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 General-purpose processors (GPPs) have been augmented with multime-

dia extensions to improve performance on multimedia-rich workloads. These 

extensions operate in a single instruction multiple data (SIMD) fashion to ex-

tract data level parallelism in multimedia and digital signal processing (DSP) 

applications. This dissertation consists of a comprehensive evaluation of the 

execution characteristics of multimedia applications on SIMD enhanced GPPs, 

detection of bottlenecks in the execution of multimedia applications on SIMD 

enhanced GPPs, and the design and implementation of architectural techniques 
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to eliminate and alleviate the impact of the various bottlenecks to accelerate 

multimedia applications. 

 This dissertation identifies several bottlenecks in the processing of SIMD 

enhanced multimedia and DSP applications on GPPs. It is found that approxi-

mately 75-85% of instructions in the dynamic instruction stream of media work-

loads are not performing useful computations but merely supporting the useful 

computations by performing address generation, address transformation/data 

reorganization, loads/stores, and loop branches. This leads to an under-

utilization of the SIMD computation units with only 1-12% of the peak SIMD 

throughput being achieved. 

 This dissertation proposes the use of hardware support to efficiently exe-

cute the overhead/supporting instructions by overlapping them with the useful 

computation instructions. A 2-way GPP with SIMD extensions augmented with 

the proposed MediaBreeze hardware significantly outperforms a 16-way SIMD 

GPP without MediaBreeze hardware on multimedia kernels. On multimedia ap-

plications, a 2-/4-way SIMD GPP augmented with MediaBreeze hardware is 

superior to a 4-/8-way SIMD GPP without MediaBreeze hardware. The per-

formance improvements are achieved at an area cost that is less than 0.3% of 

current GPPs and power consumption that is less than 1% of the total processor 

power without elongating the critical path of the processor. 



 ix 
 

Table of Contents 

 
 
List of Tables xii 
 
List of Figures xiv 
 
Chapter 1.  Introduction 1 

1.1 Approaches for multimedia processing ...................................       1 

1.1.1 General-purpose processors with SIMD extensions ..........       2 

1.1.2 VLIW architectures for multimedia processing .................       8 

1.1.3 ASICs .................................................................................     12 

1.2 The problem .............................................................................     13 

1.3 Objectives ................................................................................     14 

1.4 Thesis statement .......................................................................     15 

1.5 Contributions ...........................................................................     15 

1.6 Organization .............................................................................     17 

1.7 Acronyms .................................................................................     19 

 
Chapter 2. Related Work  22 

2.1 Multimedia application characteristics ....................................     22 

2.2 Benefits of SIMD extensions ...................................................     26 

2.3 Media architectural enhancements ...........................................     28 

2.4 Related GPP architectures ........................................................     30 

 
Chapter 3.  Performance Evaluation Methodology 32 

3.1 Tools .........................................................................................     32 

3.1.1 Performance monitoring counters.......................................     32 

3.1.2 VTune .................................................................................     33 

3.1.3 Simplescalar simulator........................................................     34 

3.1.4 TMS320C6x simulator .......................................................     34 

3.2 Benchmarks ..............................................................................     35 



 x 
 

3.3 Evaluation Environment ...........................................................     38 

3.3.1 Compilers............................................................................     39 

3.3.2 Assembly libraries ..............................................................     39 

3.3.3 Compiler intrinsics..............................................................     41 

3.4 Performance Measures..............................................................     42 

 
Chapter 4. Execution Characteristics of Multimedia  

Applications on GPPs 43 

4.1 Detailed characterization of multimedia applications ..............     44 

4.1.1 Cycles per instruction .........................................................     44 

4.1.2 Resource and instruction-stream stalls ...............................     45 

4.1.3 Branch statistics ..................................................................     47 

4.1.4 Data memory references .....................................................     50 

4.1.5 Cache behavior ...................................................................     51 

4.1.6 Floating-point operations ....................................................     54 

4.1.7 Multimedia extensions........................................................     55 

4.1.8 Speculative execution factor and UOPS per instruction.....     57 

4.2 A comparison of SIMD and VLIW  

 approaches for media processing..............................................     59 

4.2.1 TMS320C62xx DSP processor ...........................................     59 

4.2.2 Results.................................................................................     60 

4.3 Summary...................................................................................     67 

 
Chapter 5. Bottlenecks in Multimedia Processing with  

SIMD style Extensions 70 

5.1 A scalability test........................................................................     72 

5.2 Identification of bottlenecks .....................................................     75 

5.2.1 Nested loops in multimedia applications ............................     75 

5.2.2 Overhead/supporting instructions .......................................     81 

5.2.3 SIMD throughput and efficiency ........................................     86 

5.2.4 Memory access and branch bottlenecks..............................     90 

5.3 Summary...................................................................................     91 



 xi 
 

 
Chapter 6. Hardware Support for Efficient SIMD Processing 94 

6.1 The MediaBreeze architecture ..................................................     95 

6.1.1 Decoupling computation and overhead ..............................     95 

6.1.2 Multicast: A technique to aid in data transformation .........   103 

6.1.3 Example encoding using the Breeze instruction.................   106 

6.2 Performance evaluation ............................................................   110 

6.3 Summary...................................................................................   114 

 
Chapter 7. Hardware Cost of the MediaBreeze Architecture 116 

7.1 Implementation methodology...................................................   119 

7.2 Hardware implementation of the MediaBreeze units ...............   121 

7.2.1 Address generation .............................................................   121 

7.2.2 Looping...............................................................................   122 

7.2.3 Breeze instruction decoder..................................................   124 

7.2.4 Breeze instruction memory.................................................   124 

7.2.5 Existing hardware units ......................................................   125 

7.3 Area, power, and timing results ................................................   125 

7.4 Summary...................................................................................   129 

 
Chapter 8. Conclusion 131 
 
Appendix A. Performance Monitoring Events on the  

P6 Microarchitecture 135 
 
Appendix B. Hardware Cost of the MediaBreeze Architecture  

across Different ASIC Technologies 136 
 
Bibliography 139 
 
Vita 150 



 xii 
 

List of Tables 

 

1.1 GPP multimedia extensions ............................................................       4 
 
1.2 List of available media processors..................................................     10 
 
3.1 Description of commercial media applications used as  
 benchmarks in workload characterization ......................................     36 
 
3.2 Summaries of benchmark kernels and applications........................     37 
 
4.1 Data cache miss rates of multimedia applications ..........................     52 
 
4.2 Execution clock cycles for SIMD and VLIW processors...............     61 
 
5.1 Processor and memory configuration for the scalability test..........     73 
 
5.2 Summary of key media algorithms and the required nested  
 loops along with their primitive addressing sequences ..................     80 
 
5.3 Execution statistics and efficiency of media programs ..................     88 
 
5.4 Performance (IPC) with unit cycle memory accesses  

and perfect branch prediction .........................................................     91 
 
6.1 Speedup of the MediaBreeze architecture along with  

SIMD efficiency (as a %). The 2-way SIMD GPP is used as 
the baseline .....................................................................................   112 

 
6.2 Speedup of the MediaBreeze architecture with prefetching...........   114 
 
6.3 Percentage reduction in dynamic instruction count of the 

MediaBreeze architecture in comparison to a conventional  
RISC ISA with SIMD extensions ...................................................   114 

 
7.1 Hardware functionality of various MediaBreeze hardware units ...   117 



 xiii 
 

 
7.2 Area, power, and timing estimates of MediaBreeze units in a  

G12-p ASIC technology .................................................................   126 
 
7.3 Area of commercial SIMD and GPP implementations...................   127 
 
A.1 P6 microarchitecture counters based performance measures .........   135 
 
B.1 List of cell-based libraries used in the synthesis of  
 MediaBreeze hardware units ..........................................................   136 
 
B.2 Timing, area, and power estimates across different technologies ..   137 



 xiv 
 

List of Figures 

 

1.1 SIMD add instruction.....................................................................        5 
 
1.2 SIMD multiply-add instruction......................................................        5 
 
1.3 SIMD pack instruction...................................................................        6 
 
1.4 SIMD unpack instruction...............................................................        6 
 
1.5 SIMD permute instruction (1, 0, 0, 0 pattern) ...............................        7 
 
1.6 SIMD permute instruction (mixing) ..............................................        7 
 
1.7 Simplified block diagram of a VLIW core ....................................        8 
 
4.1 Cycles per instruction .....................................................................     45 
 
4.2 Stalls per instruction .......................................................................     46 
 
4.3 Branch statistics ..............................................................................     48 
 
4.4 Memory reference statistics ............................................................     50 
 
4.5 Cache statistics................................................................................     53 
 
4.6 Log plot of CPI versus L1 and L2 cache misses.............................     54 
 
4.7 Percentage of floating-point instructions........................................     55 
 
4.8 Percentage of MMX instructions....................................................     56 
 
4.9 Packing and unpacking as a percentage of all MMX instructions..     57 
 
4.10 Average number of UOPS per instruction and  
 speculation execution factor ...........................................................     58 



 xv 
 

 
4.11 CPU core of the TMS320C62xx processor ....................................     60 
 
4.12 Ratios of execution times of SIMD and VLIW processors ............     61 
 
5.1 Results of the scalability test ..........................................................     74 
 
5.2 A 2-D data structure in which sub-blocks of data are processed....     76 
 
5.3 C-code for the 2D-DCT implementation ........................................     78 
 
5.4 Typical access patterns in multimedia and DSP kernels ................     79 
 
5.5 Pentium III optimized assembly code for the 1D-DCT routine......     84 
 
5.6 Simplescalar optimized assembly code for the 1D-DCT routine ...     85 
 
5.7 Breakdown of dynamic instructions into various classes ...............     86 
 
6.1 The MediaBreeze architecture ........................................................     96 
 
6.2 Structure of the Breeze instruction .................................................     99 
 
6.3 Multicast technique versus traditional SIMD matrix multiply .......   105 
 
6.4 Pseudo-code implementation of the MediaBreeze unit for 

looping ............................................................................................   107 
 
6.5 Pseudo-code implementation of the MediaBreeze unit for 
 address generation...........................................................................   108 
 
6.6 Pseudo-code implementation of the MediaBreeze unit for 

loads/stores......................................................................................   108 
 
6.7 Pseudo-code implementation of the MediaBreeze unit for 

SIMD computation and data reorganization...................................   108 
 
6.8 Breeze instruction mapping of the 1D-DCT...................................   109 
 
6.9 Performance of the MediaBreeze (MB) versus SIMD ...................   111 
 



 xvi 
 

7.1 Block diagram of the address generation hardware........................   122 
 
7.2 Block diagram of the five hardware loops......................................   123 
 
B.1 Percentage of interconnect area in the overall area ........................   138 
 
B.2 Breakdown of dynamic power into cell internal power and  
 net switching power ........................................................................   138 



 1 
 

 

Chapter 1   

Introduction 

 

Contemporary computer applications are multimedia-rich, involving significant 

amounts of audio and video compression, 2-D image processing, 3-D graphics, 

speech and character recognition, communications, and signal processing. With 

the proliferation of the World Wide Web and the Internet, future workloads are 

believed to be even more multimedia dominant. These applications run on a va-

riety of systems ranging from the low power personal mobile computing envi-

ronment to the high performance desktop, workstation, and server environment. 

This chapter describes the major approaches for processing multimedia applica-

tions and the objectives and contributions of this dissertation. 

 

1.1 Approaches for Multimedia Processing 

This section describes the common approaches for handling multimedia work-

loads, namely, general-purpose processors (GPP) with single instruction multi-

ple data (SIMD) extensions, very long instruction word (VLIW) media proces-

sors and application specific integrated circuits (ASICs). 
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1.1.1 General-Purpose processors with SIMD extensions 

Virtually every PC sold today is branded as multimedia capable. This has initi-

ated a software revolution that has brought a wide range of audio- and video-

based applications to the desktop. It is very common for desktop computers to 

run video editing or image processing applications (such as Adobe Photoshop) 

and 3-D games in addition to basic productivity applications (such as word 

processing, spreadsheet, and database applications). In addition, network multi-

media applications leverage the existing network infrastructure to deliver video 

and audio to end users, such as video conferencing and video server applica-

tions. With these application types, video and audio streams are transferred over 

the network between peers or between clients and servers. With evolving stan-

dards and changing consumer needs, future general-purpose processors require 

good multimedia processing capabilities. 

In order to provide the multimedia capability, GPP manufacturers have 

announced extensions to their instruction set architectures (ISA) that enhance 

the performance of multimedia applications [27][53][62][73]. These ISA exten-

sions operate in a SIMD fashion to exploit data level parallelism (DLP) in mul-

timedia applications. SIMD is one of the four paradigms for computer design as 

proposed by Flynn [31]. Multimedia and digital signal processing (DSP) appli-

cations typically use small data types (primarily 8- and 16-bits) and spend a sig-

nificant portion of the execution time in loops that have a high degree of proc-
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essing regularity. Packing several small data elements into the wider GPP data-

path (typically 32- or 64-bits wide) enables simultaneous processing of separate 

data elements. Initial implementation of the SIMD extensions such as Intel’s 

MMX, Sun’s VIS, Compaq’s MVI, MIPS’s MDMX, and HP’s MAX supported 

integer data types in the mid-1990’s. Floating-point support in media extensions 

was introduced first in the 3DNow! from AMD and was followed by SSE and 

SSE2 from Intel. Motorola’s AltiVec was introduced with both integer and float-

ing-point capability simultaneously. Table 1.1 shows the list of GPP vendors 

that have announced/shipped SIMD extensions to their GPP core.  

 All of the initial SIMD implementations were based on 64-bit SIMD 

execution units providing 8-, 4-, or 2-way parallelism (8-, 16-, or 32-bit data re-

spectively). The AltiVec and SSE2 are implemented with 128-bit SIMD execu-

tion units. SIMD instructions are available for several arithmetic and logical op-

erations in addition to special media operations (such as sum-of-absolute differ-

ences). Instructions for data reorganization such as packing and unpacking, and 

permute are also included in the media extensions.  

Figures 1.1-1.6 show examples of subword execution of common multi-

media operations. In Figure 1.1, a purely data parallel add operation with four 

subwords in each register is accomplished. In Figure 1.2, multiplication of four 

subword pairs and addition of two sets of partial results is occurring leading to 

two result words. Figure 1.3 illustrates packing of two registers into one register. 
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Table. 1.1 GPP Multimedia Extensions 

Vendor Processor ISA Extension Description 

Hewlett Packard PA-RISC 
Max-1 
Max-2 

Media acceleration  
extensions 

Sun Microsystems UltraSparc VIS Visual Instruction Set 

Intel x86 
MMX 
SSE 

SSE2 

MultiMedia eXtensions 
Streaming SIMD Extensions 
Streaming SIMD Extensions 2 

AMD x86 
MMX 

3DNow! 
SSE 

MultiMedia eXtensions 
3Dnow! Extensions 
Streaming SIMD Extensions 

Cyrix x86 MMX MultiMedia eXtensions 

MIPS MIPS V MDMX MIPS Digital Media eXtensions 

Compaq Alpha MVI Motion Video Instructions 

Motorola PowerPC AltiVec AltiVec extensions 

 

Figure 1.4 illustrates the complementary operation of unpacking. Some of the 

multimedia extensions also provide permute such as those depicted in Figures 

1.5 and 1.6. 

The number of SIMD instructions (and their functionality) has been seen 

to vary widely depending on the manufacturer. For example, the number of 

Compaq’s MVI instructions is 13, Motorola’s AltiVec has 162, and Intel 



 5 
 

Pentium 4 has 270 SIMD instructions (MMX, SSE, and SSE2).  Initial imple-

mentations of SIMD extensions shared the registers of the GPPs floating-point 

register file (for example, MMX and VIS). Recent extensions (SSE2, AltiVec) 

have dedicated register files to store temporary data.  

= 

+ 

A3 A2 A1 A0 

SIMD add instruction: R3 = R2 + R1  

R1 

B3 B2 B1 B0 R2 

A3 + B3 A2 + B2 A1 + B1 A0 + B0 R3 

Figure. 1.1. SIMD add instruction 

= 

* + 

= 

* + 

A3 A2 A1 A0 

SIMD multiply-add instruction: R3 *= R2 + R1  

R1 

B3 B2 B1 B0 R2 

A3*B3 + A2*B2 A1*B1 + A0*B0 R3 

Figure. 1.2. SIMD multiply-add instruction 
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A1 A0 

SIMD pack instruction: R3 = pack (R2 and R1)  

R1 

B1 B0 R2 

Truncated B1
  

Truncated A1 R3 

Figure. 1.3. SIMD pack instruction 

Truncated B0 Truncated A0 

A3 A1 

SIMD unpack instruction: R2 = unpack (R1)  

R1 

A1 A0 R2 

Figure. 1.4. SIMD unpack instruction 

A2 A0 
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The cost of incorporating the media extension hardware is minimal 

(typically less than 3% of the overall processor die size). Compiler support for 

the multimedia extensions is still in its infancy. Current support for program-

mers involves use of compiler intrinsics [95] and assembly libraries provided by 

the vendors. However, these intrinsics and libraries vary between different ven-

dor implementations and applications have to be coded separately for each proc-

essor platform. Some C/C++ compilers (e.g. Intel’s compiler) can generate as-

sembly code that utilizes MMX. Overall, multimedia extensions to GPPs have 

SIMD permute instruction: R2 = permute R1 (mixing) 

A3 A1 R1 

B3 B1 R2 

Figure. 1.6. SIMD permute instruction (mixing) 

A2 A0 

B2 B0 

A3 A1 B3 B1 R3 

A3 A1 

SIMD permute instruction: R2 = permute R1 (1, 0, 0, 0 pattern) 

R1 

A1 A0 R2 

Figure. 1.5. SIMD permute instruction (1, 0, 0, 0 pattern) 

A2 A0 

A0 A0 
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been quite successful at providing additional performance for media applications 

in GPPs.  

 

1.1.2 VLIW Architectures for Multimedia Processing 

Due to the processing regularity of multimedia and DSP applications, statically 

scheduled processors such as VLIW processors are a viable option over dynami-

cally scheduled processors, such as state-of-the-art superscalar GPPs. VLIW 

processors rely on software to identify parallelism and assemble wide instruction 

packets to issue multiple instructions per cycle Figure 1.7 shows the block dia-

gram of a generic VLIW processor core. 

 In the past eight years, several IC vendors have touted processors, gener-

ally based on VLIW architectures, which can handle media processing chores 

for applications ranging from PC multimedia to high-definition digital TV. 

These VLIW processors are primarily appearing in the area of dedicated multi-

media processors. Multimedia processors are defined as programmable proces-

LD

Load/ 
Store 

Unit #1

Integer 
ALU 

#0

Integer 
ALU 

#1

Floating 
Point 
Unit

Branch 
Unit

Load/ 
Store 

Unit #0

SH ADD ST FADD BRCC

6-way VLIW packet

LD

Load/ 
Store 

Unit #1

Integer 
ALU 

#0

Integer 
ALU 

#1

Floating 
Point 
Unit

Branch 
Unit

Load/ 
Store 

Unit #0

SH ADD ST FADD BRCC

6-way VLIW packet

 

Figure. 1.7. Simplified block diagram of a VLIW core 
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sors dedicated to simultaneously accelerating operations on several multimedia 

data types. These processors are dedicated to processing multimedia data, in 

contrast with standard GPP host processors, so that their architectures can be 

specialized to processing these data types in the most cost-effective manner. The 

high bandwidth and fast integer performance allow media processors to simulta-

neously accelerate different multimedia data types. A single programmable de-

vice can replace numerous fixed discrete function devices. Media processors 

also possess features that differentiate them from DSPs. Standard DSPs typically 

do not include support for video and computer graphics. 

 Table 1.2 lists major vendors of media processors and their processors 

[7][30][32][56][67][68][80][103]. Chromatic Research’s Mpact chip was de-

signed to act as a co-processor to a SIMD enhanced general-purpose processor 

in addition to stand-alone operation in DVD players. All of the other media 

processors typically are marketed as low-cost, stand-alone processors (without a 

high-performance GPP in the system) for embedded multimedia systems rather 

than as a co-processor in a PC system. In addition to the VLIW core, most of the 

media processors are equipped with several co-processors uniquely targeted at 

specific functions. For example, Equator Technology’s MAP1000A co-

processors include a 16-bit microprocessor optimized for low-latency bit-serial 

processing, a programmable video scalar, and 9 kB of on-chip memory shared 

by the co-processors [7]. 
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Table. 1.2 List of Available Media Processors 

Manufacturer Media processor Target applications 

Chromatic Research 
(LG Semiconductor, 
STMicroelectronics, 
and Toshiba) 

Mpact 1 and 2: combine a 
two-instruction VLIW archi-
tecture with SIMD capabili-
ties; the newer Mpact 2 exe-
cutes 6 BOPS and includes a 
hardware 3-D graphics accel-
erator [67]. 

