc-
tured and regular and lend themselves well to the decoup-
ling concept.

With an increasing number of desktop/workstation
execution cycles being spent on media applications, gen-
eral-purpose processors (GPPs) have been enhanced with
single instruction multiple data (SIMD) execution units
[18]. Using assembly libraries, compiler intrinsics and

limited compiler capabilities, media-rich applications
have benefited from SIMD extensions.

However, there are several inefficiencies in the exe-
cution of SIMD enhanced applications, in spite of a per-
formance improvement over non-SIMD code. Our ex-
periments on GPPs with SIMD extensions on media ap-
plications show that only 1% to 12% of the peak available
SIMD units’ throughput is achieved [14]. Instructions re-
quired for preprocessing of data to feed the SIMD units
contribute to the under-utilization of the SIMD execution
units. The instructions include address generation, address
transformation (permute, data packing and unpacking),
loads/stores, and loop branches. On conceptually classify-
ing the instruction stream into either useful computations
(core/true computations required by the media algorithm)
or supporting/overhead (all other instructions used for as-
sisting the useful computation instructions), 75-85% of
the dynamic instructions are found to be support-
ing/overhead related instructions and only 15-25% are
useful computation instructions.

Increasing the width/number of SIMD execution
unit/s results in diminishing returns in performance im-
provement since parallelism is exploited mainly in the
useful computation instructions. Efficient execution of
media workloads mandates exploiting parallelism in the

AP

Instruction

Memory

EP

Instruction

Memory

Load Queue

Store Queue

Access
Processor

(AP)

Execute
Processor

(EP)Load Address Queue

Store Address Queue

Data
Memory

EACQ

AECQ

EABQ

AEBQ

AP

Instruction

Memory

EP

Instruction

Memory

Load Queue

Store Queue

Access
Processor

(AP)

Execute
Processor

(EP)Load Address Queue

Store Address Queue

Data
Memory

EACQ

AECQ

EABQ

AEBQ

Figure 1. A T yp ical Decou pled Architecture

supporting/overhead related instructions rather than con-
centrating solely on the useful computation instructions.
Not only do media applications have data level parallel-
ism (DLP) in the useful computations, but also plenty of
available instruction level parallelism (ILP) in the sup-
porting/overhead related instructions.

In this paper, we present the MediaBreeze architec-
ture that decouples the media program execution into two
parts, namely, the useful computations and over-
head/supporting instructions. We provide explicit hard-
ware support for processing the supporting/overhead re-
lated instructions. The proposed scheme works in an inte-
grated manner (incorporated into a GPP with SIMD ex-
tensions) in which media workloads can excel without
sacrificing performance on general-purpose workloads.
The rest of the paper is organized as follows. Section 2
provides a brief overview of the MediaBreeze architec-
ture. Section 3 presents the performance benefits of the
MediaBreeze architecture. Section 4 summarizes the pa-
per.

2. The MediaBreeze Architecture

 Analyzing media instruction execution streams re-
sults in two distinct sets of operations: the useful (true)
computations as required by the algorithm and the sup-
porting computations (overhead) such as address genera-
tion, address transformation (packing, unpacking, and
permute), loads/stores, and loop branches. The sole pur-
pose of overhead instructions is to aid in the execution of
the useful computation instructions. The execution of
overhead instructions is mandatory due to the program-
ming conventions of general-purpose processors, abstrac-
tions and control flow structures used in programming
and a mismatch between how data is used in computa-
tions versus how data is stored.
 The MediaBreeze architecture was designed to accel-
erate SIMD enhanced media applications by decoupling
the useful computation and overhead instructions, and
process the overhead related instructions efficiently. In
traditional DAE processors, overhead related instructions
included memory access (loads/stores) and addressing
arithmetic. In our classification, we include loop branches
and SIMD specific data reorganization (permute, pack,
and unpack) [17] in the overhead related instructions. The
useful computations are the SIMD arithmetic and logical
computations necessary for the media algorithm. Fig. 2
illustrates the block diagram of the MediaBreeze architec-
ture. In order to perform the SIMD operations, the Me-
diaBreeze architecture uses existing hardware units (that
is, such hardware is already present in current state-of-
the-art SIMD enhanced GPPs) as well as introduces new
hardware units. The existing hardware units are pro-
grammed differently than by the conventional control

path (explained later in this section). The existing hard-
ware units (lightly shaded blocks in Fig. 2) are the
load/store units, SIMD computation unit, data reorganiza-
tion/address transformation, and the data station. The new
hardware units (darkly shaded blocks in Fig. 2) are the
address generation units, hardware looping, Breeze in-
struction memory, and Breeze instruction decoder. The
functionality of the existing hardware units is:

