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The continuing advances in VLSI technology have fueled dramatic performance 

gains for general-purpose microprocessor, but microprocessor energy consumption has 

been increasing substantially in the past decade. The steady increase of microprocessor 

energy consumption significantly affects circuit reliability, cooling and package costs, 

and battery life of embedded systems. 

Adaptive microarchitectures are one of the commonly used techniques to 

dynamically identify configurations that are desirable from performance and power 

perspectives. By matching hardware resources to a program's runtime requirements, 

adaptive microarchitectures can effectively reduce energy with minimal performance 

loss. However, the task of searching for the most energy efficient configurations is 

complicated by configuration space explosion, which may considerably impair an 

adaptive microarchitecture’s performance and energy efficiency. 

This dissertation presents a hardware adaptation framework for efficient 

management of multiple configurable units, utilizing a dynamic optimization system’s 

inherent capabilities of detecting and optimizing dominant code regions (hot spots). The 
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framework uses hot spot boundaries for phase detection and hardware adaptation. Since 

hot spots are of variable sizes and are often nested, the framework can decouple the 

reconfiguration of CUs with diverse adaptation costs by adjusting the granularity of 

adaptation based on each CU’s reconfiguration cost. 

This dissertation also studies the interference imposed by one CU’s configuration 

changes on others’ adaptation. CUs with minimal mutual interference can be adapted in 

parallel. In addition, for some CUs, one’s size reduction usually prompts the other to 

choose a smaller size for energy reduction. Hence, the search of those CUs’ best 

configurations biases toward certain paths, and thus prunes the tuning space. Employing 

the tuning-reduction strategies, the proposed framework significantly improves the 

energy efficiency of an adaptive microarchitecture. 

The energy and hardware adaptation impact of two important dynamic 

optimization services, JIT optimization and garbage collection, are also investigated in 

this work. By stressing the data caches, both dynamic optimization services decrease the 

average power dissipated by a dynamic optimization system. Furthermore, owing to their 

distinct runtime characteristics and their capabilities to alter program runtime behavior, 

the two dynamic optimization services change the adaptation preferences of configurable 

hardware units, and influence the energy efficiency of an adaptive microarchitecture. 
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Chapter 1. Introduction 

1.1 MICROPROCESSOR ENERGY REDUCTION 

In the past several decades, advances in VLSI technologies and microarchitectural 

innovations have driven the continuous performance improvement of microprocessors. 

Today’s high performance processors integrate millions of transistors and operate at Giga 

Hertz frequency. Despite performance achievement, processor architecture designs still 

face challenges. Specifically, the increasing power dissipation is one of the biggest 

concerns. Microprocessor power densities have been increasing substantially from one 

generation to the next, despite the reduced supply voltages and advanced processing 

technologies. High power densities of today’s state-of-the art processors significantly 

affect circuit reliability, cooling issues, and package costs.  

Meanwhile, the market for portable computation devices is growing quickly. In 

most embedded devices, the computing element accounts for a high portion of the overall 

energy consumption. Most embedded systems use batteries whose life is determined by 

the energy consumption of the embedded systems. Consequently, the interest in lowering 

the power and energy of a processor has grown dramatically over the past several years. 

Various techniques are proposed to deal with this problem. First, low power VLSI 

devices and logic are designed to make significant contribution to power saving. In the 

circuit level, voltage scaling, low swing buses, and conditional clocking help reduce 

energy consumption enormously [34][85]. Power-aware compiler optimizations can also 

help alleviate the energy problem [32][77][83]. 
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1.2 ADAPTIVE MICROARCHITECTURES 

Adaptive microarchitectures are one of the commonly used techniques to 

dynamically identify configurations that are desirable from performance and power 

perspectives. By matching hardware configurations with changing program requirements, 

adaptive microarchitectures can reduce energy with minimal performance impact. With 

fixed size microarchitectural structures such as wide instruction window and large L1 

caches, conventional microprocessors are designed to maximize performance for a range 

of applications. However, a program rarely fully utilizes every microarchitectural 

resource to achieve high performance. Hence, it is possible to reduce the sizes of those 

under-utilized microarchitectural resources for energy reduction with minimal 

performance impact. To achieve energy reduction, the hardware units must have multiple 

configurations that can be changed at runtime. Reconfiguration of many such 

configurable units (CUs), such as issue queue, reorder buffer, caches, and branch 

predictors, have been proposed [1][7][27][36][63]. In this dissertation, the term adaptive 

microarchitecture indicates a microprocessor design with one or more such configurable 

hardware units. 

Changing a hardware unit’s setting at runtime usually incurs cycle-time 

reconfiguration overhead. For instance, to reduce a cache’s size, dirty cache lines must 

be written back to lower memory hierarchy, which may take thousands of cycles [19].  

Hence, a program’s performance may be impaired by too frequent reconfigurations where 

reconfiguration exceeds the benefit gained by the reconfigurations. After a 

reconfiguration, the configuration should be utilized for a certain minimum time interval, 

called the CU’s reconfiguration interval. Depending on its reconfiguration overhead, a 

configurable unit’s reconfiguration interval can vary from thousands (e.g., issue queue 

[27]) to millions (e.g., caches [2]) of instructions/cycles. 
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Two important issues in hardware adaptation are when to adapt hardware 

resources and which configuration to adapt to. The first issue is addressed by program 

phase detection. By the definition of Sherwood et al. [75], a phase is a set of intervals 

within a program’s execution that have similar behavior, regardless of temporal 

adjacency. Recent research in program runtime behavior confirms that programs execute 

as a series of phases with varying runtime characteristics and hardware requirements, 

while still having a fairly homogeneous behavior within a phase [19][20][75][76]. Phase 

boundaries are thus suitable points for resource reconfiguration. Previously proposed 

resource adaptation approaches rely on diverse hardware and software schemes to detect 

distinct program phases that are associated with either successive program sampling 

intervals or code positions. 

The second issue of hardware adaptation, i.e., which configuration to adapt to, is 

addressed by the tuning strategy. Most prior hardware adaptation schemes use the same 

tuning strategy. Upon a phase change, this tuning strategy tests all hardware 

configurations and adapts to the best one (i.e., the most energy-efficient one that satisfies 

the performance constraint), and this procedure is called the phase’s tuning process. The 

time taken by the tuning process is the phase’s tuning latency, which is proportional to 

the number of configurations tested. For instance, the latency of tuning a four-

configuration CU is four reconfiguration intervals, with each interval testing one 

configuration. On the other hand, in a multiple CU environment, the tuning process tests 

those CUs’ combinational configurations. 

1.3 EFFICIENT MANAGEMENT OF MULTIPLE CONFIGURABLE UNITS 

In adaptive microarchitectures, efficient management of configurable units is vital 

for maximizing energy reduction. To achieve high energy reduction, an adaptive 

microarchitecture usually has multiple configurable units. Intuitively, in a multi-CU 
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environment, changing one CU’s configuration may affect the tuning decision of another 

CU. Hence, hardware units can hardly be adapted individually. This research is motivated 

by the importance on the efficient adaptation of multiple configurable units on overall 

energy reduction. 

In a multi-CU environment, the straightforward tuning strategy of testing all 

combinatorial configurations results in a long tuning process. With this tuning strategy, 

the tuning latency is proportional to the total number of combinatorial configurations, 

which increases dramatically as more hardware units become configurable. For instance, 

a four-configuration CU needs only four tests, while adapting five four-configuration 

CUs needs 1024 tests. Figure 1 illustrates the tuning process of two four-configuration 

hardware units. Note that it is possible to reduce the tuning process by ruling out some 

unpromising configurations found via offline or online profiling. 

 

 

Figure 1. Adaptation of two four-configuration hardware units. (Each pair of numbers is 
one combinational configuration, with the numbers indicating the two CUs’ 
individual configurations.) 

With multiple configurable units, using the straightforward tuning strategy of 

testing all combinatorial configurations significantly affects the efficiency of hardware 

adaptation. First, during the tuning process, the program mostly executes at 
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configurations that yield less energy reduction or too much performance loss compared to 

the best one. Hence, the rapidly increased tuning latency impairs performance and energy 

reduction substantially. The performance is further impaired by the increasing tuning 

overhead that is proportional to the tuning latency. Finally, using the conventional tuning 

strategy implies that all CUs are adapted at the same pace, which must be chosen to 

accommodate the largest CU reconfiguration interval. Thus, reconfiguration opportunities 

are lost for low-overhead CUs. Consequently, it is imperative to find new tuning 

strategies that improve the adaptation of multiple CUs for better energy reduction. 

1.4 THESIS STATEMENT 

In adaptive microarchitectures, efficient management of the configurable units is 

vital for maximizing energy reduction. Utilizing a dynamic optimization system’s 

inherent capabilities of detecting and optimizing hot spots, a hardware adaptation 

framework can efficiently manage multiple configurable units by adapting them at hot 

spot boundaries, and thus achieve much better energy reduction than conventional 

approaches. 

1.5 CONTRIBUTIONS 

This research makes multiple contributions to efficient adaptation of multiple 

configurable units for energy reduction. 

The first contribution of this dissertation is that it demonstrates how a dynamic 

optimization (DO) system’ inherent capabilities of detecting and optimizing hot spots can 

be synergistically employed for efficient management of adaptive microarchitectures. 

During the past decade, dynamic optimization systems have grown in popularity. 

Dynamic optimization is a software system’s ability to dynamically translate/optimize 

one type of program code to another form, even in the same ISA. Examples of DO 
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systems include Transmeta CMS [18], IBM DAISY [24], HP Dynamo [8], Intel IA32EL 

[10], Java virtual machines [5][90], and Microsoft .NET’s common language runtime 

[91]. To amortize the overhead of runtime translation and further improve performance, 

most DO systems apply high-cost high-quality optimizations only on frequently executed 

code sequences (hot spots). It has been shown that hot spots usually have stable runtime 

characteristics throughout program execution [84], and closely represent program 

behavior changes [36][56]. Therefore, DO systems are good platforms for adaptive 

computing environment management. 

This dissertation presents a hardware adaptation framework for efficient 

management of multiple configurable units based on a generic dynamic optimization 

system. Exploiting the existing hot spot detection mechanism of the dynamic 

optimization system, the proposed framework adapts microarchitectural resources at hot 

spot boundaries.  

The framework prunes the explosive tuning space of multiple CUs with two 

techniques. First, a technique, CU decoupling, decouples the adaptation of CUs with 

diverse adaptation cost. Program hot spots are usually of variable sizes and are nested. 

Smaller hot spots represent fine-grain phases nested within coarse-grain phases that 

appear as large hot spots. Intuitively, they closely represent hierarchical phase behavior. 

Thus, this framework automatically captures the hierarchical phase behavior by 

identifying nested hot spots. Utilizing this capability, the framework decouples the 

reconfiguration of different CUs by adjusting the granularity of adaptation based on each 

CU’s reconfiguration cost. This CU decoupling strategy significantly reduces the tuning 

process, and achieves a better balance of benefit/overhead for each configurable hardware 

resource. 
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The second technique exploits the different types of interference between CUs’ 

adaptation to prune the tuning space of multiple CUs. In a multi-CU environment, the 

interference between two CUs exists when one CU’s configuration changes alter another 

CUs’ adaptation decisions. For instance, some CUs, such as L1D and L1I caches, rarely 

interfere with each other, so they can be adapted in parallel. Furthermore, for  CUs such 

as issue queue and reorder buffer, one’s size reduction usually prompts the other to keep 

the same configuration or use a smaller one for energy reduction with minimal extra 

performance loss. With those types of interference, the search of the CUs’ best 

configuration usually biases towards certain paths, and the tuning space can be pruned by 

testing only configurations in those paths. Differing with CU decoupling, those tuning 

reduction strategies are also effective for CUs with similar adaptation costs. Employing 

the two techniques, the framework manage multiple configurable units efficiently and 

achieve high energy reduction. 

To demonstrate the usefulness and effectiveness of our framework, the proposed 

hardware adaptation framework is implemented using Jikes Research Virtual Machine [5] 

and Dynamic Simplescalar simulator [38]. Performance is evaluated on the SPECjvm98 

benchmark suite [88]. Five configurable units are implemented: issue queue, reorder 

buffer, L1 instruction and data caches, and L2 cache. Previous research indicates that 

those five components dominate the energy consumption of a microprocessor [27]. 

Hence, improving those CUs’ adaptation should considerably reduce the overall 

microprocessor energy consumption. 

Another contribution of the work is the comprehensive investigation of the major 

adaptation-interfering factors in a multi-CU system, and the findings are applied to the 

design of new tuning-reduction strategies. The ultimate goal of a resource adaptation 

scheme is to achieve the lowest energy consumption and the best possible performance. If 
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energy is the primary constraint, some performance losses may have to be tolerated. 

Similarly, if performance is the absolute goal, one may have to tolerate high power and 

energy. Abiding by program requirements and the performance budget, CUs’ 

configurations are adjusted via their tuning processes to achieve the maximum overall 

energy saving. Hence, in a multi-CU environment, program’s runtime 

characteristics/requirements and the interference imposed by other CUs’ adaptation are 

the two major factors that affect a CU’s tuning decision. In this research, those two 

adaptation-interfering factors are investigated. Following are several findings. 

First, by qualitatively analyzing CUs' performance impact, two interference types 

between CUs are discovered: a) positive: one CU's size reduction relieves the 

performance pressure on the other one, and allows it to use the same or a smaller size; b) 

negative: one CU's size reduction increases the performance pressure on the other one, 

and prompts it to use a larger size. The interference between issue queue and reorder 

buffer are positive, which leads to the design of a tuning-reduction strategy for the two 

units. 

Second, the interference of one CU’s adaptation on another CU’s tuning decisions 

varies by CUs. In general, high-overhead CUs are less sensitive to other units’ 

interference than low-overhead CUs, which validates the efficiency of multi-grain 

adaptation employed by the DO-based hardware adaptation framework. There is 

extensive interference between issue queue and reorder buffer, while L1D and L1I caches 

have minimal mutual interference. Hence, the L1D and L1I caches can be adapted in 

parallel, disregarding each other’s tuning.  