Mpact 2: PC multimedia co-
processor capable of graphics, 
audio, MPEG-2 decoding, DVD-
player, and modem tasks; 
Mpact 1: mainly as a DVD de-
coder 

Equator Technologies 

MAP1000A: VLIW proces-
sor (4-way) with SIMD vec-
tor units. Supports 3.2 GB/s 
of aggregate bandwidth. Also 
equipped with video co-
processors for specific func-
tions [7][67]. 

Camcorders to HDTV sets along 
with 3-D games 

Fujitsu  
Microelectronics 

Multi Media Assist (MMA): 
combines a two-instruction 
VLIW architecture with 
SIMD capabilities to reach 
more than 1 BOPS [67]. 

DVD players, set-top boxes, and 
printers 

Matsushita  
Semiconductor 

Media Core Processor 
(MCP): combines four-
instruction VLIW architec-
ture and a DSP execution unit 
to reach more than 3 BOPS 
[67]. 

DVD players, set-top boxes, and 
car navigation systems 

Mitsubishi  
Electronics 

D30V: combines two-
instruction VLIW architec-
ture and SIMD capabilities to 
reach 1 BOPS [67] 

DVD players, set-top boxes, and 
videoconferencing systems; 
D10V precursor targets cell 
phones 
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Table. 1.2     List of Available Media Processors (continued) 

Philips  
Semiconductors 

TriMedia TM1000, 1100, 
and 2000: combine five-
instruction VLIW architec-
ture and SIMD capabilities to 
reach approximately 3 BOPS; 
includes dedicated MPEG-2 
decoder and video scalar, and 
1100 includes DVD encryp-
tion block [67][80]. 

DVD players, set-top boxes, and 
digital TV, including HDTV and 
video conferencing systems; of-
fers robust digital-TV reference 
design and development platform 

Sharp Digital 

Data-Driven Media Proces-
sor (DDMP): clockless mul-
tiprocessor architecture with 
an integrated ARM RISC 
controller [67]. 

Color fax machines and printers 
to camcorders, DVD players, set-
top boxes, and digital TV 

Sony 

PlayStation2’s Emotion En-
gine: a CPU core with two 
vector processing engines 
[56]. 

3-D graphics 

Texas Instruments 

TMS320C6000 DSP 
(C62xx, C67xx, C64xx): 
eight-instruction VLIW DSP 
with the C64xx having SIMD 
capability [100][103]. 
C62xx/C67xx supports 2.4 
GB/s and C64xx supports 4.8 
GB/s of aggregate band-
width. 

Wireless communication base 
stations and remote-access serv-
ers for dial-up and ADSL lines 

Analog Devices 
TigerSharc DSP: four-way 
VLIW DSP with SIMD ca-
pability [32]. 

Wireless communication base 
stations and remote-access serv-
ers for dial-up and ADSL lines 

VM labs 
NUON processor: delivers 
over 1500 MIPS [67]. 

Consumer-electronics devices 
capable of DVD and 3-D games 

Agere Systems 
Starcore DSP: four-way 
VLIW DSP.  

Servers and cellular infrastructure 
and third generation wireless 
systems 
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1.1.3 ASICs 

Another alternative for processing multimedia streams is to use application spe-

cific integrated circuit (ASIC) chips. ASICs offer a fixed hardware solution for 

processing multimedia streams. Multimedia applications spend a significant 

amount of time within small numbers of processing routines (kernels). Design-

ers of ASICs optimize the hardware for the most critical sections of the applica-

tion to achieve high degrees of performance. An ASIC that is designed for a 

specific function typically delivers performance that is an order-of-magnitude 

greater than a GPP of the same raw processing capacity to run the same func-

tion. Because of the increasing transistor densities, several different functions 

can be implemented on a single-chip in addition to system logic, leading to a 

system-on-chip. For large volume applications, ASICs offer significant perform-

ance advantages in addition to tremendous savings in power consumption at a 

low-cost. 

 An example of a media processing ASIC is the recently announced Ana-

log Devices Inc.’s ADV-JP2000 [3]. The ADV-JP2000 is a high performance 

image co-processor that implements the computationally intensive operations of 

the JPEG2000 image compression standard in hardware. The chip contains a full 

custom wavelet processor and entropy codec as well as associated interface and 

control functions. Another example of ASICs for multimedia processing is the 
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C-Cube family of products [16] for applications such as set-top boxes, broad-

cast, consumer video, and DVD.  

 The major drawback of using ASICs is that they provide limited if any 

flexibility because they are optimized to implement a specific function. For ex-

ample, the ADV-JP2000 can only perform a 5/3-wavelet transform. Many mul-

timedia technologies are fast-moving targets due to changing standards, evolv-

ing interfaces, and shifting consumer tastes. Programmable approaches (SIMD 

general-purpose processors and VLIW media processors) provide an advantage 

over ASICs. 

 

1.2 The Problem  

There are primarily two problems in media processing with general-purpose 

processors.  

• The behavior of multimedia applications on general-purpose processors 

is not well understood.  

• Media processing on general-purpose processors using SIMD style ex-

tensions contain several bottlenecks. 
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1.3 Objectives 

The specific objectives of this dissertation are two-fold: 

1. The first objective is to understand the characteristics of multimedia ap-

plications. This dissertation investigates the following issues: 

• How are the execution characteristics of multimedia applications dif-

ferent from that of other desktop applications? Execution characteris-

tics such as memory and branch behavior, resource and instruction 

stream stalls, data memory references, and floating-point operations 

are examined. 

• How do characteristics of multimedia applications map onto SIMD 

enhanced general-purpose processors? 

• Are SIMD enhanced general-purpose processors capable of exploit-

ing all the available data level parallelism in multimedia applica-

tions? 

• What percentage of the peak computation rate is achieved for the 

SIMD execution units in general-purpose processors? 

• If the computation rate is low, what are the reasons that prevent the 

SIMD execution units from achieving a good computation rate? 

What are the bottlenecks in media processing using SIMD style ex-

tensions on general-purpose processors? 
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2. The second objective is to design and implement cost effective hardware 

support for alleviating/eliminating the performance bottlenecks in SIMD 

enhanced general-purpose processors.  

 

1.4 Thesis Statement 

A dominant fraction of instructions in the multimedia instruction stream is not 

actually performing useful computations, but merely supporting the computa-

tions. Hardware to accelerate these supporting instructions can significantly im-

prove the performance of media applications on SIMD enhanced general-

purpose processors. 

 

1.5 Contributions 

This dissertation makes several contributions to the characterization of multime-

dia workloads, detection of bottlenecks, and explicit hardware support for accel-

erating media applications on SIMD GPPs. These are also described in more 

detail in [95], [96], [97], [98], and [99]. The summary of the contributions is 

listed below. 

1. I perform a quantitative study of the execution characteristics of com-

mercial multimedia applications on a state-of-the-art superscalar proces-

sor. Memory access behavior, cache and branch behavior, and resource 
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usage are studied. It is found that, contrary to popular belief that caches 

are ineffective for multimedia applications, multimedia applications ex-

hibit better overall data cache performance than desktop applications. 

Also, the branch misprediction ratio of multimedia applications is higher 

than that of SPEC benchmarks. I also perform an evaluation of SIMD 

and VLIW techniques for multimedia and DSP applications. 

2. I present a characterization of media workloads on SIMD GPPs from the 

perspective of support required for efficient SIMD processing rather than 

focusing on the computation part of the algorithms. This study shows 

that 75-85% of instructions in the media instruction stream are not per-

forming useful (actual/true) computations, but merely supporting the 

computations. It is also observed that the SIMD computation units are 

computing at less than 12% of their peak computation rate. 

3. I introduce the MediaBreeze architecture that significantly improves per-

formance of media applications by decoupling media program execution 

into useful computations and overhead/supporting instructions. Explicit 

hardware support is provided for executing the supporting instructions. It 

is found that on a set of multimedia kernels, a 2-way SIMD GPP aug-

mented with the MediaBreeze architecture is superior to a 16-way SIMD 

GPP. On a set of multimedia applications, a 2- and 4-way SIMD GPP 
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augmented with the MediaBreeze architecture outperforms a 4- and 8-

way SIMD GPP respectively. 

4. I implement the hardware units of the MediaBreeze architecture to ana-

lyze area, power, and timing tradeoffs. It is found that the added hard-

ware consumes less than 0.3% of overall GPP chip area and less than 

0.5W in power consumption at 1GHz. This is achieved without elongat-

ing the critical path of the GPP pipeline. 

 

1.6 Organization 

Chapter 2 describes existing work pertinent to this dissertation. Past research 

efforts on characterizing multimedia workloads are discussed first. Then studies 

evaluating the effectiveness of SIMD extensions, and architectural enhance-

ments to improve performance of multimedia applications are discussed. Gen-

eral-purpose computer architecture schemes related to the proposed enhance-

ments in this dissertation are also described. 

 Chapter 3 presents the performance evaluation methodology used in this 

dissertation. A detailed description of the tools, benchmarks, evaluation envi-

ronment, and performance measures is presented. 

 Chapter 4 presents a quantitative study on the execution characteristics 

of commercial multimedia applications on a state-of-the-art SIMD enhanced 
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general-purpose processor. The similarities and differences between multimedia 

and other desktop workloads are highlighted. In addition, an evaluation and 

comparison of SIMD and VLIW paradigms for media and signal processing is 

presented. The Pentium II and TMS320C62xx processors are used as SIMD and 

VLIW representatives respectively. 

 Chapter 5 identifies bottlenecks in the execution of multimedia applica-

tions on SIMD GPPs. The supporting instructions that are necessary to feed the 

SIMD execution units are analyzed. The utilization rate of the SIMD execution 

units is measured. 

 Chapter 6 proposes the MediaBreeze architecture that is influenced by 

the characterization studies in Chapters 4 and 5. The focus of this architecture is 

on the instructions that support the core computations, rather than on the compu-

tations themselves. The performance of the MediaBreeze architecture is evalu-

ated and compared with wide-issue SIMD GPPs. 

 Chapter 7 investigates the cost of incorporating the MediaBreeze archi-

tecture into a high-speed SIMD GPP. Tradeoffs in area, power, and timing are 

evaluated using a cell-based ASIC design methodology. 

 Chapter 8 concludes the dissertation by summarizing the contributions 

and suggesting future opportunities. 
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1.7 Acronyms 

ADPCM - Adaptive Differential Pulse Code Modulation 

ALU  - Arithmetic Logic Unit 

ASC  - Applied Scientific Computer 

ASIC  - Application Specific Integrated Circuit 

BOPS  - Billions of Operations per Second 

BTB  - Branch Target Buffer 

CAD  - Computer Aided Design 

CFA  - Color Filter Interpolation 

CISC  - Complex Instruction Set Computer 

CMOS  - Complementary Metal Oxide Semiconductor 

CPI  - Cycles per Instruction 

CPU  - Central Processing Unit 

DAE  - Decoupled Access Execute 

DCT  - Discrete Cosine Transform 

DLP  - Data Level Parallelism 

DRAM - Dynamic Random Access Memory 

DSP  - Digital Signal Processing or Digital Signal Processor 

DTLB  - Data Translation Look-aside Buffer 

DWT  - Discrete Wavelet Transform 
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FFT  - Fast Fourier Transform 

FIR  - Finite Impulse Response 

FLOPS - Floating Point Operations per Second 

FP   - Floating-Point 

GFLOPS - Giga Floating-Point Operation per Second  

GPP  - General Purpose Processor 

IDEA  - International Data Encryption Algorithm 

IIR  - Infinite Impulse Response 

ILP  - Instruction Level Parallelism 

IPC  - Instructions per Cycle 

ISA  - Instruction Set Architecture 

I-stream - Instruction stream 

ITLB  - Instruction Translation Look-aside Buffer 

JPEG  - Joint Photographic Expert Group 

L1 cache - Level 1 cache 

L2 cache - Level 2 cache 

LRU  - Least Recently Used 

MAC  - Multiply and Accumulate 

MAX  - Media Acceleration eXtensions 

MDMX - MIPS Digital Media eXtensions 

MFLOPS - Millions of Floating-Point Operations per Second 
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MIPS  - Million Instructions per Second 

MMX  - MultiMedia eXtensions 

MPEG  - Moving Picture Expert Group 

MUX  - Multiplexer 

MVI  - Motion Video Instructions 

NOP  - NO Operation 

NSP  - Native Signal Processing 

RISC  - Reduced Instruction Set Computer 

SDRAM - Synchronous Dynamic Random Access Memory 

SIMD  - Single Instruction Multiple Data 

SMA  - Structured Memory-access Architecture 

SPEC   - Standard Performance Evaluation Corporation 

SPECint - SPEC Integer benchmarks 

SPECfp - SPEC Floating Point benchmarks 

SSE  - Streaming SIMD Extensions 

TLB  - Translation Look-aside Buffer 

UOPS  - Micro Operations 

VIS  - Visual Instruction Set 

VLIW  - Very Long Instruction Word 
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Chapter 2   

Related Work 

 

Multimedia workloads and processors have been researched extensively in the 

past few years. The related work can be divided into different categories: 

characterizing multimedia workloads, efforts quantifying the benefits of SIMD 

extensions, architectural enhancements proposed by other researchers to 

improve performance of multimedia applications, and general-purpose 

architecture research related to the enhancements proposed in this dissertation. 

 

2.1 Multimedia Application Characteristics 

This section describes past research that discusses characteristics of media work-

loads. Diefendorff and Dubey [26] mention several distinguishing characteristics 

of multimedia applications from general-purpose applications in a position pa-

per. 

• Real-time response: Multimedia applications such as video conferencing or 

electronic commerce often require a certain quality of service and real-time 

response. 
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• Continuous-media data types: The input data for multimedia applications 

often comprises a set of data elements derived from sampling some analog 

signal in a time domain – either video, audio, or other sensory perception. 

Media data types differ from other data types in that the width of typical data 

is 8 or 16 bits versus 32 or 64 bits. 

• Significant fine-grained data parallelism: Data parallelism is inherent in al-

most all signal processing and graphics applications. Input data streams are 

frequently large collections of small data elements such as pixels, vertices, 

or frequency/amplitude values. This lends well to machines with SIMD 

hardware units executing in parallel. 

• Significant coarse-grained parallelism: Most media applications and scenar-

ios consist of more than one time-critical execution thread. For example, a 

typical video conferencing application consists of video encoding and de-

coding, audio encoding and decoding, and background task threads that are 

independent of each other. 

• High instruction-reference locality to small loops: DSP and media process-

ing applications often consist of small loops or kernels that dominate overall 

processing time. 
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• High memory bandwidth: The working data sets of media applications are 

huge implying that processors must provide high memory bandwidth and 

tolerate long memory latency. 

• High network bandwidth: The processor must be able to accommodate for 

high network speeds of the future. 

• Extensive data reorganization: Packing and unpacking of data is necessary 

for taking advantage of SIMD execution units. 

 

Lee, et al. [59] introduce the MediaBench benchmark suite and compare 

media applications with SPECint95 workloads. They use a single-issue proces-

sor to perform several experiments. They observe that the MediaBench bench-

marks have better instruction cache hit rates than SPECint95 benchmarks. They 

also find that data caches are more effective for reads on MediaBench than 

SPECint95, while they are less effective for writes. SPECint95 required almost 

three times more bus bandwidth than MediaBench. MediaBench applications 

were found to have higher IPC than SPECint95 workloads. 

Fritts [34] extends the characterization of MediaBench workloads. He 

finds that nearly 70% of the instructions operate on data sizes of 8 and 16 bits. 

The average basic block size is found to be small, which leads him to conclude 

that parallelism in multimedia applications is not within basic blocks. Evaluation 
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of ILP revealed multimedia applications are similar to general-purpose applica-

tions. 

An evaluation of parallelism, operation frequencies and memory per-

formance on video signal processors (closely related to media processors) has 

been performed using trace-driven simulations in [63]. This study was per-

formed with assumptions such as perfect branch prediction, perfect memory dis-

ambiguation, and an infinite-sized scheduling window. These trace-driven simu-

lation results are best used to define an upper bound on potential performance. 

They found ILP ranging from 32.8 to over 1000 for their ideal machine model. 

Sohoni, et al. [90] conducted a study of memory system performance of 

multimedia applications on the MediaBench suite. They observe that for L1 data 

caches, multimedia applications actually have lower cache miss rates than SPE-

Cint95 programs. In addition, they conclude that larger input data sizes do not 

necessarily result in a higher cache miss rate. Slingerland and Smith [87] ana-

lyze cache behavior of the Berkeley Multimedia Workload and find that multi-

media applications actually exhibit lower instruction miss ratios and comparable 

data miss ratios when contrasted with other widely studied workloads. In addi-

tion, they find that longer data cache line sizes than are currently used would 

benefit multimedia processing.  

Cucchiara, et al. [25] explore cache strategies for multimedia applica-

tions. They find that standard caching policies in GPPs exhibit poor performance 
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in exploiting the 2D spatial locality typical of programs handling and processing 

images. They introduce hardware prefetching by employing a 2D prefetch pol-

icy and observe better cache performance than one block lookahead policy.  

Hughes, et al. [42] measure the variability in the execution of multime-

dia applications on GPPs. They find that while execution time varies from frame 

to frame for many multimedia applications, the variability is mostly caused by 

the application algorithm and the media input. They conclude that aggressive 

architectural features induce little additional variability (and unpredictability) in 

execution time. 

In this dissertation, I evaluate the execution characteristics of commer-

cial multimedia applications on a state-of-the-art superscalar processor with 

SIMD extensions and compare them with existing characterizations of other 

desktop workloads. 

 

2.2 Benefits of SIMD Extensions 

Several research efforts have evaluated the benefits of SIMD extensions since 

their commercial introduction in 1994 [10][19][27][58][62][71][78][93]. Bench-

marking of several applications on the UltraSparc processor using VIS [19] 

showed a performance speedup for some DSP applications over non-VIS ver-

sions. Applications with FIR filters showed the most improvement while IIR 
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filters and FFTs exhibited little or no performance increase. An evaluation of 

MMX on a Pentium processor on kernels and applications was presented by 

Bhargava, et al. in [10]. Performance of image and video processing with VIS 

extensions was analyzed by Ranganathan, et al. in [78] and benefits of VIS were 

reported. It was shown that conventional ILP techniques provided 2x to 4x per-

formance improvements and media extensions provided an additional 1.1x to 

4.2x performance improvement. Motorola’s AltiVec technology is seen to result 

in a significant performance increase (1.6x to 11.7x) for DSP and multimedia 

kernels in [71].  

Lappalainen [58] presented performance analysis of MMX technology 

for an H.263 video encoder and reported a performance improvement of 1.65x 

by using MMX over optimized scalar assembly code without MMX. A number 

of commercial general-purpose and DSP processors have been benchmarked by 

BDTI [11][13] on a suite of 11 kernels. However, only a single performance 

metric denoting the execution time is released in the public domain for all of the 

benchmarks together. The execution time is measured for kernels written in as-

sembly that use only on-chip memory. 

Sriram and Hung [93] presented an implementation of MPEG-2 video 

decoder on a C62xx DSP processor and compared the performance of the vari-

ous components with MMX, HP MAX and VIS. The C62xx was found to be 

faster than the three SIMD implementations. Different DLP alternatives for the 
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embedded media domain are evaluated by Salami, et al. [84] and demonstrate 

the superiority of Matrix SIMD extensions (2D SIMD) over traditional SIMD 

extensions.  

In this dissertation, I compare SIMD and VLIW approaches for multi-

media and DSP applications using state-of-the-art commodity processors. 

 

2.3 Media Architectural Enhancements 

Research starting in the mid-to-late 1990’s proposed several architectural en-

hancements to improve performance of multimedia workloads on GPPs. Rixner, 

et al. [81][82] developed the Imagine architecture for bandwidth-efficient media 

processing. This architecture is based on clusters of ALUs processing large data 

streams and is built as a co-processor for a high-end multimedia system. Three 

levels of memory hierarchy are provided – local register file for each cluster, a 

global stream register file and external SDRAM. Compared to a conventional 

scalar processor, they found that Imagine reduces the global register and mem-

ory bandwidth by factors of 13 and 21 respectively and is able to achieve a peak 

performance of 16.2 GFLOPS and a sustained performance of 8.5 GFLOPS on 

media processing kernels. 

