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Computer benchmarking involves running a set of benchmark programs to 

measure performance of a computer system. Modern benchmarks are developed from real 

applications. Applications are becoming complex and hence modern benchmarks run for 

a very long time. These benchmarks are also used for performance evaluation in the early 

design phase of microprocessors. Due to the size of benchmarks and increase in 

complexity of microprocessor design, the effort required for performance evaluation has 

increased significantly. This dissertation proposes methodologies to reduce the effort of 

benchmarking and performance evaluation of computer systems. 

 Identifying a set of programs that can be used in the process of benchmarking can 

be very challenging. A solution to this problem can start by identifying similarity 

between programs to capture the diversity in their behavior before they can be considered 

for benchmarking. The aim of this methodology is to identify redundancy in the set of 

benchmarks and find a subset of representative benchmarks with the least possible loss of 

information. This dissertation proposes the use of program characteristics which capture 
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the performance behavior of programs and identifies representative benchmarks 

applicable over a wide range of system configurations. The use of benchmark subsetting 

has not been restricted to academic research. Recently, the SPEC CPU subcommittee 

used the information derived from measuring similarity based on program behavior 

characteristics between different benchmark candidates as one of the criteria for selecting 

the SPEC CPU2006 benchmarks.  

The information of similarity between programs can also be used to predict 

performance of an application when it is difficult to port the application on different 

platforms. This is a common problem when a customer wants to buy the best computer 

system for his application. Performance of a customer’s application on a particular 

system can be predicted using the performance scores of the standard benchmarks on that 

system and the similarity information between the application and the benchmarks. 

Similarity between programs is quantified by the distance between them in the space of 

the measured characteristics, and is appropriately used to predict performance of a new 

application using the performance scores of its neighbors in the workload space.  
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Chapter 1:  Introduction 

Performance analysis of processors and computer systems poses many challenges 

due to increase in complexity of processor design and rapid evolution of application 

software. As Bose [7] pointed out, understanding the target workloads is important not 

only for performance but also for power and reliability in the early design phase of 

modern microprocessor designs. Understanding target workload involves detailed 

characterization and comparison of different workloads and available benchmarks.  

Performance evaluation of design trade-offs is an integral part of the design 

process. Very early in the design process computer architects model the designs in a very 

high level language like C, C++. The models built using the high level language which 

can model the behavior of a microprocessor at the granularity of a cycle are called cycle 

accurate simulators or performance simulators. Due to increase in complexity of modern 

processors, the cycle accurate simulators have become very slow. Earlier, simulators 

were driven by traces of programs but recently execution driven simulators have become 

quite common and programs can be directly run on the simulator. The simulator approach 

is very popular because it is flexible and modifications to a simulator to analyze different 

architectural ideas can be done with more ease compared to other techniques.      

In computer benchmarking, performance is measured using a well defined set of 

test-programs. A certain set of well-defined and established rules are followed to compile 

and run these test-programs. In the past programs were specifically written for the 

purpose of benchmarking e.g. Whetstone and Dhrystone benchmarks [61]. Modern 

computer benchmarking involves use of application programs as benchmarks. Standard 

Performance Evaluation Corporation (SPEC) is an organization which was formed in 

1988 by a group of companies that came together to define and develop standard 
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benchmark suite called SPEC89, from compute-intensive workloads. SPEC has served a 

long way in developing and distributing technically credible, portable, real-world 

application-based benchmarks. In order to keep pace with the technological 

advancements, compiler improvements, and emerging workloads, in each generation of 

SPEC benchmarks, new programs are added, programs susceptible to unfair compiler 

optimizations are retired, program run times are increased, and memory access intensity 

of programs is increased. Recently, SPEC CPU2006, the fifth generation of compute-

intensive benchmarks was released by SPEC. Performance analysts build new benchmark 

suites from the emerging applications to compare different computer systems and 

evaluate design trade-offs. The process of developing a benchmark suite begins by 

collecting applications from many different application areas. The development of SPEC 

CPU benchmark suites starts off with a collection of applications from software 

developers who are ready to share their source code. These applications are then 

thoroughly evaluated for many different features. The most important characteristic of 

such benchmarks is that they should be easily portable to many different platforms. Apart 

from the constraints related to portability and compilation of these applications, it is 

necessary to evaluate the benchmarks based on their performance characteristics. 

Comparing candidate benchmarks based on their performance characteristics is important 

to make sure that the benchmarks have diverse characteristics. 

1.1 MOTIVATION 

This section describes the motivations for this research and also provides 

background for each one. 
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1.1.1 Partial use of benchmark suite for simulation 

Researchers and designers use benchmarks to evaluate design trade-offs in 

simulation based studies. Due to increase in complexity of cycle accurate simulators, 

simulation takes significantly long. The benchmarks are also becoming longer which 

leads to further increase in simulation time. As a work around, many times researchers 

use only a small set of randomly chosen benchmarks to evaluate their research ideas. 

Issues in running certain benchmarks, compiling and porting the benchmark to the 

simulation environment also force researchers to choose only a few benchmarks.  Citron 

[10] did a survey on benchmark subsets used by the computer architecture research 

community in the recent top conference publications and showed that partial use of suites 

can cause misleading results. A quantitative approach to select benchmarks is proposed in 

this dissertation. The central idea behind the approach is to find a subset of benchmarks 

that have diverse characteristics and are spread around in the workload space. Previous 

research about choosing simulation points [51][52][62] by finding phases in the program 

is being used by researchers but phases from only a few benchmarks are used in the 

study. The technique proposed in this dissertation is orthogonal to the one about choosing 

phases for simulation.  

1.1.2 Selecting programs to form a benchmark suite 

The development of a benchmark suite is a rigorous process. For an organization 

like SPEC, the development process starts by openly requesting application developers to 

submit their applications as potential candidates for benchmarks. There are several 

candidate benchmarks to begin with and the SPEC CPU subcommittee faces a big 

challenge of selecting only a right set of benchmarks. Some of the necessary conditions 

for selection of a benchmark are related to portability, but that is not the focus of this 

dissertation. This dissertation’s focus is about selecting benchmarks with a diverse set of 
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performance characteristics to form the benchmark suite. This process gives an idea 

about how the benchmarks test the computer system for many different possible 

performance bottlenecks. A benchmark suite with diverse characteristics builds 

confidence amongst customers and designers.  

1.1.3 Comparing workload space coverage of benchmark suites 

General purpose processors have many target applications. Many different 

benchmark suites need to be evaluated while analyzing performance. Comparison of the 

workload space coverage of different benchmark suites is very important to understand 

the behavior of new and existing benchmark suites. Usually, different domains have their 

own standard benchmark suites e.g. the MediaBench [38] and MiBench [21] benchmark 

suites are a collection of media applications. From the point-of-view of a designer it is 

worthwhile to see how the behaviors of programs from different application domains 

compare in the workload space. 

 The comparison of new and existing benchmark suites is also necessary to 

evaluate the similarity between benchmarks across different benchmark suites. Once a 

new benchmark suite is released, its comparison with the older generations of the same 

suite is a useful exercise. 

1.1.4 Performance prediction for customer’s application 

Customers wish to know the performance of their applications on a certain 

platform before purchasing it, but it is very difficult to run the user’s application on all 

the possible platforms because it is usually expensive to port an application on another 

platform. Just looking at benchmark scores to rank the machines may mislead the 

customer because the ranking is not specific to the customer’s application. This is a 

classical problem in benchmarking. In such a scenario the program similarity analysis can 
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help identify benchmarks that are similar to the user’s application and help to generate 

rankings for computer systems specific to the customer’s application rather than all the 

benchmarks. This dissertation develops a methodology to perform such performance 

prediction. 

1.1.3 Summary of motivations 

The notion of measuring program similarity plays an important role in solving the 

problems described above. Measuring program similarity essentially involves 

characterizing workloads and comparing them based on the measured characteristics. The 

characteristics measured depend on the objective. This dissertation’s focus is on the idea 

of measuring similarity between programs to improve the efficiency of the process of 

performance evaluation and benchmarking. 

1.2 OBJECTIVES 

The similarity information forms the basis for developing techniques to solve the 

described problems. Each of these specific objectives is described in detail in this section 

with measuring program similarity being the primary goal in each of these cases. 

1.2.1 Finding a subset for simulation based performance evaluation 

One objective of this research is to develop a methodology to identify a 

representative subset of a benchmark suite for use when time constraints prevent 

simulation of all benchmarks. In this dissertation finding a set of representative 

benchmarks is referred to as Benchmark Subsetting. A subset formed after benchmark 

subsetting should be able to accurately project performance on behalf of all the 

benchmarks in the suite.  First step in benchmark subsetting is measuring similarity 

between benchmarks. This information of similarity is then used to find a subset of 

programs using clustering [30]. Principal Components Analysis (PCA) [17] is used as a 
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preprocessing step. There are two main types of benchmark characteristics i.e. 

microarchitecture independent metrics and microarchitecture dependent metrics. In the 

early design phase it is difficult to measure microarchitecture dependent metrics because 

it essentially involves measuring them using a performance simulator. Usually 

microarchitecture dependent metrics are easy to measure on real system where 

performance monitoring counters can be used. But these characteristics are measured 

only on one particular configuration and hence the subset obtained by using these 

characteristics can be biased to a particular configuration. One of the objectives of this 

dissertation is to find a subset of benchmarks that is applicable to a wide range of 

configurations. If the subsetting analysis is done using microarchitecture independent 

metrics which are inherent to a program, the subset will be applicable to a wider range of 

systems, but will still be dependent on the compiler and Instruction Set Architecture 

(ISA). Validation of the subset formed, is very important part of the experiment. The 

subset should accurately project the performance of the whole benchmark suite.  

1.2.2 Measuring program similarity for benchmark suite formulation 

The process of building a benchmark suite starts with a large set of applications 

submitted by software developers. These applications are then thoroughly evaluated for 

portability. During this process the benchmarks keep changing almost every week and 

hence possibly their behavior. It is very difficult to measure microarchitecture 

independent metrics in such a short span of time. Also, the length of benchmarks is 

increasing drastically for the new generations which increases the time required for the 

analysis. Since the benchmarks are portable and will be used on many different 

platforms, it will be good if the analysis can take into account the change in behavior of 

programs caused by the use of different compilers. One objective of this research is to 

come up with a fast subsetting methodology where the resulting subset can be identified 
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quickly. An approach utilizing microprocessor performance monitoring counters is 

developed. In order to reduce microarchitecture dependence the benchmarks are 

characterized on multiple real systems with different microarchitecture configurations, 

ISAs and compilers. This approach was used in practice to guide selection of benchmarks 

during the process of SPEC CPU2006 suite formulation.  

1.2.3 Comparison of different benchmark suites by analyzing workload space 
coverage 

One of the objectives of this research is to use the methodology of measuring 

similarity to compare benchmark suites. Mapping the benchmarks in the workload space 

can give a good idea of relative positions of benchmarks in the workload space or the 

area covered by whole benchmark suite. If a benchmark suite overlaps another 

benchmark suite in the workload space then the effort of performance evaluation can be 

reduced by finding a representative set common to both the suites. Another part of this 

objective is that the similarity analysis should be independent of the microarchitecture 

configuration to make the results more applicable to wide range of systems or 

microarchitecture configurations. An experiment comparing the SPEC CPU2000 and 

media benchmarks is described. 

1.2.4 Performance prediction using program similarity 

Another objective of this research is to develop a methodology to predict 

performance of a customer’s application using it similarity with benchmarks. The 

methodology uses a repository of well characterized benchmarks with their performance 

scores. All the benchmarks from the repository are mapped into the workload space built 

using their characteristics. Same characteristics are measured for the new target 

application. These characteristics are then used to map the new applications in the same 

workload space of the well characterized benchmarks. The distance between the 
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application and the benchmarks is the measure of their similarity. This information and 

the already known performance scores of the benchmarks are used to predict performance 

of the application. To improve the accuracy of this method it is important to choose the 

correct set of metrics. The different methods of selecting metrics or assigning weights to 

the metrics are also discussed. 

1.5 THESIS STATEMENT 

Program similarity information can be used to reduce the redundancy in existing 

benchmark suites which in turn reduces the effort of performance evaluation, to choose 

programs to form a benchmark suite, and to study the coverage of workload space of 

different benchmark suites. The similarity between a new application and the existing 

well characterized benchmarks can be used to predict performance of the new 

application.  

1.6 CONTRIBUTIONS 

This dissertation makes contributions towards measuring program similarity to 

improve the efficiency of performance evaluation and benchmarking of computer 

systems. The contributions are useful for users, including but not limited to 

microprocessor designers, performance engineers, architects and benchmarking 

engineers.  It proposes and validates the use of microarchitecture independent metrics and 

microarchitecture dependent metrics in measuring program similarity. It further uses the 

similarity analysis to form a representative subset of benchmarks and predict 

performance of new applications. The following paragraphs summarize these 

contributions individually: 

In the process of selecting benchmarks to form a suite or during the early design 

phase, benchmark subsetting helps to reduce redundancy and effort required for 
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performance evaluation.  Previous research either uses only microarchitecture dependent 

metrics [16][60][20]  or  a mix of simple program characteristics and microarchitecture 

dependent metrics [18][19] to measure similarity between programs. A subset of 

benchmarks derived using these metrics can be biased to the configuration or systems 

that are used to measure the metrics. This dissertation contributes to the process of 

measuring program similarity by using a set of microarchitecture independent metrics 

which are inherent characteristics of program and avoid having a biased subset. 

Moreover, if the analysis based on microarchitecture independent metrics is not possible, 

the goal of finding an unbiased subset can be achieved by using microarchitecture 

dependent metrics from several systems with varying features. The benchmark 

characteristics are pre-processed using a statistical analysis technique called Principal 

Components Analysis (PCA) and clustering. Subsetting using benchmark similarity was 

used as one of the criteria for choosing the SPEC CPU2006 benchmarks when the 

benchmark suite was being developed. This work was done in collaboration with the 

SPEC CPU subcommittee.    

The design space of a general purpose processor is quite diverse which means that 

the target applications are from different domains. Many benchmark suites are also 

developed for a specific application domain. It is worthwhile for a designer to compare 

their workload space and evaluate different suites together.  When a new benchmark suite 

is developed it is very important to study its coverage in the workload space with other 

benchmark suites. If the benchmarks are spread around in the workload space the suite 

shows diverse behavior and hence can test different features of the processor. As another 

contribution, this dissertation proposes the use of microarchitecture independent 

characteristics to study the coverage and compare different benchmark suites. The results 

of comparing the previous four generations of SPEC CPU benchmark suites have been 
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discussed. Media benchmarks and SPEC CPU2000 benchmarks are also compared to 

study their individual coverage. Although these benchmarks are from different domains, 

they both have scientific and engineering applications. 

A computer system user’s application is his best benchmark. But many times the 

standard benchmark suites used to compare the performance scores of different computer 

systems do not have the user’s application in the suite and it is usually difficult to port an 

application on different platforms. This dissertation makes a contribution by proposing a 

methodology for predicting performance of a user’s application based on its similarity 

with the available benchmarks and the performance numbers of these benchmarks on 

different computer systems.  
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Chapter 2:  Benchmarking Subsetting Using Program Similarity 

Analysis of program behavior has become important for guiding the process of 

design and performance evaluation of microprocessors. Characterization of benchmarks 

to study their position in the workload space can help to compare different features of 

benchmarks. A workload space is an n dimensional space formed using characteristics of 

benchmarks where n is the number of characteristics. Each point in the workload space 

represents a set of characteristics with certain values. Once the benchmarks are mapped 

in the workload space, a set of benchmarks with diverse characteristics can be obtained 

for efficient simulation based studies. The process of benchmark subsetting involves 

measuring similarity between benchmarks and finding a smaller set of benchmarks to 

represent the whole suite. In this chapter a methodology to obtain a representative subset 

of a benchmark suite is presented. In the experiments performed to demonstrate this 

methodology, the SPEC CPU2000 benchmark suite and the Mediabench [38] and 

MiBench [21]  suites are used and subsets for each of the suites are presented.  Standard 

Performance Evaluation Corporation (SPEC) is a benchmark consortium formed in 1988 

by representatives from different computer vendors. Since then SPEC has released five 

CPU benchmark suites including the latest CPU2006 suite. The SPEC CPU2000 is a set 

of compute intensive scientific programs which stress the processor, memory system and 

also tests the compiler. The Mediabench and MiBench suites are benchmarks developed 

by academic researchers and are a set of real programs from media application domain. 

The methodology proposed in this chapter is applicable for other benchmark suites as 

well, as long as relevant characteristics of the programs are measured e.g. if the 

benchmarks do not stress the CPU then characteristics related to CPU may not be of 

interest while forming a subset. 
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Figure 2.1 shows the framework used for subsetting. The first and the most 

important step in benchmark subsetting is characterization of benchmark programs to 

measure program similarity. Two benchmarks are considered to be similar if they have 

similar program characteristics. The second step preprocesses the data to remove 

correlated metrics and reduce dimensionality of the data. PCA is a multivariate statistical 

analysis technique which is used in this dissertation to preprocess the benchmark 

characteristics. The transformed characteristics called Principal Components (PCs) are 

then used for clustering. Different types of clustering algorithms are considered with each 

one of them described in detail later in this chapter. The result of clustering is then used 

to choose one benchmark from each cluster to form a subset of representative 

benchmarks. In the remaining part of this chapter each of the blocks shown in Figure 2.1 

are discussed in detail. This is followed by two experiments used to demonstrate the 

application of this methodology on two different benchmark suites from different 

domains.  

Figure 2.1: Framework for benchmark subsetting 

 

 

2.1 PROGRAM CHARACTERIZATION METHODOLOGY 

In this dissertation the metrics used to characterize benchmarks can be broadly 

classified as Microarchitecture Independent Metrics and Microarchitecture Dependent 
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Metrics. One of the main contributions of this dissertation is the use of microarchitecture 

independent metrics to measure program similarity. These metrics are inherent to the 

program. On the other hand microarchitecture dependent metrics can be measured using 

performance monitoring counters [14] on a real system or by using a cycle accurate 

simulator. The microarchitecture dependent metrics are specific to the microarchitecture 

configuration on which they are measured. Each of the two different types of metrics is 

described in detail in the following sub-sections. 

2.1.1 Microarchitecture Independent Metrics 

 A wide range of microarchitecture independent metrics that affect overall 

program performance have been used.  An intuitive reasoning to illustrate how the 

measured metrics can affect the manifested performance is also discussed with the 

description of each of the metrics below.  The metrics measured in this study cover a 

wide enough range of the program characteristics to make a meaningful comparison 

between the programs. In this dissertation microarchitecture independent metrics are 

broadly classified into the following categories: 

• Instruction Mix 

• Branch predictability behavior 

• Metrics to measure Instruction Level Parallelism (ILP) 

• Metrics to measure Data Locality 

• Metrics to measure Instruction Locality 

Instruction Mix 

Instruction mix of a program measures the relative frequency of various 

operations performed by a program.  The mix mainly has percentage of computation, data 

memory accesses (load and store), and branch instructions in the dynamic instruction 
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stream of a program.  This information can be used to understand the control flow of the 

program and/or to calculate the ratio of computation to memory accesses, which gives an 

idea of whether the program is computation bound or memory bound. 

Branch Predictability Behavior  

Branch Direction: Backward branches are typically more likely to be taken than forward 

branches.  This metric computes the percentage of forward branches out of the total 

branch instructions in the dynamic instruction stream of the program.  