The interference analysis helps us design two tuning-reduction strategies. The 

first strategy reduces the latency of tuning L1D and L1I caches by adapting them in 

parallel. Exploiting the positive interference between the issue queue and the reorder 
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buffer, the second strategy reduces the tuning latency of those two CUs by testing only 

configurations that comply with the positive interference property. The CU decoupling 

technique decouples only the adaptation of CUs with diverse reconfiguration overheads, 

while those two tuning-reduction strategies reduce the adaptation latency of CUs with 

similar reconfiguration overheads. Hence, employing the tuning reduction strategies and 

the CU decoupling technique, the proposed framework significantly improves the energy 

efficiency of an adaptive microarchitecture. 

Another contribution of this dissertation is the extensive study of the energy and 

power impact of two important dynamic optimization services, JIT optimization and 

garbage collection, on microprocessor energy consumption and hardware adaptation. By 

reducing instruction counts, JIT optimization significantly reduces a program’s energy 

consumption, while garbage collection incurs runtime overhead that consumes more 

energy. Interestingly, both JIT optimization and garbage collection decrease the average 

power dissipated by a program. Detailed analysis reveals that both JIT optimizer and JIT 

optimized code dissipate less power than un-optimized code. On the other hand, the 

garbage collector dissipates less power than the mutator, but it rarely affects the mutator’s 

average power. 

This research also reveals that DO systems interfere with hardware adaptation. 

Both JIT optimization and garbage collection alter programs’ behavior and runtime 

requirements. In adaptive microarchitectures, such changes of runtime requirements can 

considerably affect the adaptation of configurable hardware units, and eventually 

influence the overall energy consumption. The adaptation preferences of configurable 

units on the JIT optimizer and the garbage collector are also studied, demonstrating that 

the units’ adaptation decisions on the application code and the dynamic optimization 
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services can differ substantially. The insights gained in this research point to novel 

techniques that can further reduce microprocessor energy consumption.  

1.6 ORGANIZATION 

The remainder of the dissertation is organized as follows:  

Chapter 2 presents the background and related work on hardware resource 

adaptation, dynamic optimization, and energy and power impact of compiler 

optimizations. Chapter 3 introduces the proposed hardware adaptation framework. 

Chapter 4 discusses the experimental methodology used in this research. Chapter 5 

evaluates the framework and compares it against one of the best prior resource adaptation 

schemes on managing multiple configurable units. Chapter 6 examines how runtime 

program requirements, in terms of measurable characteristics, affect CUs’ adaptation 

decisions. Interference imposed by the adaptation of CUs on other CUs’ tuning decisions 

is also studied in this chapter. Dynamic optimization and garbage collection are two of 

the major services in many dynamic optimization systems that assist program execution. 

Chapter 7 analyzes the impact of those two dynamic optimization services on 

microprocessor energy consumption and hardware adaptation. Chapter 8 concludes the 

dissertation by summarizing the contributions and suggesting future directions. 
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Chapter 2. Background and Related Work 

This chapter presents the background and the related work on hardware 

adaptation, dynamic optimization systems, and compiler optimizations for 

microprocessor energy reduction. First, various configurable units and the terms 

reconfiguration overheads and intervals of CUs that are used throughout the dissertation 

are introduced. Most resource adaptation schemes have two components: a phase 

detection mechanism that identifies when to adapt hardware resources, and a tuning 

strategy to identify which units to configure and how to configure the units. Section 2.2 

describes previously proposed phase detection mechanisms, and Section 2.3 introduces 

the commonly used tuning strategy and identifies its key limitations on managing 

multiple configurable units. Several exemplary dynamic optimization systems are 

presented in Section 2.4. All of those dynamic optimizations systems detect and optimize 

hot spots to minimize dynamic optimization cost. The impact of compiler optimizations 

on microprocessor power dissipation and energy reduction is discussed in Section 2.5. 

2.1 CONFIGURABLE HARDWARE UNITS 

Configurable hardware units are proposed to reduce energy consumed by those 

units with minimal performance impact. Changing a hardware unit’s setting at runtime 

usually incurs cycle-time reconfiguration overhead. For instance, to reduce a cache’s 

size, dirty cache lines must be written back to lower memory hierarchy, which may take 

thousands of cycles [19]. Hence, a program’s performance may be impaired by too 

frequent reconfigurations where reconfiguration overhead overcomes the benefit gained 

by the reconfigurations. After a reconfiguration, the configuration should be utilized for a 

certain minimum time interval, called the CU’s reconfiguration interval. Depending on 

its reconfiguration overhead, a configurable unit’s reconfiguration interval can vary from 
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thousands (e.g., issue queue [27]) to millions (e.g., caches [2]) of instructions or cycles. 

The following subsections studies the following configurable units: issue queue, reorder 

buffer, caches, branch predictors, and filter cache etc. 

2.1.1 Issue queue 

In out-of-order superscalar microprocessors, multiple instructions are dynamically 

reordered and issued to functional units in their data ready order rather than their original 

program order to achieve high performance. Two hardware units that facilitate dynamic 

instruction scheduling are issue queue and reorder buffer. Due to their highly associative 

nature, they are among the most power-hungry and time-critical components in a modern 

processor. Hence, numerous previous efforts focus on reducing the energy consumption 

of issue queue and reorder buffer by adjusting their sizes dynamically, or by utilizing 

low-complexity, low-power alternative ones when suitable. 

Many issue queue energy reduction schemes dynamically adjust issue queue sizes 

to match program requirements for energy saving. To estimate program computational 

demand and to guide adaptation, they usually sample measurable metrics such as IPC or 

issue queue occupancy. Folegnani et al. [27] propose an energy effective issue logic 

design, which saves energy by reducing the issue queue size dynamically, as well as 

avoiding waking up empty issue queue entries and ready operands. Bahar et al. [6] adapt 

multiple processor resources, including the issue queue, by balancing the pipeline width 

with program requirements at runtime. Similar designs are discussed in several other 

works [1][63][65] as well. 

Several other schemes reduce the energy consumption of issue queue by 

providing low complexity, low power alternatives. Those issue queues can be used 

solely, or combined with the conventional out-of-order, high power consumption issue 

queue for better energy saving. Using the low-power issue queues when program has less 
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available ILP can save energy with minimal or even beneficial performance impact.  

Canal et al. [15] propose two low-complexity issue queues. The first issue queue design, 

first-use issue scheme, replaces the conventional out-of-order issue queue with several in-

order queues by utilizing the fact that most register values are read at most once. The 

second scheme, distant issue logic, tries to determine instruction execution order in the 

decode stage, thus simplifying complex dynamic scheduler used in conventional issue 

logic. It provides extra hardware to hold instructions that wait for memory accesses. 

Abella et al. [3] present a low-complexity distributed issue queue design that classifies 

instructions and dispatches them into a set of FIFO queues depending on their data 

dependences. 

Several other efforts try to simplify the issue queue design by using a less 

aggressive hardware instruction scheduler. Ernst et al. [25] implement the simple 

hardware Cyclone scheduler that schedules instructions by predicting the ready latencies 

of the instructions’ operands. The Cyclone instruction queue schedules predicted 

instructions via a network of locally synchronized datapaths. To ensure correct program 

execution in the presence of latency and dependence speculation, the Cyclone scheduler 

incorporates a selective replay mechanism that overloads the register forwarding 

infrastructure to re-execute only those instructions dependent on incorrectly scheduled 

instructions. A similar scheme is proposed by Michaud et al. [58]. 

2.1.2 Reorder buffer 

As one of the key datapath structures in modern superscalar, out-of-order 

processors, the reorder buffer (ROB) maintains the program order and precise states of 

instructions when them execute out of order. In some microarchitectures, such as the Intel 

P6, the physical registers are implemented as slots within the ROB entries, which, 

combined with the large number of ROB ports, contribute a significant percentage to the 
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overall chip power dissipation [27]. Hence, it is important to reduce the ROB power 

consumption with minimal performance loss. Several prior efforts in the area propose to 

dynamically adjust the size of ROB for better energy efficiency [6][42]. Besides the 

reorder buffer, Wu et al. [83] also adjust the fetch width of the microprocessor 

dynamically. 

Kucuk et al. [47] exploit the observation that in a typical superscalar datapath, 

almost all of the source operand values are obtained either through data forwarding of the 

recently generated results or from the reads of the committed register values. Only a 

small percentage of the operands need to be read from the ROB; delaying such reads 

have little impact on the overall performance. This allows the ROB ports for reading the 

source operands at the time of dispatch to be completely eliminated with little 

performance loss. Another paper [46] extends the scheme by implementing a ROB with 

distributed queues. Each ROB queue serves a single functional unit, with a single write 

port instead of multiple ones needed by a centralized implementation.  

2.1.3 Cache hierarchy 

Due to their large sizes, on-chip caches contribute much to a microprocessor’s 

power dissipation and energy consumption. Various adaptable cache schemes have been 

proposed in past research. Some of them disable parts of cache ways or cache lines, or 

access only the cache ways that are most likely to hit. Cache line width and hierarchy can 

be adjusted to adapt to program requirements.  

Albonesi [2] proposes to a technique, called selective cache ways, to reduce cache 

energy consumption by dynamically disabling a subset of cache ways in a set associative 

cache. Selective cache ways exploits the fact that large on-chip caches are often 

partitioned into multiple subarrays to reduce the long word and/or bitline delays of a 

single large cache array. Hence, only minor changes, e.g., gating hardware and a control 
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register, are required to implement selective cache ways in a conventional cache. A 

similar adaptive complexity-adaptive cache hierarchy is proposed [1] as a part of the so-

called complexity adaptive processors.  

During a cache access, usually both the tag and data arrays are activated. A cache 

in the phased mode [31] is a set associative cache where an access first activates only the 

tags. If there is a match, only the matching data array is subsequently activated, reducing 

the amount of bitline activity and sense amplification in the data array. Consequently, a 

phased cache saves energy at the cost of extra delay. Min et al. [59] present a low power 

cache system that compares tags in two phases. The first phase determines the data ways 

that the memory access falls into, which is then verified by the second phase. With those 

two phases, most activities in accessing a conventional cache tag can be avoided, and 

thus achieve energy saving. The approaches proposed by Powell et al. [64] predict the 

matching ways and probes only the predicted ways and not all the ways to achieve energy 

saving. A similar approach is proposed by Zhang et al. [86], in which a small way-halting 

cache stores partial tags and is accessed in parallel with set-index decoding. Thus, the 

ways with mismatching tags can be disabled during the cache assess for energy saving.  

Kaxiras et al. [45] exploit the fact that cache lines are usually not accessed for a 

long period before they are evicted. Hence, tuning off the cache lines during the dead 

period can reduce power leakage, without introducing any additional cache misses that 

hurt performance. The paper proposes several policies for determining when to turn a 

cache line off. Based on the same principle, the drowsy cache [26] reduces cache leakage 

by exploiting the fact that during a fixed period of time, only a small subset of cache lines 

are accessed. Hence, inactive cache lines can transfer to a low-power drowsy mode with 

minimal performance loss.  
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Balasubramonian et al. [9] propose a cache hierarchy reconfiguration scheme that 

behaves as a virtual two-level, physical one-level non-inclusive cache hierarchy. In the 

scheme, multiple levels of the cache hierarchy share a large cache. The boundaries 

between L1 and L2 caches, and thus their sizes, are adapted at runtime by monitoring 

phase changes using miss rates and branch frequencies. The scheme is also applicable to 

TLBs. Based on the same principle, Ranganathan et al. [68] propose a reconfigurable 

cache in which a portion of the cache could be used for another function, such as an 

instruction reuse buffer. Veidenbaum et al. [82] describe an adaptive cache design in 

which cache line size is dynamically adapted based on program requirements monitored 

by hardware, although it aims at improving cache miss rate, not reducing energy 

consumption.  

The Filter cache [48] is proposed to reduce the power consumption of an L1 

instruction cache. The Filter cache is a small, direct-mapped cache that resides between 

processor core and the L1 instruction cache. If it is deactivated, instructions are fetched 

directly from the L1 instruction cache; otherwise, the processor checks the filter cache 

first. Filter cache hits save energy and improve performance, while filter cache misses 

consume more energy and lose performance. 

2.1.4 Other hardware units 

Branch prediction is essential for increasing instruction-level parallelism. 

However, a large amount of unnecessary work results from wrong-path instructions 

entering the pipeline due to misprediction. Previous work [61] shows that in general, such 

speculation cost is worthwhile. Yet, it is still possible to improve the energy efficiency of 

branch prediction without hurting its accuracy. The work also proposes two techniques, 

banking and the prediction probe detector, to reduce the power dissipation of branch 

predictors. Banking allows partial activation of the branch predictor during a predictor 
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access. The prediction probe detector uses pre-decode bits to entirely eliminate 

unnecessary predictor and branch target buffer accesses. Manne et al. [53] use confidence 

estimation to gate the execution of branches that are most likely to be mispredicted, and 

thus save energy. 

Wide-issue processors typically have many functional units (FUs). Since few 

applications need all the FUs all the time, processors typically clock-gate unused FUs, 

which can significantly reduce the energy consumed by FUs. However, performance will 

be impaired when program requires more FUs than available ones. This scheme is used to 

reduce microprocessor energy consumption [6][36]. 

Besides turning off whole or part of hardware resources, it is also possible to scale 

down the voltage and frequency of processor core and DRAM array for energy saving. 

Dynamic energy is proportional to the square of the supply voltage, while dynamic power 

is proportional to the frequency and to the square of the voltage. Hence, reducing both the 

voltage and the frequency reduces energy, and is thus widely used in modern 

microprocessors [39]. Lowering the voltage of DRAM array can be conducted by 

changing the reference voltage used in an on-chip voltage converter according to the 

outputs of a detector [43]. 

