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Abstract 

 
Decoupled architectures are fine-grain processors that 
partition the memory access and execute functions in a 
computer program and exploit the parallelism between 
the two functions.  Although some concepts from the 
traditional decoupled access execute paradigm made its 
way into commercial processors, they encountered 
resistance in general-purpose applications because these 
applications are not very structured and regular. 
However, multimedia applications have recently become 
a dominant workload on desktops and workstations. 
Media applications are very structured and regular and 
lend themselves well to the decoupling concept. In this 
paper, we present an architecture that decouples the 
useful/true computations from the overhead/supporting 
instructions in media applications. The proposed scheme 
is incorporated into an out-of-order general-purpose 
processor enhanced with SIMD extensions. Explicit 
hardware support is provided to exploit instruction level 
parallelism in the overhead component. Performance 
evaluation shows that such hardware can significantly 
improve performance over conventional SIMD enhanced 
general-purpose processors. Results on nine multimedia 
benchmarks show that the proposed MediaBreeze 
architecture provides a 1.05x to 16.7x performance 
improvement over a 2-way out-of-order SIMD machine. 
On introducing slip-based data prefetching, a 
performance improvement up to 28x is observed.   
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microprocessor design, multimedia, SIMD, prefetching, 
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1. Introduction 
 

Decoupled access/execute (DAE) architectures split a 
program into memory access and execute functions. 
These architectures make use of an access processor to 
perform the data fetch ahead of demand by possibly alle-
viating delays due to memory latency. The access proces-
sor also performs indexing and other addressing opera-
tions. The execute processor operates on the data to pro-
duce results. The concept of access execute decoupling 
present in the IBM System 360/370, CDC 6600 [8], 
CDC7600, CRAY-1, CSPI MAP-200, SDP [6], PIPE [7], 
SMA [5], WM [10], DS [9], etc demonstrated the poten-
tial of decoupling memory access and computations 
[1][2]. 

A conventional decoupled architecture is illustrated 
in Fig. 1. Typically there are two instruction streams 
which may either be fetched from memory separately, or 
which may be split from a single instruction stream early 
in instruction processing [1][2]. The access and execute 
processors (AP and EP) communicate through architec-
tural queues, which allow the two processors to slip with 
respect to each other.  Slip is an architectural attribute that 
allows concurrency between the two processors, by allow-
ing the AP to forward information to the EP, while the EP 
performs operations on previous information. Slip indi-
cates the distance the access process is running ahead of 
the execute process.  

In addition to the two processors, the system includes 
a number of first-in-first-out (FIFO) buffers or queues – 
for instance the load queue, store queue, load address 
queue, store address queue, branch queues (AEBQ and 
EABQ), and copy queues (AECQ and EACQ). Data to be 
used in EP computations are loaded by AP instruction 
into the load queue. The EP performs computations using 
the data and deposits any results to be stored into memory 
into the store queue. These addresses wait in the queue 
until a corresponding data item appears in the store queue. 



The branch queues are used to coordinate the two instruc-
tion streams. The AP and EP have their own set of condi-
tional branch instructions. The processor that evaluates 
the branch condition places a token in the branch queue. 
The other processor iterates its operation until the token 
appears in the queue. The copy queue is useful if data is 
to be transferred between the two processors. 

Some of the concepts from the traditional DAE para-
digm made its way into commercial processors. However, 
the decoupling concept encountered resistance in general-
purpose applications because these applications are not 
very structured and regular. Multimedia applications have 
recently become a dominant workload on desktops and 
workstations. Contemporary computer applications are 
multimedia-rich, involving significant amounts of audio 
and video compression, 2D image processing, 3D graph-
ics, speech and character recognition, communications, 
and signal processing. Media applications are very struc-
tured and regular and lend themselves well to the decoup-
ling concept. 

With an increasing number of desktop/workstation 
execution cycles being spent on media applications, gen-
eral-purpose processors (GPPs) have been enhanced with 
single instruction multiple data (SIMD) execution units 
[18]. Using assembly libraries, compiler intrinsics and 

limited compiler capabilities, media-rich applications 
have benefited from SIMD extensions. 

However, there are several inefficiencies in the exe-
cution of SIMD enhanced applications, in spite of a per-
formance improvement over non-SIMD code. Our ex-
periments on GPPs with SIMD extensions on media ap-
plications show that only 1% to 12% of the peak available 
SIMD units’ throughput is achieved [14]. Instructions re-
quired for preprocessing of data to feed the SIMD units 
contribute to the under-utilization of the SIMD execution 
units. The instructions include address generation, address 
transformation (permute, data packing and unpacking), 
loads/stores, and loop branches. On conceptually classify-
ing the instruction stream into either useful computations 
(core/true computations required by the media algorithm) 
or supporting/overhead (all other instructions used for as-
sisting the useful computation instructions), 75-85% of 
the dynamic instructions are found to be support-
ing/overhead related instructions and only 15-25% are 
useful computation instructions. 