Fraction of taken branches:  This metric is the ratio of taken branches to the total number 

of branches in the dynamic instruction stream of the program. 

Fraction of forward-taken branches: This metric measures the fraction of forward taken 

branches in the dynamic instruction stream of the program. 

Figure 2.2: Illustration of measuring RAW register dependency distance 

 

Metrics to measure Instruction level Parallelism (ILP) 

Basic Block Size: A basic block is a section of code with one entry and one exit point. 

This metric measures the average number of instructions between two consecutive 
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branches in the dynamic instruction stream of the program.  Larger basic block size is 

useful in exploiting instruction level parallelism (ILP). 

Dependency Distance: A distribution of dependency distances is used to measure the 

inherent ILP in the program. Dependency distance is defined as the total number of 

instructions in the dynamic instruction stream between the production (write) and 

consumption (read) of a register instance [15][45]. Figure 2.2 shows an illustration of 

how the dependency distance is measured. In Figure 2.2, there is a Read After Write 

(RAW) dependence on register R1 and the distance is equal to four.  While techniques 

such as value prediction reduce the impact of these dependencies on ILP, information on 

the dependency distance is very useful in understanding ILP inherent to a program.  The 

measured dependency distance is represented by a distribution of six buckets: percentage 

of total dependencies that have a distance of 1, and the percentage of total dependencies 

that have a distance of up to 2, 4, 8, 16, 32, and greater than 32.  Programs that have a 

higher percentage of dependency distances that are greater than 32 are likely to exhibit a 

higher ILP (provided control flow is not the limiting factor). Higher ILP can help issue 

multiple instructions at a given time (provided the computer system can issue multiple 

instructions) which helps to improve instruction throughput of a program. Programs with 

high instruction throughput will see better performance. 

 

Metrics to measure Data Locality 

Data Temporal Locality: Several locality metrics have been proposed in the past [11][12] 

[31][36] [55][56][58], however, many of them are computation and memory intensive. A 

modified average memory reuse distance metric from [36] is used since it is more 

computationally feasible than other metrics. In this metric, locality is quantified by 

computing the average distance (in terms of number of memory accesses) between two 
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consecutive accesses to the same address, for every unique address in the program. In 

[36] the distance between reuse is measured in terms of number of instructions. The 

evaluation is performed in four distinct block sizes, analogous to cache block sizes. This 

metric is calculated for block sizes of 16, 64, 256 and 4096 bytes. The choice of the block 

sizes is based on the experiments conducted by Lafage et.al. [36].  Their experimental 

results show that the above set of block sizes was sufficient to characterize the locality of 

the data reference stream with respect to a wide range of data cache configurations. 

Example for measuring memory reuse distance: 

Consider the following data memory address stream (address, access #): 0x2004 (#1), 

0x2022 (#2), 0x300c (#3), 0x2108 (#4), 0x3204(#5), 0x200a (#6), 0x2048 (#7), 

0x3108(#8), 0x3002(#9), 0x320c (#10), 0x2040(#11), 0x202f (#12). For a memory line 

of 16 bytes, the memory lines to which these addresses maps is calculated by masking the 

least significant 4 bits in the address. Therefore, the address in the data stream, 0x2004 

will map to memory line 0x200, etc.  The sequence of memory lines accessed by this 

address stream is:  0x200 (#1), 0x202 (#2), 0x300 (#3), 0x210 (#4), 0x320(#5), 

0x200(#6), 0x204(#7),0x310(#8), 0x300(#9), 0x320(#10), 0x204(#11), 0x202(#12) 

Addresses for reference #1 and #6 are different, but they map to the same memory line, 

0x200, and therefore form a reuse pair (#1, #6).  The list of all the reuse pairs in the 

example address stream is (#1, #6), (#2, #12), (#3, #9), (#5, #10), (#7, #11). For reuse 

pair (#1, #6), the reuse distance is the number of memory lines accessed between the 

reference #1 and #6, which is equal to 4. 

Data Spatial Locality: Spatial locality information for data accesses is characterized by 

the ratio of the data temporal locality metric for higher block sizes to that of block size 16 

mentioned above. The intuition here is that program with higher data spatial locality will 
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see much shorter reuse distances on higher block sizes. Thus the ratio will get smaller. 

Hence it will help to find similarity in spatial locality between programs 

 

Metrics to measure Instruction Locality 

Instruction Temporal Locality: The instruction temporal locality is quantified by 

computing the average distance (in terms of number of instructions) between two 

consecutive accesses to the same static instruction, for every unique static instruction in 

the program that is executed at least twice. The instruction temporal locality is also 

calculated for block sizes of 16, 64, 256, 4096 bytes.  

Instruction Spatial Locality: Spatial locality of the instruction stream is characterized by 

the ratio of instruction temporal locality metrics for higher block sizes to that of block 

size 16. 

2.1.1 Microarchitecture Dependent Metrics 

These metrics are specific to a certain microarchitecture on which they are 

measured. This makes the subset of benchmarks found using these characteristics 

applicable to a microarchitecture that is similar to the one that is used to measure the 

metrics. The metrics that can be measured are dependent on the capability of the real 

system and the performance monitoring counter infrastructure provided by the processor. 

Tools like PAPI [14] can be used to measure metrics such as cache miss-rates and branch 

misprediction rates for Intel processors. Apart from the simple counts, there are many 

complex events that can be measured. Because different tools are already available to 

measure microarchitecture independent metrics this dissertation does not describe the 

detail procedure to measure them. Readers can refer to the documents available for the 
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tools like PAPI [14] to see how it can be used to do hardware performance counter 

measurements. 

 2.1.2 Advantages of microarchitecture independent metrics 

Measuring the inherent characteristics of a program makes the results of the 

analysis applicable to wide range of microarchitecture configurations. This property of 

the microarchitecture independent metrics is advantageous because measuring data on 

different configurations and microarchitecture may not be possible due to lack of 

availability of different systems. On the other hand a drawback of microarchitecture 

independent metrics is that it takes longer to measure these metrics as compared to the 

microarchitecture dependent metrics, but still much faster than a cycle accurate simulator. 

Microarchitecture dependent metrics are used in subsetting the SPEC CPU2006 

benchmark suite. But they are measured on different state of the art computer systems 

with different ISAs, compilers and microarchitecture configurations to account for the 

wide applicability of results. It is difficult to have such a wide variety of computer 

systems available for a study. The data was obtained from different computer system 

manufacturers that are a part of the SPEC CPU subcommittee. Without their help the 

experiment of subsetting using microarchitecture dependent metrics would not have been 

possible.  

2.2 PRINCIPAL COMPONENTS ANALYSIS AS A PREPROCESSING STEP 

PCA [17] is a classic multivariate statistical data analysis technique that is used to 

reduce the dimensionality of the data set while retaining most of the original information.  

It builds on the assumption that many variables (in this dissertation, program 

characteristics) are correlated.  PCA computes new variables, called principal 

components, which are linear combinations of the original variables, such that all the 
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principal components are uncorrelated.  PCA transforms p variables X1, X2,...., Xp into p 

principal components (PC) Z1,Z2,…,Zp  such that:  

∑ =
=

p

j jiji XaZ
0

 

 This transformation has the property Var [Z1] > Var [Z2] >…> Var [Zp] which 

means that Z1 contains most of the information and Zp the least.  Given this property of 

decreasing variance of the principal components, the components with the lower values 

of variance can be removed from the analysis.  This reduces the dimensionality of the 

data set while controlling the amount of information that is lost.  In other words, q 

principal components (q << p) are retained that explain at least 75% to 90 % of the total 

information. Further, cluster analysis uses these q PCs as a set of variables. 

 

    2.2 CLUSTERING TECHNIQUES FOR BENCHMARK SUBSETTING 

The two main clustering techniques that are used in this dissertation are K-means 

clustering and Hierarchical clustering [30]. Each of the clustering techniques is described 

in detail. 

K-means clustering groups all cases into exactly k distinct clusters which show 

maximum difference in their characteristics (workload characteristics in this dissertation).   

Figure 2.3 shows the step-by-step process for k-means clustering. The steps are as 

follows: 

1. Randomly place k centers in the space built using the data-points (benchmarks in 

this case) 

2. Assign each benchmark to the nearest centre 

3. Based on the assignment of the benchmarks, re-calculate the position of the 

centers. 
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4. Reassign the benchmarks to the nearest center. In Figure 2.3 a benchmark which 

was assigned to the lowermost cluster got assigned to the cluster on top right. In this way 

the benchmarks get assigned to the clusters and swap clusters. These steps are repeated 

usually till none of the benchmarks change from one cluster to another.  

Figure 2.3: Illustration of the step-by-step process of K-means clustering  

 

 

 

Only a certain value of k fits the data set well.  As such, various values of k are 

explored in order to find the optimal clustering for the given data set. Also, it is a well-

known fact that result of K-means clusters depends a lot on the initial placement of 

cluster centers. So, K-means clustering is done for hundred different random seeds to find 

the best initial placement of centers. To find the best values of k, Bayesian Information 

Criterion (BIC) as shown by Sherwood et.al [52] is used. The BIC is a measure of the 
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goodness of fit of a clustering to a data set. The value of k that shows the highest BIC 

score is selected. 

Hierarchical clustering is a bottom to top approach. It starts off with each data 

point being a cluster of its own. In the next iteration two data-points that are closest to 

each other are combined into a single cluster. The complete linkage distance 

measurement defines distance between two clusters as the distance between the farthest 

data points in those two clusters. Hierarchical clustering is a technique for finding 

relatively homogeneous clusters of items based on their measured characteristics.  Given 

a set of N programs to be clustered and an N x N similarity matrix containing the distance 

between the programs using the measured workload characteristics, the hierarchical 

technique starts with each case (benchmark) in a separate cluster and then combines the 

clusters sequentially, merging the clusters at each step until all cases merge to form one 

cluster.  When there are N cases, this involves N-1 clustering steps, or fusions.  The 

algorithm used for hierarchical clustering can be described in steps as follows: 

1. Each program is assigned to its own cluster, such that if there are N programs, 

there are N clusters, each containing just one program. The distances (similarities) 

between the clusters equal the distances (similarities) between the pro-grams they 

contain. Complete linkage distance measurement as described above is used. 

2. Find the closest (most similar) pair of clusters and merge them into a single 

cluster. 

3. Compute distances (similarities) between the new cluster and each of the old 

clusters. 

4. Repeat steps 2 and 3 until all items are clustered into a single cluster of size N. 

This hierarchical clustering process can be represented by a plot in a tree format 

called dendrogram, where each step in the clustering process is illustrated by a joint in the 
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tree. The numbered scale corresponds to the linkage distance obtained from the 

hierarchical cluster analysis. Figure 2.4 shows a simple illustration of a dendrogram. The 

plot connects two clusters at a point where the distance between two clusters is equal to 

the linkage distance shown on the horizontal axis. This technique does not provide an 

optimal number of clusters. It is up to the user to decide the number of clusters based on 

the linkage distance. Smaller linkage distance means the two data points are closer and 

hence similar to each other. In Figure 2.4 the two benchmarks 1 and 2 are close to each 

other than the other ones. These two benchmarks join at a linkage distance of 2.5. 

Benchmark 4 is the farthest one and it joins all the rest of the benchmarks at linkage 

distance of 6. If a user needs 3 out of 4 benchmarks then he should choose one of the 

benchmarks from a cluster of 1 and 2 but definitely choose both 3 and 4 as can be seen by 

drawing a dotted line. Similarly 2 benchmarks can be chosen out of 4.   

 

Figure 2.4: Illustration of a dendrogram 
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2.3 SUBSETTING SPEC CPU2000 BENCHMARK SUITE USING MICROARCHITECTURE 

INDEPENDENT METRICS 

SPEC CPU benchmarks are a set of computation intensive programs which stress 

memory and CPU. Table 2.1 shows a list of all the SPEC CPU2000 benchmarks that are 

used in this experiment. 

Table 2.1: SPEC CPU2000 benchmarks. 

 
SPEC CPU2000 

 

Name Input INT 
/FP 

Instruction 
Count 

Gzip input.graphic INT 103.7 billion 

Vpr Route INT 84.06 billion 

Gcc 166.i INT 46.9 billion 

Mcf inp.in INT 61.8 billion 

Crafty crafty.in INT 191.8 billion 

Parser Ref INT 546.7 billion 

Eon Cook INT 80.6 billion 

Perlbmk * INT * 

Vortex Lendian1.raw INT 118.9 billion 

Gap * INT * 

bzip2 input.graphic INT 128.7 billion 

Twolf ref INT 346.4 billion 

Swim swim.in FP 225.8 billion 

Wupwise wupwise.in FP 349.6 billion 

Mgrid mgrid.in FP 419.1 billion 

Mesa mesa.in FP 141.86 billion 

Galgel gagel.in FP 409.3 billion 

Art c756hel.in FP 45.0 billion 

Equake inp.in FP 131.5 billion 

Ammp ammp.in FP 326.5 billion 

Lucas lucas2.in FP 142.4 billion 

fma3d fma3d.in FP 268.3 billion 

Apsi apsi.in FP 347.9 billion 

Applu applu.in FP 223.8 billion 

Facerec * FP * 

Sixtrack * FP * 

* Programs that did not run due to issues with system calls 

 The benchmarks are compiled using Compaq Alpha AXP-2116 processor using 

the Compaq/DEC C, C++, and the FORTRAN compiler.  The benchmarks are statically 

built under OSF/1 V5.6 operating system using full compiler optimization. 
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Microarchitecture independent metrics that are described earlier in this chapter are used 

for subsetting. All the microarchitecture independent metrics are measured using a 

modified version of Simplescalar simulator [2]. Two subsets of the SPEC CPU2000 

benchmarks are generated, the first one using all the microarchitecture independent 

metrics described previously, and the second based only on similarity in data locality 

characteristics.  The dimensionality of the data is reduced using the PCA technique 

described earlier in the paper.  In this experiment K-means clustering algorithm is applied 

using the tool provided in the SimPoint kit [52], to group programs based on similarity in 

the measured characteristics.  The SimPoint software identifies the optimal number of 

clusters, k, by computing the minimal number of clusters for which the Bayesian 

Information Criterion (BIC) score is optimal. 

Table 2.2: Clusters based on all the microarchitecture independent metrics. 

Cluster 1 applu, mgrid 

Cluster 2 Gzip, bzip2  

Cluster 3 equake, crafty 

Cluster 4 Fma3d, ammp, apsi, galgel, swim, vpr, wupwise 

Cluster 5 Mcf 

Cluster 6 twolf , lucas, parser, vortex 

Cluster 7 mesa, art, eon 

Cluster 8 Gcc 

2.3.1 Subsetting using all the microarchitecture independent metrics 

Using K-means clustering technique described above, the BIC shows 8 clusters as 

a good fit for the measured data set. Table 2.2 shows the 8 clusters and their members. 

The programs marked in bold are closest to the center of their respective cluster and are 

hence chosen to be the representatives of that particular group. For clusters with just two 

programs, any program can be chosen as a representative.  Citron [10] presented a survey 
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on the use of SPEC CPU2000 benchmark programs in papers from four recent ISCA 

conferences.  He observed that some programs are more popular than the others among 

computer architecture researchers. The programs in the SPEC CPU2000 integer 

benchmark suite in their decreasing order of popularity are: gzip, gcc, parser, vpr, mcf, 

vortex, twolf, bzip2, crafty, perlbmk, gap, and eon.  For the floating-point CPU2000 

benchmarks, the list in decreasing order of popularity is:  art, equake, ammp, mesa, applu, 

swim, lucas, apsi, mgrid, wupwise, galgel, sixtrack, facerec and fma3d. The clusters in 

Table 2.2 suggests that the most popular programs in the listing provided by Citron [10] 

are not a truly representative subset of the benchmark suite (based on their inherent-

characteristics). For example, subsetting SPEC CPU 2000 integer programs using gzip, 

gcc, parser, vpr, mcf, vortex, twolf and bzip2 will result in three uncovered clusters, 

namely 1, 3 and 7.  Also, there is a lot of similarity in the characteristics of the popular 

programs listed above.  The popular programs parser, twolf and vortex are in the same 

cluster, Cluster 6 and hence using both programs adds redundancy. Clusters in Table 2.2 

suggest that using applu, gzip, equake, fma3d, mcf, twolf, mesa, and gcc as a 

representative subset of the SPEC CPU 2000 benchmark suite would be a better practice. 

The benchmark, gcc is in a separate cluster by itself, and hence has characteristics that 

are significantly different from other programs in the benchmark suite.  However, in the 

ranking scheme used in a prior study [60], gcc ranks very low and does not seem to be a 

very unique program.  Their study uses microarchitecture-dependent metric, SPEC peak 

performance rating, and hence a program, such as gcc, that shows similar speedup on 

most of the machines will be ranked lower.  This example shows that results based on 

analysis using microarchitecture-independent metrics can identify redundancy more 

effectively. 
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 2.3.2 Subsetting using only the data locality characteristics 

In this part of the analysis a subset of the SPEC CPU2000 benchmark suite is 

formed only considering the 7 characteristics of SPEC CPU2000 programs that are 

closely related to the temporal and spatial data locality of a program for block sizes of 16, 

64, 256, and 4096 bytes, and the ratios of each of the temporal data locality metric for 

window sizes of 64, 256, and 4096 bytes, to that for block size of 16 bytes.  The first four 

metrics measure temporal data locality of the program, whereas the remaining three 

characterize the spatial data locality of the program. Same methodology i.e. PCA for data 

reduction and removing correlation amongst variables and cluster analysis for grouping 

similar programs is used to form the subset. Table 2.3 shows the groups of programs that 

have similar data locality characteristics. The programs marked in bold are the programs 

that lie closest to the center of their cluster and hence are the representatives of their own 

cluster. For clusters that contain two programs, any one program can be the 

representative since both the programs are equidistant from the center. The benchmark, 

mcf  which stresses memory the most and is known to show very high cache miss-rates 

falls in its own cluster which in a way validates that the characteristics are able to capture 

the data access behavior well. 

Table 2.3: Clusters based on only the data locality characteristics. 

Cluster 1 Gzip 

Cluster 2 Mcf 

Cluster 3 ammp, applu, crafty, art, eon, mgrid, parser, twolf, vortex, vpr 

Cluster 4 Equake 

Cluster 5 Bzip2 

Cluster 6 mesa, gcc 

Cluster 7 fma3d, swim, apsi 

Cluster 8 galgel, lucas 

Cluster 9 Wupwise 
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2.3.3 Validation of SPEC CPU2000 benchmark subsets 

It is important to know whether the subsets that are formed are meaningful and 

are indeed representative of the SPEC CPU 2000 benchmark suite. To validate the 

subsets the average IPC, speedup and cache miss-rate of the subset is compared the 

average values of the respective performance numbers for the whole benchmark suite. 

This will increase the confidence in using these subsets for experiments in computer 

architecture studies.  

Figure 2.5: Validation of a subset of SPEC CPU2000 benchmarks using average IPC 
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Using the subset based on overall program characteristics average IPC of the 

entire suite for two different microarchitecture configurations with issue widths of 8 and 

16 is calculated.   Figure 2.5 shows the average IPC of the entire benchmark suite 

calculated using the program subset, and also using the entire benchmark suite.  It takes 

very long to obtain the IPC numbers for whole benchmarks hence the IPC numbers on 8-

way and 16-way issue widths for every program in the SPEC CPU2000 benchmarks are 

taken from Wenisch et. al. [62]. The processor configuration used to measure IPC were: 

8-way machine (32KB 2 way L1 I/D cache, 1M 4-way L2, Functional Units 4 I-ALU, 2 

I-MUL/DIV, 2 FP-ALU, 1 FP-MUL/DIV) and 16-way machine(64 KB 2-way L1 I/D, 
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2M 8-way L2, Functional Units 16 I-ALU, 8 I-MUL/DIV, 8 FP-ALU, 4 FP-MUL/DIV). 