 Goldstein, et al. [35] design the PipeRench co-processor for streaming 

multimedia acceleration. The PipeRench co-processor is a reconfigurable fabric 



 29 
 

architecture achieving up to 190x performance improvement on media kernels 

over a RISC processor. A related effort is the Chimaera architecture from Ye, et 

al. [110]. Chimaera is a prototype system that integrates a small and fast recon-

figurable functional unit into the pipeline of an aggressive dynamically sched-

uled superscalar processor. The authors demonstrate that for a 4-way out-of-

order superscalar processor, Chimaera results in an average performance in-

crease of 21%. 

 Quintana, et al. [76] have proposed adding a vector unit to a superscalar 

processor to improve performance of numeric and multimedia codes. Related 

work from Corbal, et al. [21] proposes to exploit DLP in two dimensions instead 

of one dimension processing as in MMX. A 20% performance improvement is 

shown using relevant multimedia applications over traditional SIMD extensions. 

Lee and Stoodley [60] have proposed and evaluated the use of simple 

long vector microprocessors for multimedia applications. They show that instead 

of using an out-of-order superscalar processor or an out-of-order short vector 

(conventional SIMD extensions), a simple in-order long vector allows for poten-

tial saving in chip area and achieves better multimedia performance. However, it 

is important to have a general-purpose processor to achieve sustained perform-

ance on different domains of workloads.  

 Vassiliadis, et al. [50][106] have proposed the Complex Streamed In-

struction Set (CSI) to enhance an existing out-of-order GPP. A stream computa-



 30 
 

tion instruction can capture two levels of loop nesting. Vermuelen, et al. [107] 

describe how DCT, Reed-Solomon code, and other similar media-oriented op-

erations can be enhanced with a hardware accelerator that works in conjunction 

with a GPP. However, the accelerator has to be designed for each algorithm. Re-

targeting the accelerator to another algorithm incurs significant effort.  

 Ranganathan, et al. [79] propose reconfigurable caches and their appli-

cability to media processing. They find IPC improvements ranging from 1.04x 

to 1.2x when applying instruction reuse for eight multimedia benchmarks.  

 In this dissertation, I accelerate multimedia applications by adding ex-

plicit hardware support to a SIMD GPP. 

 

2.4 Related GPP Architectures 

In this section, I describe GPP architectures relevant to the proposed enhance-

ments in this dissertation. The proposed solution combines the advantages of 

SIMD, vector, DAE, and DSP processors. The DAE concept present in the IBM 

System 360/370, CDC 6600 [104], CDC7600, CRAY-1, CSPI MAP-200, SDP 

[85], PIPE [36], SMA [75], WM [109], and DS [112 demonstrated the potential 

of decoupling memory accesses and computations [88][89].  

There also has been research in specialized access processors and ad-

dress generation coprocessors [8][43]. The concept of embedding loops in 
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hardware was implemented commercially in the TI ASC [23] (do-loop in this 

case). The SMA architecture [75] provided similar flexibility in accessing matri-

ces. This concept was seen to be successful in all these machines as well as 

many DSP processors [57]. The Burroughs scientific processor [55] was a pure 

SIMD array processor that had special-purpose hardware called alignment net-

works for packing and unpacking data. In addition, the processor has several 

powerful SIMD instructions of which many are being used in current SIMD ex-

tensions. 
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Chapter 3   

Performance Evaluation Methodology 

 

In this chapter, I present the methodology for characterizing media workloads 

and evaluating the performance of media enhancements proposed in this disser-

tation. A detailed description of the various tools and benchmarks used in this 

dissertation is presented. I also discuss the evaluation environment and perform-

ance measures. 

 

3.1 Tools 

3.1.1 Performance monitoring counters 

Built-in processor performance counters on the Intel P6 microarchitecture 

(Pentium II and III processors) are used in the media workload characterization 

studies. Measurements of various statistics on P6 processors are performed us-

ing these counters. Hardware performance counters offer the advantage of 

measuring processor statistics in a non-obtrusive way and generating results in 

real-time. In addition, benchmark source code is not necessary for measuring 

execution statistics. The P6 microarchitecture implements two performance 
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counters [45][46], with each counter associated with an event select register that 

controls what is counted. The counters are accessed via the RDMSR and 

WRMSR instructions. To measure more than two events (performance counters 

can only measure two events for each run), several runs of each benchmark are 

necessary. 

 The performance monitoring utility on the P6 microarchitecture provides 

an option of reading only Ring3 events or both Ring0 and Ring3 events. Ring3 

events correspond to the user level processes that are active at a particular time. 

Ring0 events correspond to the operating system processes. For this dissertation, 

the Ring0 events were masked to gather the execution characteristics of each 

multimedia application without intervention from operating system-related 

events. While evaluating each benchmark, no other user process was kept active 

to minimize the effects of pollution. A detailed listing of various performance 

monitoring events on the P6 microarchitecture is provided in appendix A.  

  

3.1.2 VTune 

VTune, an Intel performance analysis tool [44] was used to get the complete in-

struction mix (assembly instructions) of the code. This tool is designed for ana-

lyzing “hot spots” in the code and optimizing them. In addition, VTune provides 

time- and event-based system-based sampling and call graph profiling. VTune 
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was used to profile instruction mix when using processors with the P6 

microarchitecture.  

 

3.1.3 Simplescalar simulator 

The out-of-order simulator from the Simplescalar tool suite [15] was used to 

study the performance of media workloads on superscalar processors. In addi-

tion, the Simplescalar simulator is modified to evaluate improvements achieved 

by the proposed methods. SIMD extensions are provided to the simulator by 

adding 64-bit SIMD execution units to the processor core.  

The Simplescalar tool suite is widely used in computer architecture re-

search involving superscalar processors. The simulator (sim-outorder) models 

the superscalar out-of-order pipeline in detail using execution driven simulation. 

It models several different ISAs. I use PISA, an ISA based on the MIPS archi-

tecture was used. The Simplescalar tool set provides the ability to add new 

instructions without altering the compiler via instruction annotations. Instruction 

annotations are used to model SIMD instructions. 

 

3.1.4 TMS320C6x simulator 

The C62xx simulator is used to analyze performance of DSP and multimedia 

applications on VLIW processors (Chapter 4). Texas Instruments provides a cy-

cle accurate simulator for the C62xx VLIW DSP processor [100]. Execution cy-
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cle counts of DSP and media benchmarks can be obtained from the stand-alone 

simulator. The “clock ( )” function provided in the simulator returns the execu-

tion times of the benchmarks.  

 

3.2 Benchmarks 

Several multimedia benchmarks are used to understand the characteristics of 

media applications. Table 3.1 shows the commercial media applications used as 

benchmarks in this dissertation. These applications can be categorized into one 

of 3D graphics (QuakeII and Unreal), streaming video (RealPlayer and Quick-

Time), and streaming audio (RealAudio and Winamp). Commercial applications 

are excellent benchmarks to study the properties of multimedia applications. 

However, these applications are available only as binaries and source code is not 

available. Table 3.2 lists several media and signal processing kernels and appli-

cations that are used in this dissertation in addition to the benchmarks described 

in Table 3.1 for evaluating the proposed hardware support. The kernels in Table 

3.2 form significant components of media applications. Most of the benchmark 

applications in Table 3.2 are from popular multimedia benchmark suites such as 

MediaBench [59]. 
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Table. 3.1 Description of commercial media applications used as bench-
marks in workload characterization 

 

Application Description 

QuakeII 

One of the most popular 3D games with excellent graphics, sounds, and 
smart combat enemies. Processor vendors and graphics accelerator manu-
facturers use this benchmark as a standard gaming benchmark. The game 
demo is run with a 1024x768 resolution on a 19-inch monitor. Executed 
over 17 billion instructions. 

Unreal 

A recent and feature-rich 3D game that is touted to heavily use the MMX 
instruction set. The graphics engine in Unreal is more advanced than in 
QuakeII and the audio engine in Unreal outperforms the QuakeII audio. 
The game demo is run with a 1024x768 resolution on a 19-inch monitor. 
Executed over 24 billion instructions. 

RealVideo 

Delivers high quality digital video at much lower bit-rates than other 
non-streaming solutions, such as compressed QuickTime, AVI, or 
MPEG. This technology allows Intranets to deliver video training, corpo-
rate communications and presentations to the desktop. A video clip of 
4.5-inch by 3.5-inch was played. Executed 2.7 billion instructions. 

QuickTime 

QuickTime is a multimedia architecture developed by Apple to synchro-
nize graphics, text, video, and sound. QuickTime is ideal for synchroniz-
ing picture and sound. QuickTime is an economical solution, in terms of 
bandwidth, for both music and video. An AVI video clip of 9-inch by 7-
inch was played. Executed over 7 billion instructions. 

Winamp 

Winamp is a fast, flexible, high-fidelity music player for Windows 
95/98/NT. Winamp supports MP3, MP2, CD, MOD, WAV and other 
audio formats, custom interfaces called skins and audio visualization and 
audio effect plug-ins. An MPEG audio stream was played. Executed 1.7 
billion instructions. 

RealAudio 

RealAudio is a system designed to deliver streaming audio, both speech 
and music. The player does not cache downloaded files. Synchronization 
with video, flash, and a sequence of HTML files provides an excellent 
vehicle for multimedia presentation. A RealAudio audio stream was 
played. Executed 350 million instructions. 
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Table. 3.2 Summaries of Benchmark Kernels and Applications. Source 
code for each benchmark is available in [91] 

 

Kernels 

Dot product  
(dotp) 

Dot product of a randomly initialized 1024-element array re-
peated several times (16-bit data) 

Autocorrelation 
(auto) 

Autocorrelation of a 4096-element vector with a lag of 256 re-
peated several times (16-bit data) 

Finite Impulse Re-
sponse Filter  
(fir) 

Low-pass filter of length 32 operating on a buffer of 256 ele-
ments repeated several times (16-bit data) 

Color Filter Array 
(cfa) 

Color filter array interpolation of a 2 million pixel image with a 
5x5 filter (16-bit data) 

Discrete Cosine 
Transform 
(dct) 

2-D discrete cosine transform of a 2 million pixel image (16-bit 
data) 

Motion Estimation 
(motest) 

Motion estimation routine on a frame of 2 million pixels (8-bit 
data) 

Image Scaling 
(scale) 

Linear scaling of an image of 2 million pixels (8-bit data) 

Applications 

Audio Effects  
(aud) 

Adding successive echo signals, signal mixing, and filtering on 
2 million data samples (16-bit data) 

G.711 speech coding 
(g711) 

A-law to µ-law conversion and vice versa as specified by ITU-T 
standard on 2 million data samples (8-bit data) 

ADPCM speech 
compression  
(adpcm) 

16-bit to 4-bit compression of a speech signal (obtained from 
Intel) on a 1024-element buffer repeated several times (16-bit 
data) 

JPEG Image Com-
pression 
(jpeg) 

JPEG image compression on a 800-by-600 pixel image 
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JPEG Image De-
compression 
(ijpeg) 

JPEG image de-compression resulting in a 800-by-600 pixel 
image 

IDEA Decryption 
(decrypt) 

IDEA decryption on 192,000 bytes of data 

 

 

3.3 Evaluation Environment 

Pentium II and Pentium III processor based systems running Windows NT 4.0 

are used for experiments with the P6 microarchitecture (Chapters 4 and 5). Ex-

periments for analyzing the performance of VLIW processors for media and 

DSP applications (Chapter 4) are performed on the C62xx simulator. Experi-

ments with SIMD GPPs and the proposed enhancements along with bottleneck 

detection are performed using the Simplescalar tool suite (Chapters 5 and 6). 

 Significant effort was put in generating code for each of the experiments 

in this dissertation. For the case of commodity processors (Pentium II, Pentium 

III, and TMS320C62xx DSP), assembly libraries and compiler intrinsics [95] are 

used to create either SIMD or VLIW versions of the code. For the case of Sim-

plescalar processor simulator, SIMD code was generated using hand coded as-

sembly and instruction annotations. The rest of this section describes the com-

pilers and code development using assembly libraries and compiler intrinsics. 
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3.3.1 Compilers 

Several compilers are used for generating the media application code. Code gen-

eration for processors based on the P6 microarchitecture is performed using Intel 

C/C++ compiler [44]. Code generation for the C62xx VLIW DSP is performed 

using Texas Instruments’ C62xx compiler [102]. A modified version of gcc 

(Simplescalar gcc) is used for generating code for the Simplescalar processor 

[15]. Hand coded assembly is used for creating the SIMD code for the Simples-

calar processor simulator. Code generation for the P6 microarchitecture and 

C62xx DSP processor is by using assembly libraries and compiler intrinsics (ex-

plained below). I use maximum optimizations provided by each of the compilers 

in my study.  

 

3.3.2 Assembly libraries 

Intel’s assembly libraries [44] provide versions of many common signal process-

ing, vector arithmetic, and image processing kernels that can be called as C 

functions. However, some signal processing library calls require library-specific 

data structures to be created and initialized before calling kernels such as fir. Us-

ing assembly libraries is thus restricted and I used Intel’s libraries only for dotp 

and auto benchmarks (since only these two benchmarks have the same calling 

sequence for the C and library functions and the library versions do not use any 

extra data structures). Unless the code developer can replace a complete function 
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call in C with a call to the library function, the assembly libraries cannot be util-

ized completely.  

For creating the SIMD versions (for Pentium II and III processors) of the 

benchmarks using assembly libraries, I replaced the function written in C with a 

call to the signal processing library that incorporates SIMD (MMX and SSE) 

instructions. There is no loss of accuracy by using SIMD because all versions of 

the benchmarks operate on 16-bit data or 8-bit data. Another issue with the use 

of Intel’s libraries is that they are generally robust and intuitive, but employ a lot 

of error checking code to guarantee functional correctness that can potentially 

increase execution time. Also, the overhead of using SIMD instructions (mis-

alignment-related instructions, and packing and unpacking data related instruc-

tions) should be less than the potential benefit of SIMD instructions. 

TI provides optimized assembly code for the C62xx in [101]. These as-

sembly libraries are C-code callable and also have the same calling sequence as 

the C-code counterpart. Several restrictions apply for using these C62xx opti-

mized VLIW assembly codes. For example, the fir code requires that the number 

of filter coefficients must be a multiple of 4 and length of auto vector must be a 

multiple of 8. 
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3.3.3 Compiler intrinsics 

Both Intel and TI libraries are the most useful when an entire function written in 

C can be replaced with an equivalent C-callable assembly function call. But in 

many applications such easily replaceable functions are difficult to find, espe-

cially for applications that do not use any of the kernels such as g711 speech 

coding and adpcm benchmarks. The Intel C/C++ compiler and the C62xx com-

piler provide intrinsics that inline SIMD (MMX and SSE) and VLIW (C62xx) 

assembly instructions respectively. The compilers allow the use of C variables 

instead of hardware registers and also schedule the instructions to maximize per-

formance. 

For creating the SIMD versions (for the Pentium II and III processors) of 

the benchmarks, I profiled the benchmarks to identify key procedures that can 

incorporate SIMD instructions. The major computation was then replaced with 

an equivalent set of SIMD instructions with original functionality maintained. I 

unrolled the loops manually to isolate multiple iterations of the loop body and 

then replaced with equivalent intrinsics.  

The C62xx compiler similarly provides intrinsics for inlining assembly 

instructions into the C code. Some of the compiler intrinsics provided are “mul-

tiply two numbers, shift, and saturate”, “approximate reciprocal square root”, 

and “subtract lower and upper halves of two registers”. All of the compiler in-

trinsics and their detailed descriptions can be obtained from [102].  
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3.4 Performance Measures 

Several performance measures are used throughout the dissertation for evaluat-

ing multimedia applications. Some of the performance measures are: 

• Execution time speedup – performance improvement obtained by a tech-

nique ‘x’ over a technique ‘y’ for a given benchmark is calculated as 

execution time of ‘y’ divided by execution time of ‘x’. Techniques ‘x’ 

and ‘y’ vary depending on the experiment. 

• IPC – instructions retired per cycle indicates the processors ability to 

overlap multiple instructions. 

• CPI – cycles per retired instructions. 

• Cache hit-rates – L1 and L2 cache hit rates are computed as the ratio of 

number of cache hits to the total number of cache accesses. 
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Chapter 4   

Execution Characteristics of Multimedia Applications  

 

This chapter characterizes the performance of commercial multimedia applica-

tions (categorized as 3D graphics, streaming video, and streaming audio) on an 

x86 processor based system. Architectural data pertaining to the utilization of 

various hardware resources on the chip are collected using on-chip performance 

counters. Execution characteristics of multimedia workloads are compared with 

SPEC and other desktop applications. 

The rest of the chapter is organized as follows. Section 4.1 presents the 

various execution characteristics of commercial multimedia applications (from 

Table 3.1) on a Pentium II processor with MMX technology. I compare them 

with existing SPEC and SYSmark/NT characteristics presented in [9]. Section 

4.2 presents an evaluation of SIMD and VLIW techniques for media and signal 

processing using a Pentium II and C62xx as representative processors. Section 

4.3 summarizes the chapter. 
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4.1 Detailed Characterization of Multimedia Applications 

I use a Pentium II processor with MMX technology operating at 300 MHz run-

ning Windows NT 4.0 for this characterization. The Intel Pentium II processor is 

a three-way superscalar architecture (capable of retiring up to three micro-

instructions per cycle). It implements dynamic execution using an out-of-order, 

speculative execution engine, with register renaming of integer, floating-point 

and flag variables, carefully controlled memory access reordering, and multi-

processing bus support [45]. Two integer units, two floating-point units, and one 

memory-interface unit allow up to five micro-ops to be scheduled per clock cy-

cle. In addition, it provides the MMX execution unit for SIMD processing.  

There are two 64-bit MMX ALUs and one 64-bit MMX multiplier. The Pentium 

II used in this evaluation has 16 kB of L1 instruction and data caches and 512 

kB of L2 cache. The rest of the section presents the execution characteristics of 

multimedia applications. 

 

4.1.1 Cycles per instruction 

Figure 4.1(a) shows the cycles per instruction (CPI) for each of the six individ-

ual multimedia applications (from Table 3.1). The geometric mean of the mul-

timedia, SPECint95, SPECfp95, and SYSmark/NT benchmarks are shown in 

Figure 4.1(b). The geometric mean of the CPI for the multimedia workloads is 
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1.31, which lies between the SPECint95 and the SPECfp95 benchmarks. Factors 

affecting CPI are discussed in detail in subsequent sections. 

 

4.1.2 Resource and instruction-stream stalls 

Figure 4.2 shows the I-stream stalls and resource stalls, measured in terms of the 

cycles in which the stall conditions occur. I-cache misses and ITLB misses 

cause I-stream stalls. Resource stalls show the number of cycles in which re-

sources like register renaming or reorder buffer entries, memory entries, and 
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execution units are full; but these stalls may be overlapped with the execution 

latency of previously executing instructions. 

The increase in CPI is directly proportional to the sum of I-stream and 

resource stalls as observed in Figure 4.2(a). RealAudio has the highest number 

of Resource and I-stream stalls and exhibits the largest CPI among the multime-

dia benchmarks. The geometric mean of the resource stalls for the multimedia 

workload is 0.30 and the I-stream stalls is 0.11. The number of resource stalls in 
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the case of the multimedia applications is over twice the number of stalls for the 

SPECint95 benchmarks. Resource stalls for the case of the SYSmark/NT is 

comparable to the multimedia benchmarks. SPECfp95 benchmarks incur sig-

nificantly more resource stalls due to long dependency chains. Interestingly, the 

number of I-stream stalls per instruction of the multimedia benchmarks is simi-

lar to that of the SPECint95 and almost one-third of the SYSmark/NT bench-

marks. The number of I-stream stalls for both 3D graphics applications is 

smaller than that of the audio and video applications.  

The combined resource stall and I-stream stall ratios of the multimedia 

applications are between the SPECint95 and the SPECfp95 ratios correlating 

well with that the CPI of the multimedia applications, which lies in between the 

SPECint95 and SPECfp95 benchmark suites as was observed in the CPI ratios. 

 

4.1.3 Branch statistics 

Figure 4.3 shows the number of branches per instruction and the branch-

mispredict ratio for each of the multimedia benchmarks. The multimedia pro-

grams have a branch per instruction ratio of 0.08. The ratio for SPECint95 is 

0.17 and the ratio for SPECfp95 is 0.04. Branch statistics are not available for 

the SYSmark/NT, but Lee, et al. [61] report that desktop applications exhibit the 

same behavior as SPECint95 benchmarks with respect to average basic block 

size. While one out of every six instructions is a branch in the SPECint95 
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benchmark suite, only one out of every 12.5 instructions is a branch in multime-

dia applications and one out of 25 instructions is a branch in the case of floating-

point benchmarks. Thus the average available ILP of multimedia applications is 

potentially larger than the average ILP of SPECint95 programs. Moreover, in 

the case of these multimedia applications as will be explained later, MMX in-

structions operate on four data elements at the same time in a single instruction. 
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In spite of such a processing, the average basic block size of multimedia applica-

tions is over twice that of programs in the SPEC suite.  