2.2 PROGRAM PHASE DETECTION 

Recent research in program runtime behavior confirms that programs execute as a 

series of phases, where each phase may be very different from the others, while still 

having a fairly homogeneous behavior within a phase [19][20][75][76]. By the definition 

of Sherwood et al. [75], a phase is a set of intervals within a program’s execution that 

have similar behavior, regardless of temporal adjacency. Accurate and timely 

identification of program phases is essential for improving the effectiveness of 

adaptation. For instance, in systems that contain CUs with large reconfiguration 
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overheads, recurring phases may reuse configuration information to avoid repeated 

tunings to improve performance. 

Balasubramonian et al. [9] use a conditional branch counter to detect program 

phase changes. The counter keeps track of the number of dynamic conditional branches 

executed over a fixed execution interval. Phase changes are detected when the difference 

in branch counts of consecutive intervals exceeds a threshold. Their scheme does not use 

a fixed threshold. Rather, the detection strategy dynamically varies the threshold 

throughout the execution of the program. 

Sherwood et al. [76] propose to use an array of hardware counters, called basic 

block vector (BBV), to capture and classify phase-based program behavior on large time 

scales. This scheme is an online variant of the offline phase analysis and profiling tool 

SimPoint [74]. BBVs keep track of execution frequencies of basic blocks touched in a 

particular execution interval. Phase changes are detected when the Manhattan distance 

between consecutive BBVs exceeds a preset threshold. The paper demonstrates that 

sampling intervals of the same phase are homogeneous over multiple performance 

metrics. Program phases are usually hierarchical, i.e., they are of variable lengths and 

nested. Lau et al. [49] extend the SimPoint tool to detect hierarchical phases by using k-

means clustering to group intervals with similar BBVs into clusters. However, the 

technique is complex and cannot be performed at runtime. Hence, it is hard to apply it to 

the online BBV phase detection technique. 

Dhodapkar et al. [19] propose to use instruction working set signatures, i.e., 

highly compressed working set representations, to identify program phase behavior. The 

rationale is that as program phase behavior changes, the phases’ instruction work sets 

should change also. Hence, by identifying the working set changes, one can detect phase 

changes and trigger hardware re-tuning. The working set signature is an n-bit vector 
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formed by mapping addresses of cache line accesses into the vector buckets using a 

randomizing hash function. 

All of the above phase change detection schemes can classify intervals with 

similar characteristics into phases, and allows hardware reconfiguration techniques to 

adapt for each phase. This is mainly due to their use of microarchitecture independent 

phase detection metrics. Dhodapkar et al. [20] compare the three phase detection 

techniques in terms of sensitivity to phase changes and false positive, phase stability and 

length. It finds out that the BBV technique performs better than other techniques. 

Several other phase detection schemes identify phases using microarchitecture 

dependent metrics such as IPC [27] and occupancy [63]. One deficiency of such schemes 

is that the characteristics used to trigger hardware retuning are microarchitecture-

dependent, and are affected by configuration changes conducted by the schemes. To 

minimize such interference, the configurable units have to be adapted to their maximum 

sizes once in a while. 

The above phase detection schemes are all temporal ones, in that phases consist of 

sampling intervals with fixed or varying sizes. In temporal approaches, phases can be 

classified into stable and transitional ones [20]. A phase is stable if it lasts two or more 

successive sampling intervals; otherwise, it is transitional. Transitional phases have short 

lifetimes, rarely recur, and are thus difficult to tune. Recognizing only stable phases can 

improve the phase detection hardware utilization and increase phase detection accuracy 

considerably [20]. Lau et al. [50] propose to filter out transitional phases also. 

In temporal approaches, a phase change cannot be identified immediately. It can 

only be detected after the phase change lasts one or more sampling intervals, which is 

called the identification latency. Recurring phases in those temporal approaches incur 

phase identification latencies, regardless the length of program execution. Recurring 
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phase identification latencies can be reduced by next phase detection mechanisms 

[50][76], which predict what the next phase will be and when it will occur. However, 

incorrect predictions cause unnecessary or wrong adaptation and subsequent rollback of 

hardware configurations, thus affecting performance considerably. Hence, high 

prediction accuracy is imperative for such mechanisms. Based on the BBV phase 

detection technique, Sherwood et al. [76] propose two phase prediction mechanisms, 

Markov and Run-length-encoding Markov predictors. Lau et al. [50] also examine the 

issue, and propose several improved phase prediction schemes using hybrid predictors 

and confidence. Nevertheless, it is hard to accurately predict phase changes. Hence, 

current complex predictors usually provide marginal benefits over no prediction [50]. 

Differing from temporal approaches that detect phases at successive sampling 

intervals, the positional approach [36][83] captures phase changes at certain positions 

such as procedure boundaries, relying on the observation that program phase behavior is 

closely associated with program structures. Since it is hard to find procedure calls that 

start new phases by hardware at runtime, the positional approach simply adapts at 

boundaries of large procedures [36]. It has been shown that phase detection techniques 

based on large procedure boundaries do not perform as well as those based on the 

temporal approaches due to their inability to adapt to changes within the procedures [20].  

Recently, Shen et al. [72] propose to construct memory phases based on memory 

localities. The scheme first profiles program execution using variable-distance sampling, 

wavelet filtering, and best phase partition via tracing a training input. It then identifies the 

memory phase hierarchy through grammar analysis. Finally, the phase information is 

inserted into program code by a static compiler. The technique is mainly used for cache 

adaptation. Its efficiency on adapting other hardware units is yet to be proven.  
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Iyer et al. [42] propose a microarchitecture-level power management scheme to 

detect program phase changes and triggers the adaptation of multiple hardware resources. 

It uses a hardware profiling scheme to identify tightly coupled regions of code and a 

hardware-based power estimation method to judge the power requirements for each 

region of code and scale or resize resources at runtime depending on these estimates. The 

hardware hot spot detection scheme is based on the work of Merten et al. [56]. However, 

the limited scope of hot spot detection hardware and its frequent flushes indicate that the 

scheme can only detect small, locally-hot code regions, and is unable to detect large, 

global hot spots. 

2.3 RESOURCE ADAPTATION STRATEGIES 

The tuning strategies used in previous resource adaptation schemes 

[9][36][37][42] are similar in nature. In general, after a phase is found, the tuning strategy 

tests different configurations of a CU in successive sampling intervals (the temporal 

approaches), or successive invocations of the same code (the positional approach). It tests 

the least energy efficient configuration first. The tuning process completes when all the 

configurations have been tested. The most energy efficient configuration that satisfies the 

performance constraint is then selected for the phase. The tuning latency, the time taken 

to find the most energy-efficient configuration, is the number of sampling intervals 

required to test all the configurations.  

With multiple configurable units, using the straightforward tuning strategy of 

testing all combinatorial configurations significantly affects the efficiency of hardware 

adaptation. First, during the tuning process, the program mostly executes at 

configurations that yield less energy reduction or too much performance loss compared to 

the best one. Hence, the exponentially increased tuning latency impairs performance and 

energy reduction substantially. Furthermore, the performance is also impaired by the 
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increasing tuning overhead that is proportional to the tuning latency. Finally, using the 

conventional tuning strategy implies that all CUs are adapted at the same pace, which 

must be chosen to accommodate the largest CU reconfiguration intervals. 

Reconfiguration opportunities are thus lost for low-overhead CUs. Consequently, 

resource adaptation schemes always prefer short tuning processes to long ones. 

Several prior efforts aim at efficient adaptation of multiple configurable units. 

Ponomarev et al. [63] propose a scheme that periodically samples occupancies of data 

path buffers to adapt them independently. Dropsho et al. [21] minimizes the overhead of 

managing multiple configurable units by using local information, such as a cache’s LRU 

states and a buffer’s occupancy statistics, to guide each configurable unit’s tuning 

decision. The paper notes that configurations of interdependent CUs are coupled, and 

cannot be recognized by local tuning strategy. Hence, a global tuning strategy might 

exploit the coupled effects for more energy reduction. The two hardware adaptation 

schemes are extended in a scheme that trades off clock frequencies with hardware 

structure sizes to achieve high throughput [22]. For multimedia applications, Sasanka et 

al. [73] propose multiple local hardware adaptation schemes to exploit intra-frame 

execution variability. Those local schemes are integrated with the global scheme, 

exploiting per-frame execution slack, to achieve better overall energy reduction. 

2.4 DYNAMIC OPTIMIZATION SYSTEMS 

During the past decade, dynamic optimization (DO) systems have grown in 

popularity. Dynamic optimization is a software system’s ability to dynamically 

translate/optimize one type of program code to another form, even in the same ISA. 

Examples of DO systems include IBM DAISY [24], Transmeta CMS [18], HP Dynamo 

[8], Intel IA32EL [10], Java virtual machines [5][90], and Microsoft .NET’s common 

language runtime [91]. Some of those systems are full system emulators that emulate a 
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whole system, and execute under the operating system. The others execute at the user 

space and above the operating system. 

Dynamic optimization systems provide several hardware and software 

engineering advantages over statically compiled binaries, including flexible hardware 

design, portable program representations, some safety guarantees, build-in automatic 

memory and thread management. This section reviews five typical dynamic optimization 

systems. 

2.4.1 Jikes Research Virtual Machine (RVM) 

Jikes RVM [5] is a research Java virtual machine (JVM) developed in IBM T. J. 

Watson Center, and is the first Java virtual machine written in Java. In addition to 

providing a high-level strongly-typed development environment, this design decision 

allows the optimization techniques to apply not only to application code, but also to the 

JVM itself.  

Jikes RVM employs a compile-only strategy. It includes two, baseline and 

optimizing, compilers. The baseline compiler translates bytecodes directly into native 

code without any optimization. It is also used to validate the optimizing compiler. The 

optimizing compiler first translates bytecodes into an intermediate representation (IR). It 

then optimizes the IR before translating it into native code. The optimizing compiler of 

Jikes RVM has three levels of optimizations (JIT0, JIT1, and JIT2), each one consisting 

of its own group of optimizations as well as the optimizations that belong to lower levels. 

The lower two levels (JJT0 and JIT2) perform optimizations that are fast and high-payoff. 

JIT0 performs inlining and register allocation. JIT1 contains optimizations, such as such 

as common sub-expression elimination, copy and constant propagation, and dead-code 

elimination. JIT2 contains more expensive ones, such as those based on static single 

assignment (SSA) form. 
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Jikes RVM’s adaptive optimization system is responsible for choosing the right 

compilation level for a given method. It uses a low-overhead sampling method to detect 

program hot spots. Approximately every 10 milliseconds, Jikes RVM increments a 

counter associated with the currently active procedure. For all methods that have been 

sampled, Jikes uses a cost/benefit model to determine whether it is profitable to 

recompile the method, and if so, what level of optimization to use. 

2.4.2 Other dynamic optimization systems 

The IBM DAISY system [24] emulates a PowerPC processor and executes on a 

DAISY VLIW processor. When the system powers up, the DAISY code is executed to 

initialize itself and the system. Then, it begins PowerPC emulation by interpreting all 

PowerPC instructions belonging to PowerPC firmware, AIX operating system, or user 

applications. It uses a counter based scheme to detect hot spots and translate newly 

detected hot spots into native VLIW code. Hence, when the hot spot is encountered 

again, its native VLIW code is executed. During the JIT compilation, DAISY performs a 

variety of optimizations including ILP scheduling with data and control speculation, loop 

unrolling, alias analysis, load-store telescoping, copy propagation, combining, 

unification, and limited dead code elimination. 

The Transmeta Crusoe [18] emulates an x86 system on a VLIW chip specifically 

designed to support binary translation for x86. It is similar to IBM DAISY in that they 

are both full system emulators. However, Crusoe is aimed at low power and mobile 

applications, with narrow issue width and smaller memory budgets than IBM DAISY. 

Crusoe maintains a shadow copy of the x86 portion of its register set, and a gated store 

buffer to efficiently recover from exceptions. Hence, within the scope of a group, 

instructions can be arbitrarily reordered or deleted. Thus, Crusoe can perform 

optimizations such as strength reduction and aggressive dead code elimination. In other 
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ways, Crusoe optimization is similar to that of DAISY. Code is first interpreted and 

profiled. If a fragment turns out to be frequently executed (more than 50 times), it is 

translated to native Crusoe instructions. 

HP Dynamo [8] is a dynamic optimization system that takes PA-RISC code and 

produces optimized PA-RISC code. Implemented entirely in software, HP Dynamo runs 

above the HPUS operating system. Its operation is transparent: no preparatory compiler 

phase or programmer assistance is required. Dynamo improves execution time on some 

SPEC benchmarks by up to 22% and by an average of more than 10%. Initially, Dynamo 

interprets the instruction stream until a hot instruction sequence (trace) is identified. To 

identify hot traces, Dynamo associates counters with loop headers. If the counter exceeds 

a preset threshold value, the instruction starts a hot trace. Dynamo records the sequence 

of instruction as they are being interpreted until an end-of-trace condition is reached. At 

that point, Dynamo generates an optimized version of the hot trace (fragment) into a 

software code cache. Subsequent encounters of the hot trace will invoke the optimized 

fragment in the fragment cache. Due to the significant overheads of operating at runtime, 

Dynamo has to maximize the impact of any optimizations that it performs. Dynamo 

primarily looks for performance opportunities such as redundancies that cross static 

program boundaries. Another performance opportunity is instruction cache utilization 

since a dynamically contiguous sequence of frequently executing instructions may often 

be statically non-contiguous in the application binary.   

IA-32 Execution Layer (EL) [10] is a two-phase dynamic translator that executes 

IA-32 application on Itanium-based systems. Similar to HP Dynamo, it executes only 

applications, and is available on both MS Windows and Linux operating systems. 

Initially, basic blocks are translated by IA-32 EL by using prepared translation template, 

and are instrumented to collect information for the second phase. When a block is found 
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to be invoked enough times, the subsequent blocks executed are selected as a hyperblock. 

Based on the information collected during the first phase, various optimizations are 

applied on the hyperblock to improve its performance. 

