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Abstract 
 

General-purpose microprocessors augmented with SIMD 
execution units enhance multimedia applications by ex-
ploiting data level parallelism. However, support-
ing/overhead related instructions (instructions necessary 
to feed the SIMD execution units such as address genera-
tion, packing/unpacking, permute, loads/stores, and loop 
branches) dominate media instruction streams accounting 
for 75-85% of the dynamic instructions. This leads to an 
under-utilization of SIMD execution units resulting in a 
throughput that ranges between 1-12% of the peak 
throughput. We accelerate multimedia applications by 
providing explicit hardware support to eliminate or re-
duce the impact of the supporting/overhead related in-
structions. Performance evaluation shows that such 
hardware can significantly improve performance over 
conventional SIMD enhanced general-purpose processors 
(1.05x to 28x). In this paper, we investigate the cost of in-
corporating hardware, for efficient execution of support-
ing/overhead related instructions, into a high-speed 
SIMD enhanced general-purpose processor and perform 
area, power, and timing tradeoffs. Our results indicate 
that – the added hardware requires less than 10% SIMD 
execution units’ chip area and 0.3% overall chip area, 
and power consumption is less than 1% of the total proc-
essor power. This is achieved without elongating the 
critical path of the processor.  
 
 
Keywords: microprocessor design, multimedia, SIMD, 
general-purpose processors, hardware accelerators, area, 
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1. Introduction 
 

Multimedia workloads are characterized by struc-
tured and regular computations on large data sets with 
small element-widths. With an increasing number of 
desktop/workstation execution cycles being spent on me-
dia applications, general-purpose processors (GPPs) have 
been enhanced with single instruction multiple data 
(SIMD) execution units [1]. Four, eight or sixteen data 
elements of 32-, 16-, or 8-bits width (subwords) can be 
operated simultaneously in a single register (128-bit 
wide). Using assembly libraries, compiler intrinsics and 
limited compiler capabilities, media-rich applications 
have benefited from SIMD extensions [2][3][4].  

However, recent work [5] on characterizing media 
workloads exposes several inefficiencies in the execution 
of SIMD enhanced applications, in spite of a performance 
improvement over non-SIMD code. Experiments on gen-
eral-purpose processors with SIMD extensions on media 
applications show that only 1% to 12% of the peak avail-
able SIMD units’ throughput is achieved. Instructions re-
quired for preprocessing of data to feed the SIMD units 
contribute to the under-utilization of the SIMD execution 
units. The instructions include address generation, address 
transformation (permute, data packing and unpacking), 
loads/stores, and loop branches. On conceptually classify-
ing the instruction stream into either useful computations 
(core computations required by the media algorithm) or 
supporting/overhead (all other instructions used for assist-
ing the useful computation instructions), 75-85% of the 
dynamic instructions are found to be supporting/overhead 
related instructions and only 15-25% are useful computa-
tion instructions. 

Increasing the width/number of SIMD execution 
unit/s results in diminishing returns in performance im-
provement since parallelism is exploited mainly in the 
useful computation instructions. Efficient execution of 
media workloads mandates exploiting parallelism in the 



supporting/overhead related instructions rather than con-
centrating solely on the useful computation instructions. 
Not only do media applications have data level parallel-
ism (DLP) in the useful computations, but also plenty of 
available instruction level parallelism (ILP) in the sup-
porting/overhead related instructions. Providing explicit 
hardware support, for processing the supporting/overhead 
related instructions, significantly accelerates multimedia 
applications. Analysis of media applications unveils invo-
cation of several address patterns, often multiple simulta-
neous sequences. Simple hardware can be devised to gen-
erate such patterns, but using general-purpose RISC in-
struction sets is not efficient, as the available addressing 
modes are limited. Likewise keeping track of multiple ar-
ray bounds involves a combination of several addressing 
modes and instructions leading to considerable address 
generation overhead in conventional general-purpose 
RISC processors. Similarly hardware to implement multi-
ple nested loops is not overly complicated, however sup-
porting multiple loops with general-purpose instruction 
sets may not be very efficient.  