Fritts [34] reports that the average basic block size of multimedia appli-

cations in the MediaBench suite is similar to general-purpose integer applica-

tions. He observes that the average basic block size varies significantly from one 

media benchmark to the other.  

Approximately 7% of all branches are mispredicted in SPECint95 and 

2% in SPECfp95, while in multimedia applications 9% of all branches are mis-

predicted. The number of mispredicted branches ranges from about 2 to 40 per 

thousand instructions for the integer benchmarks, about 0.1 to 4 for the floating-

point benchmarks and about 3.5 to 16 for the multimedia benchmarks. The mul-

timedia benchmarks has a BTB miss ratio of 0.15.  SPECint95 has a BTB miss 

ratio of 0.18 and SPECfp95 has a BTB miss ratio of 0.07. 

In spite of having a better average basic block size, the CPI for multime-

dia applications is more than that of the integer benchmarks. The negative effect 

of having higher resource stalls is seemingly more than the positive effect of 

fewer branches per instruction. In the case of floating-point benchmarks, longer 

latencies of floating-point operations added with higher resource stalls increase 

the CPI considerably even when the number of branches is far less than any 

other types of benchmarks.  
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4.1.4 Data memory references 

Figure 4.4 shows the number of data references per instruction and the number 

of memory transactions per thousand instructions. On average, multimedia, 

SPECint95 and SPECfp95 benchmarks generate about 0.55 data references 

every instruction. Data memory reference statistics are not available for the 

SYSmark/NT, but Lee, et al. [61] report that desktop applications exhibit ratios 

similar to SPECint95 benchmarks. The IA-32 architecture results in more data 
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references than most RISC architectures because it has fewer registers (8 versus 

32) [9].  

Memory transactions arise from fetching of missed data/instructions and 

write-back of dirty blocks during replacement. The number of memory transac-

tions per thousand instructions is higher in general if the miss rate of the L2 

cache is higher (discussed below in Section 4.1.5). Multimedia applications have 

a higher number of memory transactions per thousand instructions than SPE-

Cint95, but lower than SPECfp95 benchmarks. 

 

4.1.5 Cache behavior 

The Pentium II processor consists of separate 16 kB four-way set associative L1 

data and instruction caches with a cache line length of 32 bytes. The caches em-

ploy a write-back replacement policy and a pseudo-LRU replacement algorithm. 

The data cache consists of eight banks interleaved on four-byte boundaries. The 

data cache can be accessed simultaneously by a load instruction and a store in-

struction, as long as the references are to different cache banks. The latency for a 

load on an L1 cache hit is 3 cycles and four simultaneously outstanding misses 

can be handled. The Pentium II processor has a unified 512 kB four-way set as-

sociative cache. Table 4.1 shows the data cache miss rates of the multimedia ap-

plications. 
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Table. 4.1 Data cache miss rates of multimedia applications 
(16 kB 4-way separate L1, 512 kB 4-way unified L2 cache) 

 

Benchmark L1 miss rate Local L2  
miss rate 

Global L2  
miss rate 

QuakeII 2.1 % 53.4 % 1.2 % 

Unreal 1.5 % 25.8 % 0.5 % 

RealVideo 2.0 % 19.9 % 0.6 % 

QuickTime 1.8 % 15.1 % 0.6 % 

Winamp 1.8 % 3.6 % 0.1 % 

RealAudio 3.8 % 8.8 % 0.7 % 

 

 On the average, multimedia applications achieve a 98% L1 (16 kB) data 

cache hit rate (SPECint95 and desktop workloads have similar hit rates [9][61]) 

and only 0.5% of the processor data accesses miss in the L2 cache (global miss 

rate). The local miss rate in Table 4.1 corresponds to number of misses to the L2 

cache divided by the number of L2 cache accesses. Figure 4.5(a) shows the L1 

data and instruction and L2 cache misses per thousand instructions for the six 

multimedia benchmarks. The L1 (16 kB, 4-way) data and instruction cache 

misses per thousand instructions for the SPEC95 and SPEC2000 integer and 

floating-point suites are compared with the multimedia applications in Figure 

4.5(b). 

 The streaming video and audio benchmarks incur more L1 instruction 

cache misses than the two 3D graphics applications. The L1 data and instruction 
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cache misses per thousand instructions of multimedia applications are slightly 

higher than that of SPECint95 benchmarks, but lower than that of SPECint2000 

benchmarks. The SPECfp programs are dominated by loops, which results in a 

very predictable control flow, and have excellent L1 instruction cache perform-
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ance as reflected in the minimal cache misses per thousand instructions. How-

ever, the L1 data cache misses per thousand instructions for SPECfp programs 

are significantly worse than multimedia applications. My results indicate that 

data caches are used reasonably by multimedia applications as opposed to the 

popular notion that caches are ineffective for media applications due to their 

streaming nature. Figure 4.6 shows the correlation between the CPI and L1 (data 

and instruction) and L2 cache misses using a miss latency of 6 cycles for the L1 

and 50 cycles for the L2 for the multimedia applications. 

 

4.1.6 Floating-point operations 

Figure 4.7 shows the amount of floating-point computation being performed in 

each of the six multimedia benchmarks. Except for Winamp and RealAudio, the 

rest of the benchmarks contain less than 5% floating-point related instructions. 
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In fact, the two 3D graphics applications (QuakeII and Unreal) use integer com-

putations as opposed to floating-point operations (most of the floating-point 

computation for 3D graphics applications is performed by graphics accelerator 

cards in desktop and workstations). Fritts [34] reports that multimedia applica-

tions in the MediaBench suite have few floating-point operations as well.  

 

4.1.7 Multimedia extensions (MMX) 

Multimedia applications can exploit available data parallelism by using SIMD 

extensions such as MMX technology.  Unfortunately, not all media applications 

make use of MMX instructions because either they were developed before 

MMX technology was introduced or before compilers could to take advantage 

of the MMX extensions. Compiler technology has yet to catch up with SIMD 

processing. The percentage of MMX instructions in each of the benchmarks is 

shown in Figure 4.8. MMX is especially suited for audio applications, and hence 
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I expected RealAudio and Winamp to take advantage of MMX instructions. Sur-

prisingly, neither of them uses any MMX instructions. Moreover, RealAudio is a 

component of RealPlayer, which also has RealVideo as one of its components. 

While RealVideo uses MMX instructions, RealAudio fails to use any. QuakeII 

was developed before MMX was announced and hence it does not make use of 

MMX instructions. Unreal on the other hand is a recent game and uses MMX 

technology heavily. Nearly half of all the dynamic instructions in Unreal are 

MMX related.  

The total number of MMX instructions can be sub-divided into 6 catego-

ries: packed multiply, packed shift, pack operations, unpack operations, packed 

logical operations, and packed arithmetic operations. The overhead involved in 

MMX computations is the packing and unpacking of instructions. Figure 4.9 

shows the overhead percentage in each of the benchmarks. The overall overhead 
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associated in MMX instructions is less than 20% (of MMX instructions) for Re-

alVideo and less than 15% for QuickTime and Unreal. It is interesting to note 

that the unpacking overhead is several times the packing overhead. Neverthe-

less, the benefit of using MMX usually exceeds the overhead associated with 

packing and unpacking of instructions for MMX. Unreal has the option of dis-

abling MMX instructions. It was observed that the number of frames per second 

when using MMX was 1.35 times greater than when not using MMX. 

 

4.1.8 Speculative execution factor and UOPS per instruction 

In the P6 microarchitecture, the instruction fetch unit fetches 16 bytes every 

clock cycle from the I-cache and delivers them to the instruction decoder. Three 

parallel decoders decode this stream of bytes and convert them into triadic 

UOPS. Most instructions are converted directly into single UOPS, some are de-
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coded into one-to-four UOPS, and the complex instructions require microcode. 

Up to 5 UOPS can be issued every clock cycle to the various execution units, 

and up to 3 UOPS can be retired every cycle. If a branch is incorrectly predicted, 

then the speculated instructions down the mispredicted path are flushed. The 

speculative execution factor is defined as the number of instructions decoded, 

divided by the total number of instructions retired. Figure 4.10 shows the num-

ber of micro-operations per instruction and the speculative execution factor for 

each of the multimedia benchmarks and other workloads. 
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In the multimedia applications one x86 instruction results in an average 

of 1.4 micro-ops, which is very similar to the behavior of SPECint95 and 

SPECfp95 programs. However, the SYSmark/NT applications have a high 

UOPS per instruction ratio. The speculation execution factor of multimedia ap-

plications is the lowest of all the four different workloads illustrating no signifi-

cant mis-speculation ratio. 

 

4.2 A Comparison of SIMD and VLIW Approaches for Media 

Processing 

In this section, I evaluate the performance of the SIMD paradigm using Intel’s 

Pentium II processor with MMX and the VLIW paradigm using Texas Instru-

ment’s TMS320C62xx processor on a subset of DSP and media benchmarks 

from Table 3.2. I briefly describe the C62xx processor followed by analysis of 

the results. 

 

4.2.1 TMS320C62xx DSP processor 

Texas Instruments TMS320C62xx, the first general-purpose VLIW DSP proces-

sor, is a 32-bit fixed-point chip. It is capable of executing up to eight 32-bit in-

structions per cycle. The C62xx processor has eight functional units that are 

grouped into two identical sets of four units each, and two register files, as 
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shown in Figure 4.11. The functional units are the D unit for memory load/store 

and add/subtract operations; the M unit for multiplication; the L unit for addi-

tion/subtraction, logical and comparison operations; and the S unit for shifts in 

addition to add/subtract and logical operations. Each set of four functional units 

has its own register file, and a cross path is provided for accessing both register 

files by either set of functional units. The interested reader is referred to [100] 

for more architectural details of the C62xx processor. 

 

4.2.2 Results  

I profile a subset of six benchmarks for this evaluation (three kernels – dotp, 

auto, fir and three applications – aud, g711, adpcm). There are three versions of 

each benchmark (SIMD – Pentium II with MMX, VLIW – C62xx, and non-

 

Figure. 4.11.  CPU core of the TMS320C62xx processor (courtesy of TI)
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SIMD – Pentium II without MMX). The baseline processor is a Pentium II proc-

essor without MMX (non-SIMD). Figure 4.12 illustrates the performance of 

SIMD and VLIW code over the non-SIMD version. The execution time is pre-

sented in Table 4.2. While interpreting the results, it should be remembered that 

the baseline (non-SIMD) performance is derived from a 3-way superscalar proc-

essor that performs dynamic scheduling to exploit ILP. 
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Figure. 4.12. Ratios of execution times of SIMD and VLIW processors 

 

 

Table. 4.2 Execution Clock Cycles for SIMD and VLIW processors 

Benchmark 
Non-SIMD 

(cycles) 
SIMD 

(cycles) 
VLIW 
(cycles) 

dotp 181242573 32804388 26600107 

auto 222023315 44738100 24577801 

fir 374628170 208238181 41370004 

aud 2191761094 1148164486 494700006 

adpcm 381143255 381143255 281980004 

g711 109593602 85404734 173190004 
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The VLIW processor is capable of executing up to eight instructions per 

cycle and the SIMD unit is capable of executing four or eight operations per cy-

cle for 16- or 8-bit data respectively. Significant speedup is achieved for both 

SIMD and VLIW versions over the non-SIMD code for the three kernels.  The 

dotp kernel shows an improvement of approximately 5.5 times for the SIMD 

version over the non-SIMD version, despite using 16-bit data. Super-linear 

speedup is possible due to the presence of the pipelined multiply-accumulate 

instruction in MMX (throughput of 1 cycle and latency of 3 cycles). For the 

non-SIMD case, the integer multiply operation takes 4 cycles. Over 80% of the 

dynamic instructions in the case of the SIMD version have been found to be 

MMX-related instructions. The performance of the VLIW version of dotp is 

even better than the SIMD version, with a speedup close to 7 times. The VLIW 

code is capable of executing two data elements per clock cycle (in the case of a 

1-way scalar processor it would take at least 5 clock cycles for each data ele-

ment – two for loads, one multiply, one add and one store). Moreover, the 

C62xx code takes advantage of software pipelining to prefetch data three itera-

tions before it is used.  

The auto kernel also shows similar performance increase for both the 

SIMD and VLIW versions. As in the case of the dotp, auto uses several multiply 

and accumulates. For the SIMD case, 88% of the dynamic instructions are 

MMX-related instructions. In the case of the VLIW processor, over 90% of the 



 63 
 

fetch packets have only one execute packet (indicating eight instructions are 

able to execute in parallel). A majority of the remaining 10% of the fetch pack-

ets has only two execute packets (indicating an average of four instructions in 

parallel). 

The fir benchmark shows a modest performance increase (1.8 speedup) 

for the SIMD version over the non-SIMD code when compared to the other two 

kernels. The amount of MMX related instructions in the overall dynamic stream 

are far less than the other two kernels (29%). Also, the SIMD version needs four 

copies of filter coefficients to avoid data misalignment. The Intel library version 

of the fir filter actually exhibited a speedup of only 1.6. This was due to addi-

tional data structures that had to be defined and error checking code that can po-

tentially decrease performance, which results from improved robustness. The 

VLIW version exhibits a stronger performance boost than the SIMD version. 

Again, as was in the case of dotp and auto, over 95% of the fetch packets had 

only one execute packet with all eight instructions executing in parallel. The 

VLIW kernel codes were hand optimized and presented as assembly libraries. 

Moreover, the VLIW code had constraints such as the number of filter coeffi-

cients should be a multiple of 4 and the size of the auto vector should be a mul-

tiple of 8. 

The results of the VLIW versions of the applications are disappointing 

(when compared to performance improvements obtained in kernels). Both g711 
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and adpcm involve significant control dependent data dependencies, wherein 

execution is based either on table lookup or conditional branch statements based 

on immediately preceding computations. The aud application was the only one 

where any appreciable parallelism could be exploited by the VLIW environ-

ment. The VLIW version of the aud application exhibits a speedup close to 4.5 

over the non-SIMD version. The echo effects and signal mixing components of 

the VLIW version were unrolled manually eight times. The speedup achieved by 

the VLIW version of the aud application is almost half that of the kernels. This 

is because the C62xx version was primarily developed in C code and only the 

filtering component utilized optimized assembly code. The compiler generates 

the echo effects and signal mixing components.  

The “interlist” utility of the C62xx compiler provides the user with the 

ability to interweave original C source code with compiler-generated assembly 

code. The compiler-generated assembly code for the echo effects and signal 

mixing components indicates that the compiler is unable to fill all the pipeline 

slots (several execute packets in each fetch packet). The compiler was unable to 

software pipeline the echo effects component. This effectively introduced 3 

NOPs after every load, which degraded performance. Moreover, even with a 

loop unrolling of 8, for each one of the eight computations the result was the 

same with 3 NOPs after every load. Since there is no out-of-order execution in 
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the VLIW processor, loop unrolling in this instance contributes to no perform-

ance increase in terms of speed but only increases code size. 

The VLIW code for adpcm shows a speedup of 1.35 over the non-SIMD 

and SIMD cases. In this application, the C62xx compiler did not perform any 

loop unrolling or software pipelining. Since there is no parallelism to be ex-

ploited, unrolling will drastically increase the code size with little or any per-

formance increase.  Software pipelining was difficult because loads in this ap-

plication depended on the execution of the conditional branch statements. Thus 

the compiler-generated assembly code is non-optimal with several branches that 

are followed by 5 NOPs and loads followed by four NOPs. Most of the fetch 

packets have eight execute packets (serial as opposed to the desired parallel exe-

cution). 

The VLIW version of g711 shows a slowdown (0.63) over the non-

SIMD code. However, analysis showed that the base non-SIMD model, which is 

a 3-way dynamically scheduled superscalar processor, achieves an IPC of ap-

proximately 2.0. The C62xx code for g711 has very few packets with more than 

one slot utilized. Branches are followed by NOPs for 5 cycles in the assembly 

code. There are also several loads due to the look-up table and NOPs for 4 cy-

cles are inserted in the code. Because of static scheduling combined with no 

branch prediction, and the control nature of the application, no parallelism could 
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be exploited. Also, the g711 operates on 8-bit data and the rest of the 24-bits 

(the C62xx data width is 32-bits internally) is being wasted.  

Even the speedup achieved by the application benchmarks from SIMD 

technology is not appreciable. The aud application shows a moderate speedup of 

around 2.0 for the SIMD code over the non-SIMD code. About 28% of the dy-

namic instructions are MMX-related. Loop unrolling of 4 was used for each of 

the echo effects, filtering and signal mixing portions of this application. The 

adpcm benchmark does not have any MMX instructions because this algorithm 

is inherently sequential in that each computation on a data sample depends on 

the result of the immediately preceding sample. The g711 SIMD version exhib-

ited a speedup of 1.28 over the non-SIMD code. The number of MMX related 

instructions are only around 4% and the performance increase is partly due to 

manual loop unrolling. 

 Overall, it is found that both SIMD and VLIW processors are able to ex-

tract DLP and ILP respectively in multimedia and DSP programs. VLIW proc-

essors have the advantage of exploiting ILP where DLP does not exist (adpcm 

benchmark). On the other hand, VLIW processors without dynamic scheduling 

and branch prediction are seen to be heavily dependent on the capabilities of the 

compiler (g711 and adpcm) while dynamically scheduled superscalar processors 

can exploit ILP irrespective of the quality of the compiled code. 
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4.3 Summary 

In this chapter, the execution characteristics of several commercial multimedia 

applications were evaluated under different domains – 3D graphics, streaming 

video, and streaming audio. Using built-in hardware performance counters, sta-

tistics such as CPI, branch frequency and mis-prediction rate, instruction stream 

and resource stalls, and cache behavior are compared with corresponding char-

acteristics of SPEC and desktop benchmarks. The major observations are 

summarized below: 

 

• The number of resource stalls per instruction for multimedia applications is 

twice that of SPECint95 workloads, similar to desktop workloads, and one-

third of SPECfp95 workloads. The number of instruction stream stalls per 

instruction for multimedia applications is similar to that of SPECint95 work-

loads and one-third of desktop workloads. SPECfp95 workloads have negli-

gible instruction stalls per instruction. Overall, the combined resource and I-

stream stall ratios for media benchmarks lie between SPECint95 and 

SPECfp95/desktop workloads. A similar trend is observed in the CPI reflect-

ing the influence of resource and I-stream stalls on CPI. 

• The branch frequency of multimedia workloads is one-half of the SPECint95 

workloads and twice that of SPECfp95 workloads. However, the branch 
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mispredict ratio for multimedia applications is higher than both SPECint95 

and SPECfp95 applications.  

• The number of data memory references per instruction on the x86 architec-

ture is observed to be approximately 0.55 irrespective of the workload 

(SPEC, desktop, or multimedia).  

• Contrary to the popular belief that data caches are ineffective for multimedia 

applications due to their streaming nature, it is found that multimedia bench-

marks achieve a 98% L1 cache hit-rate (16 kB, 4-way) and a 99.5% global 

L2 hit-rate (512 kB, 4-way). Multimedia applications achieve a better L1 

data cache performance (16 kB, 4-way) than SPECint2000, SPECfp95, and 

SPECfp2000 and slightly worse than SPECint95 workloads. The L1 in-

struction cache miss-rate is similar to SPECint95, but one-half of SPE-

Cint2000 benchmarks (SPECfp95 and SPECfp2000 exhibit near 100% L1 I-

cache hit-rates). 

• Most of the multimedia applications do not use significant floating-point op-

erations, except the streaming audio applications, Winamp (30% floating-

point instructions) and RealAudio (10% floating-point instructions). 

• Three of the six benchmarks evaluated used MMX instructions (10-50%) 

and less than 20% of all MMX instructions are used for packing and unpack-

ing operations. 
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• In media applications, one x86 instruction results in an average of 1.4 

UOPS, very similar to SPECint95 and SPECfp95 benchmarks (desktop 

workloads exhibit an average of 1.7). 

• The speculative execution factor for multimedia applications is lower than 

SPECint95, SPECfp95, and desktop workloads (SPECint95 has the highest 

speculative execution factor).  