2.4.3 Hot spot detection and optimization 

Dynamic optimization systems usually focus costly optimizations on program hot 

spots to reduce runtime compilation overhead and improve performance. Program hot 

spots are frequently executed code sequences, such as procedures [5] or basic block 

groups [8][18][24]. To amortize the overhead of runtime translation and further improve 

performance, most DO systems apply high-cost, high-payoff optimizations only to hot 

spots. A DO system usually includes the following steps to detect and optimize hot spots. 

Initially, a program code block is interpreted [8][18][24] or quickly translated and 

instrumented [5]. The execution frequency information of the code block is then gathered 

by the interpreter or the profiling code instrumented at hot spot boundaries, and saved in 

the code block’s corresponding entry in the DO database that stores runtime profiling 

information for the DO system. The information is then examined to find frequently 

executed code blocks as hot spots, and advanced optimizations are applied on them.  

The hot spot detection mechanism in the DO system can be used directly for 

phase identification. Wu et al. [84] indicate that the runtime characteristics of hot spots 

are usually stable throughout program execution. Huang et al. [36] and Merten et al. [56] 

observe that program phase behavior is closely related with hot spot invocations. Hence, 

tuning and reconfiguring CUs at hot spot boundaries should accurately adapt to program 

changes. 
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2.5 POWER-AWARE COMPILER OPTIMIZATIONS 

With the importance of energy reduction, previous work examines the impact of 

static compiler optimizations on program energy consumption and power dissipation. 

Kandemir et al. [41] investigate the influence of several compiler optimizations, such as 

linear loop transformations, blocking, loop unrolling and loop fusion, on programs’ 

energy consumption. They find that those optimizations usually reduce the memory 

energy consumption at the cost of rising core energy consumption. Valluri et al. [80] note 

that compiler optimizations for locality and instruction counts usually optimize program 

energy consumption, while optimizations improving ILP increase average power 

dissipation. In their study of Pentium 4 power consumption, Seng et al. [71] note that 

compiler optimizations affect programs’ energy consumption mainly by reducing their 

execution time. Chakrapani et al. [16] examine the interaction between compiler 

optimizations and processor components, and draw similar observations as Valluri [80]. 

Power-aware compiler optimizations improve program energy consumption and 

power dissipation. Simunic et al. [77] perform several compilation optimizations, 

including loop merging, unrolling, software pipelining, loop invariant extraction to 

optimize the performance and energy consumption of a MPEGAUDIO video decoder in 

an embedded system, with the assistance of profiling information. Software pipelining is 

used by Yang et al. [85] in a power-aware instruction scheduling scheme to reduce power 

variation throughout program execution. 

Compiler optimizations can also assist hardware energy reduction proposals. 

Valluri et al. [81] use the compiler to assist instruction scheduling, thus achieving low 

power, low-complexity instruction issue. Compared with run-time scheduling, compile-

time scheduling features fast and simple hardware, but at the expense of conservative 

schedules [32]. The paper implements a compile-time analyzer to identify basic blocks 
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free of memory misses, false-dependences, or unresolved alias edges, and schedules them 

statically. This issue queue design includes two types of queues, a FIFO queue for 

statically scheduled instructions and a fully associative queue for instructions requiring 

dynamically scheduling. The scheme consumes less energy than the conventional issue 

queue since the fully associative queue is much smaller, and has a smaller issue width 

than the conventional one. 

A compiler-directed strategy [34] identifies non-critical program code regions, 

and dynamic voltage and frequency can be scaled down on those regions for energy 

reduction. The compiler can also detect program regions that do not use certain hardware 

components, e.g., hard disk, for certain long enough periods so that the hardware 

components can be in hibernation for energy reduction [32]. 

All of the above research focuses on static compiler optimizations. Recently, Wu 

et al. [83] propose a lightweight dynamic compilation framework for dynamic voltage 

and frequency scaling (DVFS). This framework does not include the JIT optimization or 

garbage collection capability. It detects hot code regions that are memory-bound, and 

inserts DVFS mode set instructions at the boundaries of those regions so that they can be 

executed in energy-efficient modes. 
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Chapter 3. Hardware Adaptation Framework based on Dynamic 
Optimization 

In the presence of multiple CUs, especially those that have diverse 

reconfiguration overheads, existing resource adaptation schemes have considerable 

limitations. To efficiently manage multiple CUs, a hardware adaptation framework based 

on a generic dynamic optimization system is developed and presented in this chapter. 

Although the idea of integrating hardware adaptation with a virtual machine is not new 

[19], to the best of our knowledge, this research is the first one that utilizes a DO 

system’s inherent capabilities of detecting and optimizing hot spots to efficiently manage 

multiple configurable hardware resources. 

Figure 2 shows the flowchart of the proposed hardware adaptation framework. 

Thin lines indicate program control flows, and thick lines represent data flows. Three 

main tasks are performed. Initially, the DO system monitors program execution and 

detects hot spots. After a hot spot is detected and JIT optimized, the DO system inserts 

tuning code at hot spot boundaries to identify the most energy-efficient hardware 

configuration for the hot spot during its subsequent invocations. After the tuning finishes, 

the JIT compiler replaces the tuning code with the code that automatically adapts to the 

hot spot’s most energy-efficient configuration whenever it is invoked. The details of the 

framework are explained in the following sections. 
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Figure 2. Flowchart of the proposed hardware adaptation framework based on a dynamic 
optimization system. 

 

3.1 HOT SPOT DETECTION 

Program hot spots are frequently executed code sequences, such as procedures [5] 

or basic block groups [8][18][24]. To amortize the overhead of runtime translation and 

further improve performance, most DO systems apply high-cost, high-payoff 

optimizations only to hot spots. A DO system usually includes the following steps to 

detect and optimize hot spots. Initially, a program code block is interpreted [8][18][24] or 

quickly translated and instrumented [5]. The execution frequency information of the code 

block is then gathered by the interpreter or the profiling code instrumented at hot spot 

boundaries, and saved in the code block’s corresponding entry in the DO database that 
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stores runtime profiling information for the DO system. The information is then 

examined to find frequently executed code blocks as hot spots, and advanced 

optimizations are applied on them.  

The hot spot detection mechanism in the DO system can be used directly for 

phase identification. Wu et al. [84] indicate that the runtime characteristics of hot spots 

are usually stable throughout program execution. Huang et al. [36] and Merten et al. [56] 

observe that program phase behavior is closely related to hot spot invocations. Hence, 

tuning and reconfiguring CUs at hot spot boundaries should accurately adapt to program 

changes. 

3.2 CU DECOUPLING AND HOT SPOT TUNING 

After a hot spot is detected, the CU decoupling technique is applied to the hot spot 

to reduce its tuning process. 

3.2.1 CU decoupling  

Hot spots have variable sizes. In the same time, configurable units have different 

adaptation costs and reconfiguration intervals. Hence, low-overhead CUs are adapted at 

the boundaries of small hot spots, while high-overhead CUs are adapted at the boundaries 

of large hot spots. To do so, CUs are matched with hot spots that are similar in size to the 

CUs’ reconfiguration intervals. This technique is called CU decoupling since it decouples 

the reconfiguration of different CUs in a multiple-CU system, and allows multi-grain 

configuration of CUs. 

The effectiveness of CU decoupling relies on the properties of hot spots. Hot 

spots are nested, i.e., a large hot spot usually contains many small hot spots. Hence, when 

the small hot spots tune low-overhead CUs, those CUs are automatically tuned for the 

outside large hot spot. Consequently, adapting different CUs at different hot spots 
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boundaries does not sacrifice the CUs’ reconfiguration opportunities. In fact, CU 

decoupling allows low-overhead CUs to capture small-grain phase changes and adapt 

accordingly, and thus improves performance. 

3.2.2 Hot spot tuning 

After a new hot spot is detected and JIT optimized, the subset of CUs is chosen 

for the hot spot, such that the CU’s reconfiguration interval sizes match the hot spot size 

(an implementation will be given in Section 4.1). Then, a list of configuration 

combinations of the selected CUs is created and added to the hot spot’s DO database 

entry, with an index initially pointing to the first list item. Next, the tuning code is 

inserted at the entry point of the hot spot and the profiling code at all exit points of the 

hot spot. Immediately after the hot spot’s invocation, the tuning code fetches the 

configuration pointed to by the list index and increments the index, and then adapts the 

hardware according to the fetched configuration. When leaving the hot spot, the hot 

spot’s performance characteristics under the current configuration are gathered. The 

configurations applicable to the hot spot are thus tested one by one until all 

configurations are tested. The most energy-efficient configuration is then selected to 

complete the hot spot’s tuning process. 

Contrary to the conventional strategy that tests all interdependent CUs, this tuning 

strategy adapts only a subset of all CUs for each hot spot. Consequently, this technique 

significantly reduces the tuning process, and allows multi-grain adaptation that further 

improves performance. 

With CU decoupling, it is possible that during the tuning process for one hot spot, 

a new hot spot is detected so that a different set of CUs is selected for the hot spot and 

needs to be tuned. In this case, the newly detected hot spot’s adaptation stalls until the 

former finishes its tuning process. Intuitively, changes of CU’s configurations may alter 
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the adaptation preferences of other CUs. Hence, by allowing only one set of CUs to be 

adapted each time, the interference between two sets of CUs’ adaptation is minimized. 

3.3 HARDWARE RECONFIGURATION 

Once the most energy-efficient configuration of a hot spot is found, the JIT 

compiler is invoked to perform the following two tasks. First, the tuning code at the 

beginning of the hot spot is replaced by the configuration code that sets the adaptive 

microarchitecture to the hot spot’s most energy-efficient configuration. For each tuned 

hot spot, CUs will be changed to the hot spot’s most energy-efficient configuration just 

prior to the hot spot’s execution. In contrast to temporal approaches, there will be no 

further tuning latency or phase identification latency incurred by the hot spot. 

Additionally, the profiling code at a hot spot’s exit is replaced by the sampling 

code that occasionally gathers performance statistics to detect any performance change 

between the hot spot’s current and prior invocations. A large performance change 

indicates that the hot spot’s behavior may have altered. Consequently, the hot spot is 

tuned again. As observed by Wu et al. [84], runtime characteristics of hot spots are 

usually stable throughout program execution, and thus such re-tunings should be rare. 

3.4 HARDWARE SUPPORT 

The proposed scheme is mainly a software approach. It relies on the underlying 

DO system to detect and adapt program hot spots. However, some minimal hardware 

support is needed. This dissertation assumes that each CU has a control register, and the 

CU’s configuration can be changed by setting the register value. To allow resource 

adaptation by software, a special instruction is required to change the values of the 

control registers. Note that in this framework, the DO system configures hardware, which 

is potentially less error-prone than allowing user applications to control hardware 
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adaptation directly. The above functionality can also be implemented as system calls. 

Comparing with the reconfiguration overheads of hundreds or thousands of cycles, the 

overheads of invoking those system calls are negligible. 

For each CU, a hardware counter holds its most recent reconfiguration time. Each 

time a CU’s configuration is changed, its last-reconfiguration counter is updated with the 

current time. When a CU reconfiguration request arrives, the time elapsed since the CU’s 

last reconfiguration is calculated. If the interval is shorter than the CU’s reconfiguration 

interval, the request is ignored without modifying the CU’s configuration. Frequent 

reconfiguration requests could happen when two nested hot spots adapt the same CU with 

different adaptation preferences, and the nested hot spot is invoked immediately after the 

nesting one. With the last-reconfiguration counters, the proposed framework is freed 

from the burden of maintaining the minimal reconfiguration interval for each CU. 

The research assumes that performance and power are measured using hardware 

performance counters. Note that performance counters cannot directly measure power. 

Nevertheless, they can be used to accurately estimate power [51]. Measuring 

performance and power with performance counters incurs error, especially when the 

sampling interval is short. The error can be reduced in different ways. First, we can 

choose larger reconfiguration interval sizes for the CUs to improve the measurement 

accuracy. Furthermore, we can adopt a sampling tuning approach so that the 

measurement happens after multiple, instead of one, invocations of a hot spot, which 

effectively increase the sampling interval length and improve the accuracy of the 

measurement. Those two approaches also compensate for the cost associated with 

accessing the performance counters.  

If a system does not have performance counters, we can estimate power using the 

CUs’ configuration information. Each configuration’s power can be estimated accurately 
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via extensive offline experiments. Such configuration-power information is stored in a 

table accessed at runtime by the DO-based framework to make accurate adaptation 

decisions. 

3.5 DIFFERENCES WITH PRIOR APPROACHES 

In temporal approaches, a phase change cannot be identified immediately. It can 

only be detected after the phase change lasts one or more sampling interval, which is 

called the identification latency. Recurring phases in those temporal approaches incur 

phase identification latencies, regardless the length of program execution. Recurring 

phase identification latencies can be reduced by next phase detection mechanisms 

[50][76], which predict what the next phase will be and when it will occur. However, 

incorrect predictions cause unnecessary or wrong adaptation and subsequent rollback of 

hardware configurations, thus affecting performance considerably. Hence, high 

prediction accuracy is imperative for such mechanisms. 

In comparison, in a DO-based system, only new hot spots need to be detected, and 

recurring hot spots are identified immediately. Hence, a hot spot’s detection overhead is a 

one-time cost, and thus can be diminished by long program execution. Moreover, since 

hot spots are often nested, detections of new hot spots are often overlapped, further 

reducing the overall hot spot identification cost. Table 4 show hot spots execute 

frequently. Hence, although hot spots take more time than BBV phases to be recognized, 

the hot spot identification cost does not pose a big burden to the hot spot approach. 

This hot spot-based framework is essentially a software positional approach. 

Differing from the original positional approaches [36], the proposed framework detects 

hot spots instead of large procedures. The frequent-invocation nature of hot spots ensures 

that the most energy-efficient hardware configuration of a hot spot can be applied enough 

times for high benefit, while the positional approach can not enjoy this feature from the 
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large procedures it uses. Furthermore, the original positional approach requires 

considerably efforts to detect hierarchical phase changes and adapt hardware accordingly, 

which, in contrast, is accomplished by our framework in a natural and elegant way. 