Based on the above philosophy, the MediaBreeze ar-
chitecture was designed in [5] to augment a SIMD en-
hanced GPP with simple hardware for providing an effec-
tive and seamlessly integrated solution for media work-
loads without sacrificing the performance on general-
purpose workloads. Results on nine multimedia bench-
marks show that adding simple hardware to a general-
purpose core with SIMD extensions exhibits a 1.05x to 
28x-performance improvement. In addition, the total 
number of dynamic instructions is reduced by 0.2% to 
over 99% across the benchmark suite.  

The primary contribution of this paper is to investi-
gate the associated cost of adding the hardware to a high-
speed GPP with SIMD extensions. Using a cell-based 
methodology targeting different ASIC libraries (opti-
mized for one or more of performance, density and low-
power) and technologies (0.18-, 0.25-, and 0.35-micron), 
we attempt to answer the following three questions: 

 
• What is the chip area increase due to adding the 

hardware to assist in processing the support-
ing/overhead related instructions? 

• How much power is consumed by the additional 
logic? 

• Does the added hardware elongate the critical path of 
a high-speed processor or in other words, will it be a 
bottleneck in determining the maximum clock rate? 
How many pipeline stages does the hardware add to 
the processor core? 

 
We find that the above mentioned 1.05x to 28x per-

formance improvement over MMX- & SSE-like exten-
sions is obtained at an area cost of less than 10% of SIMD 
execution unit’s area (such as MMX and SSE) and a 0.3% 

increase in overall chip area. The power consumption is 
less than 1% of the total processor power. The timing re-
sults show that the added hardware does not elongate the 
critical path of the GPP core.  

The rest of the paper is organized as follows. Section 
2 provides a brief overview of the MediaBreeze architec-
ture. Section 3 discusses about the tools and methodology. 
Section 4 presents the implementation details of the added 
hardware. Section 5 evaluates the costs associated with 
implementing each mechanism in the MediaBreeze archi-
tecture and their applicability to mainstream commodity 
general-purpose microprocessor pipelines. Finally, Sec-
tion 6 summarizes the paper. 
 
2. Description of the MediaBreeze  
 Architecture 
 
 Analyzing media instruction execution streams re-
sults in two distinct sets of operations: the useful compu-
tations as required by the algorithm and the supporting 
computations (overhead) such as address generation, ad-
dress transformation (packing, unpacking, and permute), 
loads/stores, and loop branches. The sole purpose of 
overhead instructions is to aid in the execution of the use-
ful computation instructions. The execution of overhead 
instructions is mandatory due to the programming con-
ventions of general-purpose processors, abstractions and 
control flow structures used in programming and a mis-
match between how data is used in computations versus 
how data is stored. Due to the dominance of overhead in-
structions (75-85%), they need to eliminated, alleviated, 
or overlapped with the useful computations for better per-
formance. 
 The MediaBreeze architecture was designed to accel-
erate SIMD enhanced media applications by decoupling 
the useful computation and overhead instructions and 
process the overhead related instructions efficiently. Fig. 
1 illustrates the block diagram of the MediaBreeze archi-
tecture. In order to perform the SIMD operations, the Me-
diaBreeze architecture uses existing hardware units (that 
is, such hardware is already present in current state-of-
the-art SIMD enhanced GPPs) as well as introduces new 
hardware units. The existing hardware units are pro-
grammed differently than by the conventional control 
path (explained later in this section). The existing hard-
ware units (lightly shaded blocks in Fig. 1) are the 
load/store units, SIMD computation unit, data reorganiza-
tion/address transformation, and the data station. The new 
hardware units (darkly shaded blocks in Fig. 1) are the 
address generation units, hardware looping, Breeze in-
struction memory, and Breeze instruction decoder. The 
functionality of the existing hardware units is: 
 
• Load/store units: Loading/storing data from/to mem-

ory and to/from SIMD registers. 