• VLIW processors can exploit ILP in programs that do not have DLP. How-

ever, they are heavily dependent on the compiler and performance on appli-

cations is relatively poor when compared to performance on kernels. 
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Chapter 5   

Bottlenecks in Multimedia  

Processing with SIMD style Extensions 

 

SIMD extensions accelerate multimedia applications by exploiting DLP. While 

the improvement in performance has been encouraging and exciting, I notice 

that performance does not scale with increasing SIMD execution resources. The 

primary contribution of this chapter is the characterization of media workloads 

from the perspective of support required for efficient SIMD processing. Typi-

cally, studies have focused on the SIMD computation part of the algorithms. In 

this chapter, I focus on the supporting instructions and show that significant ad-

ditional performance opportunities exist for SIMD GPPs. 

I embark on a study to understand the behavior of multimedia applica-

tions on SIMD GPPs and evaluate DLP in multimedia applications. In this chap-

ter I attempt to answer the following: 

• SIMD GPPs typically exploit the sub-word parallelism between independent 

loop iterations in the inner loops of multimedia programs. Where does DLP 
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in media applications reside? Does most of the DLP reside in the inner 

loops, or is there significant DLP in the outer loops? 

• Nested loops are required for processing multimedia data streams and this 

necessitates the use of multiple indices while generating addresses. GPPs 

contain limited support to compute addresses of elements with multiple indi-

ces. How many levels of nesting are required in common media algorithms? 

Are the addressing sequences primarily sequential? 

• While SIMD extensions are capable of performing multiple computations in 

the same cycle, it is essential to provide data to the SIMD computation unit 

in a timely fashion in order to make efficient use of the sub-word parallel-

ism. Providing data in a timely fashion requires supporting instructions for 

address generation, address transformation (data reorganization such as 

packing, unpacking, and permute), processing multiple nested loop branches, 

and loads/stores. Are these supporting instructions a dominant part of the in-

struction stream? 

• What percentage of the peak computation rate is achieved for the SIMD exe-

cution units in GPPs? If the computation rate is low, what are the reasons 

that prevent the SIMD execution units from achieving a good computation 

rate? 
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The rest of the chapter is organized as follows. Section 5.1 includes sen-

sitivity experiments on the scalability of conventional ILP and DLP techniques. 

Section 5.2 describes studies to detect bottlenecks in the execution of SIMD 

programs. Section 5.2.1, describes the loop nesting and access patterns in mul-

timedia applications and their mapping onto SIMD GPPs. Section 5.2.2 classi-

fies dynamic instructions into two fundamental categories – the useful computa-

tion instructions and the overhead/supporting instructions and analyze their mix 

in media benchmarks. In Section 5.2.3, I measure the percent of peak computa-

tion rate achieved for the SIMD execution units in GPPs by conducting experi-

ments on two different superscalar processors. Section 5.2.4 identifies additional 

bottlenecks in conventional ILP processors that limit the computation rate of the 

SIMD execution units. The chapter is summarized in Section 5.3. 

 

5.1 A Scalability test 

A logical approach to improve performance is to scale the processor resources to 

extract more parallelism. To understand the ability of wide out-of-order super-

scalar processors to increase performance of multimedia programs, I performed 

experiments scaling the various resources of the processor as in Table 5.1. Fig-

ure 5.1(a) shows the instructions per cycle (IPC) for different processor 

configurations for nine multimedia benchmarks.  
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Table. 5.1  Processor and memory configuration for the scalability test 

Parameters 2-way 4-way 8-way 16-way 

Fetch width,  
Decode width,  
Issue width, and  
Commit width 

2 4 8 16 

RUU Size 32 64 128 256 

Load Store Queue 16 32 64 128 

Integer ALUs              
(Latency/recovery = 1/1) 

2 4 8 16 

Integer Multipliers     
(Latency/recovery = 3/1) 

1 2 4 8 

Load/Store ports        
(Latency/recovery = 1/1) 

2 4 8 16 

L1 I-cache  
(Size in kB, hit time,  
Associativity, block size in bytes) 

16, 1, 1, 32 16, 1, 1, 32 16, 1, 1, 32 32, 1, 1, 64 

L1 D-cache  
(Size in kB, hit time,  
Associativity, block size in bytes) 

16, 1, 4, 32 16, 1, 4, 32 16, 1, 4, 32 16, 1, 4, 32 

L2 unified cache  
(Size in kB, hit time,  
Associativity, block size) 

256, 6, 4, 
64 

256, 6, 4, 
64 

256, 6, 4, 
64 

256, 6, 4, 
64 

Main memory width 64 bits 128 bits 256 bits 256 bits 

Main memory latency  
(First chunk, next chunk 

65, 4 65, 4 65, 4 65,4 

Branch Predictor – bimodal  
(Size, BTB size) 

2K, 2K 2K, 2K 2K, 2K 2K, 2K 

SIMD ALUs 2 4 8 16 

SIMD Multipliers 1 2 4 8 
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 I, incidentally, also note that almost the same performance can be 

achieved even if the SIMD units were not scaled; i.e. the non-SIMD components 

are scaled up to the 16-way processor keeping the SIMD component constant as 

a 2-way processor (2 SIMD ALUs and 1 SIMD multiplier). The IPC for this 

case is depicted in Figure 5.1(b). The percentage increase in IPC when scaling 

0
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cfa dct mot scale aud g711 jpeg ijpeg decrypt

(a)

IP
C

2-w ay 4-w ay 8-w ay 16-w ay
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C

Figure. 5.1. Results of the scalability test. (a) IPC with both the SIMD
and non-SIMD resources scaled, (b) IPC with non-SIMD resources
scaled, but SIMD resources are constant (same as 2-way processor
configuration) and (c) performance improvement of (a) over (b) 

 cfa dct mot scale aud g711 jpeg ijpeg decrypt 
4-way < 1 % < 1 % < 1 % < 2 % < 4 % < 1 % < 1 % < 1 % < 1 % 

8-way < 1 % < 1 % < 1 % < 3 % < 1 % < 1 % < 1 % < 1 % < 1 % 

16-way < 1 % < 1 % < 1 % < 1 % < 1 % < 1 % < 1 % < 1 % < 1 % 

     (c) 
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both the SIMD and non-SIMD resources over the case of scaling only the non-

SIMD resources is shown in Figure 5.1(c). This experiment shows that there are 

several bottlenecks in multimedia processing using SIMD style extensions.  

 

5.2 Identification of Bottlenecks 

It is evident that there are several bottlenecks in SIMD style media processing 

and that it is not possible to achieve significant additional performance im-

provements by making the processor wider/bigger to extract more parallelism. I 

investigate characteristics of media programs that point towards the bottlenecks 

in current SIMD architectures. 

 

5.2.1 Nested loops in multimedia applications 

In this section the nature of multimedia loops is investigated to understand the 

levels of nesting, stride patterns, and the location of the parallelism. Desk-

top/workstation multimedia applications such as streaming video encod-

ing/decoding (MPEG 1/2/4 and Motion JPEG), audio encoding/decoding 

(ADPCM, G.7xx, MP3, etc), video conferencing (H.323, H.261, etc), 3D games, 

and image processing (JPEG, filtering) typically operate on sub-blocks in a large 

1- or 2-dimensional block of data. Audio applications operate on chunks of one-

dimensional data samples at a time. For example, the MP3 codec operates on 
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“frames” which are smaller components of the complete audio signal that lasts a 

fraction of a second. Image and video applications operate on sub-blocks of two-

dimensional data at a time. For example, the DCT algorithm operates on 8x8 

pieces of data in a large image such as 1600x1200 pixels. Such a division of data 

into sub-blocks results in the data being accessed with different strides at various 

instances in the algorithm. Figure 5.2 depicts a 2-dimensional block of data that 

is accessed with four different strides – two in the vertical direction and two in 

the horizontal direction. 

 Source code for the aforementioned algorithms involves the usage of 

multiple nested loops (commonly ‘for’ loops in C language) to process the data 

streams. Much of the available parallelism in multimedia applications is DLP 

Stride-4 (horz) 

Stride-3 (vert) 

Stride-1 (vert) 

Stride-2 (horz) 

sub-block 

Figure. 5.2. A 2-D data structure in which sub-blocks of data 
are processed. Each sub-block requires two strides (one each 
along the rows and columns of the sub-block, namely stride-4 
and stride-3). Additional two strides (stride-2 and stride-1) are 
required for accessing different sub-blocks in the horizontal and 
vertical direction. 
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that resides at the various levels of nesting. The dimensions of each sub-block 

for most multimedia algorithms are small (filtering typically uses 3x3 or 5x5 or 

5x7 sub-blocks, DCT operates on 8x8 sub-blocks, and motion estimation oper-

ates on 16x16 sub-blocks) resulting in limited parallelism in the innermost loop. 

However, the number of sub-blocks themselves is large since the size of the data 

stream can be on the order of several MB. Consequently, a significant part of the 

DLP in multimedia applications resides outside the innermost loop, unless ap-

plications are coded differently.   

Existing GPPs with SIMD extensions exploit DLP between independent 

loop iterations in the innermost loops leading to significant untapped available 

DLP in multimedia applications. Figure 5.3 shows the SIMD C-code implemen-

tation of the DCT (the DCT is a major component in JPEG image and MPEG 

video coding) which operates on 8x8 sub-blocks in an image of a given height 

and width. The second matrix is transposed before doing the computation be-

cause accessing the second matrix in column-major order results in a significant 

amount of overhead. This is particularly true when using SIMD instructions be-

cause a SIMD register needs to be packed with an element from different rows 

(and hence not contiguous). If a SIMD register holds eight elements, then all 

eight rows of a matrix need to be loaded into the cache and then elements be-

longing to the same column are packed into the register. It is possible to elimi-

nate one of the transpose operations (either from row or column 1D-DCT) if a 
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Figure. 5.3. C-code for 2D-DCT implementation 

void 2D_DCT(IMAGE[IMAGE_WIDTH][IMAGE_HEIGHT]) 
{ 
   for(i = 0; i < IMAGE_HEIGHT/8; i++) 
      for(j = 0; j < IMAGE_WIDTH/8; j++) 
      { 
          /* perform 1D row and column DCT */ 
  
 /* output[8][8] =  dct_coeff[8][8] * block[8][8] * 
   dct_coeff[8][8]T 

 */ 
 

1D_ROW_DCT (dct_coeff [8][8], block [8][8]); 
          1D_COL_DCT (block [8][8], dct_coeff [8][8]T); 
      } 
} 

void 1D_XXX_DCT(DCT_COEFF[8][8], BLOCK[8][8]) 
{ 
   Transpose (BLOCK [8][8]); 
   for(k = 0; k < 8; k++) 
   { 
      for(l = 0; l < 8; l++) 
      { 
         temp = 0; 
         for(m = 0; m < 8/SIMD_WIDTH; m++) 
 
            temp +=  
SIMD_MUL (dct_coeff [k][m], block [l][m]; 
 
         output[k][l] = SIMD_REDUC (temp) 
      }  
   }  
} 

transposed version of the DCT coefficients is available.  In Figure 5.3, there are 

a total of five nested for-loops for the DCT routine. Current SIMD instructions 
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exploit DLP in the innermost for-loop (variable ‘m’). The number of iterations 

would be scaled down according to the width of the available SIMD datapath 

(currently 64 or 128 bits wide) and size of each element (8-bit, 16-bit, or 32-bit).  

Next, the access patterns in media applications are studied. Analysis of 

media and DSP applications unveils invocation of several address patterns, often 

multiple simultaneous sequences [8]. Figure 5.4 shows the typical access pat-

terns in media and DSP kernels. Table 5.2 lists several key multimedia and DSP 

kernels and the typical number of nested loops required along with their corre-

sponding primitive addressing sequences.  

 

 

 

Given a sequence of length L, if Am is address m in the range 0 ≤ m ≤ L-
1, most multimedia and DSP kernels can be considered to be composed
of primitive addressing sequences such as the following: 
 

(i) Sequential addressing: A0, A1, A2, …AN-1 
(ii) Sequential with offset (k)/stride addressing: A0+k, A1+k, A2+k,

…, AN-1+k 
(iii) Shuffled addressing (base r, N/r = p): A0, Ap, A2p, …, A1,

Ap+1, A2p+1, …, A2, A2p+2, …, A2p+2, …, AN-1 
(iv) Bit-reversed addressing (e.g. N = 8): A0, A4, A2, A6, A1, A5,

A3, A7 
(v) Reflected addressing: A0, AN-1, A1, AN-2, …, Am, AN-m, …,

AN/2-1, AN/2 

Figure. 5.4. Typical access patterns in multimedia and DSP kernels [8] 
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Table. 5.2  Summary of key media algorithms and the required nested 
loops along with their primitive addressing sequences 

 

Multimedia/DSP algorithm Nested 
loops 

Addressing Sequences 

Discrete Cosine Transform 
(JPEG & MPEG coding) 

5 
Sequential and sequential with multiple 
offsets/strides 

Motion Est./Comp.  
(MPEG, H.263, etc) 

5 
Sequential and sequential with multiple 
offsets/strides 

Wavelet Transform 
(JPEG2000) 

> 5 
Sequential and sequential with multiple 
offsets/strides 

Color Space Conversion 
(JPEG, MPEG, 3D graphics) 

> 4 
Sequential, sequential with offsets, and 
shuffled 

Scaling and matrix operations 
(image/video) 

3 
Sequential and sequential with multiple 
offsets/strides 

Fast Fourier transform > 3 Shuffled and bit-reversed 

Color Filter Array, median 
filtering, correlation 

2 – 5 
Sequential and sequential with multiple 
offsets/strides 

Convolution, FIR, and IIR 
filtering 

3 – 4 
Sequential, sequential with offsets, and re-
flected 

Edge detection, alpha satura-
tion (image/video) 

2 – 5 
Sequential and sequential with multiple 
offsets/strides 

Up/Down sampling, 3-D 
transformation (graphics) 

3 – 5 
Sequential and sequential with multiple 
offsets/strides 

Quantization  
(JPEG, MPEG) 

2 – 4 
Sequential and sequential with multiple 
offsets/strides 

ADPCM, G.711  
(speech) 

2 – 3 
Sequential and sequential with multiple 
offsets/strides 

 

Hardware to generate multiple address sequences is not overly compli-

cated, but supporting them using general-purpose instruction sets is not very ef-
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ficient, as the available addressing modes are limited. Furthermore, there is not 

enough support for keeping track of multiple indices/strides efficiently in GPPs. 

Similarly, keeping track of multiple loop nests/bounds involves a combination 

of several addressing modes and instructions.   

Thus, even though GPPs are enhanced with SIMD extensions to extract 

DLP in multimedia programs, there is a mismatch between the requirements of 

media applications (for address generation and nested loops) and the ability of 

GPPs with SIMD extensions. Simple ASICs can perform these tasks efficiently, 

however, loss of programmability and flexibility is a weakness of that approach. 

 

5.2.2 Overhead/supporting instructions 

The discussion in the previous section points to the need of several instructions 

to compute addresses and otherwise support the core SIMD computations. In 

this section, I analyze the media instruction stream by focusing on the two dis-

tinct sets of operations: the useful computations as required by the algorithm 

and the supporting instructions such as address generation, address transfor-

mation (data movement and data reorganization such as packing and unpack-

ing), loads/stores, and loop branches. Consider the DCT code in Figure 5.3. The 

useful computation instructions for the DCT routine are the multiply (of DCT 

coefficients and data) and the accumulate operations (addition of multiplied val-

ues). This is shown in bold in Figure 5.3. All the other instructions are denoted 
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as overhead; their sole purpose is to aid in the execution of the useful computa-

tion instructions. Many of them arise due to the programming conventions of 

general-purpose processors, abstractions and control flow structures used in pro-

gramming, and mismatch between how data is used in computations versus the 

sequence in which data is stored in memory. A similar kind of classification of 

instructions into access and execute instructions was performed in DAE proces-

sors [88][89]. In my classification, the overhead component includes loop 

branches and reduction operations [22] that are specific to multimedia applica-

tions (e.g. packing, unpacking, and permute) in addition to the memory access 

instructions. The instructions contributing to the overhead are: 

 

• Address generation – considerable processing time is dedicated in perform-

ing the address calculations required to access the components of the data 

structures/arrays, which is sometimes called address arithmetic overhead. 

• Address transformation – transforming the physical pattern of data into the 

logical access sequence (transposing the matrix in Figure 5.3, pack-

ing/unpacking data elements in SIMD computations, and reorganizing in 

other ways). 

• Loads and stores – data is not always available in registers and has to be 

fetched from memory or stored to memory, the so-called access overhead. 
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• Branches – performing control transfer (for each of the nested for-loops). 

 

Figures 5.5 and 5.6 show the assembly code classified into useful com-

putation and overhead instructions (for the Pentium III and Simplescalar based 

processors) for the 1D-DCT routine from Figure 5.3 (excluding the transpose 

function), i.e. the three inner level nested loop structure. Transposing the second 

matrix before multiplication will necessitate additional overhead instructions for 

address transformation.  

 From Figures 5.5 and 5.6, it can be seen that a significant number of 

overhead/supporting instructions are necessary to feed the SIMD computation 

units. In order to quantify the amount of overhead/supporting instructions in 

multimedia programs, the performance of six benchmarks (cfa, dct, mot, scale, 

aud, and g711) is evaluated. Jpeg, ijpeg, and decrypt are not used in this ex-

periment because the source code for these three benchmarks includes initializa-

tion routines and file I/O. Five of the six benchmarks (except g711) were 

mapped in such a way that the SIMD execution units perform every useful com-

putation. Figure 5.7 shows the breakdown of dynamic instructions into various 

classes (memory, branch, integer, SIMD overhead, and SIMD computation). 
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Pentium III – SIMD code 
 
lea  ebx, DWORD PTR [ebp+128]  load/address overhead 
mov DWORD PTR [esp+28], ebx   load/address overhead 
$B1$2: 
xor eax, eax    address overhead 
mov edx, ecx    address overhead 
lea edi, DWORD PTR [ecx+16] load/address overhead 
mov DWORD PTR [esp+24], ecx load/address overhead 
$B1$3: 
movq mm1, MMWORD PTR [ebp] load overhead 
pxor mm0, mm0   initialization overhead 
pmaddwd mm1, MMWORD PTR [eax+esi]   

Computation 
movq mm2, MMWORD PTR [ebp+8] load overhead 
pmaddwd mm2, MMWORD PTR [eax+esi+8]  

Computation 
add eax, 16    address overhead 
paddw mm1, mm0   Computation 
paddw mm2, mm1   Computation 
movq mm0, mm2   load related overhead 
psrlq mm2, 32    SIMD reduction overhead 
movd ecx, mm0   SIMD load overhead 
movd ebx, mm2   SIMD load overhead 
add ecx, ebx    SIMD conv. Overhead 
mov WORD PTR [edx], cx  store overhead 
add edx, 2    address overhead 
cmp edi, edx    branch related overhead 
jg $B1$3    loop branch overhead 
$B1$4: 
mov ecx, DWORD PTR [esp+24] load/address overhead 
add ebp, 16    address overhead 
add  ecx, 16    address overhead 
mov eax, DWORD PTR [esp+28] load/address overhead 
cmp eax, ebp    branch related overhead 
jg $B1$2    loop branch overhead 
 

Figure. 5.5.  Pentium III optimized assembly code for the 1D-DCT 
routine shown in Figure 5.2 (excluding matrix trans-
pose) 
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Figure. 5.6.  Simplescalar optimized assembly code for the 
1D-DCT routine shown in Figure 5.2 (excluding 
matrix transpose) 

Simplescalar-SIMD – gcc code 
 
move $11,$0    address overhead 
l.d $f6,$LC1   load overhead 
$L33: 
move $10,$0    address overhead 
move $9,$5    address overhead 
$L37: 
mtc1 $0,$f4    initialization overhead 
mtc1 $0,$f5    initialization overhead 
move $8,$0    address overhead 
move $7,$9    address overhead 
move $3,$4    address overhead 
$L41: 
l.simd $f0,0($3)   SIMD load overhead 
l.simd $f2,0($7)   SIMD load overhead 
mul.simd $f0,$f0,$f2  Computation 
addu $8,$8,1    address overhead 
add.simd $f4,$f4,$f0  Computation 
slt $2,$8,2    branch related overhead 
addu $7,$7,8    address overhead 
addu $3,$3,8    address overhead 
bne $2,$0,$L41   loop branch overhead 
redu.simd $f4,$f4,$f6  SIMD reduction overhead 
addu $9,$9,16    address overhead 
addu $10,$10,1   address overhead 
slt $2,$10,8    branch related overhead 
s.simd $f4,0($6)   SIMD store overhead 
bne $2,$0,$L37   loop branch overhead 
addu $6,$6,16    address overhead 
addu $4,$4,16    address overhead 
addu $11,$11,1   address overhead 
slt $2,$11,8    branch related overhead 
bne $2,$0,$L33   loop branch overhead 
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The overhead/supporting instructions that are required to assist the 

SIMD computation (useful computations) instructions dominate the dynamic 

instruction stream (75-85%). A significant number of instructions are required 

for processing the loop branches and computing the strides for accessing the 

data organized in sub-blocks.  