• Load/store units: Loading/storing data from/to mem-

ory and to/from SIMD registers.
• SIMD computation unit: All arithmetic and logical

SIMD computations along with multiplication and
special media operations such as sum-of-absolute-
differences are executed in this unit. Current GPPs
typically have two SIMD ALUs and one SIMD mul-
tiplier in their SIMD datapath.

• Data Reorganization: SIMD processing mandates
several data reorganization mechanisms such as
packing, unpacking, and permute [17]. Reduction op-
erations, scaling, and shifting of the results are also
required for SIMD processing. Current commodity
SIMD enhanced GPPs have data reorganization
hardware in their SIMD datapath.

• Data station: The data station acts as a register file for
the SIMD computation. Current SIMD enhanced
GPPs either have dedicated SIMD register files or
share the floating-point register file for intermediate
SIMD results.

The functionality of the newly added hardware units is:
• Address generation: Address arithmetic functions are

moved from the execution unit subsystem in current
processors to a MediaBreeze hardware unit where
dedicated address arithmetic hardware would gener-
ate all input and output address data struc-
tures/streams concurrent with the SIMD computation
unit. Such a mechanism of providing dedicated ad-
dress arithmetic hardware would reduce overhead as
address calculations are performed explicitly by
ALUs in current ILP processors. This involves some
combination of extra instructions, parts of instruc-
tions, registers, memory accesses, and computation
time.

• Looping: Using dedicated hardware looping (zero-
overhead branch processing), branch instructions re-
lated to loop increments are eliminated.

• Breeze instruction memory and decoder: In order to
program/control the hardware units (both existing
and newly added units) in the MediaBreeze architec-
ture, a special instruction called the Breeze instruc-
tion is formulated that contains all the overhead re-
lated instructions along with the useful computations.
The Breeze instruction memory stores these instruc-
tions when they enter the processor.

SIMD instructions reduce the dynamic instruction
count because they operate on multiple data in a single in-
struction. Due to the repetitive operations required by
media applications such a technique reduces the total
number of instruction fetches and decodes. However,
SIMD instructions capture only the useful computation
operations. Encoding all the overhead/supporting opera-
tions along with the SIMD useful computation instruc-
tions has the advantage that the Breeze instruction can po-
tentially replace millions of dynamic RISC instructions
that have to be fetched, decoded, and issued every cycle
in a normal superscalar processor.

3. Results

To measure the impact of the MediaBreeze architec-
ture, we modified the PISA version of Simplescalar-3.0
(sim-outorder) [13] to simulate SIMD instructions and

Breeze instructions using instruction annotations. We use
two 64-bit SIMD ALUs and one 64-bit SIMD multiplier
in our processor configuration. The memory system for
the MediaBreeze architecture is modified to allow for
cache miss stalls and memory conflicts (i.e., the SIMD
pipeline stalls in the event of a cache miss). We incorpo-
rate the MediaBreeze hardware into a 2-way and 4-way
SIMD GPP. We evaluated the performance of the Me-
diaBreeze architecture using nine multimedia bench-
marks. Our benchmarks include kernels and applications.
The kernels are cfa – color filter interpolation, dct – dis-
crete cosine transform, motest – motion estimation, and
scale – linear image scaling. The applications are g711 –
G711 speech coding, aud – audio effects, jpeg – JPEG
image compression, ijpeg – JPEG image decompression,
and decrypt – IDEA decryption. Figure 3 shows the
speedup obtained for nine multimedia benchmarks using
the MediaBreeze architecture with a 2-way SIMD proces-
sor as the baseline.