• SIMD computation unit: All arithmetic and logical 
SIMD computations along with multiplication and 
special media operations such as sum-of-absolute-
differences are executed in this unit. Current GPPs 
typically have two SIMD ALUs and one SIMD mul-
tiplier in their SIMD datapath. 

• Data Reorganization: SIMD processing mandates 
several data reorganization mechanisms such as 
packing, unpacking, permute, etc. Reduction opera-

tions, scaling, and shifting of the results are also re-
quired for SIMD processing. Current commodity 
SIMD enhanced GPPs have data reorganization 
hardware in their SIMD datapath. 

• Data station: The data station acts as a register file for 
the SIMD computation. Current SIMD enhanced 
GPPs either have dedicated SIMD register files or 
share the floating-point register file for intermediate 
SIMD results. 

 The functionality of the newly added hardware units 
is: 
• Address generation: Address arithmetic functions are 

moved from the execution unit subsystem in current 
processors to a MediaBreeze hardware unit where 
dedicated address arithmetic hardware would gener-
ate all input and output address data struc-
tures/streams concurrent with the SIMD computation 
unit. Such a mechanism of providing dedicated ad-

dress arithmetic hardware would reduce overhead as 
address calculations are performed explicitly by 
ALUs in current ILP processors. This involves some 
combination of extra instructions, parts of instruc-
tions, registers, memory accesses, and computation 
time.  

• Looping: Using dedicated hardware looping (zero-
overhead branch processing), branch instructions re-
lated to loop increments are eliminated. 
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Figure. 1. The MediaBreeze Architecture 



• Breeze instruction memory and decoder: In order to 
program/control the hardware units (both existing 
and newly added units) in the MediaBreeze architec-
ture, a special instruction called the Breeze instruc-

tion is formulated. The Breeze instruction memory 
stores these instructions once they enter the proces-
sor. Fig. 2 illustrates the structure of the Breeze in-
struction. 

Five loop index counts (bounds) are indicated in the 
Breeze instruction to support five level nested loops (in 
hardware). A five-level deep nest can accommodate most 
algorithms. The MediaBreeze architecture allows for 
three input data structures/streams and produces one out-
put structure. This was chosen because some media algo-
rithms can benefit from this capability (current SIMD 
execution units sometimes operate on 3 input registers to 
produce one output value). Each data structure/stream has 
its own dedicated address generation unit to compute the 
address every clock cycle with the base address specified 
in the Breeze instruction. Due to the sub-block access pat-
tern in media programs, data is accessed with different 
strides at various points in the algorithm. The Breeze in-
struction facilitates multiple strides (one at each level of 
loop nesting, i.e., a total of five strides) for each of the 
three input streams and one output stream. The strides in-
dicate address increment/decrement values based on the 
loop-nest level. Depending on the mask values for each 
stream (indicated in the Breeze instruction) and the loop-
nest level, one of the five possible strides is used to up-
date the address pointer.  

Data types of each stream/structure are also indicated 
in the Breeze Instruction. Depending on the size of each 
element in the data structures, a different amount of 
SIMD parallelism is achieved. If one data stream is 8-bit 
data (16-way parallelism for a 128-bit wide execution 
unit) and the other is 16-bit data (8-way parallelism), the 
SIMD processing achieves only 8-way parallelism. The 
maximum achievable SIMD parallelism is the minimum 
of all the data structures (all commercial SIMD extensions 
have this limitation). Current SIMD extensions provide 
data reorganization instructions for solving the problem of 
having different element sizes across the data structures 

(packing, unpacking, permute, etc) and introduce addi-
tional instruction overhead. By providing this information 
in the Breeze Instruction, special hardware in the Me-
diaBreeze will perform this function. The MediaBreeze 
performs reduction operations and this is also indicated in 
the Breeze Instruction (for example, multiple independent 
results in a single SIMD register are combined together in 
dot product which require additional instructions in cur-
rent DLP techniques). Support for signed/unsigned arith-
metic, saturation, shifting/scaling of final results is also 
indicated in the Breeze Instruction. This eliminates addi-
tional instructions that are otherwise needed for conven-
tional RISC processors.  