 

5.2.3 SIMD throughput and efficiency 

In this section, the throughput of the SIMD units is evaluated to understand the 

impact of the overwhelming number of instructions needed to support the SIMD 

computations. I define SIMD efficiency as the ratio of the execution cycles ide-

ally necessary for the useful computation instructions to the overall execution 

cycles actually consumed. In other words, SIMD efficiency indicates what frac-

Figure. 5.7. Breakdown of dynamic instructions into various classes 
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tion of the peak throughput of the SIMD units is actually achieved. The actual 

execution cycles are obtained by measurement with processor performance 

counters or by simulation, while the ideal cycles are computed assuming that the 

overhead instructions can be perfectly overlapped with the useful computation 

instructions. In the ideal case, overhead instructions such as address generation, 

memory access, data reorganization, and loop branches do not consume addi-

tional processor cycles. The number of ideal execution cycles depends on the 

amount of SIMD resources in a machine. For example, consider a matrix multi-

plication algorithm of two NxN matrices, with computational complexity O(N3). 

Further, this assumes that the processor contains one multiplier, which is pipe-

lined, and that the addition/accumulation can take place in parallel. Thus, an 8x8 

matrix multiply should take 512 cycles on a machine with one multiplier (in the 

pure dataflow model), and take 128 cycles on a machine with 4 multipliers (as-

suming that there are at least 4 adders for the accumulation). If this algorithm 

were to take 2500 cycles on a real machine with one multiplier, then the effi-

ciency of computation is 20% (512/2500). If efficiency achieved is low, then it 

suggests opportunities for further enhancement.  

The SIMD efficiency is measured on two platforms, a Pentium III ma-

chine and a 2-way Simplescalar simulator, for each of the six benchmarks. Table 

5.3 shows the execution statistics and SIMD efficiency for each of the bench-

marks. The ideal number of execution cycles is computed by identifying the 
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number of required useful computation operations and the available SIMD exe-

cution units (2 ALUs and 1 multiplier in both the processors).  

 

Table. 5.3 Execution statistics and efficiency of media programs 

Pentium III – MMX & SSE 
Benchmark 

Inst. Count Actual 
Cycle count 

Efficiency 

cfa 404,290,544 231,616,932 5.16 % 
dct 188,798,806 123,944,326 6.2 % 

scale 2,170,274 20,756,929 2.31 % 
motest 156,734,613 113,623,185 3.38 % 

aud 220,320,505 150,386,375 11.97 % 
g711 59,066,806 64,006,729 1.12 % 

Simplescalar - SIMD 
Benchmark 

Inst. Count Actual 
Cycle count 

Efficiency 

cfa 349,447,420 338,685,938 3.53 % 
dct 160,050,834 131,587,103 5.84 % 

scale 3,129,815 4,626,696 10.36 % 
motest 136,801,609 129,364,679 5.94 % 

aud 283,199,976 191,516,819 9.40 % 
g711 63,360,233 49,302,976 1.45 % 

 

 

SIMD efficiency ranges from 1% to 12% and 1.5% to 10.5% for the 

Pentium III and Simplescalar based SIMD processor, respectively. The SIMD 

efficiency is alarmingly low because the supporting instructions dominate the 

dynamic instruction stream. The execution time is also increased because of 

conventional architectural limitations such as cache misses, misalignment issues, 
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resource stalls, BTB misses, TLB misses, and branch mis-speculations. The effi-

ciency of the Pentium III processor is slightly higher than the Simplescalar 

based processor in four of the six benchmarks because it is able to issue three 

micro-ops (equivalent to 2.7 x86 CISC instructions for the benchmarks above) 

while the Simplescalar processor issues two instructions per cycle. Two bench-

marks (scale and g711) achieve a better efficiency for the Simplescalar configu-

ration because they are more memory intensive than the other benchmarks (the 

L1 cache latency of the Pentium III processor is 3 cycles, while that of the Sim-

plescalar configuration is 1 cycle).  

I also measured similar statistics for the Pentium III and the Simplescalar 

based processor without SIMD extensions. It is found that the execution time is 

slower than SIMD enhanced processors, but the efficiency is higher for non-

SIMD processors. This is because a 64-bit SIMD execution unit counts towards 

a peak rate of either 4 or 8 computations per cycle (16-bit or 8-bit data), whereas 

the scalar execution unit counts toward a single computation per cycle. While it 

is true that SIMD enhancements were not added to improve efficiency of proc-

essing but to speedup multimedia programs, this characterization highlights the 

gap between peak computation rate and achieved computation rate for SIMD 

programs and points to ample opportunities for performance improvement. 
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5.2.4 Memory access and branch bottlenecks 

Supporting wide issue processors requires the ability to fetch across multiple 

branches. Also, memory latency prevents processors from fetching data in a 

timely fashion to achieve peak throughput. In this section, I investigate how 

memory latency and branch prediction impact the performance of these media 

kernels and applications. Table 5.4 shows the IPC with unit cycle memory ac-

cess (i.e. a perfect L1 cache) and perfect branch prediction for the 2-, 4-, 8-, and 

16-way processors with SIMD extensions.  

It is seen that different programs vary in their sensitivity to memory la-

tency and branch prediction. Scale and g711 benchmarks are memory bound 

programs and improve significantly due to a unit cycle memory access but show 

negligible increase in IPC due to perfect branch prediction. Cfa, dct, and mot are 

benchmarks that operate on sub-blocks in a 2-D structure requiring five levels of 

loop nesting and benefit the most from perfect branch prediction and the ability 

to fetch across multiple branches in a single cycle. A unit cycle memory access 

has negligible performance impact on these three benchmarks. The remaining 

four benchmarks (aud, jpeg, ijpeg, and decrypt) benefit equally from both per-

fect branch prediction and unit cycle memory access. 

 It is evident from this experiment that it is extremely important to pro-

vide low latency memory access and excellent branch prediction extending over 

multiple branches in order to achieve good performance. 



 91 
 

Table. 5.4  Performance (IPC) with unit cycle memory accesses  
and perfect branch prediction 

 

 cfa dct mot scale aud g711 jpeg ijpeg decrypt 

Realistic IPC  

2-way 1.03 1.22 1.06 0.68 1.48 1.29 1.18 1.27 1.66 

4-way 2.19 1.71 2.14 1.05 2.26 2.29 1.85 2.12 2.38 

8-way 2.66 2.26 2.85 2.34 3.48 3.83 2.23 2.81 2.80 

16-way 2.68 2.92 2.87 3.90 4.89 5.65 3.80 3.58 3.67 

IPC with Unit cycle memory access 

2-way 1.04 1.26 1.06 1.43 1.57 1.59 1.33 1.34 1.75 

4-way 2.19 1.78 2.14 2.84 2.50 3.10 2.00 2.30 2.52 

8-way 2.71 2.30 2.85 5.56 3.66 5.22 2.37 3.21 2.95 

16-way 2.71 2.95 2.86 9.54 5.27 7.76 5.10 4.07 3.89 

IPC with perfect branch prediction 

2-way 1.75 1.60 1.79 0.68 1.62 1.29 1.24 1.42 1.70 

4-way 3.44 3.09 3.59 1.05 2.69 2.29 1.92 2.60 2.40 

8-way 6.47 5.91 7.03 2.35 4.35 3.79 2.46 3.99 2.86 

16-way 10.49 11.19 11.61 3.91 6.37 5.55 5.45 6.66 3.79 

 

 

5.3 Summary 

It is often perceived that the characteristics of media applications are well under-

stood. However, detailed analysis shows that there are several features in media 

workloads beyond the well-touted characteristics such as DLP and structured 
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computations. This chapter analyzes multimedia workloads focusing on instruc-

tions that support core computations rather than the computations themselves. 

Based on an investigation of loop structures and access patterns in multimedia 

algorithms, it is found that significant amount of parallelism lies outside the 

innermost loops, and it is difficult for SIMD units to exploit the parallelism. The 

characteristics preventing SIMD computation units from computing at their peak 

rate are analyzed. The major findings of the bottleneck analysis are: 

• Approximately 75-85% percent of instructions in the dynamic instruction 

stream of media workloads are not performing useful computations. They 

are performing address generation, data rearrangement, packing/unpacking, 

loop branches, and loads/stores. 

• The efficiency of the SIMD computation units is very low because of the 

overhead/supporting instructions. Measurements on a Pentium III processor 

with a variety of media kernels and applications illustrate SIMD efficiency 

ranging only from 1% to 12%. 

• Increasing the number of SIMD execution units does not impact perform-

ance positively leading me to conclude that resources for over-

head/supporting instructions need to be scaled. I observe that a significant 

increase in scalar resources is required to increase the SIMD efficiency using 

conventional ILP techniques. An 8-way or 16-way integer processor is nec-
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essary to process the overhead instructions for the SIMD width in current 

processors. 
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Chapter 6   

Hardware Support for Efficient SIMD Processing 

 

Overhead or supporting instructions dominate the instruction stream of multi-

media applications due to the programming conventions of GPPs. Overhead re-

lated instructions need to be either eliminated, alleviated, or overlapped with the 

useful computations for better performance, i.e. the higher the overlap of over-

head related instructions, the higher the SIMD efficiency. In this chapter, I ex-

ploit the observed characteristics of the media programs and propose to augment 

SIMD GPPs with specialized hardware to efficiently overlap the over-

head/supporting instructions. 

SIMD instructions reduce the dynamic count of instructions because they 

operate on multiple data in a single instruction. Due to the repetitive operations 

required by media applications such a technique reduces the number of instruc-

tion fetches and decodes. However, SIMD instructions capture only the useful 

computation operation. In Chapter 5, I showed that overhead/supporting instruc-

tions that are necessary for feeding the SIMD execution units constitute 75% to 

85% of the dynamic instructions.  
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 Similar to the computation operations, parallelism exists in the over-

head/supporting instructions. However, GPPs have limited support for generat-

ing addresses and keeping track of multiple loop nests/bounds. In this chapter, I 

present an architecture that incorporates explicit hardware support for efficiently 

executing the overhead/supporting instructions in a SIMD GPP. In addition to 

capturing the useful computation operations, all the associated overhead opera-

tions are captured in a single multidimensional vector instruction. This leads to a 

drastic reduction in dynamic instructions and reduces repeated (and unneces-

sary) fetch and decode of the same instructions.  

 The rest of the chapter is organized as follows. Section 6.1 describes the 

proposed architecture. Section 6.2 presents the performance evaluation. The 

chapter is summarized in Section 6.3. 

 

 

6.1 The MediaBreeze Architecture 

6.1.1 Decoupling computation and overhead 

I exploit the characteristics of media applications that were observed in Chapter 

5 by proposing the MediaBreeze architecture. Specialized hardware is incorpo-

rated in a SIMD GPP to efficiently overlap the overhead/supporting instructions. 

Figure 6.1 shows the block diagram of the MediaBreeze architecture. 
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In order to perform the SIMD operations, the MediaBreeze architecture 

introduces new hardware units as well as reuses existing hardware units. The 

new hardware units (darkly shaded blocks in Figure 6.1) are the address genera-

tion units, hardware looping, and Breeze instruction memory & interpreter. The 

hardware units reused (lightly shaded blocks in Figure 6.1) are load/store units, 
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SIMD computation unit, data reorganization/address transformation, and the 

data station. The SIMD computation unit handles the useful computation part 

while the remaining units handle the overhead/supporting instructions. The 

hardware units that process the overhead related instructions are: 

• Address calculation: address arithmetic functions are moved from the execu-

tion unit subsystem in current processors to a dedicated hardware unit where 

address arithmetic hardware generates all input and output address streams 

concurrently with the SIMD computations. Address calculations are per-

formed explicitly by the CPU in current ILP processors. This involves some 

combination of extra instructions, parts of instructions, registers, memory 

accesses, and computation time. Dedicated address arithmetic hardware 

would allow for the SIMD computation unit to stream at the peak rate. 

• Address transformation: In many algorithms, the logical access sequence of 

data is vastly different from the physical storage pattern. Various permute 

operations including pack, unpack instructions are used. For example, the 

first element in eight columns of a matrix must be packed into a single row 

(or SIMD register). Similarly a single element (16-bits wide) must be un-

packed into all the four sub-words of a SIMD register (64-bits wide). Me-

diaBreeze efficiently handles the task of reordering data with explicit hard-

ware support. 
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• Loads and stores: The same load/store units present in conventional ILP 

processors are used for this purpose.  

• Branch processing: To eliminate branch instruction overhead, MediaBreeze 

employs zero-overhead branch processing using dedicated hardware loop 

control and supports up to five levels of loop nesting. All branches related to 

loop increments (based on indices used for referencing data) are handled by 

this technique. This is done in many conventional DSP processors such as 

the Motorola 56000 and TMS320C5x from Texas Instruments [57]1.  

• Data Station: This is the register-file for the SIMD computation and is im-

plemented as a queue. Dedicated register-files are present in conventional 

machines for SIMD either as a separate register file (as in AltiVec) or 

aliased to the floating-point register file (as in MMX). 

• Breeze instruction memory and interpreter: In order to program/control the 

hardware units in the MediaBreeze architecture, a special instruction called 

the Breeze instruction is formulated. The Breeze instruction memory stores 

these instructions once they enter the processor. Figure 6.2 illustrates the 

structure of the Breeze instruction.  

                                                           
1 Recent DSP processors such as the TMS320C62xx have eliminated hardware 

looping because this allows for smaller and simpler instruction sets. Further-

more, multiple loops cannot be encoded in a single 32-bit instruction. 
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 Five loop index counts (bounds) are indicated in the Breeze instruction 

to support five level nested loops (in hardware). None of the nine benchmarks 

required more than five nested loops. The MediaBreeze architecture allows for 

three input data structures/streams and produces one output structure. This was 

chosen because some media algorithms can benefit from this capability (current 

SIMD execution units sometimes operate on three input registers to produce one 

output value). For example, adaptive filtering algorithms use three input streams 

to generate an output stream. Similarly, certain signals are complex-valued re-

quiring the third input stream. If an application does not use the third input 

stream, the third input can be used for prefetching either the first or the second 

input stream.  
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Figure. 6.2. Structure of the Breeze Instruction 
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Each data structure/stream has its own dedicated address generation unit 

to compute the address every clock cycle with the base address specified in the 

Breeze instruction. Due to the sub-block access pattern in media programs, data 

is accessed with different strides at various points in the algorithm. The Breeze 

instruction facilitates multiple strides (one at each level of loop nesting, for a 

total of five strides) for each of the three input streams and one output stream. 

The strides indicate address increment/decrement values based on the loop-nest 

level. Depending on the mask values for each stream (indicated in the Breeze 

instruction) and the loop-nest level, one of the five possible strides is used to 

update the address pointer. If an application does not need five levels of nesting, 

non-constant strides can be generated with the extra levels of looping [75]. 

Data types of each stream/structure are also indicated in the Breeze In-

struction. Depending on the size of each element in the data structures, a differ-

ent amount of SIMD parallelism is achieved. If one data stream is 8-bit data (16-

way parallelism for a 128-bit wide execution unit) and the other is 16-bit data 

(8-way parallelism), the SIMD processing achieves only 8-way parallelism. The 

maximum achievable SIMD parallelism is the minimum of all the data struc-

tures (all commercial SIMD extensions have this limitation). Current SIMD ex-

tensions provide data reorganization instructions such as packing, unpacking, 

and permute for solving the problem of having different element sizes across the 

data structures and introduce additional instruction overhead. By providing this 
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information in the Breeze Instruction, special hardware in the MediaBreeze will 

perform this function. Reduction operations to be performed by the Me-

diaBreeze are also indicated in the Breeze Instruction. For example, multiple 

independent results in a single SIMD register are combined together in dot 

product, which require additional instructions in current DLP techniques. Sup-

port for signed/unsigned arithmetic, saturation, shifting/scaling of final results is 

also indicated in the Breeze Instruction. This eliminates additional instructions 

that are otherwise needed for conventional RISC processors.  

With the support for multiple levels of looping and multiple strides, the 

Breeze Instruction is a complex instruction and decoding such an instruction is a 

complex process in current RISC processors. MediaBreeze instead handles the 

task of interpreting/decoding of the Breeze Instruction. MediaBreeze has its own 

instruction memory to hold a Breeze instruction. Two additional 32-bit instruc-

tions are also added to the ISA of the general-purpose processor for starting and 

interrupting the MediaBreeze. These 32-bit instructions are fetched and decoded 

by the traditional instruction issue logic and contain the length of the Breeze In-

struction. Whenever a Breeze instruction is encountered in the dynamic instruc-

tion stream, the dynamic instructions prior to the Breeze instruction are allowed 

to finish after which the MediaBreeze instruction interpreter decodes the Breeze 

instruction. In the current implementation, the superscalar pipeline is halted until 

the execution of the Breeze instruction is completed because MediaBreeze re-
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uses existing hardware units. Otherwise, arbitration of resources is necessary to 

allow for overlap of the Breeze instruction and other superscalar instructions. A 

100-cycle penalty (a conservative estimate based on simulation) is associated 

between the detection and start of a Breeze instruction in the simulations.  

Encoding all the overhead/supporting operations along with the SIMD 

useful computation instructions has the advantage that the Breeze instruction can 

potentially replace millions of dynamic RISC instructions that have to be 

fetched, decoded, and issued every cycle in a normal superscalar processor. This 

results in giving the MediaBreeze architecture advantages similar to ASIC-based 

acceleration in [107].  

It is possible that an exception or interrupt occurs while a Breeze instruc-

tion is in progress. The state of all five loops, their current counts, and loop 

bounds are saved and restored when the instruction returns. This is similar to the 

handling of exceptions during move instructions with REP (Repeat Prefix) in 

x86. MediaBreeze has registers to hold the loop parameters for all the loops. 

Code development for the MediaBreeze architecture is currently done by hand. 

Similar to developing code for SIMD extensions, compiler intrinsics may be 

employed to utilize the MediaBreeze architecture. I do underestimate the chal-

lenge of compiling for the MediaBreeze architecture; however, the effort is 

comparable to that of compiling for current SIMD extensions.  

 



 103 
 

6.1.2 Multicast: A technique to aid in data transformation 

The MediaBreeze uses a technique called Multicast to eliminate the need for 

transposing data structures, to allow reordering of the computations, and to in-

crease reuse of data items soon after fetch. Multicasting means copying 

one/many data items into several registers or buffers at the same item. For ex-

ample, a data value A may be copied into 8 registers (or 8 sections of a big 

SIMD register) resulting in a pattern A,A,A,A,A,A,A,A or two items A and B 

may be copied to 8 registers in the pattern A,A,B,B,A,A,B,B or 

A,B,A,B,A,B,A,B or another such pattern. The usefulness of multicasting can be 

illustrated by the well-understood matrix-multiply routine. In a matrix-multiply 

routine, usually the first matrix is traversed in row-order and the second matrix 

in column-order. Spatial locality can be exploited in the first matrix due to mul-

tiple data elements in each cache block, while the second matrix incurs a com-

pulsory miss on each column the first time; assuming that two consecutive rows 

do not fit in a cache-block.  In a machine with no SIMD execution units, during 

each iteration for the second matrix, a new cache-line has to be loaded as data 

belongs to the same column but different cache-line. However, for the case of 

SIMD processing, multiple cache-lines need to be loaded and data belonging to 

the required column needs to be reorganized from a vertical to a horizontal di-

rection (packing). This involves substantial overhead and usually, the second 
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matrix is transposed prior to the computation to eliminate the column-access 

pattern.  

The transposing overhead can be eliminated using the Multicast tech-

nique. Instead of using column-access pattern, row-order access pattern is used 

for matrix B, while for matrix A, a single element is multicast to all eight sub-

element locations in the SIMD register.  Then instead of doing the eight multi-

plications to generate the first element C1,1 of the result matrix, all eight multi-

plications using A1,1 (i.e. the first partial product of each of the result terms in 

the first row) are performed.  The sequence of multiplications in a normal SIMD 

matrix multiply and a Multicast matrix multiply are illustrated in Figure 6.3.   