L1 D-cache
SIMD

computation
unit

Address
generation

units

Address
generation

units

Load/Store
units

Data
Reorganization/

 Address
transformation

Data
Reorganization/

 Address
transformation

Breeze Instruction
Memory

Hardware
looping

Hardware
looping

Instruction
stream

Instruction
Decoder

 Non-SIMD
 pipeline

Breeze
Instruction
Interpreter

Breeze
Instruction

Decoder

Starting address of
Breeze instruction

Normal
superscalar
execution

L2 cache

Main memory

SIMD
 pipeline

IS-1

IS-2

IS-3

OS

Data Station
IS - input stream

OS - output stream

Overhead

Useful computations

new hardware

existing hardware used
differently

Figure. 2. The Medi aBreeze Architecture

 The speedup of the 2-way MediaBreeze architecture
over a 2-way SIMD processor ranges from 1.05x to over
16x. The speedup of the 2-way and 4-way MediaBreeze
enhanced architecture is the same for kernels because
both the 2-way and 4-way configurations contain the
same number of SIMD execution units (2 SIMD ALUs
and 1 SIMD multiplier) and the Breeze instruction is able
to capture the complete kernels with no other superscalar
instructions necessary. In spite of the speedup, the Me-
diaBreeze architecture is susceptible to memory latencies
because the SIMD pipeline operates in-order. To reduce
the impact of memory latencies on the MediaBreeze ar-
chitecture, we introduced a prefetch engine to load future
referenced data into the L1 cache. The prefetch engine
loads data that is going to be used in the SIMD computa-

tion unit since the access pattern of the media algorithm is
known in advance. The regularity of media access pat-
terns prevents the risk of superfluous fetch commonly en-
countered in many prefetching environments. The pre-
fetch engine slips ahead of the loads for computation and
the computation itself to gather data into the L1 cache.
The slip can be varied from 0 (no prefetch) to the main
memory latency. Fig. 4 shows the performance obtained
by varying the slip for each of the benchmarks on a 4-way
SIMD GPP enhanced with the MediaBreeze hardware.
 Increasing the slip from 0 to 32 gives a steady but not
enough improvement for some benchmarks when com-
pared to a slip of 64. Prefetching with a slip of 64
achieves opt1 performance in all cases. The main memory
latency was 65 cycles in our simulation. A slip of 64

Figure. 4. Impact of prefetching on the Medi aBreeze architecture. ‘opt1’ symbolizes
the MediaBreeze with perfect memory

Figure. 3. Perfo rmance of the MediaBreeze (MB) architecture versus SIMD

0

0.2

0.4

0.6

0.8

1

cfa dct motest scale g711 aud jpeg ijpeg decryptN
or

m
al

iz
ed

 s
pe

ed
up

 w
rt

 o
pt

1

no-slip 1-slip 2-slip 4-slip 8-slip 16-slip 32-slip 64-slip opt1

16.68 5.43 16.7216.68 5.43 16.72 4.13

0

1

2

3

4

cfa dct motest scale aud g711 jpeg ijpeg decrypt

S
pe

ed
up

2-way + SIMD 2-way + SIMD + MB 4-way + SIMD 4-way + SIMD + MB

translates into a 1-cycle latency for each load. If the pre-
fetched data were evicted from the cache before it is used
for computation, maximum benefit cannot be realized.
However, we did not encounter such a situation. The
speedup of a 2-way MediaBreeze enhanced processor
with slip-based prefetching is observed to be up to 28x
over a 2-way SIMD GPP.
 We investigated the cost of incorporating the Me-
diaBreeze hardware into a state-of-the-art general-purpose
superscalar processor with SIMD extensions in [19]. Our
results indicate that the newly added MediaBreeze hard-
ware requires less than 10% of the SIMD execution units’
chip area and 0.3% overall chip area, and consumes less
than 1% of the total processor power. This is achieved
without elongating the critical path of the processor.

4. Summary and Conclusion

 Multimedia applications lend themselves well to the
decoupling concept because they are very regular and
structured. In this paper, we presented the MediaBreeze
architecture that exploits some of the key concepts of
DAE processors along with dedicated hardware to accel-
erate SIMD enhanced multimedia applications on GPPs.
The MediaBreeze architecture incorporates mechanisms
to improve the balance between the useful/true SIMD
computation instructions and the overhead/supporting in-
structions in order to exploit high concurrency and
achieve high performance. Results on nine multimedia
benchmarks show that the MediaBreeze architecture pro-
vides a 1.05x to 16.7x performance improvement over a
2-way out-of-order SIMD machine. On introducing slip-
based data prefetching, a performance improvement up to
28x is observed.