With the support for multiple levels of looping and 
multiple strides, the Breeze Instruction is a complex in-
struction and decoding such an instruction is a complex 
process in current RISC processors. MediaBreeze instead 
handles the task of interpreting/decoding of the Breeze In-
struction. MediaBreeze has its own instruction memory to 
hold a Breeze instruction. Two additional 32-bit instruc-
tions are also added to the ISA of the general-purpose 
processor for starting and interrupting the MediaBreeze. 
These 32-bit instructions (fetched and decoded by the 
traditional instruction issue logic) contain the length of 
the Breeze Instruction. Whenever a Breeze instruction is 
encountered in the dynamic instruction stream, the 
dynamic instructions prior to the Breeze instruction are 
allowed to finish after which the MediaBreeze instruction 
interpreter decodes the Breeze instruction. In our current 
implementation, we halt the superscalar pipeline until the 
execution of the Breeze instruction is completed because 
MediaBreeze reuses existing hardware units. Otherwise, 
arbitration of resources is necessary to allow for overlap 
of the Breeze instruction and other superscalar 
instructions.  

Figure. 2. Structure of the Breeze Instruction 
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SIMD instructions reduce the dynamic instruction 
count because they operate on multiple data in a single in-
struction. Due to the repetitive operations required by 
media applications such a technique reduces the total 
number of instruction fetches and decodes. However, 
SIMD instructions capture only the useful computation 
operations. Encoding all the overhead/supporting opera-
tions along with the SIMD useful computation instruc-
tions has the advantage that the Breeze instruction can po-
tentially replace millions of dynamic RISC instructions 
that have to be fetched, decoded, and issued every cycle 
in a normal superscalar processor. This results in giving 
the MediaBreeze architecture advantages similar to ASIC-
based acceleration. 

It is possible that an exception or interrupt occurs 
while a Breeze instruction is in progress. The state of all 
the five loops, their current counts, loop bounds, etc are 
saved and restored when the instruction returns. This is 
similar to handling of exceptions during move instruc-
tions with REP (Repeat Prefix) in x86. MediaBreeze has 
registers to hold the loop parameters for all the loops. 
Code development for the MediaBreeze architecture is 
currently done by hand. Similar to developing code for 
SIMD extensions, compiler intrinsics may have to be em-
ployed to utilize the MediaBreeze architecture. We do not 

want to underestimate the challenge of compiling for the 
MediaBreeze architecture; however, the effort is compa-
rable to that of compiling for SIMD extensions.  

We evaluated the performance of the MediaBreeze 
architecture using nine multimedia benchmarks and found 
that the performance improvement of the MediaBreeze 
architecture ranges from 1.05x to 28x over a 4-way out-
of-order processor with SIMD extensions. Fig. 3 presents 
the results of incorporating the MediaBreeze hardware 
into a 2-way and 4-way out-of-order processor with 
SIMD extensions. 

In summary, the MediaBreeze architecture performs 
media program execution efficiently by exploiting signifi-
cant amounts of ILP in the overhead component. In a sce-
nario where all the loop nests and data streams are proc-
essed, MediaBreeze executes (in hardware) the following 
equivalent number of software instructions (in conven-
tional ILP processors) during each cycle - five branches, 
three loads, one store, four address value generation (one 
on each stream), one SIMD operation (2-way to 16-way 
parallelism depending on each data element size), one ac-
cumulation of SIMD result, one SIMD reduction opera-
tion, four SIMD data reorganization (pack/unpack, per-
mute, etc) operations, and shifting & saturation of SIMD 
results.

 

3. Implementation Methodology 
 

To estimate the area, power, and timing requirements 
of the MediaBreeze architecture, we developed VHDL 
models for the various components. Using Synopsys syn-
thesis tools [9], we used a cell-based methodology to tar-
get the VHDL models to several ASIC cell-libraries from 
LSI Logic [10][12]. Table 1 lists the libraries and tech-
nologies used for evaluating the implementation costs.  

