
Cost-effective Hardware Acceleration of Multimedia Applications

Deependra Talla and Lizy K. John

Laboratory for Computer Architecture
Department of Electrical and Computer Engineering

The University of Texas, Austin, TX 78712
{deepu, ljohn}@ece.utexas.edu

Abstract

General-purpose microprocessors augmented with SIMD
execution units enhance multimedia applications by ex-
ploiting data level parallelism. However, support-
ing/overhead related instructions (instructions necessary
to feed the SIMD execution units such as address genera-
tion, packing/unpacking, permute, loads/stores, and loop
branches) dominate media instruction streams accounting
for 75-85% of the dynamic instructions. This leads to an
under-utilization of SIMD execution units resulting in a
throughput that ranges between 1-12% of the peak
throughput. We accelerate multimedia applications by
providing explicit hardware support to eliminate or re-
duce the impact of the supporting/overhead related in-
structions. Performance evaluation shows that such
hardware can significantly improve performance over
conventional SIMD enhanced general-purpose processors
(1.05x to 28x). In this paper, we investigate the cost of in-
corporating hardware, for efficient execution of support-
ing/overhead related instructions, into a high-speed
SIMD enhanced general-purpose processor and perform
area, power, and timing tradeoffs. Our results indicate
that – the added hardware requires less than 10% SIMD
execution units’ chip area and 0.3% overall chip area,
and power consumption is less than 1% of the total proc-
essor power. This is achieved without elongating the
critical path of the processor.

Keywords: microprocessor design, multimedia, SIMD,
general-purpose processors, hardware accelerators, area,
power, and timing tradeoffs.

L. John is supported in part by the State of Texas Advanced Technology
Program grant #403, the National Science Foundation under grants CCR-
9796098 and EIA-9807112, and by Dell, Intel, Microsoft, and IBM.

1. Introduction

Multimedia workloads are characterized by struc-
tured and regular computations on large data sets with
small element-widths. With an increasing number of
desktop/workstation execution cycles being spent on me-
dia applications, general-purpose processors (GPPs) have
been enhanced with single instruction multiple data
(SIMD) execution units [1]. Four, eight or sixteen data
elements of 32-, 16-, or 8-bits width (subwords) can be
operated simultaneously in a single register (128-bit
wide). Using assembly libraries, compiler intrinsics and
limited compiler capabilities, media-rich applications
have benefited from SIMD extensions [2][3][4].

However, recent work [5] on characterizing media
workloads exposes several inefficiencies in the execution
of SIMD enhanced applications, in spite of a performance
improvement over non-SIMD code. Experiments on gen-
eral-purpose processors with SIMD extensions on media
applications show that only 1% to 12% of the peak avail-
able SIMD units’ throughput is achieved. Instructions re-
quired for preprocessing of data to feed the SIMD units
contribute to the under-utilization of the SIMD execution
units. The instructions include address generation, address
transformation (permute, data packing and unpacking),
loads/stores, and loop branches. On conceptually classify-
ing the instruction stream into either useful computations
(core computations required by the media algorithm) or
supporting/overhead (all other instructions used for assist-
ing the useful computation instructions), 75-85% of the
dynamic instructions are found to be supporting/overhead
related instructions and only 15-25% are useful computa-
tion instructions.

Increasing the width/number of SIMD execution
unit/s results in diminishing returns in performance im-
provement since parallelism is exploited mainly in the
useful computation instructions. Efficient execution of
media workloads mandates exploiting parallelism in the

supporting/overhead related instructions rather than con-
centrating solely on the useful computation instructions.
Not only do media applications have data level parallel-
ism (DLP) in the useful computations, but also plenty of
available instruction level parallelism (ILP) in the sup-
porting/overhead related instructions. Providing explicit
hardware support, for processing the supporting/overhead
related instructions, significantly accelerates multimedia
applications. Analysis of media applications unveils invo-
cation of several address patterns, often multiple simulta-
neous sequences. Simple hardware can be devised to gen-
erate such patterns, but using general-purpose RISC in-
struction sets is not efficient, as the available addressing
modes are limited. Likewise keeping track of multiple ar-
ray bounds involves a combination of several addressing
modes and instructions leading to considerable address
generation overhead in conventional general-purpose
RISC processors. Similarly hardware to implement multi-
ple nested loops is not overly complicated, however sup-
porting multiple loops with general-purpose instruction
sets may not be very efficient.

Based on the above philosophy, the MediaBreeze ar-
chitecture was designed in [5] to augment a SIMD en-
hanced GPP with simple hardware for providing an effec-
tive and seamlessly integrated solution for media work-
loads without sacrificing the performance on general-
purpose workloads. Results on nine multimedia bench-
marks show that adding simple hardware to a general-
purpose core with SIMD extensions exhibits a 1.05x to
28x-performance improvement. In addition, the total
number of dynamic instructions is reduced by 0.2% to
over 99% across the benchmark suite.