Magklis et al. [54] use offline profile-driven binary rewriting tools to insert 

reconfiguration instructions into the applications to avoid the complexity of online 

hardware reconfiguration. Differing with our framework that obtains the profiling 

information on the fly, this scheme needs several training runs of the applications to 

obtain the profiling information. Both approaches have their advantages and 

disadvantages. For instance, using offline tools incurs no cost for runtime profiling and is 

applicable to most programs. In contrast, DO-based framework incurs runtime profiling 

overhead, although the overhead corresponding to hardware adaptation is minimal since 

the framework leverages the existing infrastructure of the underlying dynamic 

optimization system. On the other hand, the DO-based framework requires minimal 

human intervention achieve reconfigurations, and all applications executed by the 

framework can enjoy the benefits without the painful work of tuning each application for 

each hardware platform. 

3.6 APPLICABILITY 

In recent years, dynamic optimization systems are deployed in various software 

levels, such as operating systems (e.g., Microsoft .NET Common Language Runtime 

[91]), or virtual machines emulating certain hardware platforms (e.g., IBM Daisy [24] 

and Transmeta Crusoe [18]). In this research, the DO-based framework is implemented 

and evaluated in Jikes RVM, which is a user-level virtual machine. Nevertheless, the 

framework is not confined to Jikes RVM, or user-level dynamic optimization systems. 

Most dynamic optimization systems can be easily augmented to integrate the proposed 

hardware adaptation framework. 
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One difference between some DO systems and Jikes RVM is that they detect 

frequently executed basic blocks, instead of procedures, as hot spots (e.g., IBM Daisy 

[24] and Transmeta Crusoe [18]). Differing to procedure-based hot spot detection, basic-

block-based hot spots are not nested and are usually fine grain. Since CU decoupling 

requires the hot spots to be nested and of variable sizes, it cannot be directly used in those 

DO systems. This issue can be solved. In those DO systems, branch execution 

frequencies are monitored to detect hot basic blocks. The same mechanism can keep track 

of branches between hot spots, and group those hot spots into larger ones to provide size 

variable and nested hot spots. This simple enhancement allows the DO systems to use CU 

decoupling for efficient management of multiple CUs with diverse adaptation costs as the 

proposed framework does. 
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Chapter 4. Experimental Methodology 

In this research, the proposed framework is implemented with the Dynamic 

Simplescalar simulator [38] and the Jikes Research Virtual Machine (RVM) [5]. The 

proposed hardware adaptation framework is evaluated with the SPECjvm98 benchmark 

suite [88]. 

 

Table 1. Baseline configuration of the simulated system. 

CPU  
Instruction window 128-IFQ, 128-RUU, 64-LSQ 
functional units 4 intALU, 2 IntMult/Div,4 FPALU, 2 FPMult/Div 
Branch predictor 2K-entry combined predictor, 3-cycle misprediction penalty 
Issue/Commit width 4 instructions per cycle 

Memory Hierarchy 
L1 I-cache 64KB, 64B blocks, 4-way, LRU, 1 cycle hit latency 
L1 D-cache 64KB, 64B blocks, 4-way, LRU, 1 cycle hit latency, 
L2 unified cache 1MB, 128B blocks, 4-way, LRU, 10 cycles hit latency 
DTLB/ITLB 128 entries, fully set associative 

 

4.1 SIMULATION ENVIRONMENT 

4.1.1 Dynamic Simplescalar 

The Dynamic Simplescalar (DSS) [38] simulator used in our work adds a series of 

major extensions to Simplescalar/PowerPC version 3.0, and permits simulation of a full 

Java run-time environment on a detailed simulated hardware platform. The original 

Simplescalar framework cannot simulate Java programs due to its inability to handle self-

modifying code. DSS resolves the problem and implements support for dynamic code 

generation, thread scheduling and synchronization, as well as a general signal mechanism 

that supports exception delivery and recovery. The newer version of DSS incorporates a 
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power model that is based on Wattch [13]. The operating frequency and voltage of the 

target processor are 1GHz and 2V respectively. The baseline processor configuration is 

presented in Table 1. 

4.1.2 Basic block vector phase detection 

We also implement the basic block vector (BBV) approach [76] in DSS, and 

compare it with our framework. BBV is shown to be one of the best phase detection 

techniques [20]. It partitions the dynamic instruction stream into contiguous fixed-length 

intervals, and gathers dynamic basic block distributions through an array of counters, 

called the accumulator table, for each interval. Hence, at the end of each interval, the 

accumulator table obtains the code signature for the interval. A large Manhattan distance 

between two consecutive intervals’ code signatures of indicates a phase change [76]. If 

the Manhattan distance between two code signatures is smaller than a predetermined 

phase classification threshold, the two intervals are classified into the same phase. 

In our BBV implementation, the hardware accumulator table has 32 entries, as in 

[76]. Each table entry is 20 bits, so it will never overflow with 1 million sampling 

intervals. For each branch instruction executed, the lower 5 bits (excluding 2 least 

significant bits) of the branch PC indexes an accumulator table entry and increments the 

entry by the number of instructions executed since the last branch. The phase 

classification threshold is 20%. We also evaluate phase classification thresholds of 12.5% 

and 25% that are used in previous BBS literature [76]. A 25% threshold yields similar 

results to those using a 20% threshold. On the other hand, using 12.5% threshold 

increases the number of detected phases and affects the code coverage of BBV phases 

considerably. 

To give an advantage to the BBV approach, This BBV implementation uses the 

values from the accumulator table directly to form a phase’s signature, and thus loses no 
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information due to signature compression [76]. Furthermore, this BBV implementation 

allows unlimited number of BBV phase signatures. However, this BBV implementation 

does not contain a next phase predictor since both [50] and our preliminary results 

confirm that using costly next phase predictors provide only marginal benefits over no 

prediction. 

4.1.3 Configurable hardware units 

In this work, five size-adaptable hardware units are implemented. They are issue 

queue (IQ), reorder buffer (ROB), level-one data (L1D) and instruction (L1I) caches and 

level-two (L2) cache (Table 2). Each configurable unit has four different sizes. The 

power model is augmented to reflect the runtime size reduction of the CUs and the power 

consumed for reconfiguring the hardware (i.e., power consumed for writing dirty cache 

lines into the lower level of memory hierarchy). Changing a hardware unit’s setting at 

runtime usually incurs a reconfiguration overhead. A program’s performance may be 

impaired by too frequent reconfigurations where reconfiguration overhead exceeds the 

benefit gained by the reconfigurations. After a reconfiguration, the configuration should 

be utilized for a certain minimum time interval, called the unit’s reconfiguration interval 

(presented in the third column of Table 2). 

 

Table 2. Configurable hardware units and their adaptation parameters. 

Configurable 
units 

Configurations (units) Reconfiguration 
interval 

(instructions) 

Hot spot size 
(instructions) 

BBV sampling 
interval size 

(instructions) 
IQ/ROB  128/96/64/32 (entries) 1000 1K – 100K 10K 
L1I/L1D caches  64K/48K/32K/16K (bytes) 100K 100K – 1M 100K 
L2 cache 1M/768K/512K/256K (bytes) 1M > 1M 1M 
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The hardware adaptation framework proposed in this work adapts configurable 

units at program hot spot boundaries. To avoid testing all CUs at the same time, each hot 

spot tests only a subset of CUs. The fourth column of Table 2 lists the size ranges of hot 

spots at whose boundaries corresponding CUs are adapted. Hot spots between 1K and 

100K instructions long configure the issue queue and the reorder buffer (IQ-ROB hot 

spots), and hot spots adapting the L1I and L1D caches (L1 hot spots) are between 100K 

and 1M instructions long, while L2 hot spots are at least 1M instructions long. 

To evaluate how well the DO-based framework reduces energy, we compare it 

with a hardware adaptation scheme using the BBV phase detection approach. The detail 

and parameters of the BBV phase detection approach are given in Section 4.1.2. To allow 

a fair comparison of the two hardware adaptation approaches, the BBV approach also 

decouples the tuning of different CUs, which can be implemented in multiple ways. This 

work uses multiple accumulator tables, each corresponding to a sampling interval size 

and detecting BBV phases of different granularities. Similar to the DO-based framework, 

a CU’s adaptation happens only at the boundaries of phases whose granularities (i.e, 

sampling interval sizes) match the phase’s reconfiguration interval size. The last column 

of Table 2 shows the sampling interval sizes that correspond to the CUs. 

Note that in Table 2, issue queue and reorder buffer are adapted at boundaries of 

10K-instruction BBV phases, instead of 1K-instruction BBV phases, although the CUs 

have a reconfiguration interval size of 1K instructions. This is mainly due to that we find 

that for the programs evaluated in this work, 1K-instruction stable BBV phases usually 

have much poorer code coverage than 10K-instruction phases. Consequently, 10K-

instruction phases achieve higher energy reduction on IQ and ROB, than 1K-instruction 

phases. 
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4.2 DYNAMIC OPTIMIZATION SYSTEM 

Jikes RVM is a research Java virtual machine (JVM) developed at IBM T. J. 

Watson Center [5]. It is written in Java. This enables the optimization techniques to be 

applied to both the application code and the JVM itself. The 2.0.2 version of Jikes RVM 

is used since Dynamic Simplescalar is not compatible with the latest version of Jikes 

RVM. 

Jikes RVM employs a compile-only strategy (i.e., no interpreter mode). It 

includes a baseline and an optimizing compiler. The optimizing compiler has three levels 

of optimizations, each one consisting of its own group of optimizations as well as the 

optimizations that belong to lower levels. Initially, code sequences are compiled by the 

baseline compiler. 

The Jikes RVM uses a low-overhead sampling method to detect program hot 

spots. Approximately every 10 milliseconds, Jikes increments a counter associated with 

the currently active procedure. For all methods that have been sampled, Jikes uses a 

cost/benefit model to determine whether it is profitable to recompile the method, and if 

so, what level of optimization to use. 

By default, the optimizing compiler with the level-one compilation level is used 

to compile all methods. The simplification allows us to focus on the implementation and 

evaluation of the proposed hardware adaptation framework. Furthermore, in all 

experiments except Chapter 7, a large heap (200MB) is chosen to reduce garbage 

collection activities. By doing so, execution is dominated by the application rather than 

Jikes RVM. 

As described in Chapter 3, hardware tuning and reconfiguration are performed 

after hot spots are detected and JIT optimized. The functionality is implemented in the 
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Jikes optimizing compiler, and Jikes’ global data structure is also modified to store the 

necessary information for the hardware tuning and reconfiguration. 

 

Table 3. Characteristics of SPECjvm 98 benchmarks executed by Jikes RVM. 

  compress jess db javac mpegaudio mtrt jack 
Instruction count 
(billions) 9.83 5.73 8.78 8.90 10.93 4.17 8.18 
Cycle count 
(billions) 5.30 4.93 14.15 7.66 6.98 2.76 5.88 
IPC 1.85 1.16 0.62 1.16 1.56 1.51 1.39 
Energy 
consumption (J) 141.70 98.08 219.96 153.39 174.55 63.46 127.33 

 

4.3 BENCHMARKS 

The industry standard SPECjvm98 benchmarks are used to evaluate the proposed 

framework. Among the programs in the SPECjvm98 suite, 200_check is not considered 

in this study since its only purpose is to check the functionality of a JVM. The 

experiments use the largest s100 data sets of SPECjvm 98 benchmarks. Table 3 provides 

a summary of these SPECjvm98 benchmarks. By default, each benchmark runs only one 

iteration, and the results are obtained while Jikes RVM uses the level-one JIT 

compilations and a 200M heap. Comparing with server-side Java benchmarks, such as 

SPECjbb 2000 [89], SPECjvm 98 benchmarks measure the performance of client-side 

Java virtual machines, and are short running. 
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Chapter 5. Evaluation of the Hardware Adaptation Framework 

To evaluate the proposed framework, it is compared with an adaptive system that 

uses the BBV phase detection technique proposed by Sherwood et al. [76], which has 

been proven to be one of the best phase detection schemes. Similar to the DO-based 

framework, the BBV-based approach decouples the adaptation of CUs with diverse 

adaptation costs by matching them with BBV phases whose sampling interval sizes equal 

to the CUs’ reconfiguration interval sizes. 

The BBV technique used in this research does not use the phase prediction 

mechanisms presented in [50] and [76]. Theoretically, accurate phase prediction tells 

what the next phase will be and when it will occur, and thus can improve the coverage of 

resource adaptation. However, implementing complex next phase predictors in hardware 

is costly. Both Lau et al. [50] and our preliminary results confirm that using next phase 

predictors provide only marginal benefits over no prediction. Hence, in this research, the 

BBV results are obtained without next phase prediction. In contrast, the hot spot 

approach always identifies upcoming phases immediately, and does not need next phase 

prediction. 

In this experiment, the two resource adaptation approaches adapts all the five CUs 

described previously. BBV phases with three different sampling interval sizes are 

detected. 1M-instruction BBV phases manage the L2 cache. 10K-instruction phases adapt 

issue queue and reorder buffer, and 100K-instruction phases manage L1D and L1I 

caches. For the DO-based framework, hot spots that configure the issue queue and the 

reorder buffer (IQ-ROB hot spots) are between 1K and 100K instructions long, and hot 

spots adapting the L1I and L1D caches (L1 hot spots) are between 100K and 1M 

instructions long, while L2 hot spots are at least 1M instructions long. The IPC 
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degradation thresholds are 5% for both approaches, essentially each CU with a 1% IPC 

loss budget. 

A preferable feature of a resource adaptation approach is its capability to retain 

most of the energy reduction for existing CUs as more hardware units become adaptable. 

In this dissertation, this feature is called adaptation efficiency, which is investigated in 

Section 5.3. 

5.1 RUNTIME CHARACTERISTICS OF HOT SPOTS AND BBV PHASES 

In this section, the runtime characteristics of hot spots are obtained and compared 

with those of BBV phases. 