The Synopsys synthesis tools estimate area, power, 
and timing of circuits based on the ASIC technology li-
brary. The ASIC technology library provides four kinds 
of information. 
• Structural information. This describes each cell’s 

connectivity to the outside world, including cell, bus, 
and pin descriptions. 

• Functional information. This describes the logical 
function of every output pin of every cell so that the 

Figure. 3. Performance/Speedup of MediaBreeze (MB) versus SIMD 

27.92 16.84 6.8716.52 8.74

0

2

4

6

cfa dct mot scale aud g711 jpeg ijpeg decrypt

S
p

ee
d

u
p

2-way + SIMD 2-way + SIMD + MB 4-way + SIMD 4-way + SIMD + MB 



synthesis tool can map the logic of a design to the ac-
tual ASIC technology. 

• Timing information. This describes the parameters 
for pin-to-pin timing relationships and delay calcula-
tion for each cell in the library.  

• Environmental information. This describes the manu-
facturing process, operating temperature, supply volt-
age variations, and design layout. The design layout 
includes wire load models that estimate the effect of 
wire length on design performance. Wire load model-
ing estimates the effect of wire length and fanout on 
resistance, capacitance, and area of nets.  

 
We use the default wire load models provided by LSI 

Logic’s cell-based libraries. The Synopsys synthesis tools 
compute timing information based on the cells in the de-
sign and their corresponding parameters defined in the 
ASIC technology library. The area information provided 

by the synthesis tools is prior to layout and is computed 
based on the wire load models of the associated cells in 
the design. Average power consumption is measured 
based on the switching activity of the nets in the design. 
In our experiments, the switching activity factor origi-
nates from the RTL models (the tool gathers this informa-
tion from simulation).  

The area, power, and timing estimates are obtained 
after performing maximum optimizations for performance 
in the synthesis tools. High-speed commodity GPPs are 
implemented using custom circuit design techniques. The 
results obtained in this paper reflect a worst-case estimate 
because customized placement and custom circuit design 
techniques give better results than automated placement 
by CAD tools [12]. The interested reader is referred to [9] 
for further information regarding the capabilities and limi-
tations of the synthesis tools. 

 
 

Table 1. List of Cell-based Libraries used in synthesis (LSI Logic) 

Library name Description 

lcbg12-p (G12-p) 
A 0.18-micron L-drawn (0.13-micron L-effective) CMOS process. 
Highest performance solution at 1.8 V with high drive cells optimized for long in-
terconnects associated with large designs. 

lcbg12-d (G12-d) A 0.18-micron L-drawn (0.13-micron L-effective) CMOS process. 
Optimized for performance, density, and power for most applications at 1.8 V.  

lcbg12-l (G12-l) 
A 0.18-micron L-drawn (0.13-micron L-effective) CMOS process. 
Ultra-low power and high-density solution with a low dynamic and standby leak-
age current at 1.8 V.  

lcbg11-p (G11-p) A 0.25-micron L-drawn (0.18-micron L-effective) CMOS process. 
Highest performance solution at 2.5 V.  

lcbg11-v (G11-v) A 0.25-micron L-drawn (0.18-micron L-effective) CMOS process. 
Ultra-low power and cost sensitive solution at 1.8 V.  

lcbg10-p (G10-p) A 0.35-micron L-drawn (0.25-micron L-effective) CMOS process. 
Optimized for high performance at 3.3 V. 