The rest of the details about branch predictor and different penalties in cycles can be 

found in [62].  In Table 2.2 each cluster has a different number of programs, and hence 

the weight assigned to each representative program should depend on the number of 

programs that it represents (i.e. the number of programs in its cluster). For example, from 

Table 2.2, the weight for fma3d (cluster 4) is 7. The error in average IPC for both 

configurations is less than 5% (shown in Figure 2.5).  Since the IPC of the entire suite 

can be estimated with reasonable accuracy using the subsets, it can be concluded that the 

subset is a good representative of the whole suite.  

Figure 2.6: Validation of a subset of SPEC CPU2000 benchmarks using average 
speedup 
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Another validation experiment is done to demonstrate the usefulness of SPEC 

CPU2000 subsets and estimate the speedup on eleven different machines. Figure 2.6 

shows the estimated average (geometric mean) speedup of the entire suite using the 

subset based on overall program characteristics, and the true speedup of the entire suite 
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for computers from various manufacturers.  The speedup numbers are directly obtained 

from the results published by SPEC [57]. Similar to the previous validation experiment, a 

weight corresponding to the number of programs that the program represents (i.e. the 

number of programs in its cluster) is assigned to all the benchmarks in the subset.   The 

maximum error in the speedup estimated using the subset is 9.1%.  This supports the 

statement that the subset formed in Table 2.2 represents the benchmark suite very well. 

 Figure 2.7 shows average L1 data cache miss-rate of the benchmark suite 

estimated using the subset of programs obtained from Table 2.3 along with the average 

miss-rate using the entire benchmark suite.  

Figure 2.7: Validation of a subset of SPEC CPU2000 benchmarks using average cache 
miss-rate 
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Cache miss-rates for 9 different L1 data cache configurations are used from 

Cantin et.al. [9] to validate the subsets. The subset should be able to estimate average 
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cache miss-rates accurately.  From these results it can be inferred that the program subset 

derived in Table 2.3 is indeed representative of the data locality characteristics of 

programs in SPEC CPU 2000 benchmark suite.   

Figure 2.8: Sensitivity to number of clusters on estimation of average cache miss-rate 
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The number of representative programs to be chosen from a benchmark suite 

depends on the level of accuracy desired. Theoretically, as the number of representative 

programs increases, the accuracy should increase i.e. the average miss-rate of the suite 

calculated using the subset will be closer to that calculated using the entire suite. The 

average miss-rate of the benchmark suite can be calculated with an increasing level of 

accuracy if the programs are partitioned into higher number of clusters i.e. more 

programs are chosen to represent the benchmark suite. The optimum number of clusters 

for subset using data locality characteristics is 9 according to the BIC criterion.  Figure 

2.8 shows the estimated miss-rate of the benchmark suite using a subset of 5, 9, and 15 
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programs that are clustered based on only the locality characteristics and compared to the 

average cache miss-rate using all the benchmarks. As there is increase in the number of 

representative programs (clusters), the estimated miss-rate using the subset moves closer 

to the true average miss-rate using the entire suite. The number of clusters can therefore 

be chosen depending on the desired level of accuracy.  This can be achieved by simply 

specifying the number of representative programs, k, in the K-means algorithm. 

2.4 SUBSETTING MEDIA BENCHMARK SUITE USING MICROARCHITECTURE 

INDEPENDENT METRICS 

In the previous section, results of subsetting SPEC CPU2000 benchmarks are 

discussed based on the microarchitecture independent metrics. SPEC CPU benchmarks 

are computation intensive scientific applications. To demonstrate that the methodology is 

also applicable to a different type of benchmark suite, subsetting is applied to media 

benchmarks. Media benchmarks are mostly used to evaluate performance of embedded 

processors or systems. Table 2.4 shows a list of media benchmarks that are used in the 

subsetting experiment. Mediabench and MiBench are two different benchmark suites 

formed using applications from similar domain. The first column shows the names of the 

benchmarks and the second column shows the area of the application. Looking at the last 

column in Table 2.4 which is the instruction count of each benchmark and comparing it 

with the last column of Table 2.1, it is obvious that media benchmarks are much shorter 

than the SPEC CPU2000 benchmarks. All the microarchitecture independent metrics that 

are discussed earlier in this chapter are measured for all the benchmarks shown in Table 

2.1. After measuring the characteristics, PCA and clustering is applied to find a subset of 

media benchmarks. These subsets are then validated using IPC and cache miss-rates. 
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Table 2.4: List of media benchmarks used in the subsetting experiment 

MiBench 

Application Type Dynamic Instruction Count 

Basicmath Automotive 1.52 billion 

Bitcount Automotive 688.3 million 

Qsort Automotive 513.8 million 

susan –input1 Automotive 327.33 million 

susan –input2 Automotive 76.06 million 

susan –input3 Automotive 31.06 million 

Cjpeg Consumer 1.18 billion 

Djpeg Consumer 26.86 million 

Typeset Consumer 0.48 million 

Dijkstra Network 257.78 million 

Patricia Network 399.30 million 

Ghostscript Office 872.97 million 

Rsynth Office 878.83 million 

Stringsearch Office 3.45 million 

Sha Security 107.79 million 

crc32 Telecomm 692.20 million 

Fft Telecomm 238.89 million 

Invfft Telecomm 218.26 million 

Gsm Telecomm 2.10 billion 

Mediabench 

Application Type Dynamic Instruction Count 

Adpcm Compression 7.09 million 

Adpcm Decompression 8.86 million 

Epic Compression 58.37 million 

Epic Decompression 10.25 million 

g.721 Encoder 381.84 million 

g.721 Decoder 399.82 million 

Ghostscript - 877.77 million 

Jpeg Compression 18.65 million 

jpeg Decompression 4.75 million 

Mesa 3D graphics 127.95 million 

Mpeg2 Decoder 161.62 million 

Mpeg2 Encoder 1.55 billion 

Rasta - 24.86 million 
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Table 2.5: An optimal subset of media benchmarks using k-means clustering 

Cluster 1 mediabench_unepic, mediabench_ghostscript, mediabench_cjpeg, mibench_ 
consumer_cjpeg, mibench_office_ghostscript, mibench_office_rsynth 

Cluster 2 mediabench_mesa, mediabench_rasta, mibench_automotive_qsort, 
mibench_network_dijkstra, mibench_network_patricia, mibench_office_stringsearch, 
mibench_security_sha, mibench_telecomm_CRC32 

Cluster 3 mediabench_epic, mediabench_g721_decoder, mediabench_g721_encoder, 
mediabench_djpeg, mediabench_mpeg2_decoder, mediabench_mpeg2_encoder, 
mibench_automotive_basicmath, mibench_automotive_susan2, 
mibench_automotive_susan3, mibench_consumer_djpeg, mibench_consumer_typeset, 
mibench_ telecomm_FFT, mibench_telecomm_invFFT, mibench_telecomm_gsm 

Cluster 4 mediabench_adpcm_decoder, mediabench_adpcm_encoder, mibench_automotive_susan1 

Cluster 5 mibench_automotive_bitcount 

2.4.1 Subsetting media benchmarks using all the microarchitecture independent 

metrics 

Table 2.5 shows the list of program-input pairs that fall into five optimal clusters 

after performing k-means clustering. The program-input pairs marked in bold are closest 

to the centre of the cluster and are hence the representatives of their own cluster. 

Although MiBench and Mediabench are two different suites, they still have some similar 

programs e.g. cjpeg and djpeg. Cjpeg compresses a ppm image into jpeg and djpeg 

decompresses a  jpeg representation into a ppm image. Although the cjpeg programs have 

a different image as a workload in the MiBench and Mediabench suite they show similar 

behavior and hence fall in the same cluster (Cluster 1). Similarly, djpeg, from both 

MiBench and Mediabench, lies in the same cluster (Cluster 3). This shows that the input 

set did not affect the program behavior of djpeg benchmark, but in case of a MiBench 

benchmark susan, It has three input sets and input set 1 is different from 2 and 3. In case 

of Mediabench programs g.721 and adpcm, their encoder and decoder show similar 

program behavior and hence lie in the same cluster (Clusters 3, 4). 
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Table 2.6: An optimal subset of media benchmarks using only data locality 

characteristics. 

Cluster 1 mibench_automotive_susan1 
 

Cluster 2 mibench_automotive_susan3 

Cluster 3 mediabench_epic, mediabench_cjpeg, mediabench_djpeg, 
mediabench_mpeg2_decode, mibench_ consumer_djpeg, 
mediabench_mpeg2_encoder, mibench_consumer_cjpeg, 
 mibench_consumer_typeset, mibench_telecomm_fft, mibench_telecomm_invfft 

Cluster 4 mediabench_adpcm_decoder, mediabench_adpcm_encoder 
  

Cluster 5 mediabench_mesa, mediabench_rasta,mibench_ automotive_susan2, 
mibench_network_dijkstra, mibench_office_stringsearch,  

mibench_security_sha_large 

Cluster 6 automotive_basicmath_large, network_patricia_large 

Cluster 7 mediabench_unepic, mediabench_g721_decoder, ediabench_g721_encoder, 
automotive_bitcount, mibench_automotive_qsort, mibench_office_rsynth, 
mibench_telecomm_crc32, mibench_telecomm_gsm 

Cluster 8 mediabench_ghostscript, mibench_office_ghostscript 

2.4.2 Subsetting media benchmarks using only the data locality characteristics 

Table 2.6 shows clusters of media programs based on the four temporal data 

locality and three spatial data locality characteristics described before. The temporal data 

locality characteristics are measured for block sizes of 16, 64, 256, and 4096. PCA and 

K-means clustering method is applied to all the media programs but just using the seven 

data locality characteristics to obtain 8 optimal clusters. The programs marked in bold are 

closest to the center of the cluster and hence are chosen as representative program-input 

pairs. Any program can be chosen as the representative for clusters that have two 

programs.  

2.3.3 Validation of media benchmark subsets 

Using the subset of media benchmarks in Table 2.5 the average IPC of the entire 

suite is estimated for two different superscalar microarchitecture configurations with 

issue widths of 2 and 4. The IPC of each media program is measured on the following 
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two configurations using sim-outorder simulator in Simplescalar tool-kit. The details of 

these configurations are 2-way issue, RUU/LSQ 32/16, Memory System 8KB 2-way 

L1 I/D, 256K 4-way L2,   ITLB/DTLB 4-way 16 entries/ 4-way 32 entries 30 cycle 

misses, L1/L2/mem latency of 1/6/36 cycles,  Functional Units  2 I-ALU, 1 I-MUL/DIV, 

2FP-ALU, 2 FP-MUL/DIV,  branch predictor Combined 2k tables 4 cycle misprediction 

penalty. Another configuration used, is a 4 way issue with RUU/LSQ 64/32, Memory 

System 16KB 2-way L1 I/D,  512K 4-way L2, ITLB/DTLB 4-way 16 entries/ 4-way 32 

entries 30 cycle misses, L1/L2/mem latency 2/8/36 cycles, Functional Units 4 I-ALU, 2 I-

MUL/DIV, 4 FP-ALU, 2 FP-MUL/DIV, Branch Predictor Combined 2k tables 4 cycle 

misprediction penalty. Weighted average IPC for the subset is calculated.  

Figure 2.9: Validation of subset of media benchmarks using IPC 
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Figure 2.9 shows the plot comparing the weighted average IPC of the subset with the true 

average of the suite. The weight for each representative is equal to number of programs in 

its cluster. The error in estimating IPC for a 2-way configuration is -0.67% and for issue 

width of 4 is -3.9%.   
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 Figure 2.10 shows the average data cache miss-rate of the entire set of media 

programs using the subset that is obtained using only data locality characteristics. Four 

different cache configurations are used to validate the subset. The cache configurations 

chosen for this analysis are: 4k, 8k, 16k and 64k size, and each of these sizes with a direct 

mapped, 4-way set associative, and full associative. All cache configurations have 64 

bytes block size and an LRU replacement policy. Smaller cache size configurations are 

chosen as compared to the ones used for validation of SPEC CPU2000 benchmarks 

because, for higher sizes, cache miss-rates for media programs are very close to zero.  

Figure 2.10: Validation of subset of media benchmarks using cache miss-rates 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

4k-DM 4k-4way 4k-FA 8k-DM 8k-4way 8k-FA 16k-DM 16k-4way 16k-FA 64k-DM 64k-4way 64k-FA

Cache configurations

A
v
e
ra

g
e
 c

a
c
h
e
 m

is
s
-r

a
te

using data locality based clusters using overall metrics based clusters using all programs

 

 

2.4 SUMMARY 

Partial use of benchmark suites for evaluating design trade-offs is very common. 

Many times the benchmarks are randomly picked without a careful analysis of all the 

benchmarks. An educated choice of benchmarks is a necessary part of good performance 
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evaluation practice. The process of choosing benchmark based on their characteristics is 

called subsetting. The first and the most important step of subsetting is characterization of 

benchmarks. Two types of characteristics i.e. Microarchitecture independent metrics and 

Microarchitecture dependent metrics are described. Also the advantage of the first one 

over the second approach is discussed. Other than the characterization of benchmarks, the 

process of subsetting also involves a data preprocessing step called PCA followed by 

clustering. The subsets formed are validated by checking if the average performance 

metric (IPC and speedup) of the complete benchmark suite can be projected by just the 

benchmarks in the subset. Many times the study is specific to a certain part of the system 

e.g. memory hierarchy, branch predictor. For these studies, it is good to analyze the 

characteristics separately and find a subset for each of these characteristics. For each 

benchmark suite a subset based on memory access behavior has been shown. The quality 

of such a subset is judged by comparing the average cache miss-rates of the complete 

suite and the subset.    

 This chapter demonstrates the use of microarchitecture independent metrics to 

form a subset of the SPEC CPU2000 benchmarks. Another experiment with similar 

analysis is done for the media benchmarks suites (Mediabench and MiBench). The 

subsets formed showed that the average error of IPC projection for the SPEC CPU2000 

and media benchmark suites is less than 5%. The average error in projection of speedup 

for the SPEC CPU2000 benchmarks is less than 10%.  

Based on the results and validation experiments, if the time required to simulate 

the entire SPEC CPU2000 benchmark suite is prohibitively high, the following subset of 

representative programs found using the subsetting based on microarchitecture 

independent metrics can be used for simulation based studies: applu, equake, fma3d, gcc, 

gzip, mcf, mesa, and twolf. A similar list for media benchmarks is as follows: 
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mibench_automotive_susan1, mibench_automotive_susan3, mibench_consumer_djpeg, 

mediabench_adpcm_decoder, mibench_automotive_basicmath_large, 

mibench_automotive_qsort, mediabench_ghostscript, mibench_security_sha_large. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 39 

Chapter 3:  Comparing Benchmark Suites by Analyzing Workload 
Space Coverage 

Ideally, a benchmark suite with good coverage should have benchmarks in all the 

areas of workload space. Usually, modern computer applications or the emerging 

applications that are used to form a benchmark suite are not evaluated rigorously to 

analyze their coverage in the workload space. Their position in the workload space shows 

which features of the design or computer system the benchmarks will stress and hence 

important for a good quantitative analysis. If there are multiple benchmark suites made 

from target applications of a design, it is important to compare them before using all of 

them e.g. in case of general purpose processors, where the target application list can be 

long comparing and analyzing different suites is essential. Comparison of benchmark 

suites can be done by mapping them together in the workload space together and 

comparing their coverage. If the dimensionality of the workload space is as small as two 

or three it will be easy to do visual inspection. But many times that is not the case and 

hence technique like clustering which is described earlier in this dissertation can be used. 

Each characteristic can be used separately to form different workload spaces of lower 

dimensionality to compare different suites. With the release of new generation of 

benchmark suites, its predecessor is retired. It is worthwhile effort to see if the new 

benchmark suite is really different from the older one. This might also suggest some 

trends in the evolution of applications since modern benchmarks are real applications. 

Many times the programs get carried forward from one suite to the other with some 

change in the source code and input. It will be interesting to see how that program’s 

behavior changed over time.  

Two experiments are described in this chapter. First experiment uses 

microarchitecture independent metrics measured for all the four generations of SPEC 



 40 

CPU benchmarks including CPU2000 and three of its predecessors to study the coverage 

of each of the suites. The second experiment compares SPEC CPU2000 benchmarks with 

the Mediabench and MiBench suites. PCA and clustering is used in the experiments to 

compare multiple suites. PCA will reduce dimensionality which will make it easy to even 

visually identify the coverage of each benchmark suite. Clustering in case of higher 

dimensional workload space will split the workload space filled by the existing 

benchmarks and point out the outliers which increase the coverage. 

3.1 SIMILARITY ANALYSIS ACROSS FOUR GENERATIONS OF SPEC CPU 

BENCHMARK SUITES 

SPEC 89 was the first SPEC CPU benchmark suite. SPEC CPU2000 which was 

fourth in succession with the second in 1992 and third in 1995. In order to keep pace with 

the architectural enhancements, technological advancements, software improvements, 

and emerging workloads, new programs were added,  programs susceptible to easy 

compiler optimizations were retired, program run times were increased, and memory 

activity of programs was increased in every generation of the benchmark suite. The 

objective of this paper is to understand how the inherent characteristics of SPEC 

benchmark programs have evolved over the first four generations. CPU2000 was being 

used for the longest time until recently before the CPU2006 was released. This 

experiment analyzes CPU benchmarks from the first four generations.  

A collection of microarchitecture independent metrics, described earlier are used 

to characterize the generic behavior of four generations of SPEC CPU benchmark 

programs. The data is analyzed using PCA and cluster analysis to understand the changes 

in the CPU workloads over time. First, k-means clustering is used to find an optimal 

number of clusters for all the four generations of SPEC CPU benchmarks. In the 

subsequent sections, each important characteristic is analyzed separately for all the 
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generations. In order to visualize the workload space the scores for the first two PCs for 

sixty programs on a two dimensional graph, and also plot a dendrogram showing the 

similarity between the programs.   

3.1.1 Analysis using all microarchitecture independent metrics 

In order to understand the (dis)similarity between programs across the four 

generations of SPEC CPU benchmark suites, cluster analysis is done to all the 60 

benchmarks in the PC space. Clustering all the 60 benchmarks yields 12 optimal clusters, 

which are shown in Table 3.1. The benchmarks in bold are the cluster representatives and 

are closest to the centre of the cluster. For clusters that have exactly two programs none 

of the benchmarks is marked bold because any one can be the representative of that 

cluster. The benchmark names are appended with the suite they are from e.g. gcc (95) 

means the gcc benchmark from SPEC CPU95. There are benchmarks with the same name 

in different benchmark suites e.g. gcc(95) and gcc(2000).   