The primary contribution of this paper is to investi-
gate the associated cost of adding the hardware to a high-
speed GPP with SIMD extensions. Using a cell-based
methodology targeting different ASIC libraries (opti-
mized for one or more of performance, density and low-
power) and technologies (0.18-, 0.25-, and 0.35-micron),
we attempt to answer the following three questions:

• What is the chip area increase due to adding the

hardware to assist in processing the support-
ing/overhead related instructions?

• How much power is consumed by the additional
logic?

• Does the added hardware elongate the critical path of
a high-speed processor or in other words, will it be a
bottleneck in determining the maximum clock rate?
How many pipeline stages does the hardware add to
the processor core?

We find that the above mentioned 1.05x to 28x per-

formance improvement over MMX- & SSE-like exten-
sions is obtained at an area cost of less than 10% of SIMD
execution unit’s area (such as MMX and SSE) and a 0.3%

increase in overall chip area. The power consumption is
less than 1% of the total processor power. The timing re-
sults show that the added hardware does not elongate the
critical path of the GPP core.

The rest of the paper is organized as follows. Section
2 provides a brief overview of the MediaBreeze architec-
ture. Section 3 discusses about the tools and methodology.
Section 4 presents the implementation details of the added
hardware. Section 5 evaluates the costs associated with
implementing each mechanism in the MediaBreeze archi-
tecture and their applicability to mainstream commodity
general-purpose microprocessor pipelines. Finally, Sec-
tion 6 summarizes the paper.

2. Description of the MediaBreeze
 Architecture

 Analyzing media instruction execution streams re-
sults in two distinct sets of operations: the useful compu-
tations as required by the algorithm and the supporting
computations (overhead) such as address generation, ad-
dress transformation (packing, unpacking, and permute),
loads/stores, and loop branches. The sole purpose of
overhead instructions is to aid in the execution of the use-
ful computation instructions. The execution of overhead
instructions is mandatory due to the programming con-
ventions of general-purpose processors, abstractions and
control flow structures used in programming and a mis-
match between how data is used in computations versus
how data is stored. Due to the dominance of overhead in-
structions (75-85%), they need to eliminated, alleviated,
or overlapped with the useful computations for better per-
formance.
 The MediaBreeze architecture was designed to accel-
erate SIMD enhanced media applications by decoupling
the useful computation and overhead instructions and
process the overhead related instructions efficiently. Fig.
1 illustrates the block diagram of the MediaBreeze archi-
tecture. In order to perform the SIMD operations, the Me-
diaBreeze architecture uses existing hardware units (that
is, such hardware is already present in current state-of-
the-art SIMD enhanced GPPs) as well as introduces new
hardware units. The existing hardware units are pro-
grammed differently than by the conventional control
path (explained later in this section). The existing hard-
ware units (lightly shaded blocks in Fig. 1) are the
load/store units, SIMD computation unit, data reorganiza-
tion/address transformation, and the data station. The new
hardware units (darkly shaded blocks in Fig. 1) are the
address generation units, hardware looping, Breeze in-
struction memory, and Breeze instruction decoder. The
functionality of the existing hardware units is:

• Load/store units: Loading/storing data from/to mem-

ory and to/from SIMD registers.

• SIMD computation unit: All arithmetic and logical
SIMD computations along with multiplication and
special media operations such as sum-of-absolute-
differences are executed in this unit. Current GPPs
typically have two SIMD ALUs and one SIMD mul-
tiplier in their SIMD datapath.

• Data Reorganization: SIMD processing mandates
several data reorganization mechanisms such as
packing, unpacking, permute, etc. Reduction opera-

tions, scaling, and shifting of the results are also re-
quired for SIMD processing. Current commodity
SIMD enhanced GPPs have data reorganization
hardware in their SIMD datapath.

• Data station: The data station acts as a register file for
the SIMD computation. Current SIMD enhanced
GPPs either have dedicated SIMD register files or
share the floating-point register file for intermediate
SIMD results.

 The functionality of the newly added hardware units
is:
• Address generation: Address arithmetic functions are

moved from the execution unit subsystem in current
processors to a MediaBreeze hardware unit where
dedicated address arithmetic hardware would gener-
ate all input and output address data struc-
tures/streams concurrent with the SIMD computation
unit. Such a mechanism of providing dedicated ad-

dress arithmetic hardware would reduce overhead as
address calculations are performed explicitly by
ALUs in current ILP processors. This involves some
combination of extra instructions, parts of instruc-
tions, registers, memory accesses, and computation
time.

• Looping: Using dedicated hardware looping (zero-
overhead branch processing), branch instructions re-
lated to loop increments are eliminated.