 
 
4. Hardware Implementation of the  
 MediaBreeze Units 
 
4.1 Address generation 
 
 The MediaBreeze architecture supports three input 
and one output data structures/streams. Each of the four 
data streams has a dedicated address generation hardware 
unit. Address arithmetic on each stream is performed 
based on the strides and mask values indicated in the 
Breeze instruction. For each clock cycle, depending on 

the mask bits and loop index counts, one of the five pos-
sible strides is selected. The new address value is then 
computed based on the selected stride and the previous 
address value. Fig. 4 depicts the block diagram of the ad-
dress generation circuitry for a single data stream/ struc-
ture. 
 The last_val comparators determine which of the 
four inner level loop counters have reached their upper 
bound. The outermost loop comparison is not necessary 
because the Breeze instruction finishes execution at the 
instant when the outermost loop counter reaches its upper 
bound. The inc-cond and inc-combine blocks generate 



flag signals based on the output from the last_val com-
parators and mask values from the Breeze instruction. If 
none of the flag signals are true, then stride-5 is used to 
update the prev-address, otherwise the appropriate stride- 
(1–4) is selected depending on flag- (1–4). The address-
generate block uses a 32-bit adder to add the selected 
stride to the previous address. On either an exception or a 
stall, only the prev-address value needs to be stored as the 
loop counters are stored by the hardware looping cir-
cuitry. For each of the four data structures/streams, the 
last_val comparators portion of the logic is shared, but 
the remaining hardware needs to be replicated. 

4.2 Looping 
 
 The MediaBreeze architecture incorporates five lev-
els of loop nesting in hardware to eliminate branch in-
struction overhead for loop increments. A similar mecha-
nism was commercially implemented in the TI ASC [7] 
(two levels of do-loop nesting in addition to a self-
increment loop). Conventional DSP processors such as 
the TMS320C5x from TI also use such a technique for 
one or more levels of loop nesting [8]. Fig. 5 shows the 
block diagram of the looping hardware. 
 Loop index values are produced every clock cycle 
based on the loop bound for each level of nesting (bounds 
for each of the five loops are specified in the Breeze in-
struction). The value of a loop index varies from 1 (lower 
bound) to the corresponding loop bound (upper bound), 
and resets to its lower bound once the upper bound is 
reached in the previous cycle. The execution of the 
Breeze instruction ends when the outermost loop (loop1 
in Fig. 5) reaches its upper bound. On encountering either 

an exception or a stall, the loop indices are stored and the 
increment logic is halted; the counting process is started 
once the exception/stall is serviced. Each of the five com-
parators (32-bit wide) operates in parallel to generate flag 
(1-bit wide) signals that are priority encoded to determine 
which one of the five loop counters to increment. When a 
loop counter is incremented-by-1 (circuit for incrementing 
a 32-bit value by 1), all the loop counters belonging to its 
inner level are reset (for example, if loop3 is incremented-
by-1, then loop4 and loop5 are reset to their lower bound). 
 

4.3 Breeze instruction decoder 
 
 A stand-along instruction decoder for the Breeze in-
structions eliminates the need to modify the conventional 
instruction decoder of current GPPs. A Breeze instruction 
needs to be decoded only once since various control pa-
rameters are stored in hardware registers after the decod-
ing process. The implementation of the Breeze instruction 
decoder was merged into the address generation and loop-
ing circuitry. 
 
4.4 Breeze instruction memory 
 
 The Breeze instruction memory stores the Breeze in-
struction once it enters the processor. We do not estimate 
the cost of this storage because the ASIC libraries we use 
are not targeted for memory cells. However, the area, 
power, and timing estimates of the Breeze instruction 
memory are similar to an SRAM structure. The size of a 
Breeze instruction is typically 120 bytes. 
 
4.5 Existing hardware units 
 
 The remaining hardware units that are required for 
the operation of the MediaBreeze architecture are the 
SIMD computation unit, data reorganization, load/store 
units, and data station. These hardware units are already 
present in commodity SIMD GPPs. However, the Breeze 
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instruction decoder controls the operation of these units as 
opposed to the conventional control path. This mandates 
an extra multiplexer to differentiate between control from 
the conventional control path and the Breeze instruction 
decoder. We do not model any of the existing hardware 
units. 
 
 

5. Area, Power, and Timing Results 
 
Table 2 shows the composite estimates of area, power, 
and timing for the hardware looping and address genera-
tion circuitry when implemented by using the cell-based 
methodology described in section 3. The results for the 
Breeze instruction decoder are merged into the looping 
and address generation hardware.  