Table 3.1: Optimal clusters for the four generations of SPEC CPU benchmark suites 

 

Cluster 1 gcc(95), gcc(2000) 

Cluster 2 mcf(2000) 
Cluster 3 turbo3d (95), applu (95), apsi(95), swim(2000), mgrid(95), wupwise(2000) 

Cluster 4 hydro2d(95), hydro2d(92), wave5(92), su2cor(92), succor(95), apsi(2000), 

tomcatv(89), tomcatv(92), crafty(2000), art(2000), equake(2000), mdljdp2(92) 

Cluster 5 perl(95), li (89), li(95), compress(92), tomcatv(95), matrix300(89) 

Cluster 6 nasa7(92), nasa(89), swim(95), swim(92), galgel(2000), wave5(95), alvinn(92) 

Cluster 7 applu(2000), mgrid(2000) 
Cluster 8 doduc(92), doduc(89), ora(92) 

Cluster 9 mdljsp2(92), lucas(2000) 
Cluster 10 parser(2000), twolf(2000), espresso(89), espresso(92), compress(95), go(95), 

ijpeg(95), vortex(2000) 

Cluster 11 fppp(95), fppp(92), eon(2000), vpr(2000), fppp(89), fma3d(2000), mesa(2000), 

ammp(2000) 

Cluster 12 bzip2(2000), gzip(2000) 
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A quick look at Table 3.1 gives us several interesting insights.  First, out of all the 

60 benchmarks, gcc (2000) and gcc (95) are together in a separate cluster. We observe 

that instruction locality for gcc is worse than any other program in all 4 generations of 

SPEC CPU suite.  Because of this, the gcc programs from the SPEC CPU 95 and 2000 

suites reside in their own separate cluster.  Due to its peculiar data locality characteristics, 

mcf (2000) resides in a separate cluster (cluster 2), and bzip2 (2000) and gzip (2000) 

form one cluster (cluster 12).  Perl(95), li(89) and li(95) are all interpreter type 

applications and all three of them lie in the same cluster.  Compress and swim are the 

only two programs which have their benchmarks from different suites in different 

clusters. All other benchmarks which are a part of different generations fall in the same 

cluster. SPEC CPU2000 programs exist in 10 out of 12 clusters, as opposed to SPEC 

CPU95 in 7 clusters, SPEC CPU92 in 6 clusters, and SPEC CPU89 in 5 clusters. This 

shows that SPEC CPU2000 benchmark suite is more diverse than its ancestors and shows 

a larger coverage in the workload space. 

3.1.2 Analysis based on microarchitecture independent instruction locality metrics 

PCA is done for only the microarchitecture independent instruction locality 

metrics and two principal components explaining 68.4 % and 28.6 % of the total variance 

are retained. Figure 3.1 shows the benchmarks in the PC space.   In order to visualize the 

relative positions of the benchmarks in the workload space a tree, or dendrogram is also 

plotted using hierarchical clustering.  Figure 3.2 shows the dendrogram obtained from 

applying hierarchical clustering to the data set in the PCA space.  The horizontal scale of 

the dendrogram lists the benchmarks, and the horizontal scale corresponds to the linkage 

distance obtained from the hierarchical clustering analysis.   

 



 43 

Figure 3.1: PC space for four generation of SPEC CPU benchmarks using instruction 
locality characteristics 

 

Figure 3.2: Dendrogram for four generation of SPEC CPU benchmarks using 
instruction locality characteristics 

 

The shorter the linkage distance the closer, i.e., more similar, the benchmarks are 

to each other in the workload space.  For example, in Figure 5, the gcc (2000) and gcc 
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(95) benchmarks combine into a cluster at a linkage distance of 0.2, and the cluster 

containing the two gcc benchmarks combines into a cluster containing all the other 

programs at a linkage distance of 6.2.  This means that the gcc benchmarks from SPEC 

CPU95 and SPEC CPU2000 benchmark suites are more similar to each other than with 

all the other programs. 

PC1 represents the instruction temporal locality and PC2 represents the 

instruction spatial locality of the benchmarks, i.e., the benchmarks with a higher value 

along PC1 show poor temporal locality for the instruction stream, and the benchmarks 

with a higher value along PC2 show good spatial locality in the instruction stream.  

Figures 3.1 and Figure 3.2 show that most of the benchmarks from all the SPEC CPU 

generations overlap. The biggest exception is gcc in SPECint2000 and SPECint95 (the 

two dark points on the plot on the extreme right). The gcc benchmark from the 

SPECint2000 and SPECint95 suites exhibits poor instruction temporal locality. It also 

shows very low values for PC2 due to poor spatial locality. The floating point program 

matrix300 from SPEC CPU89 suite and compress from SPEC CPU92 show very good 

temporal and spatial locality. The benchmark program applu from SPEC CPU2000 shows 

a very high value for PC2 and would therefore benefit a lot from an increase in block 

size. The fppp benchmarks from SPEC CPU89, SPEC CPU92, SPEC CPU95 suites, and 

the bzip2 and gzip benchmarks from the SPEC2000 suite show similar instruction 

locality.   

Although the average dynamic instruction count of the benchmark programs has 

increased by a factor of x100, the static instruction count has remained more or less 

constant.  This suggests that the dynamic instruction count of the SPEC CPU benchmark 

programs have been scaled drastically without significant increase in the static size of the 

benchmark code. 
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3.1.3 Analysis based on microarchitecture independent branch metrics 

Figure 3.3: PC space for four generation of SPEC CPU benchmarks using branch 
metrics 

 

Figure 3.4: Dendrogram for four generation of SPEC CPU benchmarks using branch 
metrics 
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For studying the branch behavior the following characteristics are included in the 

analysis: the percentage of branches in the dynamic instruction stream, the average basic 

block size, the percentage forward branches, the percentage taken branches, and the 

percentage forward-taken branches.  From PCA analysis, 2 principal components are 

retained which explain 62% and 19% of the total variance, respectively.  Figure 3.3 plots 

the various SPEC CPU benchmarks in this PCA space and Figure 3.4 is a dendrogram 

showing the linkage distance between the programs based on the branch characteristics. 

From Figure 3.3 it can be seen that the integer benchmarks are clustered in an 

area. The floating-point benchmarks show positive value along the first principal 

component (PC1), whereas the integer benchmarks have a negative value along PC1.  

The reason is that floating-point benchmarks typically have fewer branches, and thus 

have a larger basic block size; also, floating-point benchmarks typically are very well 

structured, and have a smaller percentage of forward branches, and fewer forward-taken 

branches.  In other words floating point benchmarks tend to spend most of their time in 

loops. The two prominent outliers in the top right corner of this graph are SPEC 2000’s 

mgrid and applu programs due to their extremely large average basic block sizes, 273 and 

318 instructions, respectively. The two outliers on the right are swim benchmarks from 

SPEC92 and SPEC95 suites, due to their large percentage taken branches and small 

percentage forward branches. On the extreme left of the PCA space is vortex from 

SPEC2000 which shows a very low average basic block size. Due to a significant overlap 

seen in the plot it can be concluded that the branch characteristics of the SPEC CPU 

programs did not significantly change over the past four generations of SPEC CPU 

programs.  Figure 3.4 also suggests that the branch behavior of programs doduc, 

espresso, fppp, hydro2d, li, and tomcatv whose branch characteristics have not changed 

across generations of SPEC CPU benchmark suites. 



 47 

3.1.4 Analysis based on microarchitecture independent metrics for instruction 
level parallelism (ILP) 

Figure 3.5: PC space for four generation of SPEC CPU benchmarks using ILP metrics 

 

Figure 3.6: Dendrogram for four generation of SPEC CPU benchmarks using ILP 
metrics 
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In order to study the instruction-level parallelism (ILP) of the SPEC CPU suites 

the inter-instruction register dependency characteristic are used.  This characteristic is 

closely related to the intrinsic ILP available in an application.  Long dependency 

distances generally imply a high ILP.  The first two principal components explain 96% of 

the total variance.  The PCA space is plotted in Figure 3.5, and Figure 3.6 shows the 

dendrogram with the linkage distance between the programs based on their ILP 

characteristics.   

The integer benchmarks typically have a high value along PC1, which indicates 

that these benchmarks have a higher percentage of short dependency distances.  The 

floating-point benchmarks typically have larger dependency distances.   The intrinsic ILP 

did not change over the 4 benchmark suites except for the fact that several floating-point 

programs from SPEC CPU89 and SPEC CPU92 suites (and no SPEC CPU95 or SPEC 

CPU2000 benchmarks) exhibit relatively short dependencies compared to other floating-

point benchmarks; these overlap with integer benchmarks in the range -0.1 < PC1 < 0.6. 

In the top left corner in Figure 3.5 there are two outliers, mgrid and applu, that are quite 

far from a lot of other programs and show large dependency distances, which implies 

better ILP. The program swim from the SPEC CPU2000 suite also shows large 

dependency distances. The majority of the programs on the right side of the PCA space 

are integer programs with vortex from SPEC 2000 being the one with the largest number 

of short dependency distances.  In Figure 3.6 shows that a lot of floating point programs 

across various generations, e.g., fppp, tomcatv, nasa7, li, and doduc, form a tight cluster. 

Hence it can be concluded that there is a lot of similarity between the ILP characteristics 

exhibited by the floating point programs across all four generations of the SPEC CPU 

suites. 
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3.1.5 Analysis based on microarchitecture independent data locality metrics 

Figure 3.7: PC space for four generation of SPEC CPU benchmarks using data locality 
metrics 

 

Figure 3.8: Dendrogram for four generation of SPEC CPU benchmarks using data 
locality metrics 
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For studying the temporal and spatial locality behavior of the data stream the 

locality characteristics based on reuse distance described before in this dissertation is 

used.  Recall that the characteristics by themselves quantify temporal locality whereas the 

ratios between them are a measure for the spatial locality.  Figure 3.7 shows a plot of the 

benchmarks in the PCA space built from these data locality characteristics, and Figure 

3.8 shows the linkage distance between various programs on a dendrogram.  

In Figure 3.7 the first principal component measures temporal locality, i.e., a 

more positive value along PC1 indicates poorer temporal locality.  The second principal 

component measures spatial locality.  Therefore, benchmarks with a high value along 

PC2 will thus benefit more from an increased cache line size.   From Figure 3.7 it evident 

that several SPEC CPU2000 and CPU95 benchmark programs, namely bzip2, gzip, mcf, 

and wupwise, from CPU2000, and gcc, turbo3d, applu, and mgrid from CPU95, exhibit a 

temporal locality that is significantly worse than the other benchmarks.  Concerning 

spatial locality, most of these benchmarks exhibit a spatial locality that is relatively 

higher than that of the remaining benchmarks, i.e., increasing the block sizes improves 

performance of these programs more than they do for the other benchmarks.  

Programs like gzip, bzip2 and mcf show poor spatial locality.  There are a lot of 

programs in all the four generations of SPEC CPU suites that overlap.  This indicates that 

although the objective of SPEC is to worsen the data stream locality behavior of 

subsequent CPU suites, several benchmarks in recent suites exhibit a locality behavior 

that is similar to older suites of SPEC CPU benchmarks.  Moreover, several CPU95 

benchmarks like wave, perl, compress, apsi and CPU2000 benchmarks like equake, 

galgel, lucas and swim that show a temporal locality behavior that is better than some 

CPU89 and CPU92 benchmarks.  
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3.2 COMPARING SPEC CPU AND MEDIA BENCHMARKS 

Using the microarchitecture independent metrics described earlier in this 

dissertation an experiment is done to compare the SPEC CPU2000 benchmarks with the 

media benchmarks. These two benchmark suites are developed from different application 

domains. SPEC CPU2000 benchmark suite is developed for evaluating workstation and 

server class computer systems. On the other hand media benchmarks are used to evaluate 

processors or systems developed for handheld and embedded processor systems. Media 

benchmarks are also computation intensive programs that essentially implement 

telecommunication algorithms. These programs are also scientific application. The 

difference between the SPEC CPU benchmarks and the media benchmarks is that media 

benchmarks may have real time input in many cases. Also a lot of compression 

algorithms where images are compressed and decompressed are used as benchmarks. It 

will be interesting to see how the scientific applications or benchmarks from a different 

application domain i.e. class of embedded systems compare with the workstation or 

server class benchmarks.  

The methodology of experiment is similar to the one in the previous section 

except that all the microarchitecture independent characteristics for SPEC CPU2000 

benchmarks and media benchmarks are put together. Media benchmarks used in the 

experiment are from the Mibench and Mediabench benchmark suites.  PCA followed by 

hierarchical clustering is done to plot the data in a form of a dendrogram. A dendrogram 

can visually show the clusters of benchmarks but does not classify the benchmarks into 

fixed clusters. It shows the relative position of benchmarks with all other benchmarks. 

This experiment can be further extended to find a subset of programs from the mix of 

media and SPEC CPU2000 benchmarks. The dendrogram can also be used to select 

benchmarks for simulation.  
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Figure 3.9: Dendrogram to compare SPEC CPU2000 and media benchmarks using 
microarchitecture independent metrics 

 

The dendrogram in Figure 3.9 shows all the programs on the vertical axis and the 

linkage distance on the horizontal axis. The program names can be explained as follows. 

All the programs with suffix ‘2k’ are SPEC CPU2000 benchmarks. All the programs with 

a suffix ‘media_’ are from Mediabench benchmark suite and the rest of the programs are 
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from MiBench suite with a suffix that shows the application domain of the program e.g. 

‘automotive_’. Each line originating from a program name unites with another line at a 

certain linkage distance. The shorter the linkage distance, closer are the programs to each 

other. As shown in Figure 3.9, the program mcf from the SPEC CPU2000 suite is the 

farthest from all the rest of the programs. A box formed by solid black lines indicates the 

presence of the SPEC CPU2000 programs on the dendrogram. 

It is very evident that the SPEC CPU2000 programs form small clusters that are 

well spread out in the workload space covered by the two suites. The SPEC CPU2000 

programs vpr, ammp, apsi, swim, wupwise can form a closely bound cluster. Similarly 

eon, fma3d, equake, mesa, and art can form a tight cluster. The rest of the SPEC CPU 

2000 programs that are shown at the bottom of the dendrogram are far away from each 

other and from the remaining programs in the workload space. The media programs also 

form small tight clusters except the basicmath program from the automotive application 

domain of MiBench suite. This program shows a very large linkage distance with other 

media and SPEC CPU2000 programs and also lies at the bottom of the dendrogram. 

Figure 3.9 also demonstrates how to pick a dozen programs from a set of media and 

SPEC CPU2000 programs. A vertical line is drawn at linkage distance of 6. The two 

benchmarks linked to the line on the left side of the first cross, starting from top, are 

media programs and can be considered to form a cluster. So, one program is picked from 

the cluster (media_adpcm_d and media_adpcm_e). At each intersection one program is 

picked. At the bottom of the dendrogram, there are three singleton clusters of 

automotive_basicmath_large, gcc_2k and mcf_2k. The second and fourth cluster from 

top, contain both media and SPEC CPU2000 programs. Either a media or a SPEC 

CPU2000 program can be chosen from each of the clusters. If all the twelve clusters are 

examined and one representative is chosen from each cluster, there are at least four media 
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programs in the subset. If media programs are picked as a representative of both the 

second and fourth cluster then there are 6 out 12 media programs in a subset. 

 

3.3 WORKLOAD SPACE ANALYSIS OF DACAPO BENCHMARKS 

In the past researchers have developed benchmark suites for a particular 

application domain. Recently, the DaCapo benchmarks [6] were developed as a 

collection of applications which are more representative to the real java applications and 

their complexity.  With the release of a new benchmark suite, it becomes inevitable to 

compare its characteristics and behavior with the existing java applications. As a part of 

the analysis the author of this dissertation worked with the developers of the DaCapo 

benchmark suite to compare the workload space of the new DaCapo benchmarks with the 

SPEC jvm98 benchmarks. There were different characteristics that were used to compare 

the two suites. The details of the analysis (PCA) and the characteristics are well described 

in [6]. This shows that the methodology of workload space analysis can be very useful to 

validate and compare the workload space coverage of the new benchmark suite. 

 

3.4 SUMMARY 

For general purpose processors the design space is quite large which means that 

the target applications come from many different domains. This means that different 

benchmark suites should be compared and a representative set of benchmarks from 

multiple suites should be used for performance analysis. The focus of this chapter is to 

show how the program similarity analysis can be used to compare different benchmark 

suites and evaluate their coverage of workload space. 
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Benchmark suites like the SPEC CPU evolve over time. An experiment is 

designed to study the evolution of the first four generations of the SPEC CPU benchmark 

suites. Microarchitecture independent metrics are used to measure the similarity between 

programs and compare the different suites. The experiment looks at each of the different 

characteristics separately and studies how the four suites compare for each one. All the 

benchmarks from the four suites are plotted on a scatter plot and a dendrogram.   

The SPEC CPU2000 and media benchmarks are also compared using a 

dendrogram for the all the microarchitecture independent characteristics together. This 

experiment demonstrates how benchmarks from different domains can be compared and 

a subset of benchmarks from both the suites can be obtained for performance evaluation.   

 

 

 

 

 

 

 

 

 

 

 

 



 56 

Chapter 4:  Fast subsetting using performance monitoring counters  

The approach used for measuring program similarity in this chapter is different 

from the one used in Chapter 2. In this chapter microarchitecture dependent metrics are 

used to measure program similarity. As mentioned earlier the disadvantage of using 

microarchitecture dependent metrics is that the results are not applicable to a wide range 

of microarchitecture configurations. But it takes longer to measure microarchitecture 

independent metrics as compared to microarchitecture dependent metrics. The approach 

of using microarchitecture dependent metrics was also used as one of the criteria in 

selecting benchmarks to form the SPEC CPU2006 suite [23]. The time window for 

measurement and analysis was very small since the changes are made to the benchmarks 

very often. To satisfy both the needs described above, the benchmarks are characterized 

using microarchitecture dependent metrics on five different machines with four different 

ISAs. The five machines have different microarchitecture and use different compilers. 

The microarchitecture independent approach is better because it captures inherent 

behavior of programs. The microarchitecture dependent approach may not capture the 

possible behavior of programs on systems dissimilar to the ones used in the experiment.  

Another objective of this chapter is to demonstrate different analysis techniques 

that can be used to study a new benchmark suite. The rest of the chapter is aligned as 

follows. Section 4.1 gives a brief introduction to the SPEC CPU2006 benchmarks. 

Section 4.2 describes the results of some basic analysis of instruction locality at 

subroutine level.  Section 4.3 describes the subsetting experiment and section 4.4 

includes a discussion on the balance of CPU2006 suite. 
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4.1 INTRODUCTION TO SPEC CPU2006 BENCHMARKS 

SPEC, since its formation in 1988, has served a long way in developing and 

distributing technically credible, portable, real-world application-based benchmarks for 

computer vendors, designers, architects, and consumers. The SPEC CPU benchmark 

suite, which was first released in 1989 as a collection of ten computation-intensive 

benchmark programs, is now in its fifth generation and has grown to 29 programs.  In 

order to keep pace with the technological advancements, compiler improvements, and 

emerging workloads, in each generation of SPEC benchmarks, new programs are added, 

programs susceptible to easy compiler optimizations are retired, program run times are 

increased, and memory access intensity of programs is increased [13][25]. The SPEC 

CPU2006 suite, like its predecessors is divided into two parts: the integer benchmarks 

called CINT2006 and the floating point benchmarks called CFP2006 benchmarks. The 

integer group consists of 12 programs and the floating point group consists of 17 

programs which stress the CPU, memory and effectiveness of the compiler. Table 4.1 and 

Table 4.2 show the dynamic instruction count and instruction mix for integer and floating 

point benchmarks respectively. 