L1 D-cache
SIMD

computation
unit

Address
generation

units

Address
generation

units

Load/Store
units

Data
Reorganization/

 Address
transformation

Data
Reorganization/

 Address
transformation

Breeze Instruction
Memory

Hardware
looping

Hardware
looping

Instruction
stream

Instruction
Decoder

 Non-SIMD
 pipeline

Breeze
Instruction
Interpreter

Breeze
Instruction

Decoder

Starting address of
Breeze instruction

Normal
superscalar
execution

L2 cache

Main memory

SIMD
 pipeline

IS-1

IS-2

IS-3

OS

Data Station
IS - input stream

OS - output stream

Overhead

Useful computations

new hardware

existing hardware used
differently

Figure. 1. The MediaBreeze Architecture

• Breeze instruction memory and decoder: In order to
program/control the hardware units (both existing
and newly added units) in the MediaBreeze architec-
ture, a special instruction called the Breeze instruc-

tion is formulated. The Breeze instruction memory
stores these instructions once they enter the proces-
sor. Fig. 2 illustrates the structure of the Breeze in-
struction.

Five loop index counts (bounds) are indicated in the
Breeze instruction to support five level nested loops (in
hardware). A five-level deep nest can accommodate most
algorithms. The MediaBreeze architecture allows for
three input data structures/streams and produces one out-
put structure. This was chosen because some media algo-
rithms can benefit from this capability (current SIMD
execution units sometimes operate on 3 input registers to
produce one output value). Each data structure/stream has
its own dedicated address generation unit to compute the
address every clock cycle with the base address specified
in the Breeze instruction. Due to the sub-block access pat-
tern in media programs, data is accessed with different
strides at various points in the algorithm. The Breeze in-
struction facilitates multiple strides (one at each level of
loop nesting, i.e., a total of five strides) for each of the
three input streams and one output stream. The strides in-
dicate address increment/decrement values based on the
loop-nest level. Depending on the mask values for each
stream (indicated in the Breeze instruction) and the loop-
nest level, one of the five possible strides is used to up-
date the address pointer.

Data types of each stream/structure are also indicated
in the Breeze Instruction. Depending on the size of each
element in the data structures, a different amount of
SIMD parallelism is achieved. If one data stream is 8-bit
data (16-way parallelism for a 128-bit wide execution
unit) and the other is 16-bit data (8-way parallelism), the
SIMD processing achieves only 8-way parallelism. The
maximum achievable SIMD parallelism is the minimum
of all the data structures (all commercial SIMD extensions
have this limitation). Current SIMD extensions provide
data reorganization instructions for solving the problem of
having different element sizes across the data structures

(packing, unpacking, permute, etc) and introduce addi-
tional instruction overhead. By providing this information
in the Breeze Instruction, special hardware in the Me-
diaBreeze will perform this function. The MediaBreeze
performs reduction operations and this is also indicated in
the Breeze Instruction (for example, multiple independent
results in a single SIMD register are combined together in
dot product which require additional instructions in cur-
rent DLP techniques). Support for signed/unsigned arith-
metic, saturation, shifting/scaling of final results is also
indicated in the Breeze Instruction. This eliminates addi-
tional instructions that are otherwise needed for conven-
tional RISC processors.

With the support for multiple levels of looping and
multiple strides, the Breeze Instruction is a complex in-
struction and decoding such an instruction is a complex
process in current RISC processors. MediaBreeze instead
handles the task of interpreting/decoding of the Breeze In-
struction. MediaBreeze has its own instruction memory to
hold a Breeze instruction. Two additional 32-bit instruc-
tions are also added to the ISA of the general-purpose
processor for starting and interrupting the MediaBreeze.
These 32-bit instructions (fetched and decoded by the
traditional instruction issue logic) contain the length of
the Breeze Instruction. Whenever a Breeze instruction is
encountered in the dynamic instruction stream, the
dynamic instructions prior to the Breeze instruction are
allowed to finish after which the MediaBreeze instruction
interpreter decodes the Breeze instruction. In our current
implementation, we halt the superscalar pipeline until the
execution of the Breeze instruction is completed because
MediaBreeze reuses existing hardware units. Otherwise,
arbitration of resources is necessary to allow for overlap
of the Breeze instruction and other superscalar
instructions.