 
 

Table 2. Timing, Area, and Power Estimates for hardware looping and address generation 

 Hardware Looping 
(5 loops) 

Address Generation 
(per stream) 

 
Time 
(ns) 

Area 
(µm2) 

Power 
(mW) at 
1GHz 

Time 
(ns) 

Area 
(µm2) 

Power 
(mW) at 
1GHz 

G12-p (0.18µ) 1.00 ns 72830 µm2 88.57 mW 1.74 ns 57398 µm2 85.16 mW 

G12-d (0.18µ) 1.16 ns 64666 µm2 62.40 mW 1.91 ns 41053 µm2 46.18 mW 

G12-l (0.18µ) 1.30 ns 65714 µm2 55.44 mW 2.22 ns 41144 µm2 42.34 mW 

G11-p (0.25µ) 1.49 ns 273249 µm2 249.30 mW 2.60 ns 165099 µm2 193.20 mW 

G11-v (0.25µ) 1.90 ns 500864 µm2 166.00 mW 3.29 ns 204603 µm2 82.93 mW 

G10-p (0.35µ) 2.01 ns - 846.90 mW  3.76 ns - 554.30 mw 

 

Area of commercial SIMD and GPP units for comparison [6][17] 

VIS – 4 mm2 in a 0.29-micron process 
MMX  – 15 mm2 in a 0.29-micron process 
AltiVec – 15 mm2 in a 0.25-micron process 
Pentium III processor – 106 mm2 in a 0.18-micron process 
MMX + SSE in a Pentium III processor – 3.6 mm2 in a 0.18-micron process 

 
 
 
Area - The overall chip area required for implementing 
the hardware loops, address generation (for all four data 
streams), and the Breeze instruction interpreter (merged 
into looping and address generation logic) is approxi-
mately 0.31 mm2 in a 0.18-micron library optimized for 
high performance (G12-p) and 0.23 mm2 in a 0.18-micron 
library optimized for density, performance, and power 
(G12-d). Table 2 also shows the hardware area cost of 
commercial SIMD GPP implementations for comparison. 
In a 0.29-micron process, the increase in chip area for im-
plementing the Visual Instruction Set (VIS) hardware into 
the Sparc processor family was 4 mm2, MMX into the 
Pentium family was 15 mm2, and AltiVec into the 
PowerPC family was 30 mm2 [6]. In a 0.25-micron proc-

ess, the AltiVec hardware was expected to occupy 15 
mm2 [6]. In a 0.18-micron technology, the die size of a 
Pentium III processor was 106 mm2 with the MMX and 
SSE execution units requiring approximately 3.6 mm2 

[17]. Thus, the increase in area due to the MediaBreeze 
units for SIMD-related hardware is less than 10% and the 
overall increase in chip area is less than 0.3%. Further-
more, in order to maintain wirability, placement automa-
tion tools typically achieve an active area that is about 50 
to 80% of the area more than when the cells are packed 
closer by custom design [12]. This is to facilitate more 
number of available wiring tracks for optimal routing by 
the placement tool. Fig. 6 shows the fraction of area re-
quired by interconnect for the hardware looping and ad-
dress generation logic. 