Table 4.1: Dynamic instruction count and I-mix for integer benchmarks in CPU2006  

Name – Language Instruction Count (billions) %Branches %Loads %Stores 

400.perlbench –C 2,378 20.96% 27.99% 16.45% 

401.bzip2 – C 2,472 15.97% 36.93% 12.98% 

403.gcc – C 1,064 21.96% 26.52% 16.01% 

429.mcf –C 327 21.17% 37.99% 10.55% 

445.gobmk –C 1,603 19.51% 29.72% 15.25% 

456.hmmer –C 3,363 7.08% 47.36% 17.68% 

458.sjeng –C 2,383 21.38% 27.60% 14.61% 

462.libquantum-C 3,555 14.80% 33.57% 10.72% 

464.h264ref- C 3,731 7.24% 41.76% 13.14% 

471.omnetpp- C++ 687 20.33% 34.71% 20.18% 

473.astar- C++ 1,200 15.57% 40.34% 13.75% 

483.xalancbmk- C++ 1,184 25.84% 33.96% 10.31% 
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Table 4.2: Dynamic instruction count and I-mix for floating point benchmarks in 

CPU2006  

Name – Language Instruction Count (billions) %Branches %Loads %Stores 

410.bwaves – Fortran 1,178 0.68% 56.14% 8.08% 

416.gamess – Fortran 5,189 7.45% 45.87% 12.98% 

433.milc – C 937 1.51% 40.15% 11.79% 

434.zeusmp - C, Fortran 1,566 4.05% 36.22% 11.98% 

435.gromacs- C, Fortran 1,958 3.14% 37.35% 17.31% 

436.cactusADM- C, Fortran 1,376 0.22% 52.62% 13.49% 

437.leslie3d – Fortran 1,213 3.06% 52.30% 9.83% 

444.namd - C++ 2,483 4.28% 35.43% 8.83% 

447.dealII - C++ 2,323 15.99% 42.57% 13.41% 

450.soplex - C++ 703 16.07% 39.05% 7.74% 

453.povray - C++ 940 13.23% 35.44% 16.11% 

454.calculix - C, Fortran 3,041 4.11% 40.14% 9.95% 

459.GemsFDTD - Fortran 1,420 2.40% 54.16% 9.67% 

465.tonto – Fortran 2,932 4.79% 44.76% 12.84% 

470.lbm – C 1,500 0.79% 38.16% 11.53% 

481.wrf – C, Fortran 1,684 5.19% 49.70% 9.42% 

482.sphinx3 – C 2,472 9.95% 35.07% 5.58% 

 

A description of each program has been neatly described by Henning [26] and a 

summary of changes observed in CPU2006 from the CPU2000 suite has been concisely 

presented by McGhan [42]. The instruction mix and dynamic characteristics are 

measured using performance counters on a Pentium D system running SUSE Linux 10.1 

and the benchmarks are compiled using Intel C/C++, Fortran compiler V9.1. The basic 

measurements are collected using the PAPI [14] tool set. The dynamic instruction count 

of 24 out of the 29 programs is in the trillions which indicate the overall increase in the 

length of the programs.  The instruction mix points to several interesting observations: 

the percentage of branches in the dynamic instruction mix is close to the typical 20% in 

most of the integer programs; however, two programs, hmmer and h264ref have only 7% 

branches. One out of every 4 instructions is a branch in xalancbmk, which is one of the 

C++ programs in the integer suite. The other two C++ programs (omnetapp and astar) 

show typical branch frequencies of 20% and 15% respectively. Amongst FP programs, 

deall, soplex and povray have approximately 15% branches whereas most of the other FP 
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programs have less than 5% branches. There are a few programs where the number of 

instructions per branch is higher than 100 (bwaves, lbm, cactusADM). The large dynamic 

basic block size in these programs will allow parallelism to be exploited by machines 

without being interrupted by branches. 

Figure 4.1: Code reuse in SPEC CPU2006 integer programs by profiling top 20 hot 
functions  
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4.2 INSTRUCTION LOCALITY BASED ON SUBROUTINE PROFILING 

Programs exhibit locality in instruction access. Subroutine profiling is done in 

order to understand the code locality in the CPU2006 programs using the PIN dynamic 

instrumentation tool [39]. PIN can identify hot subroutines based on subroutine call 

frequency. It can also count the number of dynamic/static instructions in them. Figure 4.1 

and Figure 4.2 show the locality plots for integer and floating point workloads 

respectively. Not all benchmark input sets are plotted, but at least one for each 

benchmark can be seen. The cumulative percentage of dynamic instructions executed by 

a program is shown on Y-axis and the count of static instructions is shown on the X-axis. 
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Many plots climb up very steeply and hence show a very high ratio for the dynamic to 

static instruction count i.e. high reuse and very good instruction locality. The charts are 

based on the hottest 20 subroutines, which cover 80% or more of the dynamic 

instructions in most of the programs.  Benchmark 456.hmmer shows a very high reuse of 

code in the hottest subroutine. More than 95% of the instructions come from the hottest 

subroutine which has 11080 static instructions.  

Figure 4.2: Code reuse in SPEC CPU2006 floating-point programs by profiling top 20 
hot functions 
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Similarly 436.CactusADM and 470.lbm show a very high code–reuse and hence 

good instruction locality. From Figure 4.1 403.gcc and 471.omnetpp show comparatively 

very low percentage of dynamic instruction executed in the top 20 hot functions as they 

climb up slowly. Even 483.xalancbmk shows a slower climb in Figure 4.1 and shows 

poor code reuse compared to the other workloads. This is a coarse metric of locality since 

all static instructions from an entire subroutine are counted on the x-axis. SPEC’s effort 

to create applications with large foot print and low locality can be seen in some programs 

where 5 million static instructions only cover less than 50% of the dynamic instructions. 
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4.3 SUBSETTING FOR SPEC CPU2006 BENCHMARKS 

SPEC CPU benchmark suites contain real world applications chosen from a 

diverse set of application areas. Preserving the original algorithms and realistic data input 

sets render a great sense of realism for the suite. However, run times have been very high. 

Since clock frequencies and cache sizes of machines increase every year, SPEC has 

increased the benchmark run times significantly to ensure that the benchmarks run for a 

reasonable amount of time to make meaningful measurements by vendors. However for 

architectural simulation studies, simulating every benchmark with every provided input 

set results in enormous amounts of simulation time and limits design space exploration. If 

same amount of information can be obtained from a smaller subset, it is certainly 

worthwhile, for researchers/designers in early design tradeoff analysis stages. 

 The new SPEC CPU2006 benchmark suite is analyzed to find a subset of 

representative benchmarks.  The approach can be described as follows: Programs are 

characterized using performance counters on five different state-of-the-art machines with 

4 different ISAs (IBM Power, Sun UltraSPARC, Itanium and x86) with varying  

microarchitecture, varying degrees of out of ordering, varying amounts of caches and 

differing cache hierarchy structures. Since the different characteristics are measured on 

different machines, each of them forms a characteristic of a program. If there are n 

machines and m metrics for each machine, each program has n x m characteristics. This 

dataset is then pre-processed using PCA and then clustered using these n x m 

characteristics of all programs.  It is likely that some of these characteristics are 

correlated (for instance, consider that 2 machines have very similar microarchitecture 

features). This correlation will be removed by the PCA process. A concern is that one 

may accidentally include a characteristic with a large variance, but small impact on 

performance. In order to avoid that, a correlation analysis was performed between CPI 
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and the characteristic, and characteristics with more correlation to performance were 

chosen. Table 4.3 shows the list of characteristics that are measured for each program on 

five different machines. Note that the important characteristics that affect performance 

for the integer and floating-point programs are different. 

Table 4.3: List of characteristics measured for SPEC CPU2006 benchmarks 

Integer benchmarks Floating point benchmarks 

Integer operations per instruction Floating point operations per instruction 

L1 instruction cache misses per instruction Memory references per instruction 

Number of branches per instruction L2 data cache misses per instruction 

Number of mispredicted branches per instruction L2 data cache misses per L2 accesses 

L2 data cache misses per instruction Data TLB misses per instruction 

Instruction TLB misses per instruction L1 data cache misses per instruction 

 

Figure 4.3: Dendrogram for CPU2006 integer benchmarks 

 

 



 63 

Table 4.4: Subsets for integer benchmarks from CPU2006 

k=4 400.perlbench, 462.libquantum,473.astar,483.xalancbmk 

k=6 400.perlbench, 471.omnetpp, 429.mcf, 462.libquantum, 473.astar, 483.xalancbmk 

 

Figure 4.3 shows a dendrogram for CINT2006 benchmarks obtained after 

applying PCA and Hierarchical Clustering on the characteristics from Table 4.3.  The 

Euclidean distance between the benchmarks is used as a measure of dissimilarity and 

single-linkage distance is computed to create a dendrogram. Seven Principal Components 

(PCs) are chosen which retain 94% of the variance.  In the dendrogram in Figure 4.3 the 

horizontal axis shows the linkage distance indicating the dissimilarity between the 

benchmarks. The ordering on the y-axis does not have particular significance, except that 

benchmarks are positioned close to each other when the distance is smaller. Benchmarks 

that are outliers can be seen to have larger linkage distances with the rest of the clusters 

formed in a hierarchical way. If a researcher chooses to pick six benchmarks, then 

drawing a vertical line at linkage distance of four as shown in Figure 4.3 will give a 

subset of six benchmarks(k=6). Drawing a line at a point little less than 4.5 yields a 

subset of four (k=4). Table 4.4 shows the subsets. In clusters where there are more than 

two programs, the representative of cluster i.e. the benchmark closest to the center of the 

cluster is chosen as a representative. As the line moves from right to the left on the 

dendrogram the number of benchmarks in a subset goes on increasing. This helps the user 

to pick appropriate benchmarks when the time to simulate benchmarks is limited. The 

subsets formed are validated in the next section. 

Figure 4.4 shows the dendrogram for floating point benchmarks in CPU 2006. 

Five PCs are chosen using the Kaiser criterion which retains 85% of the variance. The 

two vertical arrows show the points at which the subsets are formed. The resulting 
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clusters are shown in Table 4.5. The distance of each of the benchmarks in the cluster to 

the center has to be recalculated and a representative can be chosen. In Figure 4.4 there 

are two main clusters which split at extreme right because the branch characteristics of 

the benchmarks. 447.dealII, 450. soplex and, 453.povray exhibit a comparatively higher 

branch misprediction rate. 

Figure 4.4: Dendrogram for CPU2006 floating point benchmarks 

 

Table 4.5: Subsets for floating point benchmarks from CPU2006 

K=4 482.sphinx3, 436.cactusADM, 447.dealII, 453.povray 

K=6 437.leslie3d, 454.calculix, 436.cactusADM, 447.dealII, 470.lbm, 453.povray 

Note that clustering and subsetting gives importance to unique features and 

differences. It helps to eliminate redundancy and reduce efforts in experimentation; 

however, one should not mistake the mix of program types in a subset as the mix of 

program types in the real-world. The mix of programs in the real-world may contain 
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more normal cases as opposed to challenging corner cases which get emphasized in 

benchmark suites.  

4.3.1 Validation of SPEC CPU2006 subsets 

Validation of the subsets is based on actual performance scores of carefully 

chosen five commercial machines. The SPEC website [59] contains several CPU 2006 

submissions from major commercial computer vendors. The execution times for each 

platform and baseline execution times on the reference machine can be obtained from the 

SPEC site for each benchmark program. The average speedup obtained based on the 

subset is compared against the average speedup from the entire component (CINT or 

CFP) of the suite. In accordance with SPEC practices, geometric mean is used to find the 

average.  

Figure 4.5: Validation of the subset of integer benchmarks using 5 systems from SPEC 
website 

0

2

4

6

8

10

12

14

16

18

20

A
M

D
 T

y
a
n

T
h
u
n
d
e
r 
K

8
E

 

A
p
p
le

 iM
a
c

2
.0

G
H

z
 I
n
te

l

C
o
re

 D
u
o

F
u
jit

s
u
 S

C

C
E

L
S

IU
S

 M
4
4
0

In
te

l D
G

9
6
5
W

H

m
o
th

e
rb

o
a
rd

S
u
n
 B

la
d
e
 2

0
0
0

B
u
ll 

S
A

S

N
o
v
a
S

c
a
le

 B
2
6
0

(I
n
te

l X
e
o
n

E
5
3
2
0
,1

.8
6
G

H
z
)

D
e
ll 

P
re

c
is

io
n

6
9
0
 (
In

te
l X

e
o
n

5
1
6
0
, 
3
.0

0
 G

H
z
)

H
P

 I
n
te

g
ri
ty

B
L
8
6
0
c
 (
1
.6

G
H

z

D
u
a
l-
C

o
re

 I
n
te

l

It
a
n
iu

m
 2

)

S
p
e
e
d
u
p

Using all benchmarks Based on the subset of 6 Based on the subset of 4

 

Figure 4.5 shows the comparison of both the subsets of CINT2006 benchmarks 

from Table 4.4. For CINT component the subset of 4 programs shows an average error of 

5.8% and a maximum error of 10.1%. The subset of 6 benchmarks shows an average 
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error of 3.8% and a maximum error of 8%. This shows that even a subset of 4 

benchmarks out of 12 CINT benchmarks has a very good predictive power in estimating 

the speedup shown by the entire suite.  

Figure 4.6 shows the validation of CFP2006 benchmarks using both the subsets 

from Table 4.5. The subset is seen to predict the speedup very closely for the integer 

suite. The error in the floating point subset is higher than that in the integer; however, 

there is no change in ranking considering these machines. For a subset of 6 the average 

error is 10.8% with the maximum error of 19%. Hence we look at a subset of 8 

benchmarks which shows the average error of 7% and the maximum error is 12%. 

Figure 4.6: Validation of the subset of floating point benchmarks using 5 systems from 
SPEC website 
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4.3.2 Selecting representative input set 

Many benchmarks in the CPU2006 have multiple input sets. Hence forth in this 

sub-section a program-input pair will be referred to as workload and all the workloads of 

a program run together as a benchmark. A reportable SPEC run uses all the workloads for 

each benchmark; however it is possible to use PCA and clustering to identify a 

representative input set, helping architecture researchers to reduce simulation time and 
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effort. In SPEC CPU2006 403.gcc benchmark has nine input sets. The program 

characteristics shown in Table 2.9 are measured for all the different workloads and for 

the benchmark, which are used in the analysis. Whenever data is reported for a 

benchmark, it is the aggregate behavior summing up all its input sets.  

Figure 4.7 shows the dendrogram for input sets and the benchmarks for the 

integer component. Seven PCs covering 89% of variance are chosen for this analysis. 

Some benchmarks have only one input set and hence represented only by their name. In 

some benchmarks, all input sets appear clustered together, whereas in many cases, some 

input sets are very different from the other input sets of the same benchmark. As an 

example, the behavior of 403.gcc-9 is significantly different from its siblings.  

Figure 4.7: Dendrogram of CPU2006 integer benchmarks with their input sets plotted 
separately 
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A benchmark’s input set closest to the complete (aggregated run over all inputs 

one after another) run is marked as the representative input set. In CINT2006, the 

benchmarks that have multiple input sets are 400.perlbench, 401.bzip2, 403.gcc, 

445.gobmk, 456.hmmer, 464.h264ref, 473.astar. For each of these benchmarks a 

representative input set is listed in Table 4.6. Figure 4.8 shows the dendrogram for 

CFP2006 benchmarks. Six PCs covering 88% of variance are chosen. In this category 

there are only two benchmarks with multiple input sets. i.e. 416.gamess and 450.soplex.  

Figure 4.8: Dendrogram of CPU2006 floating point benchmarks with their input sets 
plotted separately 

 

Table 4.6: List of representative input set for CPU2006 benchmarks with multiple 

inputs 

CINT2006 benchmarks 464.h264avc   -  input set 2 

400.perlbench -  input set 1 473.astar      -  input set 2 

401.bzip2       -   input set 4  

403.gcc          -   input set 1 CFP2006 benchmarks 

445.gobmk     -  input set 5 416.gamess  -  input set 3 

456.hmmer     -  input set 2 450.soplex    -  input set 1 
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Table 4.7: Application areas with multiple programs in the CPU2006 benchmark suite 

Application area Benchmarks 

Artificial Intelligence 458.sjeng, 445.gobmk,473.astar 

Equation solver 436.cactusADM, 459.GemsFDTD 

Fluid Dynamics 410.bwaves, 434.zeusmp, 437.leslie3D, 470.lbm 

Molecular Dynamics 435.gromacs, 444.namd 

Quantum Chemistry 465.tonto, 416.gamess 

Engineering and Operational Research 454.calculix, 447.dealII, 450.soplex, 453.povray 

4.4 BALANCE IN THE BENCHMARK SUITE 

Table 4.7show a list of the application areas and the integer benchmarks 

associated with each of them. There are multiple programs from certain application areas, 

e.g. in the integer suite, there are 3 programs (458.sjeng, 445.gobmk, 473.astar) from the 

artificial intelligence area, and in the floating point suite, there are 4 programs 

(410.bwaves, 434. zeusmp, 437.leslie3d, 470.lbm) from the fluid dynamics area, but none 

of the benchmarks are from the Electronic Design Automation (EDA) application area. 

The earlier SPEC suites contained EDA applications (vpr, twolf, espresso, eqntott). The 

goal of this experiment is to see if losing the applications from EDA domain is a 

weakness of CPU 2006 or do some other programs included in the suite cover the 

workload space where the EDA programs are positioned. Also it is interesting to see if 

the multiple programs from one area included in the suite have sufficient unique behavior 

to warrant their inclusion. This section shows how the process of measuring program 

similarity can be used to check the balance in the benchmark suite. Analysis of similarity 

between benchmarks will help in answering the concerns about EDA applications 

mentioned above. The program characteristics shown in Table 4.3 are measured for all 

the SPEC CPU2000 and SPEC CPU2006 integer programs and projected in the workload 

space after applying PCA.   
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Figure 4.9: Scatter plot of PC2 Vs PC1 to show the position of EDA applications in the 
workload space  

 

Figure 4.10: Scatter plot of PC4 Vs PC3 to show the position of EDA applications in the 
workload space  
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The benchmarks 175.vpr and 300.twolf in particular are the EDA applications used as 

benchmarks in CPU2000 suite. Figure 4.9 and Figure 4.10 show the projections of the 

workload space on the first four PCs. From these figures it is evident that the EDA tool 

benchmarks from CPU2000 i.e. 175.vpr and 300.twolf lie close to 473.astar from 

CPU2006 in both the projections and close to 401.bzip2 from the CPU2006 benchmark in 

Figure 4.9. Also the EDA tools are surrounded by other benchmarks which does not 

make them unique This shows that the EDA tools that were commonly used 5 to 6 years 

back, do not show very different behavior from some recent benchmarks which are from 

a different application area. Since EDA tool industry is evolving very fast with new 

features and capabilities added to the tool frequently, more recent EDA applications may 

show very different behavior. In summary, the behavior of older EDA application area 

benchmarks show similar performance behavior as some of the recent SPEC CPU2006 

benchmarks but the latest EDA applications need to be studied and compared with the 

benchmarks in the new suite.    