After 64 multiplications, all eight result terms of the first row of the re-

sult matrix will be simultaneously generated. The algorithm using the multicast 

technique is always operating on multiple independent output values, while tra-

ditional techniques compute one result term at a time. This eliminates the need 

for transposing the second matrix. It also increases the reuse of items that were 

loaded, thus improving the cache behavior of the code. The MediaBreeze archi-

tecture provides hardware support for multicasting. This allows the use of cache-

friendly algorithms to perform many media algorithms. In this example, broad-

cast rather than multicast was employed, because one element is transmitted to 

all eight registers. However, in several applications such as horizontal/vertical 

downsampling/upsampling, and filtering, several elements are multicast into the 
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sub-element locations, many-to-many mapping as opposed to one-to-many 

mapping and hence the name multicast.  

  If the dimension of the matrices to be multiplied is large, then the multi-

cast method needs temporary registers or an accumulator to store the accumu-

lated results. However, multimedia applications operate on sub-blocks in huge 

matrices as opposed to processing the entire matrix as a whole. A SIMD paral-

lelism of 8 or 16 is quite adequate to capture most media sub-block matrices. 

A 1,1 A 1,2 A 1,3 A 1,4 A 1,5 A 1,6 A 1,7 A 1,8

B 1,1 B 2,1 B 3,1 B 4,1 B 5,1 B 6, 1 B 7,1 B 8,1

* * * * * * * *

P_RP_RP_RP_RP_RP_RP_RP_R

N-bits wide

3N-bits wide

A 1,1 A 1,1 A 1,1 A 1,1 A 1,1 A 1,1 A 1,1 A 1,1

B 1,1 B 1,2 B 1,3 B 1,4 B 1,5 B 1,6 B 1,7 B 1,8

* * * * * * * *

ACCACCACCACCACCACCACCACC

N-bits wide

3N-bits wide

A 1,1 A 1,2 A 1,3 A 1,4 A 1,5 A 1,6 A 1,7 A 1,8

B 1,8 B 2,8 B 3,8 B 4,8 B 5,8 B 6, 8 B 7,8 B 8,8

* * * * * * * *

P_RP_RP_RP_RP_RP_RP_RP_R

N-bits wide

3N-bits wide

A 1,8 A 1,8 A 1,8 A 1,8 A 1,8 A 1,8 A 1,8 A 1,8

B 8,1 B 8,2 B 8,3 B 8,4 B 8,5 B 8,6 B 8,7 B 8,8

* * * * * * * *

ACCACCACCACCACCACCACCACC

N-bits wide

3N-bits wide

Add all partial results to get C 1,1

Add all partial results to get C 1,8
C 1,1 C 1,2 C 1,3 C 1,4 C 15 C 1,6
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SIMD Matrix-multiply Multicast Matrix-multiply

Figure. 6.3. Multicast technique versus traditional SIMD matrix multiply 
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Another common operation where multicast is extremely useful is in 1-D and 2-

D filtering, and convolution. For example, when using MMX for implementing 

a finite impulse response (FIR) filter, multiple copies of the filter coefficients 

are needed (equal to the SIMD parallelism) to reduce considerable overhead due 

to misalignment of coefficient data. Multicasting eliminates need for data reor-

ganization due to misalignment issues. In fact, the MediaBreeze architecture has 

hardware for handling misalignment issues even if multicasting is not used. 

 

6.1.3 Example encoding using the Breeze instruction 

The Breeze instruction is a densely encoded instruction and hence most media 

algorithms can be processed in just a few Breeze instructions. Common kernels 

such as the DCT, color space conversion, motion estimation, and filtering can be 

mapped to either one or two Breeze instructions. Figures 6.4-6.7 show the 

pseudo-code for the implementation of the Breeze instruction. Figure 6.8 illus-

trates the Breeze instruction mapping of the 1-D DCT routine assuming an 8-

way SIMD for 16-bit data. For the 1-D DCT routine, only four of the five possi-

ble loop nests are needed with the loop boundaries indicated in the Breeze in-

struction. The starting address of each stream is represented by the starting ad-

dress of each of the arrays. The third input stream is not used for this algorithm. 

The value of the strides is computed based on the loop indices and the value of 
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the address pointer in the previous cycle. The address pointer is updated each 

clock cycle choosing one stride depending on the nesting level of the loops. 

In a scenario in which all the loop nests and data streams are processed, 

MediaBreeze executes (in hardware) the following equivalent number of dy-

namic software instructions (in conventional ILP processors) during each cycle - 

• five branches 

• three loads and one store 

• four address value generation (one on each stream with each address genera-

tion representing multiple RISC instructions) 

• one SIMD operation (2-way to 16-way parallelism depending on each data 

element size) 

• one accumulation of SIMD result and one SIMD reduction operation 

• four SIMD data reorganization (pack/unpack, permute, etc) operations 

• shifting & saturation of SIMD results 

Figure. 6.4. Pseudo-code implementation of the MediaBreeze unit 
for hardware looping 

looping { 
for (i_1 = 0; i_1 < loop1_count; i_1++) { 
 for (i_2 = 0; i_2 < loop2_count; i_2++) { 
    for (i_3 = 0; i_3 < loop3_count; i_3++) { 
      for (i_4 = 0; i_4 < loop4_count; i_4++) { 
        for (i_5 = 0; i_5 < loop5_count; i_5++) { 
        }  
      }  
    }  
  }  
} 
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Figure. 6.6. Pseudo-code implementation of the MediaBreeze unit 
for loads/stores 

Load (IS1, R1); 
Load (IS2, R2); 
Load (IS3, R3); 
Store (R4, OS); 

Figure. 6.5. Pseudo-code implementation of the MediaBreeze unit 
for address generation 

IS1 = start_address_IS1; IS2 = start_address_IS2;  
IS3 = start_address_IS3; OS1 = start_address_OS; 
 
increment_address (level) { 
  if (mask_IS1 [level] )  IS1 += stride_IS1[level]; 
  if (mask_IS2 [level] )  IS2 += stride_IS2[level]; 
  if (mask_IS3 [level] )  IS3 += stride_IS3[level]; 
  if (mask_OS [level] )  OS += stride_OS[level]; 
} 
 
 if  ( (i_5 + 1) = loop1_count) increment_address(4); 
 elseif ( (i_4 + 1) = loop2_count) increment_address(3); 
 elseif ( (i_3 + 1) = loop3_count) increment_address(2); 
 elseif ( (i_2 + 1) = loop4_count) increment_address(1); 
 else increment_address(5); 

Figure. 6.7. Pseudo-code implementation of the MediaBreeze unit 
for SIMD computation and data reorganization 

SIMD_data_reorganization (R1, R2, R3) 
SIMD_compute (operation, R1, R2, R3, R4); 
SIMD_data_reorganization (R4) 
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1D_DCT( image[1200][1600], dct_coef[8][8], output[8][8] ) 

{ 

 for ( i = 0;  i < 1200/8; i++) 

   for ( j = 0; j < 1600/8; j++) 

     for (k = 0; k < 8; k++) { 

      temp_simd_vector = 0; 

       for (l = 0; l < 8; l ++) 

 
/* Since there is 8-way SIMD parallelism, the innermost loop folds into one iteration 
and is not required */ 

 
        temp_simd_vector += multicast(dct_coef[ k ][ l ] * image[ i*8+k ][ j*8+l ]); 

      output[ i*8 ][ k*8 ] = temp_simd_vector >> s_bits; 

} } 

0 1200/8 1600/8 8 8 

Starting 
Address of 

image 

Starting 
Address of 

dct coeff 

-------------- 
NONE 

-------------- 

Starting 
Address of 

output 

OPR = MAC 
Shift = s_bits 

LL = 4 

NONE 16 bytes -22384 bytes -22400 bytes 3200 bytes 

NONE -126 bytes -126 bytes 2 bytes 2 bytes 

NONE -22384 bytes 3200 bytes NONE NONE 

IS-1 = 01111 

IS-2 = 01111 

IS-3 = 00000 

OS = 01100 

Multicast is used for dct coefficients 
data types of each stream is set to 16-bit data 

NONE NONE NONE NONE NONE 

Figure. 6.8. Breeze instruction mapping of 1D-DCT 
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6.2 Performance Evaluation 

To measure the impact of the MediaBreeze architecture, the PISA version of 

Simplescalar-3.0 (sim-outorder) was modified to simulate Breeze instructions 

using instruction annotations. The same SIMD execution unit configurations as 

in a Pentium III processor (two 64-bit SIMD ALUs and one 64-bit SIMD multi-

plier) are used. The memory system for the MediaBreeze architecture is modi-

fied to allow for cache miss stalls and memory conflicts (i.e., the SIMD pipeline 

stalls in the event of a cache miss) since the MediaBreeze operates in an in-order 

fashion. The MediaBreeze hardware is incorporated into a 2-way and 4-way 

SIMD GPP. Figure 6.9 shows the speedup obtained for each of the benchmarks 

using the MediaBreeze architecture with a 2-way processor as the baseline.  

The speedup of the 2-way MediaBreeze architecture over a 2-way SIMD 

enhanced processor ranges from 1.0x to over 16x. In four of the nine bench-

marks (cfa, dct, mot, scale – which are kernels) all of the benchmark code trans-

lates into one or two Breeze instructions with no other superscalar instructions 

necessary. The remaining five benchmarks (aud, g711, jpeg, ijpeg, and decrypt – 

which are applications) require scalar superscalar instructions along with Breeze 

instructions. G711 and decrypt are applications that have the least amount of 

SIMD instructions as the superscalar pipeline accounts for a bulk of the execu-

tion time rather than the MediaBreeze pipeline. On these applications, a 2-way 
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MediaBreeze architecture is only slightly faster than a 2-way SIMD processor. 

On the other hand for the remaining three benchmarks (aud, jpeg, and ijpeg), a 

2-way MediaBreeze architecture is significantly faster than a 2-way SIMD proc-

essor. Table 6.1 shows the speedup and SIMD efficiency achieved by the 2-way 

and 4-way MediaBreeze enhanced processors along with 2-, 4-, 8-, and 16-way 

superscalar out-of-order SIMD processors. The SIMD efficiency for jpeg, ijpeg, 

and decrypt could not be computed because of several initialization and file I/O 

routine in the source code of the benchmarks. 
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Figure. 6.9. Performance of MediaBreeze (MB) versus SIMD 
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Table. 6.1  Speedup of the MediaBreeze architecture along with SIMD 
efficiency (as a %). The 2-way SIMD GPP is used as the baseline. 

 

 cfa dct mot scale aud g711 jpeg ijpeg decrypt 

2-way + 
SIMD 

1 
3.53 % 

1 
5.84 % 

1 
2.97 % 

1 
10.4 % 

1 
9.4 % 

1 
1.45 % 

1 1 1 

2-way + 
MB 

16.7 
58.9 % 

5.43 
31.7 % 

16.7 
99 % 

1 
10.4 % 

3.66 
34.4 % 

1.1 
1.6 % 1.40 1.50 1.05 

4-way + 
SIMD 

2.12 
7.48 % 

1.40 
8.17 % 

2.03 
6.03 % 

1.55 
16.1 % 

1.53 
14.4 % 

1.78 
2.58 % 

1.56 1.66 1.43 

4-way + 
MB 

16.7 
58.9 % 

5.43 
31.7 % 

16.7 
99 % 

1 
10.4 % 

4.13 
38.8% 

1.87  
2.7 % 1.95 2.60 1.46 

8-way + 
SIMD 

2.58 
9.11 % 

1.85 
10.8 % 

2.69 
8.0 % 

3.45 
35.7 % 

2.36 
22.2 % 

2.98 
4.32 % 

1.88 2.20 1.69 

16-way 
+ SIMD 

2.59 
9.14 % 

2.40 
14.0 % 

2.69 
8.0 % 

5.76 
59.7 % 

3.31 
31.1 % 

4.40 
6.38 % 

3.22 2.81 2.21 

 

The MediaBreeze pipeline is susceptible to memory latencies because it 

operates in-order. Thus MediaBreeze is unable to achieve maximum SIMD effi-

ciency on three of the four kernels (cfa, dct, and scale) in spite of them being 

mapped completely to one or two Breeze instructions. To reduce the impact of 

memory latencies on the MediaBreeze architecture, a prefetch engine was intro-

duced to load future data into the L1 cache. Since the access pattern of each data 

stream is known in advance based on the strides, the prefetch engine does not 

load any data that is not going to be used. The regularity of the media access 

patterns prevents the risk of superfluous fetch very commonly encountered in 

many prefetching environments.  The prefetch engine ‘slips’ ahead of the loads 
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for computation and the computation itself to gather data into the L1 cache. Ta-

ble 6.2 shows the speedup of the MediaBreeze architecture with prefetching for 

the 2-way and 4-way configurations. It is observed that prefetching in the Me-

diaBreeze architecture achieves unit cycle memory access performance in the 

Breeze instruction portion of the program. The speedup is most noticeable in 

cfa, dct, scale, and aud. 

Table 6.3 shows the percentage reduction in dynamic instructions by the 

MediaBreeze architecture. This leads to a significant reduction in fetch, decode, 

and issue logic power consumption in a GPP. The instruction fetch and issue 

logic are expected to consume greater than 50% of the total execution power 

(not including clock power) in future speculative processors [108]. Implementa-

tion cost of adding the MediaBreeze hardware to a SIMD GPP is further evalu-

ated in Chapter 7. 

The geometric mean of the speedup of the 2-way MediaBreeze processor 

over a 2-way SIMD processor for the five applications (not including the kernels 

- cfa, dct, mot, and scale) is 1.73 while that of a 4-way SIMD processor over a 

2-way SIMD processor is 1.59. Therefore, on applications, a 2-way Me-

diaBreeze architecture achieves a performance slightly better than a 4-way su-

perscalar SIMD processor. A similar trend is observed for the case of a 4-way 

MediaBreeze processor being slightly superior to an 8-way superscalar SIMD 

processor. 
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Table. 6.2 Speedup of the MediaBreeze architecture  
with prefetching 

 

 cfa dct mot scale aud g711 jpeg ijpeg decrypt 

2-way 1 
3.53 % 

1 
5.84 % 

1 
2.97 % 

1 
10.4 % 

1 
9.4 % 

1 
1.45 % 

1 1 1 

2-way + MB 
prefetching 

27.92 
98.3 % 

16.52 
96.5 % 

16.84 
99.5 % 

4.54 
47.2 % 

6.87 
64.6 % 

1.21 
1.76 % 

1.44 1.61 1.05 

4-way 2.12 
7.48 % 

1.4 
8.17 % 

2.03 
6.03 % 

1.55 
16.1 % 

1.53 
14.4 % 

1.78 
2.58 % 

1.56 1.66 1.43 

4-way + MB 
prefetching 

27.92 
98.3 % 

16.52 
96.5 % 

16.84 
99.5 % 

4.54 
47.2 % 

8.74 
82.2 % 

2.22 
3.22 % 

2.02 2.82 1.46 

 

Table. 6.3 Percentage reduction in dynamic instruction count of the 
MediaBreeze architecture in comparison to a conventional  

RISC ISA with SIMD extensions 
 

 cfa dct mot scale aud g711 jpeg ijpeg decrypt 

MB 99 % 99 % 99 % 99 % 91 % 11 % 43 % 42 % 0.2 % 

 

 

6.3 Summary 

Many enhancements such as increasing the number of SIMD execution units 

target exploiting additional parallelism in the useful computation while the Me-

diaBreeze architecture proposed in this chapter focuses on the overhead instruc-

tions and the ability of the hardware to eliminate, alleviate, and overlap the 

overhead. MediaBreeze exploits the regularity and predictability of the overhead 
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instructions to devise simple hardware by combining the advantages of SIMD, 

vector, DAE, and DSP processors. The major findings are: 

• Eliminating and reducing the overhead using specialized hardware that 

works in conjunction with state-of-the-art superscalar processor and SIMD 

extensions can dramatically improve the performance of media workloads 

without deteriorating the performance of general-purpose workloads. On 

kernels, a 2-way processor with SIMD extensions augmented with Me-

diaBreeze hardware significantly outperforms a 16-way processor with 

SIMD extensions. 

• On applications, a 2-way processor with SIMD extensions with the support-

ing MediaBreeze hardware outperforms a 4-way superscalar processor with 

SIMD extensions. Similarly, a 4-way processor with SIMD extensions added 

with MediaBreeze hardware is superior to an 8-way superscalar with SIMD 

extensions. 

 



 116 
 

 

Chapter 7   

Hardware Cost of the MediaBreeze Architecture 

 

Adding hardware support to execute the overhead/supporting instructions in-

creases the computation throughput of the SIMD execution units. In Chapter 5, I 

found that the SIMD execution units in a GPP are under-utilized and bottlenecks 

are concealed elsewhere in the overhead/supporting instructions. Using special-

ized hardware to overlap the overhead related instructions with the useful com-

putation instructions allows the SIMD execution units to achieve a higher 

throughput. The MediaBreeze architecture presented in Chapter 6 incorporates 

explicit hardware support for efficient looping and address generation to process 

the overhead/supporting instructions. A 2-way SIMD GPP enhanced with the 

MediaBreeze architecture outperforms a 4-way SIMD GPP on multimedia ap-

plications. Similarly, a 4-way SIMD GPP augmented with the MediaBreeze 

hardware was superior to an 8-way SIMD GPP. This chapter investigates the 

associated cost of adding the MediaBreeze units to a high-speed SIMD GPP. 

Using a cell-based methodology targeting a 0.18-micron ASIC library, I esti-

mate area, power, and timing requirements of the added hardware. 
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Table 7.1 summarizes the hardware units (divided into two parts) neces-

sary for implementing the MediaBreeze components in an out-of-order GPP. 

The first four entries (address generation, looping, Breeze instruction decoder, 

and Breeze instruction memory) relate to hardware units that are augmented to a 

SIMD GPP. The remaining four entries (SIMD computation unit, data reorgani-

zation unit, load/store units, and data station) relate to hardware units that are 

already existent in current commodity SIMD GPPs. In this chapter, I evaluate 

the cost of adding the hardware units that are not present in current SIMD GPPs.  

 

Table. 7.1 Hardware functionality of various MediaBreeze  
hardware units 

 

New Hardware Units Functionality 

Address generation 
Address generation is moved from the execution unit sub-
system to four address generation units that are added to 
the GPP core (one for each data stream).  

Looping 
Using five levels of nesting allows for capturing parallel-
ism in the outer loops. Moreover, dedicated hardware 
looping allows for zero-overhead loop branch processing. 

Breeze instruction decoder 

The Breeze instruction is introduced to capture all the 
overhead/supporting instructions along with the core 
SIMD computation instructions. MediaBreeze handles the 
task of decoding the Breeze instruction and controlling the 
various hardware units. 

Breeze instruction memory  
The Breeze instruction memory stores a Breeze instruction 
once it enters the processor. 
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Table. 7.1 Hardware functionality of various MediaBreeze  
hardware units (continued) 

Existing Hardware Units Functionality 

SIMD computation unit 

All arithmetic and logical SIMD computations along with 
multiplication and special media operations such as sum-
of-absolute-differences are executed in this unit. Current 
GPPs typically have two SIMD ALUs and one SIMD mul-
tiplier in their SIMD datapath. 

Data reorganization 

SIMD processing mandates several data reorganization 
mechanisms such as packing, unpacking, permute, etc. 
Reduction operations, scaling, and shifting of the results 
are also required for SIMD processing. Current commod-
ity SIMD GPPs have data reorganization hardware in their 
SIMD datapath. 

Load/store units 
The same load/store units present in the GPP are used for 
the MediaBreeze architecture. 

Data station 

The data station acts as a register file for the SIMD com-
putation. Current SIMD GPPs either have dedicated SIMD 
register files (AltiVec) or share the floating-point register 
file (MMX). 

 

The rest of the chapter is organized as follows. Section 7.1 describes the 

implementation methodology and tools that are used to estimate the hardware 

cost. In section 7.2, a detailed implementation of the new MediaBreeze hard-

ware units is presented. Section 7.3 evaluates the cost associated with imple-

menting each mechanism in the MediaBreeze architecture and their applicability 

to mainstream commodity GPP pipelines. Finally, Section 7.4 summarizes the 

chapter. 
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7.1 Implementation Methodology 

To estimate the area, power, and timing requirements of the MediaBreeze archi-

tecture, I developed VHDL models for the various components. Using Synopsys 

synthesis tools [94], I used a cell-based methodology to target the VHDL mod-

els to a 0.18-micron ASIC cell-library (G-12p) from LSI Logic [64][65]. The G-

12p technology library operates at 1.8V and supports up to six layers of metal.  

 The Synopsys synthesis tools estimate area, power, and timing of circuits 

based on the ASIC technology library. The ASIC technology library provides 

four kinds of information. 

• Structural information. This describes each cell’s connectivity to the outside 

world, including cell, bus, and pin descriptions. 