Figure. 2. Structure of the Breeze Instruction

Loop1-count Loop2-count Loop3-count Loop4-count Loop5-count

Starting
Address of

IS-1

Starting
Address of

IS-2

Starting
Address of

IS-3

Starting
Address of

OS

OPR /
RedOp /

Shift / LL

Stride-1 IS-1 Stride-2 IS-1 Stride-3 IS-1 Stride-4 IS-1 Stride-5 IS-1

Stride-1 IS-2 Stride-2 IS-2 Stride-3 IS-2 Stride-4 IS-2 Stride-5 IS-2

Stride-1 OS Stride-2 OS Stride-3 OS Stride-4 OS Stride-5 OS

Masks -

IS-1 and IS-2

Masks -

IS-3 and OS

Multicast and data types of each stream with
remaining bits unused

Stride-1 IS-3 Stride-2 IS-3 Stride-3 IS-3 Stride-4 IS-3 Stride-5 IS-3

 Legend

IS - input stream

OS - output stream

OPR - operation code

RedOp - reduction operation

LL - loop level to write results

32-bits

SIMD instructions reduce the dynamic instruction
count because they operate on multiple data in a single in-
struction. Due to the repetitive operations required by
media applications such a technique reduces the total
number of instruction fetches and decodes. However,
SIMD instructions capture only the useful computation
operations. Encoding all the overhead/supporting opera-
tions along with the SIMD useful computation instruc-
tions has the advantage that the Breeze instruction can po-
tentially replace millions of dynamic RISC instructions
that have to be fetched, decoded, and issued every cycle
in a normal superscalar processor. This results in giving
the MediaBreeze architecture advantages similar to ASIC-
based acceleration.

It is possible that an exception or interrupt occurs
while a Breeze instruction is in progress. The state of all
the five loops, their current counts, loop bounds, etc are
saved and restored when the instruction returns. This is
similar to handling of exceptions during move instruc-
tions with REP (Repeat Prefix) in x86. MediaBreeze has
registers to hold the loop parameters for all the loops.
Code development for the MediaBreeze architecture is
currently done by hand. Similar to developing code for
SIMD extensions, compiler intrinsics may have to be em-
ployed to utilize the MediaBreeze architecture. We do not

want to underestimate the challenge of compiling for the
MediaBreeze architecture; however, the effort is compa-
rable to that of compiling for SIMD extensions.

We evaluated the performance of the MediaBreeze
architecture using nine multimedia benchmarks and found
that the performance improvement of the MediaBreeze
architecture ranges from 1.05x to 28x over a 4-way out-
of-order processor with SIMD extensions. Fig. 3 presents
the results of incorporating the MediaBreeze hardware
into a 2-way and 4-way out-of-order processor with
SIMD extensions.

In summary, the MediaBreeze architecture performs
media program execution efficiently by exploiting signifi-
cant amounts of ILP in the overhead component. In a sce-
nario where all the loop nests and data streams are proc-
essed, MediaBreeze executes (in hardware) the following
equivalent number of software instructions (in conven-
tional ILP processors) during each cycle - five branches,
three loads, one store, four address value generation (one
on each stream), one SIMD operation (2-way to 16-way
parallelism depending on each data element size), one ac-
cumulation of SIMD result, one SIMD reduction opera-
tion, four SIMD data reorganization (pack/unpack, per-
mute, etc) operations, and shifting & saturation of SIMD
results.

3. Implementation Methodology

To estimate the area, power, and timing requirements
of the MediaBreeze architecture, we developed VHDL
models for the various components. Using Synopsys syn-
thesis tools [9], we used a cell-based methodology to tar-
get the VHDL models to several ASIC cell-libraries from
LSI Logic [10][12]. Table 1 lists the libraries and tech-
nologies used for evaluating the implementation costs.

The Synopsys synthesis tools estimate area, power,
and timing of circuits based on the ASIC technology li-
brary. The ASIC technology library provides four kinds
of information.
• Structural information. This describes each cell’s

connectivity to the outside world, including cell, bus,
and pin descriptions.

• Functional information. This describes the logical
function of every output pin of every cell so that the

Figure. 3. Performance/Speedup of MediaBreeze (MB) versus SIMD

27.92 16.84 6.8716.52 8.74

0

2

4

6

cfa dct mot scale aud g711 jpeg ijpeg decrypt

S
p

ee
d

u
p

2-way + SIMD 2-way + SIMD + MB 4-way + SIMD 4-way + SIMD + MB

synthesis tool can map the logic of a design to the ac-
tual ASIC technology.

• Timing information. This describes the parameters
for pin-to-pin timing relationships and delay calcula-
tion for each cell in the library.

• Environmental information. This describes the manu-
facturing process, operating temperature, supply volt-
age variations, and design layout. The design layout
includes wire load models that estimate the effect of
wire length on design performance. Wire load model-
ing estimates the effect of wire length and fanout on
resistance, capacitance, and area of nets.

We use the default wire load models provided by LSI

Logic’s cell-based libraries. The Synopsys synthesis tools
compute timing information based on the cells in the de-
sign and their corresponding parameters defined in the
ASIC technology library. The area information provided

by the synthesis tools is prior to layout and is computed
based on the wire load models of the associated cells in
the design. Average power consumption is measured
based on the switching activity of the nets in the design.
In our experiments, the switching activity factor origi-
nates from the RTL models (the tool gathers this informa-
tion from simulation).