 Any two benchmarks that belong to the same application area can show different 

behavior on certain architecture. The similarity analysis described in the previous 

subsection for subsetting can be used to compare the benchmarks from Table 4.7 from 

the same application area. Consider one application area from Table 4.7 at a time and 

then go back to Figure 4.3 for integer programs and Figure 4.4 for floating point 

benchmarks to observe similarity within a given application area. In case of artificial 

intelligence applications, 458.sjeng and 473.astar show very similar behavior and can be 

found quite close to each other in the workload space, while 445.gobmk is much further 

away from its siblings. The equation solver applications do not lie close to each other and 

hence justify the presence of both the benchmarks in the suite. 410.bwaves and 

437.leslied, are relatively close to each other than the other two programs in their 
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application area. Both the programs in molecular dynamics are different and relatively 

closer to each other with the linkage distance of less than 2 between them. 465.tonto and 

416.gamess also have a linkage distance of less than 2. The last application area in Table 

4.7 which has applications much spread out in the workload space compared to the others 

and have four programs which are significantly different from each other. To summarize 

this study, there are differences between programs that affect performance; however, if 

elimination of similar programs is desired by a user based on the application area, the 

programs marked in bold in Table 4.7 show highest redundancy (similarity to other 

existing programs in the same domain).    

4.5 COMPARISON OF CPU2006 WITH THE CPU2000 BENCHMARK SUITE  

The SPEC CPU2006 benchmark suite is the latest in the five generations of CPU 

benchmarks after the SPEC CPU2000 benchmarks. It is important to see how the 

benchmark suites compare with the benchmarks from its previous generation. The 

following experiment is done to compare the two suites. Microarchitecture dependent 

metrics listed in Table 4.3 are used to characterize the benchmarks. The microarchitecture 

dependent characteristics that are chosen for the experiment are measured on five 

different computer systems with different ISAs and compiled using state of the art 

compilers. The workload space is built using the six characteristics on each machine (30 

characteristics in total).  

4.5.1 Analysis of integer benchmarks 

Figure 4.11 shows a dendrogram plotted using the microarchitecture dependent 

metrics for integer programs. The benchmarks with a suffix number starting with ‘4’ are 

all the CPU2006 benchmarks. The rest are CPU2000 benchmarks e.g. 429.mcf belongs to 

the SPEC CPU2006 suite while 181.mcf belongs to CPU2000 suite. There are a few 
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programs that are common between the two suites. Mcf, perl and gcc that are present in 

both the benchmark suites can be seen relatively close to each other in the common 

workload space. Although mcf benchmarks from the two suites are significantly away 

from the other benchmarks, they are quite similar to each other. There are a few 

CPU2006 benchmarks that are quite far away in the workload space from the other 

benchmarks i.e. xalancbmk, gobmk, libquantum and omnetpp. But xalancbmk is farther 

in the workload space from all other benchmarks. This does not signify good or poor 

performance for xalancbmk but just shows that its behavior is very different. 

Figure 4.11: Dendrogram to compare integer benchmarks from SPEC CPU2006 and 
SPEC CPU2000 benchmark suite 

 

   

The similarity analysis also found that most of the integer benchmarks from 

CPU2000 suite that were carried forward to CPU2006 suite e.g. mcf, gcc and perl are 

significantly similar. But the SPEC CPU2006 benchmarks run for a very long time. This 
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raises a question whether the program like mcf and gcc are made to run longer without 

any significant change in the control flow behavior of the benchmarks. It may also mean 

that the later versions of these real-world applications do not show significantly different 

behavior as far as processor and memory performance are concerned but only operate on 

a bigger set of data. If the control flow behavior is similar and the programs are modified 

to run for a longer time, using older benchmark for simulation based studies should not 

be criticized in the research community.   

Figure 4.12: Dendrogram to compare floating point benchmarks from SPEC CPU2006 
and SPEC CPU2000 benchmark suite 

 

 

4.5.2 Analysis of floating point benchmarks 

Figure 4.12 shows a dendrogram for the floating point benchmarks from both the 

suites. None of the application programs were carried over from CPU2000 to CPU2006. 

The same rule that CPU2006 benchmarks star with a suffix of ‘4’ and the rest are all 
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CPU2000 benchmarks. It is evident that there are mainly three groups of benchmarks 

which can be seen starting from the right side of the figure. There are five benchmarks on 

the left, which can be easily classified as outliers in the workload space. The benchmark 

179.art is still the farthest one followed by 453.povray. For each floating benchmark in 

CPU2000 there is at least one CPU2006 benchmark nearby in the workload space. It 

shows that the overall coverage of floating point CFP2006 benchmarks is more than the 

CPU2000 floating point benchmarks.  

4.6 SUMMARY 

Recently, SPEC released a new benchmark suite called SPEC CPU2006. The 

objective of this chapter is to demonstrate the use of fast subsetting approach. Another 

objective is to demonstrate the different analysis techniques that can be used to study a 

newly released benchmark suite. The approach used for measuring program similarity in 

fast subsetting approach is different from the one used in Chapter 2. In this dissertation, 

microarchitecture dependent metrics from different computer systems with different 

ISAs, microarchitecture and compiler are used to measure program similarity. This is a 

faster way of characterizing benchmarks. The approach of using microarchitecture 

dependent metrics was also used as one of the criteria in selecting benchmarks to form 

the SPEC CPU2006 suite. The microarchitecture independent approach is better because 

it captures inherent behavior of programs.  

There a two potential issues with the balance of the suite. Some applications may 

not be represented in the suite and different programs from the same application domain 

are a part of the benchmark suite. The goal is to take an example and show how the 

analysis can be done. CPU2006 suite does not have a single application from the EDA 

(Electronic Design Automation) tool domain. Previous versions of SPEC CPU 

benchmarks had EDA tool applications in the suite. The experiment measures the 
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similarity and finds if the EDA tool applications from older suite are close to other 

benchmarks in the workload space from the new suite. The experiment also studies 

whether the benchmarks from the same application domain are different to warrant their 

inclusion the suite.   
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Chapter 5:  Performance Prediction Using Program Similarity 

Customers who buy computer systems use the benchmark suites to compare 

different computer systems to make a purchase decision. Although there are other factors 

like cost which can affect the decision, finding the fastest computer system in the same 

price range is important for a customer. Many computer system manufacturers use a 

benchmark suite e.g. the SPEC CPU benchmark suite to report performance scores of 

their system. One of the scores reported for the SPEC CPU benchmark suite is reported 

as the average speedup of the system to a standard baseline system chosen by SPEC.      

This helps to find how fast one computer system is to the other. But the customer’s 

application may not be a part of the benchmark suite and it is difficult to ensure whether a 

particular system will perform better than the other for the customer’s application. 

Ideally, a customer’s application is his best benchmark but numerous difficulties may 

force the customer to infer from the benchmark scores available from SPEC or TPC. One 

of these difficulties is porting the application to numerous platforms to measure 

performance of the application and even if that is possible, it is almost impossible for the 

customer to run the benchmark on all the different systems available in the market.  

In this chapter, a methodology to estimate performance of a workload based on 

other workloads or benchmarks is presented. The program similarity information between 

the customer’s application and the standard benchmarks is used to predict the 

performance that is specific to the customer’s application. The methodology is presented 

in Figure 5.1. The benchmark repository is a set of benchmarks whose performance 

scores are available with the measured microarchitecture independent characteristics. A 

new application is then mapped into the workload space built using the benchmarks after 

transforming the characteristics. The position of the application relative to the 
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benchmarks in the workload space is then used to predict performance. The prediction 

block involves giving more weight to the benchmarks that are similar to the customer’s 

application.  

Figure 5.1: Block diagram of methodology used for performance prediction 

 

5.1 METHODOLOGY 

This section mainly describes the general methodology of predicting performance 

of a new application in detail. Figure 5.1 shows a block diagram for the methodology of 

the technique. As a convention only specific to this chapter, the programs which are well 

characterized and whose performance is already known are called benchmarks. The new 

application for which the prediction of performance is desired is called the application. 

This infrastructure also makes an assumption that performance prediction happens only 

for one application at a time. 

The benchmarks which form a repository of performance information are shown 

towards the left in Figure 5.1. The repository contains a number of benchmarks with their 

characteristics and performance scores. In this dissertation the characteristics are 
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microarchitecture independent metrics which are discussed in Chapter 2 and performance 

score for a benchmark is its speedup, average Cycles per Instruction (CPI) count or 

metrics like cache hit-rate. The performance numbers of benchmarks can be in any form 

but relevant and appropriate benchmark characteristics should be measured. Also, it is 

important to have characteristics that do not take very long to measure. The application 

for which the performance needs to be predicted is also characterized with exactly the 

same microarchitecture independent metrics.  The main idea of this technique is to map 

the application to the workload space of benchmarks and then in the workload space use 

the similarity information of the application with the other benchmarks from the 

repository to predict performance using the performance numbers of benchmarks.  

The methodology can be divided into two main parts: 

• Data transformation and training 

• Prediction 

These two main parts in the block diagram are described in detail in the 

subsequent sections. Before the application is mapped into the workload space of 

benchmarks, they are pre-processed with different techniques. The pre-processing stage is 

called ‘Data Transformation’ in Figure 5.1. The different data transformation schemes 

considered, are described in the next section. This step is similar to choosing the right 

characteristics to measure similarity. The process of choosing characteristics can be 

considered as giving weights to different characteristics or removing a certain set of 

unimportant characteristics. Finding weights or choosing characteristics needs the help of 

already known performance numbers of the benchmarks. This process is shown in Figure 

5.1 with a block called ‘Training’. The dotted line is drawn between the ‘Training’ block 

and the ‘Data Transformation’ block to show that it is optional and performance 

prediction can be done without training. Other techniques are also evaluated where 
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training is not required. The last step involves finding similar benchmark(s) to the 

application and use the performance numbers to predict the applications performance. 

This is shown in Figure 5.1 by the block named ‘Prediction’. The process of prediction 

can be done in multiple ways. This part of the prediction process essentially decides 

which benchmarks to choose to use in the prediction process based on their similarity to 

the application. One of the approaches is the k-nearest neighbor approach which is 

simple and commonly used for classification. The distance matrix is calculated which has 

the distance between the application and all the benchmarks from the repository. Then the 

neighbor(s) of the application and their performance numbers are used to calculate the 

predicted performance of the application.   

 5.1.1 Data transformation and training 

Since the goal of the technique is to use the already available information to 

predict performance it is important to find the characteristics that affect performance. 

Microarchitecture independent metrics that are measured to characterize programs are 

very broad and it is possible that only a small set of these are needed to accurately predict 

performance of the application on a certain system. In fact, if the characteristics that do 

not affect performance as much are used, they will add inaccuracy to the prediction 

result. A solution to this problem is giving weights to each of the characteristics. 

Choosing characteristics is equivalent to giving a weight of zero or one. 

The four different transformation techniques proposed in this dissertation are: 

 

• Equal Weights   (EW) 

• Choosing characteristics based on correlation to performance (COR) 

• Principal Components Analysis (PCA) 

• Genetic Algorithm (GA) 
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 The first technique gives equal weight to all characteristics and transforms each 

characteristic across benchmarks by normalizing them. The second method uses 

correlation coefficients of characteristics with performance number to weigh each 

characteristic. The third method uses Principal Components Analysis (PCA) which 

removes correlation and transforms the data into a set of uncorrelated variables called 

Principal Components. Same transformation has been used for subsetting earlier in this 

dissertation. The fourth method is based on Genetic Algorithm (GA) which finds weight 

for each characteristic using evolution theory. The genetic algorithm uses the ‘Training’ 

block in Figure 5.1 to find weight for each characteristic. Each of these transformation 

techniques is described in detail in the following sections.   

5.1.1.1 Equal Weight (EW) 

Normalization is also used in Chapter 2 which transforms each characteristic to so 

that the mean is zero and standard deviation of one. 

δ

)( xx
X t

−
=  

where, tX  is the transformed value of each data point, x is the original value of the data 

point and x  is the original mean value of all the data points which in this case would be 

the mean of a characteristic. Normalization removes the bias caused by the value of a 

variable. Some characteristics of benchmarks can have a value of the order of thousand 

while some of them can have the order of ten or hundred. This difference in the range of 

values can give more weight to the characteristics that have higher range when the 

distance between two programs is calculated. The distance between two programs is the 

measure of similarity between them. To remove the bias caused by the range of values of 

different characteristics, normalization is a basic step. After normalization, all 

characteristics get equal weight. This is a baseline case and all other techniques will be 
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compared with this technique. All other techniques use the normalized data for 

transforming the characteristics. This technique is very simple and does not need any 

performance information in the transformation.  

5.1.1.2 Choosing characteristics based on correlation to performance (COR) 

The next step in choosing characteristics is to use the normalized data to assign 

weights. This technique is similar to the one used in Chapter 4 to select characteristics. 

Correlation coefficient of each characteristic with the performance numbers is calculated. 

The characteristics that show high correlation are chosen. The rest of the characteristics 

are ignored in the next step of prediction. The range of correlation coefficients is from -1 

to 1. Characteristics that have their correlation coefficients close to 1 or -1 are selected.  

5.1.1.3 Principal Components Analysis (PCA) 

PCA is described in detail in Chapter 2. PCA transforms the characteristics into 

another set of characteristics called the Principal Components (PCs). Then a set of top 

few PCs are chosen based on the amount of variance they cover and used in the analysis. 

PCs are a linear combination of all the variables but the top few PCs will give more 

weight to the characteristics that show higher variance. Thus the transformation using 

PCA will give more weight to characteristics that show higher variance. It also removes 

the correlated variables and avoids giving more weight to a feature of the program e.g. 

data locality which can have multiple characteristics like temporal locality and spatial 

locality. 

5.1.1.4 Genetic Algorithm (GA) 

 Genetic algorithm is a technique of finding a solution based on the theory of 

evolution. In this dissertation GA is used to find weight for each characteristic. GA was 

first described by Holland [27] , and is used to find solutions in engineering and other 
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science field using the natural evolution and selection process. Figure 5.2 shows the flow-

chart for a general implementation of genetic algorithm. 

Figure 5.2: Flow chart for genetic algorithm used in finding weights for characteristics. 

 

 

 

In biological systems, genetic information that determines the individuality of an 

organism is stored in chromosomes. In this case the chromosomes are the vectors of 

weights where each element of a vector is a weight for each characteristic. Hence the 

length of each vector is equal to the number of characteristics. A population of weight 

vectors are replicated and passed onto the next generation with selection depending on 

fitness. The weight vectors then go through the phases of reproduction, mutation and 

crossover. The weight vectors are altered through genetic operations such as mutation 
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and crossover to cover a broader space. Each weight vector forms a candidate solution to 

the problem. The passage of each vector to the next generation is determined by its 

relative fitness, i.e. the closeness of its properties to the goal. The fitness function in this 

case is the accuracy of prediction of performance. Random combinations and/or changes 

of the transmitted vectors produce variations in the next generation of offspring. The 

offspring is the derived solution to be used for next generation. The better the fitness 

(correspondence with desired properties), higher is the chance of being selected for next 

generation. By going through many generations, optimal or near optimal solutions are 

obtained.  

Figure 5.3: Pseudo-code for fitness function used in the genetic algorithm for 
performance prediction 
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The most important part in the genetic algorithm is the fitness function used to 

evaluate each candidate solution. The fitness function returns a score which the genetic 

algorithm uses to classify the potential solutions and decides which ones go through to 

the next generation. The fitness function is usually very unique to the problem being 

solved. In this case the fitness function should return the final error in predicting 

performance. The performance number for each benchmark in the repository shown in 

Figure 5.1 is known. These performance numbers for all benchmarks will be used with 

their characteristics from the repository to find the average prediction error which is an 

indication of fitness. 

Figure 5.3 shows the pseudo-code for the fitness function used to predict and 

evaluate each candidate in GA. The candidate with lowest error is the fittest. The 

algorithm uses the leave one out technique and calculates the prediction error using K-

neighbors technique for each train benchmark. The average of the individual errors is 

used as the fitness score.  Every time a vector of weights is to be evaluated for its fitness, 

the fitness function is invoked. So the number of times the fitness function gets invoked 

in one generation is equal to the total population in each generation which is set to 20 in 

the experiment described in the subsequent section. The input to the fitness function is a 

vector of weights and the output is the average prediction error. A set of training 

benchmarks is used to evaluate the fitness.  The choice of training benchmarks depends 

on the process of cross-validation. Leave-one-out cross-validation technique is used for 

the experiments, so the training benchmarks will be all the benchmarks except the one 

whose performance is being predicted. The first for loop transforms all the characteristics 

to a set of weighted characteristics. The second for loop then goes through each of the 

training benchmark and uses a leave-one-out method and finds prediction error for all the 

training benchmarks. Then an average prediction error is calculated for all the training 
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benchmarks using their individual prediction errors. This average number is used as the 

fitness score for the weights that are fed as input to the fitness function.  

Figure 5.4: Progress plot of GA while predicting performance for one application 

 

Figure 5.4 shows a progress chart of the GA as a population of weights is 

evaluated. The algorithm is run for 50 generations with a population of 20. There are two 

dots plotted at each generation. The darker one shows the fitness function of the best 

case. The other dot shows the average value of the fitness function over all the 20 

members of the population. This plot can be drawn for every application that is predicted. 

At the end, the last dot at the rightmost bottom corner is the best case and is used to 

weigh the characteristics and predict performance based on similarity. The mean and best 

case dots come closer after every generation because the members adapt and move 

towards the best case. 
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5.1.2 Performance prediction from the workload space  

After the characteristics are transformed, the benchmarks and the application of 

interest is mapped in the workload space. The workload space is an n dimensional space 

formed using the n characteristics. As shown in Figure 5.1 the prediction block analyzes 

the workload space and predicts the performance of the application. The k-nearest 

neighbor algorithm is used to do the prediction. In k-nearest neighbor algorithm the value 

of k is the number of neighbors used to do the prediction.  

Figure 5.5: Illustration of k-nearest neighbor algorithm 

 

 Figure 5.5 shows an illustration of the k-nearest neighbor algorithm. The 

illustration is only for a two dimensional space but the same algorithm is also applicable 

for more than two dimensional spaces. In Figure 5.5, the application of interest is shown 

by a black colored point labeled a1. The benchmarks used to predict the performance of 

a1 are shown by b1, b2, b3 and b4 which are at a distance of d1, d2, d3 and d4 

respectively. For k=1, the performance of the nearest benchmark which in the illustration 

is d2 is reported as the predicted performance. In case of k > 1 a weight that is inversely 

proportional to the distance between a benchmark and application can be applied to each 
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of the neighbors used for prediction. The weight for each benchmark is calculated with 

the following equation: 

(/ sumrw ii = 1r , 2r , 3r , 4r  … nr ) 

where 1r , 2r , 3r , 4r  are reciprocals of distances d1, d2, d3and d4 respectively. Then a 

weighted mean is calculated to predict performance of the application a1. In this 

dissertation different values of k are evaluated. 

5.2 PERFORMANCE PREDICTION EXPERIMENTS 

5.2.1 Experiments for predicting machine ranks using speedup 

5.2.1.1 Experimental setup for prediction of machine ranks 

The experimental setup includes a repository of the SPEC CPU2000 benchmarks 

used in Chapter 2 with the microarchitecture independent characteristics and the speedup 

numbers of these benchmarks for ten different real machines reported on the SPEC 

website. These machines are from different computer vendors. Out of these systems there 

is at least one system with the x86, Itanium, IBM’s POWER, Sun sparc ISA. The aim is 

to experiment with different computer systems with large variation in their design and 

configuration. Table 5.1 shows the list of these ten machines. 