5.1.1 Runtime characteristics of hot spots 

Table 4 presents the runtime characteristics of hot spots in SPECjvm98 

benchmarks. In this research, only the hot spots whose average sizes are longer than 1000 

instructions are considered. Each program usually has hundreds of such hot spots. The 

average sizes of those hot spots are more than 14000 instructions, indicating that many 

hot spots are very long. 

 

Table 4. Runtime hot spot characteristics of SPECjvm 98 benchmarks 

  compress db jack javac jess mpegaudio mtrt 
dynamic instruction 
count 9.83E+09 8.78E+09 8.22E+09 8.92E+09 5.72E+09 1.09E+10 5.10E+09
number of hot spots 299 316 470 685 434 386 363 
average hot spot size 81,645 75,648 14,941 23,774 77,841 70,231 18,617 
average invocations 
per hot spot 823 1,105 13,091 5,983 2490 4,747 3,284 
per-hot spot IPC 
CoV 9.17% 9.97% 6.74% 9.33% 7.79% 5.37% 8.09% 
Inter-hot spot IPC 
CoV 43.78% 42.99% 49.38% 46.47% 52.49% 49.05% 46.69% 
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On average, the resulting hot spots execute at least 823 times. One disadvantage 

of the proposed DO-based framework over temporal approaches is the former’s long 

initial hot spot identification latency. The invocation results clearly shows that although 

hot spots take more time than BBV phases to be recognized, it does not pose a big burden 

to the hot spot approach. 

To characterize how well hot spots represent program phase behavior, Table 4 

also provides the per-phase and inter-phase IPC coefficient-of-variations (CoVs) of hot 

spots. CoV equals the percentage of the standard deviation divided by the average, and 

measures data dispersion compared to the mean. The per-phase IPC CoVs are IPC 

variations among different invocations of the same hot spot, characterizing the 

homogeneity among different invocations of a hot spot. The inter-phase IPC CoVs are the 

variations of average IPCs of different hot spots, and larger inter-phase IPC CoVs signify 

large differences between the characteristics of detected hot spots. More than 34% 

disparities between hot spots’ per-phase and inter-phase CoVs demonstrate that the 

differences between hot spots are more prominent than those between invocations of the 

same hot spot, further confirming that hot spots are closely related with program behavior 

changes. 

 

Table 5. Runtime characteristics of hot spots in three different size ranges. 

 compress db jack javac jess mpegaudio mtrt 
number of IQ-ROB hot spots 213 229 358 544 336 299 269 
IQ-ROB coverage 98.56% 73.12% 81.26% 88.57% 78.52% 89.77% 80.28%
number of L1 hot spots 64 58 81 108 68 64 73 
L1 coverage 71.70% 87.90% 85.00% 81.20% 92.70% 91.00% 81.40%
number of L2 hot spots 22 29 31 33 30 23 21 
L2 coverage 73.80% 87.90% 56.90% 80.00% 84.30% 95.70% 82.60%
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Table 5 counts the number of IQ-ROB, L1 and L2 hot spots. As shown in the 

table, there are many more small hot spots than large ones. Since low-overhead CUs are 

adapted at the boundaries of small hot spots, this property, as well as the fact that small 

hot spots are invoked more frequently than large hot spots, guarantees that low-overhead 

CUs are adapted more frequently than high-overhead CUs. 

Table 5 also gives the coverage (i.e., the portion of dynamically executed 

instructions within the hot spots) results for the three types of hot spots. As shown in the 

table, most IQ-ROB, L1D and L2 hot spots have coverage larger than 80% across 

benchmarks. The exceptions are compress (72% L1 coverage and L2 coverage), db (73% 

IQ-ROB coverage), jack (57% L2 coverage), and jess (79% IQ-ROB coverage). Good 

coverage and numerous hot spot invocations indicate that CU decoupling does not 

sacrifice each CU’s reconfiguration opportunity. 

5.1.2 Runtime characteristics of BBV phases 

As explained in Section 2.2, in temporal approaches, phases can be classified into 

stable and transitional ones. Transitional phases have short lifetimes. They last only one 

sampling interval, rarely recur, and are thus difficult to tune. Recognizing only stable 

phases that last two or more continuous intervals can improve the phase detection 

hardware utilization and increase phase detection accuracy considerably. Figure 3 shows 

the distributions of stable and transitional BBV phases of SPECjvm 98 benchmarks. The 

phases are identified by the BBV method with 1M-instruction sampling intervals. As 

demonstrated by javac, one major drawback of ignoring transitional phases is the 

considerably reduction of the coverage of resource adaptation. By default, BBV phases 

studied in this paper are all stable ones. Hence, the results cannot be directly compared 

with the results in prior BBV literature [49][50][76]. 
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Figure 3. Distribution of stable/transitional BBV phases of SPECjvm 98 benchmarks. (A 
phase is stable if it has two or more successive sampling intervals; otherwise 
it is an unstable phase) 

 

Programs phases are usually hierarchical, i.e., nested and with multiple 

granularities. Hence, BBV phases with different sampling interval sizes may exhibit 

distinct runtime characteristics. Programs phases are usually hierarchical, i.e., nested and 

with multiple granularities. Hence, with a fixed sampling interval size, the BBV approach 

can detect only phases in a range of granularities. For instance, BBV phases with large 

sampling intervals may overlook short and sharp phase changes that can be identified by 

BBV phases with small sampling intervals. On the other hand, the later, with its limited 

scope, may be unaware of long and incremental changes of program behavior, and thus 

captures distinct runtime characteristics to the large BBV phases. Table 6 presents the 

runtime characteristics of stable BBV phases with 10K-instruction and 1M-instruction 

sampling intervals respectively.  

All benchmarks have hundreds of 10K-instruction BBV phases, but only tens of 

1M-instruction BBV phases. Since the tuning process is an overhead in terms of energy 

saving and each phase needs to be tuned, too many phases will inevitably impair 

performance of the BBV approach when using 10K-instruction sampling intervals.  
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Table 6. Runtime characteristics of stable BBV phases with 10K and 1M sampling 
intervals. 

  compress db jack javac jess mpegaudio mtrt 
number of BBV phases 622 576 890 1529 884 794 773 
% of code in BBV phases 82.01% 72.72% 47.09% 42.37% 53.38% 46.98% 53.79%
per-phase IPC CoVs 8.04% 8.72% 9.41% 8.96% 8.91% 7.54% 8.19% 

10K 

inter-phase IPC CoVs 48.03% 50.91% 44.31% 35.59% 44.35% 49.28% 49.08%
number of BBV phases 70 50 70 84 80 58 75 
% of code in BBV phases 85.02% 80.26% 77.29% 48.15% 65.61% 76.47% 77.42%
per-phase IPC CoVs 4.07%  9.10%  7.35%  6.59%  5.20%  4.91%  6.24%

1M 

inter-phase IPC CoVs 20.05%  33.32%  20.07%  24.87%  26.11%  38.26%  23.96%

 

Similar to the hot spot results in Table 5, Table 6 also contains stable BBV 

phases’ coverage results (i.e., portions of dynamic program code in those stable BBV 

phases). Since CUs are adapted at stable BBV phase boundaries, the coverage results 

estimate how mach of dynamic program code can benefit from CU adaptation. Overall, 

hot spots have better coverage than BBV phases. 

For the two BBV configurations, 10K-instruction phases have worse code 

coverage than 1M-instruction phases. Intuitively, in terms of BBV phase detection, a 

fluctuation of branch frequency affects small intervals more than large intervals, since 

large intervals contain many more branches to minimize the impact of a single fluctuation 

of branch frequency on phase detection. Hence, a small interval is more likely to be 

classified as a different phase to its neighboring intervals, attributing to the poor coverage 

of stable 10K-instruction BBV phases. For the 10K-instruction BBV phases, three out of 

seven benchmarks have code coverage less than 50%. On the other hand, except for 

javac, all benchmarks have good code coverage using 1M-instruction BBV phases. On 

average, 10K and 1M-instruction BBV phases achieve 57% and 73% code coverage 

respectively. 
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Table 6 also gives the CoVs for the BBV phases. 10K-instruction BBV phases 

have larger per-phase CoVs than 1M-instrcution BBV phases, indicating that small BBV 

phases are less stable than large BBV, i.e., there are more variations among different 

sampling intervals of the same phase. Meanwhile, 10K-instruction BBV phases have also 

larger inter-phase CoVs than 1M-instruction phases, which may be because large phases 

are insensitive to fine-grain phase changes within large sampling intervals; such fine-

grain phase changes can be detected by small BBV phases. Comparing hot spots (Table 

4) with BBV phases, both the per-phase and inter-phase CoVs of hot spots are between 

the corresponding ones of small and large BBV phases, indicating that hot spots, with 

their variable sizes, can detect both fine-grain and coarse-grain program phase changes. 

In summary, hot spots’ IPC CoV results indicate that differences among hot spots 

are much larger than those among invocations of the same hot spot. Furthermore, hot 

spots’ CoV results are comparable with those of BBV phases. The results clearly 

demonstrate that program hot spots closely represent phases. Since hot spots are of 

variable sizes and are often nested, they capture hierarchical program phase behavior in a 

natural and elegant way. As demonstrated in the next two sections, this property can be 

used for efficient management of multiple configurable units for high energy reduction. 

5.2 ADAPTATION OF FIVE CONFIGURABLE UNITS 

To demonstrate the scalability and efficiency of the hot spot-based approach on 

adapting multiple CUs, the BBV and hot spot schemes manage all the five CUs for 

energy reduction, and their runtime characteristics and energy reduction results are 

compared. For the hot spot approach, the five CUs are adapted at the boundaries of IQ-

ROB, L1 and L2 hot spots respectively. To find the most energy-efficient configuration, 

each L2 hot spot corresponds to only one CU, the L2 cache, and needs to test all the four 

L2 configurations to find the best performing one. On the other hand, since an IQ-ROB 
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hot spot or a L1 hot spot adapts two CUs, it has to test sixteen combinatorial 

configurations of the two CUs to find the best performing one. Similarly, a 10K or a 

100K BBV phase needs to test up to 16 combinatorial configurations, while a 1M BBV 

phase tests only 4 configurations. Note that it is possible to improve both approaches’ 

energy reduction efficiency by avoiding testing certain unpromising configurations. For 

both approaches, the IPC degradation threshold is 5%. 

Other differences exist between the two approaches. First, the BBV approach is 

more general than the DO-based framework in that it is applicable to any applications, 

while the DO-based framework can only optimize dynamically executed applications. On 

the other hand, as a software approach, the DO-based framework requires much simpler 

hardware support than the BBV approach. 

5.2.1 Runtime characteristics 

Table 7 presents the number of tuning attempts made (tunings) and the number of 

times the most energy-efficient configuration is applied (reconfigs) for both the hot spot 

and the BBV schemes. Owing to the use of the decoupling method to adapt the CUs, both 

approaches have more reconfigurations than tunings, indicating that both approaches 

devote more time on applying the optimal configurations for energy reduction than on 

testing the configurable units. Furthermore, since both approaches adapt low-overhead 

CUs at boundaries of fine-grain hot spots or BBV phases, low-overhead CUs are 

reconfigured more frequently than high-overhead CUs. Hence, low-overhead CUs can 

exploit fine-grain phase changes for energy reduction. On the other hand, IQ-ROB hot 

spots have many more reconfigurations than 10K-instruction BBV phases, indicating that 

hot spots have more opportunities to adapt issue queue and reorder buffer for better 

performance. 
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Table 7. Runtime characteristics while adapting the five configurable units. 

  compress db jack javac jess mpegaudio mtrt 
IQ-ROB tunings 38771 59494 983878 855701 176977 41555 177392
IQ-ROB reconfigs 182219 244330 4844773 3148274 793500 197442 876231
L1 tunings 1479 1876 6799 12377 2740 8697 10277
L1 reconfigs 11302 11160 23958 34645 7713 34724 38141
L2 tunings 99 132 189 268 155 366 104H

ot
 sp

ot
 

L2 reconfigs 821 1236 4284 2761 1245 8173 843
10K tunings 24721 9380 31824 43615 16815 29492 14308
10K reconfigs 93481 18037 114671 94228 33557 91167 26651
100K tunings 2096 1375 2500 3976 2778 1413 2394
100K reconfigs 7301 2643 5348 10175 7031 1563 5928
1M tunings 183 112 156 316 184 115 166

B
B

V
 

1M reconfigs 623 239 324 839 290 335 147

 

Note that the impact of a long tuning process on long-running applications will 

not be as prominent as on short-running applications. However, with the ability of multi-

grain adaptation, the CU decoupling technique helps a hardware adaptation scheme to 

reach better balance of adaptation benefit/overhead for each CU. This advantage does not 

diminish with longer execution. 

5.2.2 Energy reduction 

The energy reduction results are given in Figure 4 to Figure 8. For both the BBV 

and the hot spot approaches, the energy reduction results are obtained by comparing with 

the baseline ones that use the maximum sizes of the CUs throughout program execution. 

In each picture, the portions of energy reduced for a CU are presented for the two 

resource adaptation approaches.  