• Functional information. This describes the logical function of every output 

pin of every cell so that the synthesis tool can map the logic of a design to 

the actual ASIC technology. 

• Timing information. This describes the parameters for pin-to-pin timing rela-

tionships and delay calculation for each cell in the library.  

• Environmental information. This describes the manufacturing process, oper-

ating temperature, supply voltage variations, and design layout. The design 

layout includes wire load models that estimate the effect of wire length on 
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design performance. Wire load modeling estimates the effect of wire length 

and fanout on resistance, capacitance, and area of nets.  

 

I use the default wire load models provided by LSI Logic’s G12-p tech-

nology. The Synopsys synthesis tools compute timing information based on the 

cells in the design and their corresponding parameters defined in the ASIC tech-

nology library. The area information provided by the synthesis tools is prior to 

layout and is computed based on the wire load models of the associated cells in 

the design. Average power consumption is measured based on the switching ac-

tivity of the nets in the design. In my experiments, the switching activity factor 

originates from the RTL models as the tool gathers this information from simu-

lation. The area, power, and timing estimates are obtained after performing 

maximum optimizations for performance in the synthesis tools. The results ob-

tained in this chapter reflect a first order approximation based on the accuracy of 

the synthesis tools and cell-based libraries. The interested reader is referred to 

[94] for further information regarding the capabilities and limitations of the syn-

thesis tools. 
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7.2 Hardware Implementation of MediaBreeze Units 

7.2.1 Address generation 

The MediaBreeze architecture supports three input and one output data struc-

tures/streams. Each of the four data streams has a dedicated address generation 

hardware unit. Address arithmetic on each stream is performed based on the 

strides and mask values indicated in the Breeze instruction. For each clock cy-

cle, depending on the mask bits and loop index counts, one of the five possible 

strides is selected. The new address value is then computed based on the se-

lected stride and the previous address value. Figure 7.1 depicts the block dia-

gram of the address generation circuitry for a single data stream/structure. 

 The last_val comparators determine which of the four inner level loop 

counters have reached their upper bound. The outermost loop comparison is not 

necessary because the Breeze instruction finishes execution at the instant when 

the outermost loop counter reaches its upper bound. The inc-cond and inc-

combine blocks generate flag signals based on the output from the last_val com-

parators and mask values from the Breeze instruction. If none of the flag signals 

are true, then stride-5 is used to update the prev-address; otherwise, the appro-

priate stride- (1–4) is selected depending on flag- (1–4). The address-generate 

block uses a 32-bit adder to add the selected stride to the previous address. On 

either an exception or a stall, only the prev-address value needs to be stored as 
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the loop counters are stored by the hardware looping circuitry. For each of the 

four data structures/streams, the last_val comparators portion of the logic is 

shared, but the remaining hardware needs to be replicated. 

 

7.2.2 Looping 

The MediaBreeze architecture incorporates five levels of loop nesting in hard-

ware to eliminate branch instruction overhead for loop increments. A similar 

inc-combine1

last_val comparators

Loop(2-5)-count indice-(2-5)

lastval-(2-5)

inc-cond1 inc-cond2 inc-cond3 inc-cond4

mask-1 mask-2 mask-3 mask-4

inc-combine2 inc-combine3 inc-combine4

address-generate
stride-(1-5)

prev-address

updated-address

flag-1 flag-2 flag-3 flag-4

Figure. 7.1. Block diagram of address generation hardware 
(per data stream) 
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mechanism was commercially implemented in the TI ASC [23] (two levels of 

do-loop nesting in addition to a self-increment loop). Conventional DSP proces-

sors such as the Motorola 56000 and the TMS320C5x from TI also use such a 

technique for one or more levels of loop nesting [57]. Figure 7.2 shows the 

block diagram of the looping hardware. 

 Loop index values are produced every clock cycle based on the loop 

bound for each level of nesting (bounds for each of the five loops are specified 

in the Breeze instruction). The value of a loop index varies from 1 (lower 

bound) to the corresponding loop bound (upper bound), and resets to its lower 

bound once the upper bound is reached in the previous cycle. The execution of 

the Breeze instruction ends when the outermost loop (loop1 in Figure. 7.2) 

reaches its upper bound. On encountering either an exception or a stall, the loop 

indices are stored and the increment logic is halted; the counting process is 

comparator-1 comparator-2 comparator-3 comparator-4 comparator-5

Loop1-count Loop2-count Loop3-count Loop4-count Loop5-count
index-1 index-2 index-3 index-4 index-5

priority encoder

Increment-by-1
index-1

Increment-by-1
index-2

Increment-by-1
index-3

Increment-by-1
index-4

Increment-by-1
index-5

flag-1 flag-2 flag-3 flag-4 flag-5

End-of-all-loops

incL1 incL2 incL3 incL4

index-1 index-2 index-3 index-4 index-5

Figure. 7.2. Block diagram of the five hardware loops 
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started once the exception/stall is serviced. Each of the five comparators (32-bit 

wide) operates in parallel to generate flag (1-bit wide) signals that are priority 

encoded to determine which one of the five loop counters to increment. When a 

loop counter is incremented-by-1 (circuit for incrementing a 32-bit value by 1), 

all the loop counters belonging to its inner level are reset (for example, if loop3 

is incremented-by-1, then loop4 and loop5 are reset to their lower bound).  

 

7.2.3 Breeze instruction decoder 

A stand-alone instruction decoder for the Breeze instructions eliminates the need 

to modify the conventional instruction decoder of current GPPs. A Breeze in-

struction needs to be decoded only once since various control parameters are 

stored in hardware registers after the decoding process. The implementation of 

the Breeze instruction decoder was merged into the address generation and loop-

ing circuitry. 

 

7.2.4 Breeze instruction memory 

The Breeze instruction memory stores the Breeze instruction once it enters the 

processor. I do not estimate the cost of this storage because the G12-p ASIC li-

brary is not targeted for memory cells. However, the area, power, and timing 

estimates of the Breeze instruction memory are similar to an SRAM structure. 

The size of a Breeze instruction is typically 120 bytes. 
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7.2.5 Existing hardware units 

The remaining hardware units that are required for the operation of the Me-

diaBreeze architecture are the SIMD computation unit, data reorganization, 

load/store units, and data station. These hardware units are already present in 

commodity SIMD GPPs. However, the Breeze instruction decoder controls the 

operation of these units as opposed to the conventional control path. This man-

dates an extra multiplexer to differentiate between control from the conventional 

control path and the Breeze instruction decoder. I do not model any of the exist-

ing hardware units. 

 

 

7.3 Area, Power, and Timing Results 

Table 7.2 shows the composite estimates of area, power and timing for the ad-

dress generation and looping circuitry when implemented using the ASIC cell-

based methodology described in Section 7.1. The results for the Breeze instruc-

tion decoder are merged into the address generation and looping hardware. The 

power and area estimates in Table 7.2 correspond to a clock frequency of 1 

GHz. 
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Table. 7.2 Area, Power, and Timing estimates of MediaBreeze units in a 
G12-p ASIC technology 

Address generation (per stream) Looping (five levels) 

Area 
(µm2) 

Power 
(mW) 

Timing 
(ns) 

Area 
(µm2) 

Power 
(mW) 

Timing 
(ns) 

57398 µm2 

(0.06 mm2) 
85.16 mW 1.74 ns 

72830 µm2 

(0.07 mm2) 
88.57 mW 1.00 ns 

Overall area = 0.31 mm2          Overall power = 430 mW 

 

 

Area - The overall chip area required for implementing the address generation 

(all four streams), looping, and the Breeze instruction decoder is approximately 

0.31 mm2. Table 7.3 shows the hardware area cost of commercial SIMD GPP 

implementations for comparison. In a 0.29-micron process, the increase in chip 

area for implementing VIS hardware into the Sparc processor family was 4 

mm2, MMX into the Pentium family was 15 mm2, and AltiVec into the 

PowerPC family was 30 mm2 [39]. In a 0.25-micron process, the AltiVec hard-

ware was expected to occupy 15 mm2 [39]. In a 0.18-micron technology, the die 

size of a Pentium III processor was 106 mm2 with the MMX and SSE execution 

units requiring approximately 3.6 mm2 [74]. Thus, the increase in area due to the 

MediaBreeze units for SIMD-related hardware is less than 10% and the overall 

increase in chip area is less than 0.3%.  
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Power – The power consumed by the address generation, looping and the 

Breeze instruction decoder is approximately 430 mW at 1 GHz. GPPs with 

speeds in the GHz range typically consume a power ranging from 50W to 

150W. Thus the increase in power consumption due to the added hardware is 

less than 1% of the overall processor power. The overall energy consumption of 

the MediaBreeze architecture would be less than that of a SIMD GPP because 

the Breeze instruction reduces the total dynamic instruction count (0.2 to 40% in 

media applications not including kernels). Since the Breeze instruction is 

densely encoded, very few Breeze instructions are needed for any media-

processing algorithm. The number of dynamic instructions that need to be 

fetched and decoded reduces tremendously, which leads to a minimal use of the 

instruction fetch, decode, and issue logic in a superscalar processor. The instruc-

tion fetch and issue logic are expected to consume greater than 50% of the total 

execution power (not including the clock power) in future speculative processors 

VIS – 4 mm2 in a 0.29-micron process 
MMX  – 15 mm2 in a 0.29-micron process 
AltiVec – 15 mm2 in a 0.25-micron process 
Pentium III processor – 106 mm2 in a 0.18-micron process 
MMX + SSE in a Pentium III processor – 3.6 mm2 in a 0.18-micron process 

Table. 7.3 Area of commercial SIMD and GPP implementations 
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[108]. Once the Breeze instruction is decoded, the fetch, decode, and issue logic 

in the superscalar processor can be shutdown to save power.  

 

Timing - Pipelining the hardware looping logic into two stages would allow for 

incorporating it into current high-speed superscalar out-of-order processors with 

over 1 GHz clock frequency. Similarly the address generation stage needs to be 

divided into three pipe stages to achieve frequencies greater than 1 GHz. The 

timing results show that incorporating the MediaBreeze hardware into a high-

speed processor does not elongate the critical path of the processor (after pipe-

lining). The Breeze instruction decoder multiplexers that control the hardware 

units introduce an extra gate delay in the pipeline. However, using a cell-based 

methodology gives a conservative estimate while custom design (typically used 

in commercial general-purpose processors) would allow for greater clock fre-

quencies for the added MediaBreeze hardware. In spite of adding five pipeline 

stages, the overall pipeline depth of a processor is not affected because the loop-

ing and address generation stages bypass the conventional fetch, decode and is-

sue pipeline stages.  

Estimates of area, power, and timing across different technologies and 

optimizations are also described in Appendix B. 
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7.4 Summary 

In this chapter, I estimated the cost of incorporating explicit hardware support 

into a SIMD GPP to execute the supporting instructions. Using an ASIC cell-

based methodology targeting a 0.18-micron technology, I obtained area, power, 

and timing information for the MediaBreeze architecture components. The ma-

jor findings of this chapter are: 

 

• The area cost is less than 10% of the SIMD execution unit’s area (such as 

MMX and SSE). When compared to the overall processor chip area, the in-

crease is less only 0.3%. 

• Power consumption of the added units is less than 1% of the total processor 

power.  

• The MediaBreeze hardware units do not increase the effective pipeline depth 

of a high-speed GPP. With appropriate pipelining in the SIMD regions, a 

SIMD GPP with MediaBreeze hardware can be operated well over 1 GHz in 

a 0.18-micron technology. 

 

I expect the overall energy consumption to be potentially lower when us-

ing a MediaBreeze augmented processor because the Breeze instruction is heav-
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ily encoded and encompasses multiple operations. Power consumption is de-

creased due to the reduced use of traditional instruction fetch, decode, and issue 

logic for the duration of the Breeze instruction execution. 
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Chapter 8   

Conclusion 

 

As certain workloads become dominant, GPP architectures have added hardware 

support to execute them efficiently. SIMD extensions have been integrated into 

the processor by all GPP vendors to accelerate multimedia applications. In this 

dissertation, I show that SIMD support alone is not enough to extract parallelism 

in multimedia applications. Providing explicit hardware support to assist the 

SIMD computations is one way to bridge the existing performance gap between 

realistic versus ideal utilization of SIMD execution units. The major findings of 

this dissertation are summarized below. 

• A comprehensive study of execution characteristics of commercial mul-

timedia applications revealed that, contrary to popular belief, data caches 

are effective for multimedia programs. It is found that multimedia bench-

marks achieve a 98% L1 data cache hit-rate (16 kB, 4-way) and a 99.5% 

global L2 hit-rate (512 kB, 4-way). When compared to SPEC 

benchmarks, the data cache performance is superior for multimedia ap-
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plications. Another major finding of this study is that multimedia appli-

cations have a higher branch misprediction ratio than SPEC benchmarks. 

• Analysis of bottlenecks in the execution of multimedia programs on 

SIMD GPPs revealed that there is a mismatch between the requirements 

of multimedia applications and the capabilities of SIMD GPPs. It is 

found that SIMD GPPs exploit DLP in the inner loops while significant 

DLP exists in the outer level nested loops of media applications. 

• Experiments with SIMD GPPs revealed that a majority of dynamic in-

structions in the instruction stream of multimedia applications are not 

performing the useful computations, but merely supporting the computa-

tions. It is found that 75% to 85% of the dynamic instructions are sup-

porting the useful computations and performing address generation, ad-

dress transformation, loop branches, and loads/stores. 

• Measuring the utilization of SIMD execution units revealed that they are 

vastly underutilized. Experiments on SIMD GPPs with a variety of me-

dia kernels and applications illustrate SIMD efficiency ranging only 

from 1% to 12%. 

• Scalability tests with SIMD GPPs revealed that increasing the number of 

SIMD execution units does not improve performance. It is observed that 
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significant increase in scalar resources is required to increase the utiliza-

tion of SIMD execution units using conventional ILP techniques. 

• Providing explicit hardware support, that works in conjunction with a 

state-of-the-art SIMD GPP, for eliminating and reducing the overhead 

dramatically accelerates media workloads without deteriorating the per-

formance of general-purpose workloads. The Breeze instruction was in-

troduced to capture the useful and supporting instructions simultane-

ously. The Breeze instruction is similar to multidimensional vector in-

structions. It is found that a 2-way SIMD GPP augmented with Me-

diaBreeze hardware support significantly outperforms a conventional 16-

way SIMD GPP on multimedia kernels. On media applications, a 2- and 

4-way SIMD GPP enhanced with MediaBreeze hardware support is su-

perior to a 4- and 8-way conventional SIMD GPP. 

• The cost of adding the MediaBreeze hardware to a SIMD GPP is negli-

gible compared to the performance improvements. It is found that the 

MediaBreeze hardware units occupy less than 0.3% of the overall proc-

essor chip area, consumes less than 1% of the total processor power, and 

does not increase the effective pipeline depth of a high-speed GPP. 

 

In summary, while SIMD extensions accelerate media applications, sev-

eral bottlenecks exist in SIMD GPPs that prevent even higher performance im-
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provements. In this dissertation, I propose a cost-effective solution to address 

the supporting instructions rather than focusing on the SIMD computations 

themselves. If any media processor designer decides to exploit more parallelism 

by just scaling the current architectures, they should scale the non-SIMD part 

much more aggressively than the SIMD part. Other future opportunities in im-

proving media application performance on GPPs involves improving compiler 

abilities to extract DLP and ILP in media applications.  
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Appendix A   

Performance Monitoring Events on the P6 Microarchitecture 

 

Table A.1 lists the P6 microarchitecture counter based performance measures. 

For a complete list of performance events that can be measured using the count-

ers, the interested reader is referred to [45][46]. 

 

Table A.1 P6 microarchitecture counters based performance measures 

Performance Measure Numerator Event Denominator Event 

Data references per instruction DATA_MEM_REFS INST_RETIRED 

L1 Dcache misses per instruction DCU_LINES_IN INST_RETIRED 

L1 Icache misses per instruction L2_IFETCH INST_RETIRED 

ITLB misses per instruction ITLB_MISS INST_RETIRED 

Istalls cycles per instruction IFU_MEM_STALL INST_RETIRED 

L1 cache misses per instruction L2_RQSTS INST_RETIRED 

L2 cache misses per instruction L2_LINES_IN INST_RETIRED 

L2 Miss ratio L2_LINES_IN L2_RQSTS 

Memory transactions per instruction BUS_TRAN_MEM INST_RETIRED 

FLOPS per instruction FLOPS INST_RETIRED 

UOPS per instruction UOPS_RETIRED INST_RETIRED 

Speculative execution factor INST_DECODED INST_RETIRED 

Branch frequency BR_INST_RETIRED INST_RETIRED 

Branch mispredict ratio BR_MISS_PRED_RETIRED BR_INST_RETIRED 

Branch taken ratio BR_TAKEN_RETIRED BR_INST_RETIRED 

BTB miss ratio BTB_MISSES BR_INST_DECODED 

Branch Speculation factor BR_INST_DECODED BR_INST_RETIRED 

Resource stalls per instruction RESOURCE_STALLS INST_RETIRED 

Cycles per instruction CPU_CLK_UNHALTED INST_RETIRED 
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Appendix B   

Hardware Cost of MediaBreeze Architecture across  

Different ASIC Technologies 

 

Table B.1 lists the different cell-based libraries for evaluating area, power, and 

timing tradeoffs in MediaBreeze hardware. The G12-p technology discussed in 

chapter 7 is also included in this appendix. 

 

Table. B.1 List of cell-based libraries used in the synthesis of  
MediaBreeze hardware units 

Library name Description 

lcbg12-p (G12-p) 
A 0.18-micron L-drawn (0.13-micron L-effective) CMOS proc-
ess. Highest performance solution at 1.8 V with high drive cells 
optimized for long interconnects associated with large designs. 

lcbg12-d (G12-d) 
A 0.18-micron L-drawn (0.13-micron L-effective) CMOS proc-
ess. Optimized for performance, density, and power for most 
applications at 1.8 V.  

lcbg12-l (G12-l) 
A 0.18-micron L-drawn (0.13-micron L-effective) CMOS proc-
ess. Ultra-low power and high-density solution with a low dy-
namic and standby leakage current at 1.8 V.  

lcbg11-p (G11-p) A 0.25-micron L-drawn (0.18-micron L-effective) CMOS proc-
ess. Highest performance solution at 2.5 V.  

lcbg11-v (G11-v) A 0.25-micron L-drawn (0.18-micron L-effective) CMOS proc-
ess. Ultra-low power and cost sensitive solution at 1.8 V.  

lcbg10-p (G10-p) A 0.35-micron L-drawn (0.25-micron L-effective) CMOS proc-
ess. Optimized for high performance at 3.3 V. 
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Table B.2 shows the composite estimates of timing, area, and power consump-

tion for the hardware looping and address generation circuitry when imple-

mented using the cell-based methodology. The power and area estimates in Ta-

ble B.2 correspond to a clock frequency of 1 GHz. Power consumption at 250 

MHz (corresponding to the slowest technology and circuit) is also shown in pa-

renthesis. 

 

Table B.2 Timing, area, and power estimates across  
different technologies 

 
 Hardware Looping 

(5 loops) 
Address Generation 

(per stream) 

 
Time 
(ns) 

Area 
(µm2) 

Power 
(mW) 

Time 
(ns) 

Area 
(µm2) 

Power 
(mW) 

G12-p  1.00 ns 72830 µm2 
88.57 mW 
(22.1 mW) 

1.74 ns 57398 µm2 
85.16 mW 
(21.2 mW) 

G12-d  1.16 ns 64666 µm2 
62.40 mW 
(15.4 mW) 

1.91 ns 41053 µm2 
46.18 mW 
(11.4 mW) 

G12-l  1.30 ns 65714 µm2 
55.44 mW 
(13.8 mW) 

2.22 ns 41144 µm2 
42.34 mW 
(10.5 mW) 

G11-p  1.49 ns 273249 µm2 
249.30 mW 
(61.6 mW) 

2.60 ns 165099 µm2 
193.20 mW 
(46.2 mW) 

G11-v  1.90 ns 500864 µm2 
166.00 mW 
(41.3 mW) 

3.29 ns 204603 µm2 
82.93 mW 
(20.6 mW) 

G10-p  2.01 ns - 
846.90 mW 

(210 mW) 
 3.76 ns - 

554.30 mw 
(138 mw) 
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Figure B.1 shows the percentage of interconnect area in the MediaBreeze hard-

ware. Figure B.2 shows the power consumption split into cell internal power and 

net switching power. 

 

 

Figure. B.1. Percentage of interconnect area in the overall area 
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Figure. B.2. Breakdown of dynamic power into cell internal power 
and net switching power 
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