The area, power, and timing estimates are obtained
after performing maximum optimizations for performance
in the synthesis tools. High-speed commodity GPPs are
implemented using custom circuit design techniques. The
results obtained in this paper reflect a worst-case estimate
because customized placement and custom circuit design
techniques give better results than automated placement
by CAD tools [12]. The interested reader is referred to [9]
for further information regarding the capabilities and limi-
tations of the synthesis tools.

Table 1. List of Cell-based Libraries used in synthesis (LSI Logic)

Library name Description

lcbg12-p (G12-p)
A 0.18-micron L-drawn (0.13-micron L-effective) CMOS process.
Highest performance solution at 1.8 V with high drive cells optimized for long in-
terconnects associated with large designs.

lcbg12-d (G12-d) A 0.18-micron L-drawn (0.13-micron L-effective) CMOS process.
Optimized for performance, density, and power for most applications at 1.8 V.

lcbg12-l (G12-l)
A 0.18-micron L-drawn (0.13-micron L-effective) CMOS process.
Ultra-low power and high-density solution with a low dynamic and standby leak-
age current at 1.8 V.

lcbg11-p (G11-p) A 0.25-micron L-drawn (0.18-micron L-effective) CMOS process.
Highest performance solution at 2.5 V.

lcbg11-v (G11-v) A 0.25-micron L-drawn (0.18-micron L-effective) CMOS process.
Ultra-low power and cost sensitive solution at 1.8 V.

lcbg10-p (G10-p) A 0.35-micron L-drawn (0.25-micron L-effective) CMOS process.
Optimized for high performance at 3.3 V.

4. Hardware Implementation of the
 MediaBreeze Units

4.1 Address generation

 The MediaBreeze architecture supports three input
and one output data structures/streams. Each of the four
data streams has a dedicated address generation hardware
unit. Address arithmetic on each stream is performed
based on the strides and mask values indicated in the
Breeze instruction. For each clock cycle, depending on

the mask bits and loop index counts, one of the five pos-
sible strides is selected. The new address value is then
computed based on the selected stride and the previous
address value. Fig. 4 depicts the block diagram of the ad-
dress generation circuitry for a single data stream/ struc-
ture.
 The last_val comparators determine which of the
four inner level loop counters have reached their upper
bound. The outermost loop comparison is not necessary
because the Breeze instruction finishes execution at the
instant when the outermost loop counter reaches its upper
bound. The inc-cond and inc-combine blocks generate

flag signals based on the output from the last_val com-
parators and mask values from the Breeze instruction. If
none of the flag signals are true, then stride-5 is used to
update the prev-address, otherwise the appropriate stride-
(1–4) is selected depending on flag- (1–4). The address-
generate block uses a 32-bit adder to add the selected
stride to the previous address. On either an exception or a
stall, only the prev-address value needs to be stored as the
loop counters are stored by the hardware looping cir-
cuitry. For each of the four data structures/streams, the
last_val comparators portion of the logic is shared, but
the remaining hardware needs to be replicated.

4.2 Looping

 The MediaBreeze architecture incorporates five lev-
els of loop nesting in hardware to eliminate branch in-
struction overhead for loop increments. A similar mecha-
nism was commercially implemented in the TI ASC [7]
(two levels of do-loop nesting in addition to a self-
increment loop). Conventional DSP processors such as
the TMS320C5x from TI also use such a technique for
one or more levels of loop nesting [8]. Fig. 5 shows the
block diagram of the looping hardware.
 Loop index values are produced every clock cycle
based on the loop bound for each level of nesting (bounds
for each of the five loops are specified in the Breeze in-
struction). The value of a loop index varies from 1 (lower
bound) to the corresponding loop bound (upper bound),
and resets to its lower bound once the upper bound is
reached in the previous cycle. The execution of the
Breeze instruction ends when the outermost loop (loop1
in Fig. 5) reaches its upper bound. On encountering either

an exception or a stall, the loop indices are stored and the
increment logic is halted; the counting process is started
once the exception/stall is serviced. Each of the five com-
parators (32-bit wide) operates in parallel to generate flag
(1-bit wide) signals that are priority encoded to determine
which one of the five loop counters to increment. When a
loop counter is incremented-by-1 (circuit for incrementing
a 32-bit value by 1), all the loop counters belonging to its
inner level are reset (for example, if loop3 is incremented-
by-1, then loop4 and loop5 are reset to their lower bound).