Comparing with the DO-based framework on energy reduction, the BBV 

approach is slightly better on L1I and L2 caches, slightly worse on L1D cache, but 

considerably worse on issue queue and reorder buffer. The BBV approach’s poor 

performance on issue queue and reorder buffer is mainly due to the poor code coverage 
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the BBV approach with 10K-instruction sampling intervals (Table 6). Furthermore, 

adapting issue queue and reorder buffer at a coarse granularity (10K instructions) than 

their optimal reconfiguration interval size (1K instructions), the BBV approach loses 

tuning opportunities for the two CUs. However, we find that using 1K-instruction 

sampling intervals yields poorer performance than using 10K-instruction sampling 

intervals, mainly due to that the code coverage of 1K-instruction BBV phases deteriorate 

significantly. On average, the BBV approach reduces the energy consumed by issue 

queue, reorder buffer, L1D and L1I caches, and L2 cache by 23%, 22%, 34%, 31% and 

46% respectively. In comparison, the hot spot approach reduces the CUs’ energy 

consumption by 33%, 28%, 37%, 31% and 45%. 
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Figure 4. Reduction in issue queue energy consumption by adapting the five configurable 
units (5% performance loss threshold). 
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5-CU: Reorder buffer
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Figure 5. Reduction in reorder buffer energy consumption by adapting the five 
configurable units (5% performance loss threshold). 
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Figure 6. Reduction in level-one data cache energy consumption by adapting the five 
configurable units (5% performance loss threshold). 
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Figure 7. Reduction in level-one instruction cache energy consumption by adapting the 
five configurable units (5% performance loss threshold). 
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5-CU: L2 cache
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Figure 8. Reduction in level-two cache energy consumption by adapting the five 
configurable units (5% performance loss threshold). 

 

5.2.3 Performance impact 

The performance degradation results caused by adapting the five configurable 

units are presented in Figure 9. In this experiment, the target IPC degradation threshold is 

5% for both approaches, and. Hence, both approaches incur similar performance 

degradations. On average, the BBV and the hot spot approaches yield IPC degradations 

of 5.0% and 4.9% respectively. 
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Figure 9. Performance degradation due to the adaptation of the five configurable units. 
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To understand how different factors attribute to the performance loss, we further 

separate different sources of IPC degradation for the hot spot approach, and obtain each 

one’s contribution to the overall performance loss in Figure 10. Hardware adaptation 

related performance loss happens at both tuning and reconfiguration stages. There are 

two major sources for the performance loss. First, before downsizing the L1D cache and 

the L2 cache, dirty cache lines must be written back to the lower level of memory. Those 

adaptation overheads are called L1D and L2 costs in Figure 10. Size reduction of the 

configurable units is the second source of performance loss (IPC drop in Figure 10) when 

the size reduced configurable cannot fulfill program requirements. Figure 10 shows that 

on average, configurable units’ size reduction accounts for 72% of performance loss, and 

the rest 28% of performance loss is due to the adaptation costs of L1D and L2 caches. 

The performance loss in the reconfiguration stage consists of 68% of overall performance 

loss. 
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Figure 10. Decomposition of the DO-based approach’s IPC degradation. 

The proportions of different sources of adaptation overhead to the overall 

performance loss are affected by different factors. First, long-running applications rarely 

creates new phases constantly through their execution. Hence, the tuning costs are usually 
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mush smaller for the long-running applications than short-running applications. On the 

other hand, if an adaptive microarchitecture has more configurable units or each unit has 

more configurations, the tuning costs will increases dramatically as the tuning space 

explodes. Finally, tuning reduction techniques, such as CU decoupling, prunes the tuning 

space and effectively reduce the tuning costs. 

The total adaptation costs for L1D and L2 caches consist of near 30% of the 

overall performance loss. Differing from tuning overhead, L1D/L2 adaptation costs do 

not diminish for long running applications since they are associated with the downsizing 

of the caches, which happens also at the reconfiguration stage. Those adaptation costs 

reduce the effective performance budget for hardware downsizing that reduces the energy 

consumption. Hence, high adaptation costs hurt the energy efficiency of an adaptive 

microarchitecture. For this purpose, a hardware adaptation framework can prioritize the 

CUs by their adaptation costs, and allow low-overhead CUs to be adapted more 

frequently. This prioritization can be implemented by further increase the reconfiguration 

intervals of high-overhead CUs. 

In summary, this section demonstrates that the DO-based hardware adaptation 

framework can efficiently manage multiple configurable units, and achieves comparable 

energy reduction results to one of the best prior approaches. The results, in turn, further 

confirm that programs hot spots accurately capture program phase behavior. More 

importantly, being able to detect hot spots of multiple granularities, the framework can 

efficiently manage multiple configurable units with diverse reconfiguration costs, and 

achieve high overall energy reduction. 

5.3 ADAPTATION EFFICIENCY 

To achieve high overall energy reduction, an adaptive microarchitecture usually 

contains several configurable units. Intuitively, the configuration changes of a CU should 
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affect the adaptation preferences of another CU. Hence, when an adaptive 

microarchitecture contains more CUs, each CU’s energy reduction should drop. This 

section examines the impact of the interference between CUs on each CU’s energy 

reduction. In this work, we call a CU’s capability to retain most of its energy reduction in 

a multi-CU system the configurable unit’s adaptation efficiency. 

In two experiments, the hot spot approach manages different sets of configurable 

units. The first experiment has two CUs, issue queue and reorder buffer. The second 

experiment uses three CUs, level-one data and instruction caches, and level-two cache. 

Then each CU’s adaptation efficiency retained by the 5-CU system (Section 5.2.2) over 

the 2/3-CU system is computed by dividing the CU’s energy reduction in the 5-CU 

system with the corresponding result in the 2/3-CU system. To allow a fair comparison of 

the experiments, the IPC degradation thresholds are 2% and 3% respectively, essentially 

each CU with a 1% IPC loss budget. 

5.3.1 Adaptation of issue queue and reorder buffer 

In this section, the hot spot approach adapts two CUs, issue queue and reorder 

buffer, at the boundaries of IQ-ROB hot spots. The IPC degradation threshold is 2%. The 

percentages of energy consumption of the two CUs reduced by the hot spot resource 

adaptation approach are presented in Figure 11. On average, the hot spot approach 

reduces the energy consumption of IQ and ROB by 39% and 34% respectively. Note that 

since issue queue and reorder buffer have the same reconfiguration interval size, CU 

decoupling is not utilized by the hot spot approach, and each hot spot needs to test 16 

configurations. 
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Figure 11. Reduction in energy consumption by adapting issue queue and reorder buffer 
(2% performance loss threshold). 

 

In the 2-CU experiment, the IPC degradation threshold is 2%. Figure 12 presents 

the performance impact of the two approaches. Among the seven benchmarks, 

mpegaudio incurs the least performance loss of 0.8%. On average, the performance losses 

of the hot spot approach is 2.2%. 
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Figure 12. Performance degradation due to the adaptation of issue queue and reorder 
buffer. 
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5.3.2 Adaptation of L1D, L1I, and L2 caches 

In this section, the two resource adaptation schemes are compared on adapting 

three configurable units: L1D, L1I, and L2 caches. Similar to the prior experiments, the 

hot spot approach also exceeds the BBV approach on achieving higher energy reduction 

on the CUs. The IPC degradation threshold for both approaches is 3%. 

Figure 13 shows the portions of energy consumption reduced by the resource 

adaptation scheme for the three caches. The hot spot approach performs especially well 

on db with 58% L1D cache energy reduction. In db, less than 10 procedures are 

responsible for more than 95% of data cache misses [78]. Consequently, the average 

cache sizes can be considerably reduced for the hot spots that have very few data misses 

and good data locality. Moreover, a hot spot with poor data locality may also choose a 

smaller cache configuration if the cache size reduction does not significantly deteriorate 

the performance. On average, the hot spot approach achieves 42%, 37% and 48% energy 

reduction over the baseline configuration on the L1D, L1I, and L2 caches. The baseline 

configuration and the configurable units are listed in Table 1 and Table 2 respectively.  
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Figure 13. Reduction in energy consumption by adapting level-one and level-two caches 
(3% performance loss threshold). 
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Since this experiment has three CUs, the IPC degradation threshold is 3%. The 

performance impact of using the hot spot resource adaptation scheme is illustrated in 

Figure 14. For the hot spot technique the performance penalty ranges from 2.8% to 3.3%. 

On average the performance penalty for the hot spot technique is 2.9%.  
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Figure 14. Performance degradation due to the adaptation of level-one and level-two 
caches. 

 

5.3.3 Adaptation efficiency 

A CU’s adaptation efficiency indicates how well the CU’s energy reduction is 

affected by the other CUs’ adaptation, which can be obtained by comparing the CU’s 

energy reduction results in systems with different number of CUs. The adaptation 

efficiencies of issue queue and reorder buffer are calculated by dividing the CU’s energy 

reduction in the 5-CU system (Section 5.2.2) with the corresponding results in the 2-CU 

system (Section 5.3.1). For the three caches, their efficiencies are calculated by dividing 

the CUs’ energy reduction rates in the 5-CU system (Section 5.2.2) with the 
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corresponding results in the 3-CU system (Section 5.3.2). The results are presented in 

Table 8. 

 

Table 8. Adaptation efficiency retained by the 5-CU system versus the 2/3-CU system. 

 compress db jack javac jess mpegaudio mtrt avg 
IQ 79.3% 70.3% 86.1% 83.9% 83.3% 85.6% 82.9% 81.6% 
ROB 79.5% 77.5% 82.2% 85.3% 84.0% 84.0% 83.1% 82.2% 
L1I 87.2% 82.7% 85.7% 91.6% 85.7% 88.7% 93.9% 87.9% 
L1D 79.6% 82.4% 86.3% 79.2% 83.9% 84.2% 82.5% 82.6% 
L2 95.1% 89.5% 87.1% 92.0% 95.9% 96.9% 93.9% 92.9% 

 

For the hot spot approach, adding more CUs into either the 2-CU or the 3-CU 

system does not affect the tuning latency of the existing CUs. Hence, the drop of a CU’ 

adaptation efficiency is mainly due to the interference of other CUs’ configuration 

changes on the CU’ tuning. For instance, the change of a CU’s configuration may render 

another CU’s previous most energy-efficient configuration sub-optimal, or make it incur 

too much performance loss. In both cases, the second CU needs to be re-tuned. In this 

respect, the adaptation efficiencies for the hot spot approach in Table 8 measure the 

interference between IQ/ROB and the caches.  

The three caches have higher adaptation efficiencies than issue queue and reorder 

buffer. L2 cache has the highest adaptation efficiencies among the five configurable 

units. The results indicate that IQ and ROB are more likely to be interfered by the caches, 

and L2 cache is insensitive to other CUs configuration changes. 

A better understanding of the interference among CUs’ adaptation may assist the 

design of more sophisticated tuning-reduction strategies that can further improve the 

efficiency of adapting multiple CUs, which is studied in the next chapter. 
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5.3 SUMMARY OF ADVANTAGES 

This chapter compares the two resource adaptation approaches in three 

experiments that manage various numbers of CUs. The results clearly demonstrate that 

with its ability to accurately capture phases with diverse granularity, the DO-based 

scheme is more efficient than the BBV approach on managing multiple CUs to achieve 

high overall energy reduction.  

Comparing with hardware-based or static hardware adaptation schemes, the DO-

based framework has its advantages as well as limitations. By leverage the existing hot 

spot detection and optimization infrastructure of a dynamic optimization, the DO-based 

framework requires much simpler hardware support than hardware-based schemes, or 

less human-intervention than static approaches. As a software approach, the framework 

can be easily tuned to achieve high energy efficiency for a wide range of adaptive 

execution environments, and all applications executed by the framework can enjoy the 

benefits without the painful work of tuning each application for each hardware platform 

upon which it will execute. On the other hand, statically compiled programs, such as 

C/C++ programs, cannot benefit from this DO-based approach. Nevertheless, 

exemplified by Java virtual machines and Microsoft .NET, dynamic optimization systems 

become increasingly popular, and more applications, especially server and commercial 

ones, are executed on DO systems. Those existing DO systems can utilize our framework 

for better hardware/software integration and optimizations. 

In summary, utilizing existing DO components, this framework incurs minimal 

overhead while providing accurate phase detection and configuration tuning. 

Reconfiguring at hot spot boundaries identified by DO systems has the following 

advantages:  
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• Prompt recurring phase identification. By instrumenting hot spot headers, the 

framework can identify all previously seen hot spots with zero latency, and thus needs 

no phase prediction at all. 

• Reduced tuning latency. Since each hot spot configures only a subset of CUs, the 

tuning latency is greatly reduced. 

• Adapting to hierarchical phase changes. By detecting nested and multi-grain hot 

spots, tuning and reconfiguring CUs at those hot spots’ boundaries accurately adapts 

to hierarchical phase changes. 

• Differentiating low-overhead and high-overhead CUs. Because of CU decoupling, 

reconfiguration of CUs with different reconfiguration overhead occurs at different 

time intervals. Hence, low-overhead CUs are adapted more frequently than high-

overhead CUs. 

• Versatility and scalability. By detecting hot spots of any sizes, this approach works 

efficiently for workloads with diverse runtime characteristics and CUs with disparate 

reconfiguration overheads. 

5.4 DISCUSSION  

Currently, the DO-based hardware adaptation framework manages only 

configurable units. It can further improve a system’s energy efficiency by incorporating 

other energy reduction techniques. Recently, Wu et al. [83] propose a lightweight 

dynamic compilation framework for dynamic voltage and frequency scaling (DVFS). 

This framework does not include the JIT optimization or garbage collection capability. It 

detects hot code regions that are memory-bound, and inserts DVFS mode set instructions 

at the boundaries of those regions so that they can be executed in energy-efficient modes. 

This mechanism can be implemented in the DO-based hardware adaptation framework, 
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which provides the opportunities to combine both DVFS and hardware adaptation for  

higher energy reduction. 

Two principal sources of power dissipated by today’s microprocessors are 

dynamic and static power. Dynamic power arises from the repeated capacitance charge 

and discharge of transistors. Static power is current leaking through transistors. Since 

shrinking processor technology reduces dynamic power, but exacerbates leakage, static 

power is becoming an increasingly larger component of power. Due to the limitation of 

the underlying power model, this work examines only the dynamic power reduced by 

hardware adaptation. Nevertheless, since each configurable unit can shut off the unused 

parts to reduce static power, the DO-based hardware adaptation framework is inherently 

effective on reducing static power also. 