Increasing the width/number of SIMD execution 
unit/s results in diminishing returns in performance im-
provement since parallelism is exploited mainly in the 
useful computation instructions. Efficient execution of 
media workloads mandates exploiting parallelism in the 
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Figure 1. A T yp ical Decou pled Architecture 



supporting/overhead related instructions rather than con-
centrating solely on the useful computation instructions. 
Not only do media applications have data level parallel-
ism (DLP) in the useful computations, but also plenty of 
available instruction level parallelism (ILP) in the sup-
porting/overhead related instructions.  

In this paper, we present the MediaBreeze architec-
ture that decouples the media program execution into two 
parts, namely, the useful computations and over-
head/supporting instructions. We provide explicit hard-
ware support for processing the supporting/overhead re-
lated instructions. The proposed scheme works in an inte-
grated manner (incorporated into a GPP with SIMD ex-
tensions) in which media workloads can excel without 
sacrificing performance on general-purpose workloads. 
The rest of the paper is organized as follows. Section 2 
provides a brief overview of the MediaBreeze architec-
ture. Section 3 presents the performance benefits of the 
MediaBreeze architecture. Section 4 summarizes the pa-
per. 
 
 
2. The MediaBreeze Architecture 
 
 Analyzing media instruction execution streams re-
sults in two distinct sets of operations: the useful (true) 
computations as required by the algorithm and the sup-
porting computations (overhead) such as address genera-
tion, address transformation (packing, unpacking, and 
permute), loads/stores, and loop branches. The sole pur-
pose of overhead instructions is to aid in the execution of 
the useful computation instructions. The execution of 
overhead instructions is mandatory due to the program-
ming conventions of general-purpose processors, abstrac-
tions and control flow structures used in programming 
and a mismatch between how data is used in computa-
tions versus how data is stored.  
 The MediaBreeze architecture was designed to accel-
erate SIMD enhanced media applications by decoupling 
the useful computation and overhead instructions, and 
process the overhead related instructions efficiently. In 
traditional DAE processors, overhead related instructions 
included memory access (loads/stores) and addressing 
arithmetic. In our classification, we include loop branches 
and SIMD specific data reorganization (permute, pack, 
and unpack) [17] in the overhead related instructions. The 
useful computations are the SIMD arithmetic and logical 
computations necessary for the media algorithm. Fig. 2 
illustrates the block diagram of the MediaBreeze architec-
ture. In order to perform the SIMD operations, the Me-
diaBreeze architecture uses existing hardware units (that 
is, such hardware is already present in current state-of-
the-art SIMD enhanced GPPs) as well as introduces new 
hardware units. The existing hardware units are pro-
grammed differently than by the conventional control 

path (explained later in this section). The existing hard-
ware units (lightly shaded blocks in Fig. 2) are the 
load/store units, SIMD computation unit, data reorganiza-
tion/address transformation, and the data station. The new 
hardware units (darkly shaded blocks in Fig. 2) are the 
address generation units, hardware looping, Breeze in-
struction memory, and Breeze instruction decoder. The 
functionality of the existing hardware units is: 
 
• Load/store units: Loading/storing data from/to mem-

ory and to/from SIMD registers. 
• SIMD computation unit: All arithmetic and logical 

SIMD computations along with multiplication and 
special media operations such as sum-of-absolute-
differences are executed in this unit. Current GPPs 
typically have two SIMD ALUs and one SIMD mul-
tiplier in their SIMD datapath. 

• Data Reorganization: SIMD processing mandates 
several data reorganization mechanisms such as 
packing, unpacking, and permute [17]. Reduction op-
erations, scaling, and shifting of the results are also 
required for SIMD processing. Current commodity 
SIMD enhanced GPPs have data reorganization 
hardware in their SIMD datapath. 

• Data station: The data station acts as a register file for 
the SIMD computation. Current SIMD enhanced 
GPPs either have dedicated SIMD register files or 
share the floating-point register file for intermediate 
SIMD results. 

 
The functionality of the newly added hardware units is: 
• Address generation: Address arithmetic functions are 

moved from the execution unit subsystem in current 
processors to a MediaBreeze hardware unit where 
dedicated address arithmetic hardware would gener-
ate all input and output address data struc-
tures/streams concurrent with the SIMD computation 
unit. Such a mechanism of providing dedicated ad-
dress arithmetic hardware would reduce overhead as 
address calculations are performed explicitly by 
ALUs in current ILP processors. This involves some 
combination of extra instructions, parts of instruc-
tions, registers, memory accesses, and computation 
time.  

• Looping: Using dedicated hardware looping (zero-
overhead branch processing), branch instructions re-
lated to loop increments are eliminated. 

• Breeze instruction memory and decoder: In order to 
program/control the hardware units (both existing 
and newly added units) in the MediaBreeze architec-
ture, a special instruction called the Breeze instruc-
tion is formulated that contains all the overhead re-
lated instructions along with the useful computations. 
The Breeze instruction memory stores these instruc-
tions when they enter the processor.  