Power - The power consumed by the looping, address 
generation (all four streams), and the Breeze instruction 
interpreter is approximately 430 mW in a 0.18-micron li-
brary optimized for performance (G12-p) and 225 mW for 
a library optimized for low-power (G12-l). GPPs with 
speeds over 1 GHz typically consume a power ranging 
from 50 W to 150 W. The MediaBreeze hardware con-
sumes less than 1% of the total processor power.  We be-
lieve that the overall energy consumption of the Me-
diaBreeze architecture would be less than that of a super-
scalar processor with SIMD extensions because the 
Breeze instruction reduces the total dynamic instruction 
count. Since the Breeze instruction is densely encoded 
very few Breeze instructions are needed for any media-
processing algorithm. The number of dynamic instruc-
tions that need to be fetched and decoded reduces tremen-
dously, leading to a minimal use of the instruction fetch, 
decode, and issue logic in a superscalar processor. The in-
struction fetch and issue logic are expected to consume 
greater than 50% of the total execution power (not includ-
ing the clock power) in future speculative processors [16]. 
Once the Breeze instruction is interpreted, the instruction 
fetch, decode, and issue logic in the superscalar processor 
can be shutdown to save power.  
 Fig. 7 shows the divisions of dynamic power into net 
switching power and cell internal power for the added 
MediaBreeze hardware units. Dynamic power consists of 
two parts: net switching power and cell internal power. 
Net switching power is the power consumed on a net 
when the signal it is carrying is toggling and is propor-
tionally dependent on the switching activity, the net load 
and the square of voltage. Cell internal power is the 
power consumed when one or more cell input signals tog-
gle. During the transition time when an input or an output 
signal changes state, both the pull-down and pull-up tran-
sistor will be open and a large current will flow through 
the cell (short-circuit power). Cell internal power is pro-
portionally dependent on the switching activity and the 
square of voltage [18][19]. 

Timing - Pipelining the hardware looping logic into two 
stages would allow for incorporating it into current high-
speed superscalar out-of-order processors with over 1 
GHz clock frequency. Similarly the address generation 
stage needs to be divided into three pipe stages to achieve 
frequencies greater than 1 GHz. The timing results show 
that incorporating the MediaBreeze hardware into a high-
speed processor does not elongate the critical path of the 
processor (after pipelining). The Breeze instruction de-
coder multiplexers that control the hardware units intro-
duce an extra gate delay in the pipeline. However, using a 
cell-based methodology gives a worst-case result while 
custom design (typically used in commercial general-
purpose processors) would allow for greater clock fre-
quencies for the added MediaBreeze hardware. In spite of 
adding five pipeline stages, the overall pipeline depth of a 
processor is not affected because the looping and address 
generation stages bypass the conventional fetch, decode 
and issue pipe stages.  
 
6. Summary and Conclusion 
 

Contemporary SIMD techniques extract data level 
parallelism in the useful computation instructions of mul-
timedia applications, but the SIMD execution units are 
under-utilized due to a dominance of overhead instruc-
tions (75-85%). Eliminating and reducing the overhead 
using specialized hardware can dramatically improve the 
performance of media workloads without deteriorating the 
performance of general-purpose workloads. The Me-
diaBreeze architecture was designed to decouple the use-
ful and overhead instructions and exploit instruction level 
parallelism in the overhead instructions realizing a 1.05x 
to 28x performance improvement over a SIMD-enhanced 
general-purpose processor.  

In this paper, we estimated the cost of incorporating 
explicit hardware support into a SIMD GPP to execute the 
supporting instructions. Using an ASIC cell-based meth-

Figure. 6. Percentage of interconnect 
area in the overall area Figure. 7. Breakdown of dynamic power into 

cell internal power and net switching power 
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odology targeting several libraries and technologies, we 
obtained area, power, and timing information for the Me-
diaBreeze architecture components. The major findings of 
this paper are: 
• The area cost is less than 10% of the SIMD execution 

unit’s area (such as MMX and SSE). When compared 
to the overall processor chip area, the increase is less 
only 0.3%. 

• Power consumption of the added units is less than 1% 
of the total processor power.  

• The MediaBreeze hardware units do not increase the 
effective pipeline depth of a high-speed GPP. A 
SIMD GPP with MediaBreeze hardware can be oper-
ated well over 1 GHz in a 0.18-micron technology. 

 
We expect the overall energy consumption to be po-

tentially lower when using a MediaBreeze augmented 
processor because the Breeze instruction is heavily en-
coded and encompasses multiple operations. Power con-
sumption is decreased due to the reduced use of tradi-
tional instruction fetch, decode, and issue logic for the du-
ration of the Breeze instruction execution. 
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