Table 5.1: List of machines used in the experiment of machine rank prediction  

Computer system name 

AMD-TyanThunderK8QSPro(S4882), AMDOpteron(TM)850 

AlphaServerDS106-600 

AltosG520(3.6GHzIntelXeon) 

Dell-PrecisionWorkStation340(1.5GHzP4) 

Fujitsu-PRIMEPOWER650(1890MHz) 

HP Integrityrx4640-8(1.6GHz-9MBItanium2) 

IntelD850EMV2motherboard(2.53GHz,Pentium4processor) 

SGI-Origin200360MHzR12k 

SunBlade2500(1.6GHz) 

X6DH8-E-G2Motherborad-Intel Xeon 3.6GHz 2MCache 
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As mentioned earlier in this chapter it is important for a customer to find ranks of 

machine based on their performance that are specific to his application. In this 

experiment each benchmark is considered as a customer’s application using the leave-

one-out technique and the other programs in SPEC CPU2000 suite act as the benchmarks 

in the repository. The speedup of each application is predicted on all the ten machines 

using the methodology described in the previous section. The four data transformation 

techniques are used independently and the KNN method is used to find benchmark(s) 

similar to the application for prediction. The predicted speedup on each machine can be 

used to find the predicted ranking of the machines. This ranking is then compared with 

the original measured ranking from the SPEC website using the rank correlation 

coefficient. The rank correlation coefficient has a range from -1 to 1 where -1 shows that 

the ranks are completely flipped and 1 shows that the predicted ranks are exactly the 

same as the measured ranks. Instead of predicting speedup on one machine and 

comparing that with the actual speedup, the rankings of different machines are compared. 

If this prediction technique is not available, customers would just look at the geometric 

mean (GM) of the speedup scores of all the benchmarks and rank the machines. In this 

experiment the GM based speedups are calculated by taking the geometric mean of 

speedups of all the benchmarks in the benchmark repository. The result of the prediction 

technique using the four different data transformations is compared with the rank 

predictions using GM.  

The goals of this experiment as follows: 

1) To compare the ability of machine rank prediction of the GM method with 

prediction using program similarity information  

2) To evaluate the different data transformation techniques, i.e. EW, COR, PCA and 

GA and also evaluate the different values of k for the KNN method. 
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Figure 5.6: Comparison of rank correlation coefficient of all the benchmarks for ten 
machines   

0.6

0.7

0.8

0.9

1

a
m

m
p

a
p

p
lu

a
p

s
i

a
rt

b
z

ip
2

c
ra

ft
y

e
o

n

e
q

u
a

k
e

fm
a

3
d

g
a

lg
e

l

g
c

c

g
z

ip

lu
c

a
s

m
c

f

m
e

s
a

m
g

ri
d

p
a

rs
e

r

s
w

im

tw
o

lf

v
o

rt
e

x

v
p

r

w
u

p
w

is
e

A
V

G

Application

R
a

n
k

 c
o

rr
e

la
ti

o
n

 c
o

e
ff

ic
ie

n
t

GM EW COR PCA GA

 

5.2.1.2 Results of prediction of machine ranks 

Figure 5.6 shows the rank correlation coefficients of all the benchmarks, at a time 

one benchmark is considered as a customer application and its rank correlation 

coefficient is estimated over all ten machines. The last set of columns (AVG) show the 

average rank correlation coefficient over all the benchmarks. The AVG case shows that 

all the techniques that predict machine ranks using similarity between programs (EW, 

COR, PCA, GA) show higher rank correlation coefficient than GM which is the simplest 

technique that would be used by the customer if the program similarity information is not 

available. There are only very few case where the GM shows higher rank correlation 

coefficient.  

The second main goal of this experiment is to compare the different data 

transformation techniques. From Figure 5.6, it is observed that the GA and PCA data 

transformation techniques show higher rank correlation coefficient of 0.92 and 0.91 

respectively as compared to EW and COR. 
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Figure 5.7: Evaluation of different values of  k for the K-nearest neighbor algorithm for 
predicting the ranks of machines 
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Different value of k are evaluated to see how many neighbors should be used to 

predict the speedup and hence the rank of the machine. Figure 5.7 shows the different 

values of k used, on the horizontal axis and the vertical axis shows the rank correlation 

coefficient. The two lines show the average rank correlation coefficient and the worst 

rank correlation coefficient over all the data transformation techniques for different 

values of k. If k is more than one then a weighted average speedup is calculated where the 

weight is proportional to the distance of the application of its neighbors. The average 

rank correlation coefficient is highest for k=2 but k=1 is also not too far away. But the 

worst case rank correlation coefficient goes on decreasing steadily. The result shown in 

Figure 5.6 was using k=2. 

5.2.2 Experiments for predicting CPI 

5.2.2.1 Experimental setup for CPI prediction 

The main part of this experimental setup is the benchmark repository. It is 

important to have as many benchmarks as possible with their performance numbers. 

Cycles per instruction (CPI) shows the performance of a CPU and is inversely 
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proportional to performance. The performance numbers used throughout this experiment 

that form a part of the benchmark repository are the CPI counts for each benchmark. Sim-

outorder simulator from Simplescalar [2] tool set is used to measure the CPI counts on an 

out-of-order processor model. Table 5.1 shows the details of the configuration.   

Table 5.2: Configuration of cycle accurate processor simulator model used to measure 
CPI  

Issue width 2-way 

RUU/LSQ 32/16 

Memory System 
8KB 2-way L1 I/D, 256K 4-
way L2 

ITLB/DTLB 
4-way 16 entries/ 4-way 32 
entries 30 cycle misses 

L1/L2/mem latency 1/6/36 cycles 

Functional Units 
2 I-ALU, 1 I-MUL/DIV, 2FP-
ALU, 2 FP-MUL/DIV 

Branch Predictor 
Combined 2k tables 4 cycle 
misprediction penalty 

 

The Simpoint methodology [51][52] shows that programs have large-scale phases. 

It is extremely time consuming to run cycle accurate simulations for long running 

benchmarks. To limit the time spent on the data collection phase, the experiments are 

done on the phases of the SPEC CPU2000 benchmarks, instead of their complete run. 

These phases provide more elements of the data for the repository of benchmarks. The 

CPI prediction for the whole benchmark can be done using the CPI numbers predicted for 

the whole benchmark. Each phase is about 100 million instructions long. Instead of the 

complete benchmarks, these phases form the repository of the benchmarks and hence 

forth in this chapter the phases will be referred to as benchmarks. The microarchitecture 

independent metrics described in Chapter 2 are measured for these benchmarks and form 

a part of the benchmark repository. The tool for performance prediction is written in 
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Matlab [41]. Also, the genetic algorithm tool from Matlab is used to implement the fourth 

technique (GA) described in section 5.3. After building the repository of benchmarks, a 

leave-one-out cross-validation technique is used to find the average predicted CPI. Each 

benchmark is treated as an unknown application with rest of benchmarks used for 

similarity analysis. The k nearest neighbor approach is used to find the most similar 

benchmark and its CPI is used for prediction. The accuracy of CPI prediction is 

expressed in terms of percentage of error for each benchmark and then an average 

prediction error is equal to the average over all benchmarks.   

The three main goals of this experiment are: 

1) To compare the four different techniques of data transformation described in 

section 5.3. The baseline technique is EW since it takes the least of the effort and 

is the first step for all other techniques. 

2) To see the effect of fewer benchmarks in the repository. Since the methodology is 

based on finding a similar program to predict performance, it is intuitive that error 

goes up as the number of benchmarks in the repository goes down. 

3) To evaluate the different values of k in the k-nearest neighbor algorithm.    

The results of the experiment that are discussed in the next section compare 

different techniques to transform the data and map the benchmarks in the workload space. 

5.2.2.2 Results for CPI prediction 

Figure 5.8 shows the average prediction error for multiple data transformation 

techniques discussed previously in section 5.3. Prediction is done using the nearest 

neighbor technique. In this technique CPI of the nearest neighbor is used to predict the 

CPI of the unknown application. Training for GA is also done using nearest neighbor 

prediction technique. These results are obtained using the leave-one-out cross-validation. 

Each column in Figure 5.8 is the average of prediction errors for all benchmarks after the 
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leave-one-out cross-validation.  The last column shows the best-case average prediction 

error due to availability of similar program(s). The best case assumes that the benchmark 

that has CPI closest to the CPI of the unknown application is also the closest benchmark 

in the workload space. This best-case is for the repository of benchmarks used in the 

experiment and will change if there are any changes in the repository. 

Figure 5.8: Comparison of average prediction error in CPI for multiple data 
transformation techniques  
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The results with prediction errors for each of the individual phases using the 

leave-one-out validation technique are presented in the appendix. The phases are split 

into two tables due to space constraints on a single page. The technique of choosing 

characteristics based on correlation coefficient of CPI with the microarchitecture 

independent metrics shows the highest average error while the prediction based on GA 

shows the best results. GA and COR are the techniques that require training and use the 

CPI scores to find weights and choose characteristics respectively. Prediction based on 

PCA chooses the top few PCs based on the amount of variance covered by each PC. In 

this study top ten PCs are retained which cover about 95% of variance. The PCA 
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transformation of data performs better than EW which involves only normalizing the 

data.  The best-case result gives an idea about the lower bound on the prediction error in 

this case.  

Figure 5.9: Comparison of maximum prediction error in CPI for multiple data 
transformation techniques  
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intuitive that the average prediction error will increase because the opportunity to find 

similar phases reduces.  

Figure 5.10: Increase in prediction error seen with decrease in similar benchmarks in the 
repository 
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In Figure 5.10 the prediction method where the phases from the same program are 

not considered is called ‘without peers’ and the one considering all the rest of the phases 

is called ‘with peers’. The results for ‘with peers’ are exactly the same as shown in Figure 

5.8. The prediction errors for GA and PCA are almost the same. The best-case error for 

‘without peers’ is about 13% which is significantly higher than 1.7% for ‘with peers’. 

The availability of similar benchmark affects the prediction error significantly.  

 The third experiment evaluates the different values of k in the k-nearest neighbor 

approach of prediction. So far in the previous experiments, the nearest neighbor approach 

has been used. In this experiment for each of the four data transformation the prediction 

of CPI is done using k=1, k=2 and k=3. The average CPI prediction errors are shown in 

Figure 5.11. It is clear that the k=1 nearest neighbor approach works better than the k=2 

and k=3. In case of k=2 and k=3 each neighbor considered is given a weight that is 
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proportional to the distance of the application of interest from its neighbor. The error is 

higher for k=2 and k=3 than the nearest neighbor approach.  

Figure 5.11: Evaluation of different values of k in k-nearest neighbor approach for CPI 
prediction 
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5.2.3 Experiments for predicting cache hit-rate 

In this experiment cache hit-rate is predicted instead of CPI using the 

microarchitecture independent metrics for data locality. Also, the four different data 

transformation techniques EW, COR, PCA, GA are compared. The data locality metrics 

proposed in Chapter 2, are used as microarchitecture independent metrics in the 

prediction methodology. These metrics are based on the reuse distance of memory 

accesses. As such, it is important to compare the different forms of reuse distance metrics 

used to model locality. The reuse distance measured across all the memory accesses can 

be represented as a distribution of reuse distances instead of an average number. The 

distribution is then reduced to lesser dimensions by aggregating the buckets into classes 

of small, medium and large. The distribution is first made of buckets of reuse distance of 

2, 4, 8, 16 and so on, up to 4096 and the last bucket is greater than 4096. This vector 
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shows the distribution of reuse distance for a program or a phase of a program in this 

case. These buckets are then aggregated in such a way that the first 6 buckets i.e. up to 

the distance of 64 is aggregated into a bucket called ‘small reuse distance’. The 

distribution from 128 to 8192 is aggregated into a bucket called ‘medium reuse distance’ 

and the remaining buckets are aggregated into a bucket called ‘large reuse distance’. Note 

that, all the sizes of original buckets are power of 2.  

5.2.3.1 Experimental setup for cache hit-rate prediction 

The experimental setup for cache hit-rate prediction is similar to the one described 

in the previous section about prediction of CPI. The phases of nine benchmarks from 

SPEC CPU2000 are used in the experiment. The data locality of phases is measured 

using the two different ways described above. The average reuse distance metric is 

referred to as ‘Average_RD’ in this experiment and the reuse distance distribution based 

metric is called ‘RDD’. Average_RD was used before in Chapter 2 to subset benchmarks 

and also in predicting CPI in the previous section. In this experiment the Average_RD 

metric and RDD are compared by calculating the accuracy of each of these metrics to 

predict cache hit-rates for the phases of SPEC CPU2000 benchmarks using the leave-one-

out validation technique. The comparison is done using all the four data transformation 

techniques i.e. EW, COR, PCA, GA. The cache configuration used in this experiment is 

8KB, 64 bytes block, direct mapped cache.  

In summary the two main goals of this experiment are: 

1) To compare the four different techniques of data transformation described in 

section 5.3 for predicting cache hit-rates. The baseline technique is EW since it 

takes the least of the effort and is the first step for all other techniques. The 

Average_RD metric is used to characterize data locality of the phases. 
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2) To compare Average_RD and RDD metrics by comparing their ability to predict 

cache hit-rates for phases of CPU2000 benchmarks. 
 

5.2.3.2 Results for cache hit-rate prediction 

Figure 5.12 shows the average prediction error for multiple data transformation 

techniques discussed previously in section 5.1.1. Prediction is done using the nearest 

neighbor approach. Similar to the previous experiment of predicting CPI, the nearest 

neighbor approach shows more accurate results as compared to the two and three near 

neighbor approach. The GA data transformation technique shows a lower average cache 

hit-rate prediction error as compared to EW, COR and PCA but the EW, COR and PCA 

transformation techniques show very similar prediction errors. The best-case error is 

calculated using the same method as described in the CPI prediction experiment and is 

about 0.5%. 

Figure 5.12: Comparison of average prediction error in cache hit-rate for different data 
transformation techniques  
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Figure 5.13 shows the comparison of the ability of Average_RD and RDD to 

predict cache hit-rate. The Average_RD metric can predict the cache hit-rates with much 

more accuracy as compared to the RDD approach. Also, for RDD the GA data 

transformation technique shows the best result with about 42% prediction error. It can be 

observed from Figure 5.13 that the data transformation technique does not affect the 

prediction errors for Average_RD as much as it does for RDD. The best case for RDD 

which is achieved using GA is not as good as any of the predictions using Average_RD. 

This shows that the Average_RD metric shows better ability to predict cache hit-rates as 

compared to RDD. 

Figure 5.13: Comparison of two ways to measure data locality using microarchitecture 
independent metrics for cache hit-rate prediction  
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5.3 DISCUSSION  

This section describes the main challenges faced by the performance prediction 

technique using similarity between programs. Unlike the other techniques like simulation 

and analytical modeling, this technique needs the similarity information about other 
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benchmarks and hence the accuracy depends significantly on the availability of a large 

number of diverse benchmarks. Further in this section another challenge about finding an 

upper bound on the error has been discussed. Each of these challenges is described in 

detail. 

Figure 5.14: Histogram of CPI of program phases to illustrate the skew in the distribution 
of CPI 

 

5.3.1 Distribution of benchmarks in the workload space 

In case of SPEC CPU benchmarks a benchmark that stresses the CPU or memory 

the most is considered as a good test. These benchmarks are inherently difficult to 

optimize and hence are considered as tough benchmarks.  It is difficult to find such 

benchmarks and a common example is mcf from the SPEC CPU2000 benchmark suite. 

There is a tendency to include more tough benchmarks so that the test cases are strong 

and if a certain system is evaluated with these benchmarks, the designer and customer 

have more confidence about design performing well on the tough benchmarks. Usually 

such programs are rare and when plotted in the workload space, they become the corner 

cases or outliers in the space covered by the suite. But there are many programs that do 
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not stress the system and they are the common cases which are available easily. Also, if a 

program shows very good performance on the system it is not considered as a good test 

case and may be excluded from the benchmark suite. If a histogram of programs is 

plotted using their CPI numbers, the distribution looks to be skewed to the right as shown 

in Figure 5.14. The CPI numbers shown in the histogram are used in the CPI prediction 

experiments described before in this chapter. Finding phases of benchmarks similar to the 

application (or phases within the application) is central to accurate prediction of 

performance. Now, the question essentially is about what kind of distribution the 

benchmarks should show to assist in the better prediction of performance. Ideally, a 

uniform distribution for benchmark performance numbers in building a benchmark 

repository shown in Figure 5.1 will be very useful. Uniform distribution will help the 

application of interest to find similar benchmarks. Bell et.al. [4][5] proposed the 

development of synthetic benchmarks from a real benchmark for efficient performance 

evaluation and validation. Joshi et.al. [34] proposed a technique to extract characteristics 

from a real benchmark and generate synthesize programs with the extracted ones. This 

technique can be used to populate the workload space and cover different areas in the 

workload space with a uniform distribution. To ensure that there are benchmarks of broad 

range of behavior or performance, it is important that a histogram that is plotted as shown 

in Figure 5.14 shows a uniform distribution. The repository of benchmarks with a 

uniform or close to uniform distribution may help to increase the accuracy of 

performance prediction using program similarity. 

5.3.2 Threshold of distance for predicting performance in the workload space 

For a performance evaluation technique it is important to have an idea about the 

range of error. In case of simulation, the upper bound on the error typically depends on 

the extent of details that are implemented in the simulator to model the system. It is 
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difficult to find an upper bound on the error for performance prediction based on program 

similarity but a threshold of distance can be used to judge the error before doing the 

prediction. The threshold will be certain distance above which the prediction errors can 

be more than the user’s margin of error. One way to judge the threshold is by looking at 

the distance of the nearest neighbor from the application of interest whose performance is 

to be predicted. The error is proportional to the distance between the application of 

interest and the nearest benchmark. The following experiment is done to see how the 

distance between two benchmarks correlates with the error in CPI. The data used in this 

experiment is from the CPI prediction experiment where a benchmark is a phase from the 

SPEC CPU2000 programs.  From the repository, each benchmark is mapped on a plot of 

CPI error and distance of the benchmark from its nearest neighbor. CPI error is the 

percentage difference in CPI seen with the nearest neighbor. Figure 5.15 shows the plot 

for data transformed using genetic algorithm (GA).  

Figure 5.15: Correlation of distance and error in CPI prediction using nearest neighbor 
for data transformed using genetic algorithm (GA) 
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The next step in determining the threshold distance is to calibrate it with the 

nearest neighbor to the prediction error. This process depends on the designer’s margin of 

error e.g. from Figure 5.15 if the designer wants the maximum error to be 10%, according 

to the data available for calibration the maximum distance allowed from the nearest 

neighbor should be approximately 1 in the workload space formed using GA. In the 

bottom left two blocks seen in the grid in Figure 5.15, all the benchmarks with the margin 

of error of 10% in the calibration experiment lie within the euclidean distance of 1.     

5.3.3 Comments on CPI prediction errors for individual phases  

In the previous section on CPI prediction the results were described concisely 

with only the average prediction error over all the phases of the benchmarks shown in the 

results. This sub-section looks at individual phases and the prediction error of the 

outliers. All the results of individual phases are presented in the appendix. Some of the 

figures used in the discussion are included in this chapter but are also presented in the 

appendix. The CPI prediction numbers from the experiment described before in this 

chapter are shown for each phase using leave-one-out cross-validation technique.  Figure 

15.16 shows the CPI prediction done using the peers from the same benchmark to which 

the phase belongs to. Figure 15.17 shows the similar result but with the peer phases 

excluded from the analysis. Since there are many phases, they are split into four plots (a), 

(b), (c), (d). The first bar for each phase within a benchmark is its actual measured CPI. 