SIMD instructions reduce the dynamic instruction 
count because they operate on multiple data in a single in-
struction. Due to the repetitive operations required by 
media applications such a technique reduces the total 
number of instruction fetches and decodes. However, 
SIMD instructions capture only the useful computation 
operations. Encoding all the overhead/supporting opera-
tions along with the SIMD useful computation instruc-
tions has the advantage that the Breeze instruction can po-
tentially replace millions of dynamic RISC instructions 
that have to be fetched, decoded, and issued every cycle 
in a normal superscalar processor.  
 
 
3. Results 
 

To measure the impact of the MediaBreeze architec-
ture, we modified the PISA version of Simplescalar-3.0 
(sim-outorder) [13] to simulate SIMD instructions and 

Breeze instructions using instruction annotations. We use 
two 64-bit SIMD ALUs and one 64-bit SIMD multiplier 
in our processor configuration. The memory system for 
the MediaBreeze architecture is modified to allow for 
cache miss stalls and memory conflicts (i.e., the SIMD 
pipeline stalls in the event of a cache miss). We incorpo-
rate the MediaBreeze hardware into a 2-way and 4-way 
SIMD GPP. We evaluated the performance of the Me-
diaBreeze architecture using nine multimedia bench-
marks. Our benchmarks include kernels and applications. 
The kernels are cfa – color filter interpolation, dct – dis-
crete cosine transform, motest – motion estimation, and 
scale – linear image scaling. The applications are g711 – 
G711 speech coding, aud – audio effects, jpeg – JPEG 
image compression, ijpeg – JPEG image decompression, 
and decrypt – IDEA decryption. Figure 3 shows the 
speedup obtained for nine multimedia benchmarks using 
the MediaBreeze architecture with a 2-way SIMD proces-
sor as the baseline. 
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Figure. 2. The Medi aBreeze Architecture



 The speedup of the 2-way MediaBreeze architecture 
over a 2-way SIMD processor ranges from 1.05x to over 
16x. The speedup of the 2-way and 4-way MediaBreeze 
enhanced architecture is the same for kernels because 
both the 2-way and 4-way configurations contain the 
same number of SIMD execution units (2 SIMD ALUs 
and 1 SIMD multiplier) and the Breeze instruction is able 
to capture the complete kernels with no other superscalar 
instructions necessary. In spite of the speedup, the Me-
diaBreeze architecture is susceptible to memory latencies 
because the SIMD pipeline operates in-order. To reduce 
the impact of memory latencies on the MediaBreeze ar-
chitecture, we introduced a prefetch engine to load future 
referenced data into the L1 cache. The prefetch engine 
loads data that is going to be used in the SIMD computa-

tion unit since the access pattern of the media algorithm is 
known in advance. The regularity of media access pat-
terns prevents the risk of superfluous fetch commonly en-
countered in many prefetching environments. The pre-
fetch engine slips ahead of the loads for computation and 
the computation itself to gather data into the L1 cache. 
The slip can be varied from 0 (no prefetch) to the main 
memory latency. Fig. 4 shows the performance obtained 
by varying the slip for each of the benchmarks on a 4-way 
SIMD GPP enhanced with the MediaBreeze hardware.  
 Increasing the slip from 0 to 32 gives a steady but not 
enough improvement for some benchmarks when com-
pared to a slip of 64. Prefetching with a slip of 64 
achieves opt1 performance in all cases. The main memory 
latency was 65 cycles in our simulation. A slip of 64 

Figure. 4. Impact of prefetching on the Medi aBreeze architecture. ‘opt1’ symbolizes
the MediaBreeze with perfect memory 

Figure. 3. Perfo rmance of the MediaBreeze (MB) architecture versus SIMD  
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translates into a 1-cycle latency for each load. If the pre-
fetched data were evicted from the cache before it is used 
for computation, maximum benefit cannot be realized. 
However, we did not encounter such a situation. The 
speedup of a 2-way MediaBreeze enhanced processor 
with slip-based prefetching is observed to be up to 28x 
over a 2-way SIMD GPP. 
 We investigated the cost of incorporating the Me-
diaBreeze hardware into a state-of-the-art general-purpose 
superscalar processor with SIMD extensions in [19]. Our 
results indicate that the newly added MediaBreeze hard-
ware requires less than 10% of the SIMD execution units’ 
chip area and 0.3% overall chip area, and consumes less 
than 1% of the total processor power. This is achieved 
without elongating the critical path of the processor. 
 
 
4. Summary and Conclusion 
 
 Multimedia applications lend themselves well to the 
decoupling concept because they are very regular and 
structured. In this paper, we presented the MediaBreeze 
architecture that exploits some of the key concepts of 
DAE processors along with dedicated hardware to accel-
erate SIMD enhanced multimedia applications on GPPs. 
The MediaBreeze architecture incorporates mechanisms 
to improve the balance between the useful/true SIMD 
computation instructions and the overhead/supporting in-
structions in order to exploit high concurrency and 
achieve high performance. Results on nine multimedia 
benchmarks show that the MediaBreeze architecture pro-
vides a 1.05x to 16.7x performance improvement over a 
2-way out-of-order SIMD machine. On introducing slip-
based data prefetching, a performance improvement up to 
28x is observed.  
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