4.3 Breeze instruction decoder

 A stand-along instruction decoder for the Breeze in-
structions eliminates the need to modify the conventional
instruction decoder of current GPPs. A Breeze instruction
needs to be decoded only once since various control pa-
rameters are stored in hardware registers after the decod-
ing process. The implementation of the Breeze instruction
decoder was merged into the address generation and loop-
ing circuitry.

4.4 Breeze instruction memory

 The Breeze instruction memory stores the Breeze in-
struction once it enters the processor. We do not estimate
the cost of this storage because the ASIC libraries we use
are not targeted for memory cells. However, the area,
power, and timing estimates of the Breeze instruction
memory are similar to an SRAM structure. The size of a
Breeze instruction is typically 120 bytes.

4.5 Existing hardware units

 The remaining hardware units that are required for
the operation of the MediaBreeze architecture are the
SIMD computation unit, data reorganization, load/store
units, and data station. These hardware units are already
present in commodity SIMD GPPs. However, the Breeze

inc-combine1

last_val comparators

Loop(2-5)-count indice-(2-5)

lastval-(2-5)

inc-cond1 inc-cond2 inc-cond3 inc-cond4

mask-1 mask-2 mask-3 mask-4

inc-combine2 inc-combine3 inc-combine4

address-generate
stride-(1-5)

prev-address

updated-address

flag-1 flag-2 flag-3 flag-4

Figure. 4. Block diagram of address gen-
eration (per stream)

comparator-1 comparator-2 comparator-3 comparator-4 comparator-5

Loop1-count Loop2-count Loop3-count Loop4-count Loop5-count
index-1 index-2 index-3 index-4 index-5

priority encoder

Increment-by-1
index-1

Increment-by-1
index-2

Increment-by-1
index-3

Increment-by-1
index-4

Increment-by-1
index-5

flag-1 flag-2 flag-3 flag-4 flag-5

End-of-all-loops

incL1 incL2 incL3 incL4

index-1 index-2 index-3 index-4 index-5

Figure. 5. Block diagram of the five hard-
ware loops

instruction decoder controls the operation of these units as
opposed to the conventional control path. This mandates
an extra multiplexer to differentiate between control from
the conventional control path and the Breeze instruction
decoder. We do not model any of the existing hardware
units.

5. Area, Power, and Timing Results

Table 2 shows the composite estimates of area, power,
and timing for the hardware looping and address genera-
tion circuitry when implemented by using the cell-based
methodology described in section 3. The results for the
Breeze instruction decoder are merged into the looping
and address generation hardware.

Table 2. Timing, Area, and Power Estimates for hardware looping and address generation

 Hardware Looping
(5 loops)

Address Generation
(per stream)

Time
(ns)

Area
(µm2)

Power
(mW) at
1GHz

Time
(ns)

Area
(µm2)

Power
(mW) at
1GHz

G12-p (0.18µ) 1.00 ns 72830 µm2 88.57 mW 1.74 ns 57398 µm2 85.16 mW

G12-d (0.18µ) 1.16 ns 64666 µm2 62.40 mW 1.91 ns 41053 µm2 46.18 mW

G12-l (0.18µ) 1.30 ns 65714 µm2 55.44 mW 2.22 ns 41144 µm2 42.34 mW

G11-p (0.25µ) 1.49 ns 273249 µm2 249.30 mW 2.60 ns 165099 µm2 193.20 mW

G11-v (0.25µ) 1.90 ns 500864 µm2 166.00 mW 3.29 ns 204603 µm2 82.93 mW

G10-p (0.35µ) 2.01 ns - 846.90 mW 3.76 ns - 554.30 mw

Area of commercial SIMD and GPP units for comparison [6][17]

VIS – 4 mm2 in a 0.29-micron process
MMX – 15 mm2 in a 0.29-micron process
AltiVec – 15 mm2 in a 0.25-micron process
Pentium III processor – 106 mm2 in a 0.18-micron process
MMX + SSE in a Pentium III processor – 3.6 mm2 in a 0.18-micron process

Area - The overall chip area required for implementing
the hardware loops, address generation (for all four data
streams), and the Breeze instruction interpreter (merged
into looping and address generation logic) is approxi-
mately 0.31 mm2 in a 0.18-micron library optimized for
high performance (G12-p) and 0.23 mm2 in a 0.18-micron
library optimized for density, performance, and power
(G12-d). Table 2 also shows the hardware area cost of
commercial SIMD GPP implementations for comparison.
In a 0.29-micron process, the increase in chip area for im-
plementing the Visual Instruction Set (VIS) hardware into
the Sparc processor family was 4 mm2, MMX into the
Pentium family was 15 mm2, and AltiVec into the
PowerPC family was 30 mm2 [6]. In a 0.25-micron proc-

ess, the AltiVec hardware was expected to occupy 15
mm2 [6]. In a 0.18-micron technology, the die size of a
Pentium III processor was 106 mm2 with the MMX and
SSE execution units requiring approximately 3.6 mm2

[17]. Thus, the increase in area due to the MediaBreeze
units for SIMD-related hardware is less than 10% and the
overall increase in chip area is less than 0.3%. Further-
more, in order to maintain wirability, placement automa-
tion tools typically achieve an active area that is about 50
to 80% of the area more than when the cells are packed
closer by custom design [12]. This is to facilitate more
number of available wiring tracks for optimal routing by
the placement tool. Fig. 6 shows the fraction of area re-
quired by interconnect for the hardware looping and ad-
dress generation logic.