References

[1] J. E. Smith, “Decoupled access/execute computer architec-

tures,” ACM Trans. on Computer Systems, vol. 2, no. 4,
pp.289-308, Nov. 1984.

[2] J. E. Smith, S. Weiss, and N. Y. Pang, “A simulation study
of decoupled architecture computers,” IEEE Trans. on
Computers, vol. C-35, No. 8, pp. 692-701, Aug. 1986.

[3] L. Kurian, “Issues in the design of a decoupled architecture
for a RISC environment,” Ph.D. thesis, The Pennsylvania
State University, Aug. 1993.

[4] H. G. Cragon, and W. J. Watson, “The TI advanced scien-
tific computer.” IEEE Computer Magazine, pp. 55-64, Jan.
1989.

[5] A. R. Pleszkun and E. S. Davidson, “Structured memory
access architecture,” Proc. IEEE. Int. Conf. on Parallel
Processing, pp. 461-471, 1983.

[6] R. R. Shively, “Architecture of a programmable digital sig-
nal processor,” IEEE Trans. on Computers, vol. C-31, pp.
16-22, Jan. 1978.

[7] J. R. Goodman, T. J, Hsieh, K. Liou, A. R. Pleszkun, P. B.
Schechter, and H. C. Young, “PIPE: A VLSI decoupled ar-
chitecture,” Proc. IEEE Sym. on Computer Architecture,
pp. 20-27, Jun. 1985.

[8] J. E. Thornton, “Parallel operation in the Control Data
6600,” Fall Joint Computers Conference, vol. 26, pp. 33-
40, 1961.

[9] Y. Zhang, and G. B. Adams, “Performance modeling and
code partitioning for the DS architecture,” Proc.
IEEE/ACM Sym. on Computer Architecture, pp. 293-304,
Jun. 1998.

[10] Wm. A. wolf, “Evaluation of the WM architecture,” Proc.
IEEE/ACM Sym. on Computer Architecture, pp. 382-390,
May 1992.

[11] D. J. Kuck, and R. A. Stokes, “The Burroughs scientific
processor (BSP),” IEEE Trans. on Computers, C-31 (5),
pp. 363-376, 1982.

[12] P. Ranganathan, S. Adve, and N. Jouppi, “Performance of
image and video processing with general-purpose proces-
sors and media ISA extensions,” Proc. IEEE/ACM Sym. on
Computer Architecture, pp. 124-135, May 1999.

[13] D. Burger, and T. M. Austin, “The SimpleScalar tool set,”
Version 2.0. Technical Report 1342, Univ. of Wisconsin-
Madison, Comp. Sci. Dept, 1997.

[14] D. Talla, “Architectural techniques to accelerate multime-
dia applications on general-purpose processors,” Ph.D.
Thesis, The University of Texas at Austin, Aug. 2001.
Available:
http://www.ece.utexas.edu/~deepu/phd_thesis.pdf

[15] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Proc-
essor Fundamentals: Architectures and Features, Chapter
8, IEEE Press series on Signal Processing, ISBN 0-7803-
3405-1, 1997.

[16] S. A. Mckee, “Maximizing memory bandwidth for
streamed computations,” Ph.D. Thesis, School of Engineer-
ing and Applied Science, University of Virginia, May
1995.

[17] J. Corbal, R. Espasa, and M. Valero, "On the efficiency of
reductions in micro-SIMD media extensions,” Proc. Int.
Conf. on Parallel Architectures and Compilation Tech-
niques, Sep. 2001.

[18] R. B. Lee, “Multimedia extensions for general-purpose
processors,” Proc. IEEE Workshop on Signal Processing
Systems, pp. 9-23, Nov. 1997.

[19] D. Talla and L. K. John, “Cost-effective hardware accelera-
tion of multimedia applications,” Proc. Int. Conf. on Com-
puter Design, pp. 415-424, Sep. 2001.