Each of the remaining four bars shows the predicted CPI using the four different data 

transformation technique EW, COR, PCA, GA respectively.  

It can be seen clearly that in Figure 15.16, for many phases the peers are the 

nearest neighbors for a phase for all four data transformation techniques e.g. for eon, gzip 

and twolf in Figure 15.16 their peer phases are very similar and hence lead to a very 

accurate prediction. The phases of mcf show quite diverse behavior but most of its phases 
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find their peers to predict the CPI. In Figure 15.17 where the peers are not used in the 

analysis, each of the phases finds a phase from other benchmarks to predict its CPI. 

Specifically the phases from mcf become outliers as their peers are not used in the 

analysis. It can be seen from Figure 15.17 (c) that all mcf phases show a large difference 

in actual and predicted errors. It is clear from this observation that mcf phases are outliers 

in the workload space and all the peers are close to each other and away from the rest of 

the phases. The mcf_7 phase has the highest error. Each of the phases can be studied 

individually. The microarchitecture independent metrics for the phases in twolf are very 

similar which explains why their CPIs are similar. The inherent behavior of the phases is 

measured using the microarchitecture independent metrics captures the CPI quite well for 

similarity analysis. 

 

Figure 15.16: Percentage errors in predicting CPI using the four different data 
transformation techniques for each phase using the leave one out technique 
(with phases from the same benchmark included). Note: The figure is 
split into (a), (b), (c), and (d) due to space limitation on X-axis for all the 
phases. 
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(c) 
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Figure 15.17: Percentage errors in predicting CPI using the four different data 
transformation techniques for each phase using the leave one out 
technique.(without the phases from the same benchmarks) Note: The 
figure is split into (a), (b), (c), and (d) due to space limitation on X-axis for 
all the phases. 
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5.4 SUMMARY  

Performance prediction using program similarity is a technique that can be used in 

case of a classical problem in benchmarking and performance evaluation where a 

customer’s application is not a part of the benchmark suite. Performance of the 

application can be estimated by finding an already well characterized benchmark in the 

workload space that is similar to the application. The performance score(s) of the similar 

benchmark(s) can then be used to estimate the performance of the application. 

Microarchitecture independent metrics are used to characterize the benchmarks and the 

application. The application is then mapped into the workload space of benchmarks and 

its performance is predicted. 

There are many microarchitecture independent characteristics but only a small set 

of characteristics may affect performance or the degree at which they affect performance 
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might be different. This dissertation explores different ways of choosing characteristics or 

giving weights to the characteristics. Three different data transformation techniques are 

evaluated, including the PCA, genetic algorithm and correlation based characteristic 

selection. The genetic algorithm and correlation based characteristic selection technique 

use the performance numbers of already characterized benchmarks to train the weights or 

select characteristics respectively.  

To demonstrate and validate the technique, it is applied to predicting (i) Speedup 

(ii) CPI and (iii) Cache hit-rate. The speedup prediction experiment uses the SPEC 

CPU2000 benchmarks but the CPI and cache hit-rate prediction use the phases of SPEC 

CPU2000 benchmarks to do the experiments in manageable time. The prediction and 

validation in each of the experiments is done using the leave-one-out cross-validation. 

 Finally, some of the inherent challenges of this chapter are discussed in the 

chapter with examples from the experiments done for CPI prediction. The challenges 

mainly involve finding a similar benchmark to the application for which the performance 

is to be predicted. In a benchmark suite usually the distribution of performance scores is 

skewed by the outlying benchmarks. A uniform distribution will definitely help improve 

the chances of finding similar benchmark and hence improve the accuracy of 

performance prediction. The second challenge is about finding a way to judge the upper 

bound on the error of prediction. To illustrate a possible way of judging the upper bound 

on the error a short experiment is done to calibrate the distance between benchmarks to 

the prediction error in CPI. 

Performance prediction using program similarity uses a practical approach of 

reusing the previously gathered information of several benchmarks or programs to make 

performance prediction of a new application. This approach will need some time to ramp 
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as building the repository of benchmarks may take some time. The update to the 

repository should be done as new applications can be added to it over time.  
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Chapter 6:  Previous Research 

This chapter provides a brief summary of previous work related to program 

similarity, characteristics used for program similarity and subsetting. Later part of this 

chapter provides a summary of related work to performance prediction. Although, 

performance prediction using microarchitecture independent metrics has not been studied 

before, literature related to relevant techniques has been summarized. The summary also 

includes related work which show correlation between some microarchitecture 

independent metrics that have been proposed before 

6.1 PROGRAM CHARACTERISTICS AND PROGRAM SIMILARITY 

Weicker [61] used characteristics such as statement distribution in program, 

distribution of operand data types, and distribution of operations, to study the behavior of 

several stone-age benchmarks.  Saveedra and Smith [50] characterized Fortran 

applications in terms of number of various fundamental operations, and predicted their 

execution time.  They also develop a metric for program similarity that makes it possible 

to classify benchmarks with respect to a large set of characteristics.   Source code level 

characterization has not gained popularity due to the difficulty in standardizing and 

comparing the characteristics across various programming languages.  Moreover, 

nowadays, programmers rely on compilers to perform even basic optimizations, and 

hence source code level comparison may be unfair.  

Conte [11] uses kiviat views to qualitatively compare program behavior based on 

microarchitecture-dependent characteristics such as cache miss-rates, branch mispredict 

rates, etc. Yi et al. [66] use a Plackett-Burman design for classifying benchmarks based 

on how the benchmarks stress the same processor components to similar degrees. 

Plackett-Burman design helps to find the bottlenecks in smaller number of simulation 
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runs and narrows down the problem of number of simulation runs. The goal of this 

classification is different. 

A first major step in workload characterization is essentially collecting various 

characteristics that define the model. In the past, studying benchmark characteristics 

involved measuring microarchitecture-dependent metrics e.g. cycles per instruction, 

cache miss-rate, branch prediction accuracy etc., on various microarchitecture 

configurations that offer a different mixture of bottlenecks [18][19][60][66].  The 

variation in these metrics is then used to infer the generic program behavior.  These 

inferred program characteristics may be biased by the idiosyncrasies of a particular 

configuration, and therefore may not be generally applicable.  

Very recently and also in the past, some work has been done to find redundancy in 

benchmark suites. This work has primarily used microarchitecture-dependent metrics 

such as execution time or SPEC peak performance rating for characterizing programs. 

Vandierendonck et. al. [60] analyzed the SPEC CPU2000 benchmark suite peak results 

on 340 different machines representing eight architectures, and used PCA to identify the 

redundancy in the benchmark suite. In [60], the author quantifies redundancy as the 

ability of a program to show different speedup on two different machines. The programs 

that do not show very different speedups are considered redundant. In other words [60] 

concludes that there is no need of such redundant programs to rank the predecided 340 

machines. According to [60] the top ten redundant programs from SPEC CPU 2000 suite 

are vpr, ammp, sixtrack, bzip2, vortex, gcc, mgrid, equake, wupwise, galgel.  The top ten 

important benchmarks are apsi, lucas, mcf, gap, facerec, mesa, art, eon, parser and 

fma3d. Dujmovic and Dujmovic [16] developed a quantitative approach to evaluate 

benchmark suites.  They used the execution time of a program on several machines to 

calculate metrics that measure the size, completeness, and redundancy of the benchmark 
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space. The shortcoming of these two approaches is that the inferences are based on the 

measured performance metrics due the interaction of program and machine behaviour, 

and not due to the inherent characteristics of the benchmarks. Ranking programs based on 

microarchitecture-dependent metrics can be misleading for future designs because a 

benchmark might have looked redundant in the analysis merely because all existing 

architectures did equally well (or poor) on them, and not because that benchmark was not 

unique.  Although gcc is considered to have complex control flow and considered to be 

an interesting benchmark, the relatively lower rank of gcc in [60] is an example of such 

differences that become apparent only with microarchitecture-independent studies. 

There has been some research on microarchitecture-independent locality and ILP 

metrics. For example, locality models researched in the past include working set models, 

least recently used stack models, independent reference models, temporal density 

functions, spatial density functions, memory reuse distance, locality space etc.   

[11][12][31][36][55][56]. Generic measures of parallelism were used by Noonburg et. al. 

[45] and Dubey et. al. [15] based on a profile of dependency distances in a program.   

Sherwood et. al. [51] proposed basic block distribution analysis for finding program 

phases which are representative of the entire program.  Microarchitecture-independent 

metrics such as, true computations versus address computations, and overhead memory 

accesses versus true memory accesses have been proposed by several researchers 

[22][32].  

Eeckhout et.al. [18][19] proposed measuring program similarity based on 

microarchitecture dependent metrics and showed relative positions of benchmarks in the 

workload space built by the measured characteristics. A subset that generated using this 

analysis may be biased due to a fixed configuration used to measure the metrics similar to 

the previous work mentioned above. 
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  Hoste and Eeckhout [29] compare microarchitecture independent metrics with 

microarchitecture dependent metrics. They compare the distances from workload spaces 

built using microarchitecture independent metrics and microarchitecture dependent 

metrics. The correlation coefficient comes out to be 0.46 which shows that the 

characterization of programs is different and it will be misleading to measure similarity 

based on microarchitecture dependent metrics. 

   Another stream of work reduces simulation time of benchmarks by finding 

representative phases within a program [52][64]. These techniques are orthogonal to the 

one presented in this paper and can be used to further reduce the simulation time of the 

subset of programs selected from the suite. Simpoint work uses a metric called Basic 

Block Vector (BBV) to find phases within a program. BBV forms a code signature of a 

program. It is a vector which has frequency of each static basic block in the code. The 

BBV is measured for each chunk of a certain fixed number of instructions. Then these 

chunks are clustered based on their BBV. Each cluster represents a phase within the 

program. This work also uses microarchitecture independent metrics but BBV cannot be 

used to compare two different programs because BBV is based on the static basic blocks 

of a program.    

6.2 PERFORMANCE PREDICTION USING PROGRAM SIMILARITY 

A large body of work has also been done on the correlation between 

microarchitecture independent program characteristics and processor performance; see 

for example [1][37][53]. However, these techniques do not predict performance for an 

application of interest based on cross-program similarity. Instead, these techniques 

predict performance based on intra-program phase-level similarities. This requires that 

particular phases of the application need to be executed for making a performance 

prediction. This is not the case with work described in this dissertation. 
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The top few principal components after doing PCA are based on the variance 

within a dataset. Characteristics that have higher variance get chosen in the top few 

principal components or get higher weight. But there might be some characteristics in the 

data that might be more useful to classify or form good clusters but have small variance. 

Yueng and Ruzzo [65] propose a technique using greedy algorithm to choose principal 

components while using PCA for clustering gene expression data. In [65] the authors 

tackle this problem by using greedy algorithm to choose principal components, not based 

on the degree of variance but by empirically checking each one of the components to see 

if the classification improves. This is very relevant to the work on performance prediction 

using program similarity because the program characteristics that are not very well 

correlated can have higher variance and vice-versa. 
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Chapter 7:  Conclusions and Future Research 

7.1 CONCLUSIONS 

The process of performance evaluation is a very important part of the design 

process. Benchmarks are used with simulation infrastructure to evaluate performance in 

early design phase of microprocessors. Modern benchmarks are developed from real 

world applications which are getting complex and run for a long time. The complexity of 

microprocessor design is increasing due to added features for better performance and 

optimizations. This increases the effort of performance evaluation and may effectively 

lead to longer time to market for newly designed microprocessors or computer systems. 

Usually, researchers and computer architects randomly choose benchmarks to evaluate 

their idea which may lead to misguiding results. Performance analysts build benchmark 

suites by choosing programs from a set of candidates. Each of these benchmarks need to 

analyzed to find a set that is diverse in the performance behavior to form a benchmark 

suite. This dissertation contributes towards solving these problems by measuring program 

similarity to reduce the effort in performance evaluation. Measuring program similarity 

will help to find a subset of benchmarks that are representative of the complete 

benchmark suite and can be used instead of the whole suite in the process of performance 

evaluation. The similarity information between programs can also used to predict 

performance of an unknown application if its similarity is measured with the already well 

characterized benchmarks.      

• Subsetting using program similarity 

This dissertation proposes the use of microarchitecture independent metrics to 

measure similarity between benchmarks.  The use of microarchitecture independent 

metrics helps to find a subset that applicable to a wide range of architectures. To 
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demonstrate the methodology, SPEC CPU2000 and media applications are used which 

belong to different application domains. Twenty-nine metrics are measured for each 

benchmark and all the benchmarks are analyzed together using statistical techniques like 

PCA and clustering. The subsets are validated using IPC, cache miss-rate and speed-up. 

The subsets formed showed that the average error of IPC projection for the SPEC 

CPU2000 and media benchmark suites is less than 5%. The average error in projection of 

speedup for the SPEC CPU2000 benchmarks is less than 10%.  

• Analysis of workload space coverage  

Multiple benchmark suites often need to be compared and a representative set of 

benchmarks from multiple suites should be used for performance analysis. Program 

similarity analysis can be used to compare different benchmark suites and evaluate their 

coverage of workload space. Benchmark suites like the SPEC CPU evolve over time. 

Microarchitecture independent metrics are used to measure the similarity between 

programs and compare the four generations of SPEC CPU suites. The similarity of the 

benchmarks from four suites is also analyzed separately for four different characteristics 

i.e. data locality, instruction locality, ILP and branch behavior. All the benchmarks from 

the four suites are plotted on a scatter plot and a dendrogram.  The SPEC CPU suites 

have evolved over time for the data locality characteristics but not much ILP and branch 

behavior. The instruction locality characteristics have almost remained the same over the 

four generations   

• Fast subsetting using microarchitecture dependent metrics 

Development of a benchmark suite is a process where the benchmarks source code or 

inputs are changed rapidly over time to account for high standards on issues like 

portability. The benchmarks should not be an easy target for small tweaks and 

compiler optimizations for achieving high performance. The process of subsetting to 
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find a representative set using microarchitecture independent metrics may take a few 

weeks which may not be possible with the rapidly changing benchmarks. This 

dissertation proposes a fast subsetting approach which uses microarchitecture 

dependent metrics. The microarchitecture dependent metrics are measured on five 

different state-of-the-art systems with different ISAs, compilers and architectures. This 

makes the subset applicable on a wide range of platforms. Two programs that show 

similar behavior using the metrics essentially show similar behavior on all five 

systems. To demonstrate the methodology the SPEC CPU2006 benchmarks are used 

to find a subset that is representative of the suite. This subset can also be used for 

simulations and performance analysis.  

• Performance prediction using program similarity 

A customer who plans to purchase a computer system to run his application does 

not find his application in the standard benchmark suites. But performance scores of 

different computer systems in the market are available for standard benchmarks like 

SPEC CPU benchmarks. In this dissertation the information of similarity between the 

customer’s application and the benchmarks is used to find a more accurate performance 

score of the application on the computer systems. This technique uses the 

microarchitecture independent metrics to characterize the benchmarks and the 

application. The application is then mapped into the workload space of benchmarks and 

its performance is predicted. There are many microarchitecture independent 

characteristics but only a small set of characteristics may affect performance or the 

degree at which they affect performance might be different. To choose characteristics that 

affect performance three different data transformation techniques are evaluated i.e. PCA, 

selection based on correlation coefficient and genetic algorithm. To demonstrate the 

techniques and validate the idea, an experiment that predicts the speedup on ten different 
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machines is done. Rank correlation coefficient is used to evaluate the correct ranking of 

machines with the value of 1 being the ideal case. SPEC CPU2000 benchmarks ran to 

completion are used in this experiment and leave-one-out cross-validation technique is 

used. The best result is obtained using GA data transformation technique which shows a 

rank correlation coefficient of 0.92. The second experiment predicts CPI of individual 

phases within a program using all the microarchitecture independent characteristics and 

the best average prediction error for CPI was 5.7%. The third experiment predicts cache 

hit-rate using only the data locality characteristics and the GA data transformation shows 

an average hit-rate prediction error of 3%. The experimental setup in the second and third 

experiment uses the phases of the SPEC CPU2000 benchmarks instead of the whole 

benchmarks and validates the prediction accuracy using the leave-one-out cross-

validation. Performance prediction using program similarity reuses the previously 

gathered information of several benchmarks or programs to make performance prediction 

of a customer’s application without porting the application to the given platform. 

7.2 DIRECTIONS FOR FUTURE WORK 

• Scheduling on heterogeneous multi-core system 

Heterogeneous multi-core systems are made from multiple processing cores with 

varying strengths. Multiple threads running at a time have different requirements for 

performance and resources e.g. one thread may need out-of-order processing but the other 

thread may run well on an in-order processor. But scheduling the threads on a particular 

core is crucial to get the benefit of saving on power consumption without losing on 

performance. Static scheduling is one option especially for embedded and ASIC 

processors where the applications that run on the system may not change over time. 

Identifying program characteristics and program similarity analysis can help in making 

scheduling decisions. Architects can come up with strategies to map each application 
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based on a certain strategy developed in conjunction with the similarity analysis. 

Characteristics that differentiate the processors can be measured for each program and 

then clustering can be used to find a number of clusters equal to that of the number of 

cores on the systems. Based on the position of the programs, each cluster of programs or 

applications can be mapped on to a particular core. 

•  Measuring program similarity for multi-threaded applications 

With the advent of multi-core systems the application development is rapidly moving 

towards multi-threaded applications. Multi-threaded programs may share data or may 

have a very high thread level parallelism. The research work in this dissertation can be 

directed towards finding similarity between such applications. One of the major 

challenges for this work lies in coming up with microarchitecture independent metrics 

that model communication between threads. Different communication paradigms are 

used to implement the data sharing between threads e.g. shared memory, message 

passing interface (MPI). The applications written using different paradigms may have 

completely different code structure and may need to be analyzed separately. But still 

the challenge remains the same and coming up with microarchitecture independent 

metrics will be crucial to the analysis. 
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Appendix 

Figure A1: Percentage errors in predicting CPI using the four different data 
transformation techniques for each phase using the leave one out technique 
(with phases from the same benchmark included). Note: The figure is 
split into (a), (b), (c), and (d) due to space limitation on X-axis for all the 
phases. 

(a) 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

b
z
ip

2
_
1

b
z
ip

2
_
2

b
z
ip

2
_
3

b
z
ip

2
_
4

b
z
ip

2
_
5

b
z
ip

2
_
6

b
z
ip

2
_
7

b
z
ip

2
_
8

c
ra

ft
y
_
1

c
ra

ft
y
_
2

c
ra

ft
y
_
3

c
ra

ft
y
_
4

c
ra

ft
y
_
5

c
ra

ft
y
_
6

c
ra

ft
y
_
7

c
ra

ft
y
_
8

C
P

I

Actual

EW

COR

PCA

GA 

 
 

(b) 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

e
o

n
_
1

e
o

n
_
2

e
o

n
_
3

e
o

n
_
4

e
o

n
_
5

e
o

n
_
6

e
o

n
_
7

e
o

n
_
8

g
c
c_

2

g
c
c_

3

g
c
c _

4

g
c
c_

5

g
c
c_

6

g
c
c_

7

C
P

I

Actual

EW

COR

PCA

GA 

 
 
 
 



 123 

(c) 
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Figure A2: Percentage errors in predicting CPI using the four different data 
transformation techniques for each phase using the leave one out 
technique.(without the phases from the same benchmarks) Note: The 
figure is split into (a), (b), (c), and (d) due to space limitation on X-axis for 
all the phases. 
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