Power - The power consumed by the looping, address
generation (all four streams), and the Breeze instruction
interpreter is approximately 430 mW in a 0.18-micron li-
brary optimized for performance (G12-p) and 225 mW for
a library optimized for low-power (G12-l). GPPs with
speeds over 1 GHz typically consume a power ranging
from 50 W to 150 W. The MediaBreeze hardware con-
sumes less than 1% of the total processor power. We be-
lieve that the overall energy consumption of the Me-
diaBreeze architecture would be less than that of a super-
scalar processor with SIMD extensions because the
Breeze instruction reduces the total dynamic instruction
count. Since the Breeze instruction is densely encoded
very few Breeze instructions are needed for any media-
processing algorithm. The number of dynamic instruc-
tions that need to be fetched and decoded reduces tremen-
dously, leading to a minimal use of the instruction fetch,
decode, and issue logic in a superscalar processor. The in-
struction fetch and issue logic are expected to consume
greater than 50% of the total execution power (not includ-
ing the clock power) in future speculative processors [16].
Once the Breeze instruction is interpreted, the instruction
fetch, decode, and issue logic in the superscalar processor
can be shutdown to save power.
 Fig. 7 shows the divisions of dynamic power into net
switching power and cell internal power for the added
MediaBreeze hardware units. Dynamic power consists of
two parts: net switching power and cell internal power.
Net switching power is the power consumed on a net
when the signal it is carrying is toggling and is propor-
tionally dependent on the switching activity, the net load
and the square of voltage. Cell internal power is the
power consumed when one or more cell input signals tog-
gle. During the transition time when an input or an output
signal changes state, both the pull-down and pull-up tran-
sistor will be open and a large current will flow through
the cell (short-circuit power). Cell internal power is pro-
portionally dependent on the switching activity and the
square of voltage [18][19].

Timing - Pipelining the hardware looping logic into two
stages would allow for incorporating it into current high-
speed superscalar out-of-order processors with over 1
GHz clock frequency. Similarly the address generation
stage needs to be divided into three pipe stages to achieve
frequencies greater than 1 GHz. The timing results show
that incorporating the MediaBreeze hardware into a high-
speed processor does not elongate the critical path of the
processor (after pipelining). The Breeze instruction de-
coder multiplexers that control the hardware units intro-
duce an extra gate delay in the pipeline. However, using a
cell-based methodology gives a worst-case result while
custom design (typically used in commercial general-
purpose processors) would allow for greater clock fre-
quencies for the added MediaBreeze hardware. In spite of
adding five pipeline stages, the overall pipeline depth of a
processor is not affected because the looping and address
generation stages bypass the conventional fetch, decode
and issue pipe stages.

6. Summary and Conclusion

Contemporary SIMD techniques extract data level
parallelism in the useful computation instructions of mul-
timedia applications, but the SIMD execution units are
under-utilized due to a dominance of overhead instruc-
tions (75-85%). Eliminating and reducing the overhead
using specialized hardware can dramatically improve the
performance of media workloads without deteriorating the
performance of general-purpose workloads. The Me-
diaBreeze architecture was designed to decouple the use-
ful and overhead instructions and exploit instruction level
parallelism in the overhead instructions realizing a 1.05x
to 28x performance improvement over a SIMD-enhanced
general-purpose processor.

In this paper, we estimated the cost of incorporating
explicit hardware support into a SIMD GPP to execute the
supporting instructions. Using an ASIC cell-based meth-

Figure. 6. Percentage of interconnect
area in the overall area Figure. 7. Breakdown of dynamic power into

cell internal power and net switching power

0

20

40

60

80

H/W loop Add. Gen.%
 o

f
ar

ea
 u

se
d

 f
o

r
in

te
rc

o
n

n
ec

t

G12-p G12-d G12-l G11-p G11-v G10-p

0%
20%
40%

60%
80%

100%

G12-

p

G12-

d

G12-

l

G11-

p

G11-

v

G10-

p

G12-

p

G12-

d

G12-

l

G11-

p

G11-

v

G10-

p

Hardware Looping Address Generation

cell internal power net switching power

odology targeting several libraries and technologies, we
obtained area, power, and timing information for the Me-
diaBreeze architecture components. The major findings of
this paper are:
• The area cost is less than 10% of the SIMD execution

unit’s area (such as MMX and SSE). When compared
to the overall processor chip area, the increase is less
only 0.3%.

• Power consumption of the added units is less than 1%
of the total processor power.

• The MediaBreeze hardware units do not increase the
effective pipeline depth of a high-speed GPP. A
SIMD GPP with MediaBreeze hardware can be oper-
ated well over 1 GHz in a 0.18-micron technology.

We expect the overall energy consumption to be po-

tentially lower when using a MediaBreeze augmented
processor because the Breeze instruction is heavily en-
coded and encompasses multiple operations. Power con-
sumption is decreased due to the reduced use of tradi-
tional instruction fetch, decode, and issue logic for the du-
ration of the Breeze instruction execution.

References

[1] K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scales,
“AltiVec extension to PowerPC accelerates media processing,”
IEEE Micro, vol. 20 No. 2, pp. 85-95, Mar/Apr 2000.

[2] R. B. Lee, “Multimedia extensions for general-purpose proces-
sors,” Proc. IEEE Workshop on Signal Processing Systems, pp.
9-23, Nov. 1997.

[3] P. Ranganathan, S. Adve, and N. Jouppi, “Performance of image
and video processing with general-purpose processors and me-
dia ISA extensions,” Proc. 26th IEEE/ACM Sym. on Computer
Architecture, pp. 124-135, May 1999.

[4] R. Bhargava, L. K. John, B. L. Evans, and R. Radhakrishnan,
“Evaluating MMX technology using DSP and multimedia appli-
cations,” Proc. 31st IEEE/ACM Sym. on Microarchitecture, pp.
37-46, Dec. 1998.

[5] D. Talla, “Architectural techniques to accelerate multimedia
applications on general-purpose processors,” Ph.D. thesis, The
University of Texas at Austin, Aug. 2001. Technical Report,
Laboratory for Computer Architecture, Available at:
http://www.ece.utexas.edu/~deepu/phd_thesis.pdf

[6] L. Gwennap, “AltiVec vectorizes PowerPC,” Microproces-

sor Report, vol. 12, no.6, May 11, 1998.
[7] H. G. Cragon, and W. J. Watson, “The TI advanced scien-

tific computer.” IEEE Computer Magazine, pp. 55-64, Jan.
1989.

[8] P. Lapsley, J. Bier, A. Shoham, and E. A. Lee, DSP Proc-
essor Fundamentals: Architectures and Features, Chapter
8, IEEE Press series on Signal Processing, ISBN 0-7803-
3405-1, 1997.

[9] “Synopsys online Sold Documentation system,” version
2000-0.5-1.

[10] “LSI Logic ASIC technologies,” Available online at:
http://www.lsilogic.com/products/asic/technologies/index.h
tml

[11] “LSI Logic ASKK Documentation System”.
[12] D. H. Allen, S. H. Dhong, H. P. Hofstee, J. Leenstra, K. J.

Nowka, D. L. Stasiak, D. F. Wendel, “Custom circuit de-
sign as a driver of microprocessor performance,” IBM
Journal of Research and Development, vol. 44, no. 6, Nov.
2000. Available at:
http://www.research.ibm.com/journal/rd/446/allen.html

[13] R. Gonzalez and M. Horowitz, “Energy dissipation in gen-
eral purpose microprocessors,” IEEE Journal of Solid-State
Circuits, pp. 1277-1284, Sep. 1996.

[14] J. E. Smith, S. Weiss, and N. Y. Pang, “A simulation study
of decoupled architecture computers,” IEEE Trans. on
Computers, vol. C-35, No. 8, pp. 692-701, Aug. 1986.

[15] A. Chang, W. J. Dally, S. W. Keckler, N. P. Carter, and W.
S. Lee, “The effects of explicitly parallel mechanisms on
the Multi-ALU processor cluster pipeline,” Proc. IEEE
Conf. on Computer Design, pp. 474-481, Oct. 1998.

[16] K. Wilcox and S. Manne, “Alpha processors: A history of
power issues and a look to the future,” Cool Chips Tutorial
in conjunction with IEEE/ACM Sym. on Microarchitecture,
Nov. 1999.

[17] IA-32 implementation (Intel P3). Available at:
http://www.sandpile.org/impl/p3.htm.

[18] D. Hansson, “Reducing power in a RISC/DSP core,” Elec-
tronic Engineering Times, Aug. 7, 2000. Available at:
http://www.eetimes.com/story/OEG20000807S0034.

[19] G. K. Yeap, Practical Low Power Digital VLSI Design,
Kluwer Academic Publishers, 1998.