In a future system, each configurable unit will have more configurations, due to 

both technology and performance reasons. First, advances in the semiconductor 

technology constantly shrink devices geometries. In those systems, microprocessor 

performance is increasingly affected by local line delay instead of circuit delay. For 

performance improvement, buffers are used to reduce the local line delay, which is a 

natural way to partition hardware units and provides multiple configurations. In the 

future, more buffers will be used to partition hardware units in finer granularities and 

provides more configurations for each CU. Second, a hardware unit with more 

configurations will be able to precisely match its configuration with program runtime 

requirements, which reduces both adaptation-related performance loss and energy 

consumption. However, the increase of each CU’s available configurations explodes the 

adaptive microarchitecture’ configuration space, rendering the search of the globally best 

configuration more costly. Hence, for such a future system, configuration space explosion 

is one of the most important issues that a hardware adaptation scheme must deal with. 
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Another challenge for the hardware adaptation framework is to fully utilize the available 

fine-grain configurations to improve energy efficiency, which requires accurate detection 

of program runtime requirements and adjusts hardware configuration to fine grain 

program changes.  

A DO-based hardware adaptation framework has certain features to help it handle 

those challenges effectively. First, the CU decoupling technique can manages multiple 

CUs efficiently. To prune the explosive tuning space, the DO-based framework can 

partition the hot spots size ranges into more groups so that the number of configurations 

each hot spot tested does not increase dramatically. Moreover, the DO system possesses 

the capabilities, such as runtime code analysis, to predict the best configuration or 

avoiding testing unpromising configurations, which further reduces the tuning space. 

Finally, with the runtime profiling infrastructure, a DO-based framework can accurately 

detects behavioral changes of hot spots, and re-tune the hot spots when necessary. This 

capability allows it to detect runtime characteristic changes within hot spots and adjust 

configurable units accordingly. 
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Chapter 6. Analysis of Factors that Interfere with Adaptation 

A better understanding of a multi-CU environment’s tuning process and the 

factors affecting the CUs’ tuning decisions may aid the reduction of the tuning process 

and improve the efficiency of hardware adaptation. For example, if two CUs’ tuning does 

not interfere with each other, those two CUs can be adapted individually. This can 

significantly reduce the number of tests for adapting the two CUs. This chapter studies 

two of the most important adaptation interfering factors, i.e., runtime program 

characteristics and interference of multiple CUs’ adaptation. 

6.1 IMPACT OF RUNTIME CHARACTERISTICS ON CUS’ TUNING DECISIONS 

During a CU’s tuning, the choice of its best configuration for a phase is 

determined by both the phase’s runtime requirements, in terms of measurable 

characteristics, and the CU’s negotiation with other configurable units to share an overall 

performance loss budget. In this section, the impact of runtime 

requirements/characteristics on CUs’ tuning decisions is analyzed. The motivation of this 

study is to find out whether it is possible to accurately predict a CU’s best configuration 

via runtime characteristics. 

6.1.1 Impact measurement 

The impact intensity of a runtime characteristic on a CU represents the impact of a 

phase’s runtime characteristic value on its adaptation choice for the CU. It is measured in 

the following steps. 

1) Each phase’s best configuration for a CU is obtained with all other units keeping their 

largest configurations throughout program execution. 
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2) The mean values of various runtime characteristics are obtained for each phase. To 

avoid the interference of hardware configuration changes on detected characteristic 

values, the characteristic results are gathered with all hardware units retaining their 

largest configurations throughout program execution.  

3) Phases are then classified into groups by their tuning decisions on the CU. For each 

phase group, the arithmetic means of the runtime characteristics of the phases in the 

group are calculated. The impact intensities are calculated by normalizing the means 

to the ones corresponding to the CU’s smallest configuration. Those results indicate 

the trend of the mean characteristic values obtained in the baseline system 

configuration varies according to the tuning decisions. 

Two types of trends between a characteristic and a CU can be potentially utilized 

to predict the CU’s tuning decisions from the characteristic values. In the first type of 

trend, the characteristic’s impact intensities, gathered in the steps described above, 

increase or decrease monotonically. The second type of trend exists when a mean value 

for a given CU configuration is much larger or smaller than the ones for other CU 

configurations, implying that the characteristic weighs more than other characteristics on 

choosing the configuration. Hence, in the next section, the impact analysis is conducted 

by identifying the two types of trends between runtime characteristics and CUs. 

6.1.2 Impact intensity analysis 

The impact intensities of runtime characteristics on CUs are presented in Figure 

15 to Figure 19. The results are averaged over all seven benchmarks. For each 

characteristic, each of the four resulting bars represents the average impact intensity of all 

the phases that choose the same configuration, with the first bar always being one. The 

CU’s configurations are presented with values 1 to 4, with 1 and 4 being the smallest and 

the largest ones respectively, and the smallest size is one quarter of the largest one. The 



 69

characteristics examined in this section are IPC, L1D/L1I/ L2 misses (L1D/L1I/L2_miss), 

branch misses (br_miss) and IQ and ROB occupancies (IQ/ROB_occu). For simplicity, 

the results in Figure 15 to Figure 19 do not include characteristics, such as IFQ 

occupancies and TLB misses, that rarely affect CUs’ tuning decisions. 

6.1.2.1 Reorder buffer and issue queue 

Comparing Figure 15 with Figure 16, one notes that programs have very similar 

requirements/characteristics on the issue queue and the reorder buffer, owing to their 

close cooperation in extracting instruction-level parallelism (ILP) from programs. Hence, 

the two CUs are investigated together. 

First, the impact intensities of L1D/L2 misses to IQ/ROB configuration_4 are 

higher than other values, implying that when a phase has many L1D/L2 misses, it is more 

likely to choose the largest IQ/ROB configuration. With abundant L1D/L2 misses, the 

missed loads/stores and their dependent instructions occupy the ROB and the IQ 

respectively, leaving fewer IQ/ROB entries for ILP extraction. With high IQ/ROB 

occupancies, using smaller IQ/ROB will inevitably hurt their ability to extract ILP, and 

impairs performance. Consequently, a phase with many L1D/L2 misses tends to use large 

IQ/ROB. On the other hand, when a phase has fewer L1D/L2 misses, the phase’s tuning 

decisions on IQ/ROB are affected by more program requirements/characteristics other 

than L1D/L2 misses. 

The tuning decisions of IQ/ROB increases monotonically with IQ/ROB 

occupancies, indicating that statistically, the IQ/ROB occupancies are closely related with 

the tuning decisions of IQ/ROB. Although not presented in the figures, our results show 

that a phase’s ROB occupancy is almost always larger than its IQ occupancy. 
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Figure 15. Runtime characteristics’ impact on reorder buffer’s adaptation. (1: 32-entry 
ROB; 2: 64-entry ROB; 3: 96-entry ROB; 4: 128-entry ROB) 
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Figure 16. Runtime characteristics’ impact on issue queue’s adaptation. (1: 32-entry IQ; 
2: 64-entry IQ; 3: 96-entry IQ; 4: 128-entry IQ) 

 

6.1.2.2 Level-one data cache 

The impact intensities for the level-one data cache are in Figure 17. First, phases 

with large amount of L1D misses and branch misses tend to select the largest L1D 

configuration. If a phase has fewer L1D and branch misses, having fewer L2 misses may 

lead the phase to choose the most aggressive L1D configuration. Finally, the branch 

misses exhibits the monotonic property to the L1D cache. However, the differences 
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between the branch misses’ impact intensities, excluding the one for configuration_4, are 

very small, less than 0.2, indicating that the impact of branch misses on L1D cache, 

except on configuration_4, is not strong enough for prediction. Interestingly, L1D misses 

does not exhibit the monotonic property for the L1D cache, although the amount of L1D 

misses characterizes the L1D cache. 
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Figure 17. Runtime characteristics’ impact on L1D cache’s adaptation. (1: 16K L1D 
cache; 2: 32K L1D cache; 3: 48K L1D cache; 4: 64K L1D cache) 

 

6.1.2.3 Level-one instruction cache 

The impact intensities for the L1I cache are illustrated in Figure 18. For the L1I 

configuration_4, the impact intensity for L1I misses is 5.2, much larger than all the other 

values, indicating that if a phase has a large amount of L1I misses, it is highly likely to 

adapt to the largest L1I configuration. Similarly, phases adapted to L1I configuration_4 

also have more branch misses than other phases. Large amount of branch misses indicate 

that the program code has poor instruction locality, and is one of the primary causes for 

the increase of L1I misses. Finally, no characteristic exhibits the monotonic trend for the 

L1I cache. 
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Figure 18. Runtime characteristics’ impact on L1I cache’s adaptation. (1: 16K L1I cache; 
2: 32K L1I cache; 3: 48K L1I cache; 4: 64K L1I cache) 
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Figure 19. Runtime characteristics’ impact on L2 cache’s adaptation. (1: 256K L2 cache; 
2: 512K L2 cache; 3: 768K L2 cache; 4: 1M L2 cache) 

 

6.1.2.4 Level-two cache 

Figure 19 gives the results for the L2 cache. The impact intensities of L1I misses 

increases monotonically and are much higher than other characteristics. The results imply 

that statically, the amount of L1I misses determines the L2 cache’s adaptation. This is 

mainly due to the fact that the performance is more sensitive to instruction misses, which, 

unlike data misses, cannot be hidden via techniques such as out-of-order execution. 
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Reducing L2 cache’s size renders more L2 accesses, some being L1I misses, to be 

misses, which, in turn, considerably increases the latency to fetch a missed instruction, 

and thus impairs the performance. Consequently, L1I misses determine the L2 cache’s 

tuning choices. 

6.1.3 Implications to tuning process reduction 

First, IPC rarely correlates with the tuning decisions of the CUs studied in this 

paper, although it is used in a previous scheme [7] to decide the proper pipeline width. 

IPC does not exhibit the two types of trends with any CU. A characteristic affecting a 

CU’s tuning decision should closely represent program’s requirements on the CU. 

However, as a composite runtime characteristic, IPC reflects multiple program 

requirements that may conflict on a CU’s tuning decisions. Hence, it is inaccurate to 

predict the CUs’ tuning decisions based on IPC values. 

In the above section, several characteristic/CU pairs possess the monotonic trend. 

Nevertheless, this type of trend exists statistically. To be able to accurately predict a 

phase’s best configuration, the observed trend must be validated for each phase. To 

examine whether this premise is true, Table 9 measures the coefficients of variations of 

the characteristic/CU pairs. In the table all monotonic pairs have very high CoVs, 

indicating that for most phases, it is highly possible that the values of those 

characteristics vary a lot from their means. Consequently, for all the CUs studied in this 

work, it will be inaccurate to predict a CU’s best configuration based on the value of a 

runtime characteristic. Nevertheless, it is still possible to predict a CU’s best 

configuration based on the values of multiple characteristics, which is a suitable topic for 

future study. 

Statically, some characteristics are good indicators for CUs’ choosing of their 

largest configurations. The examples are L1I misses for the L1I and L2 caches, and L1D 
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and branch misses for the L1D cache. This property can be utilized to avoid the tunings 

for some phases. For instance, if a new phase is found to have a lot of L1I misses, the 

tuning of L1I and L2 caches for the phase can be avoided and the largest L1I/L2 

configurations can be directly chosen for the phase. The results indicate that the 

phenomenon holds for all the benchmarks evaluated. On the other hand, the thresholds 

for those characteristics vary by programs, and need to be finely tuned to achieve better 

phase coverage and avoid false positive. 

 

Table 9. Coefficients of variations for the characteristic/CU pairs that possess the 
monotonic property. 

Characteristic/CU pair config_1 config_2 config_3 config_4 
IQ occupancy/IQ 102% 75% 68% 74% 
ROB occupancy/IQ 100% 74% 68% 74% 
IQ occupancy/ROB 83% 62% 57% 64% 
ROB occupancy/ROB 81% 61% 58% 64% 
L1I misses/L1I cache 160% 122% 105% 97% 
L1I misses/L2 cache 149% 123% 55% 101% 

 

This research shows that it is usually inaccurate to predict a hardware unit’s best 

configuration based on a runtime characteristic. The reason is that a runtime 

characteristic is usually configuration dependent, and only indicates how well the current 

hardware configuration performs, but rarely indicates how well other configurations 

should work. For instance, given a phase with a 60K data working set, a 64K data cache 

should perform very well since it can hold all the data. On the other hand, reducing the 

data cache size beyond 60K will results in a surge of capacity misses. Hence, the number 

of data misses to the 64K data cache, by themselves, provides no hint to the best cache 

configuration for the phase. Nevertheless, as the above example shows, examining the 
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changes of the runtime characteristics for different configurations can help find the best 

configuration, which is exactly what a tuning algorithm does. 

6.2 INTERFERENCE BETWEEN CONFIGURABLE UNITS 

In a multi-CU environment, CUs interfere with each other during their tunings, 

reflecting the adjustment of each CU’s configurations to maximize overall energy saving 

while retaining an overall performance loss. For simplicity, the interference between two 

units’ tuning is called the interference between the two units. In this section, the 

interference between any two of the five configurable hardware units (presented in Table 

2) is investigated. 

6.2.1 Interference distance measurement 

Multiple sets of experiments are conducted to quantify the interference between 

any two CUs. Each set of experiments examines the interference of one unit (the 

interfering unit) on the tuning decisions of another CU (the interfered unit). Only the 

interfered CU is adapted on the fly, while all other units keep their configurations 

throughout program execution. The interfering unit changes its configuration from 

experiment to experiment, while all other units stay constant using the largest 

configurations. 

The interference distance between two CUs is measured in the following steps.  

1) For each pair of CUs, three experiments are conducted for a benchmark, with the 

interfering unit varying its size to full, a half, and a quarter of its maximal size.  

2) Each experiment obtains the best configuration (BC) array that contains all phases’ 

best configurations for the CU, with each array element valued between 1 and 4. The 

BC array obtained with the largest interfering unit configuration is the baseline one. 

The difference between two arrays indicates the changes of phases’ best 
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configurations as the configuration of the interfering unit varies, and represents the 

interference imposed by the interfering unit on the interfered unit.  

3) The interference distance between the baseline array and a non-baseline array is 

represented by the arrays’ normalized Manhattan distance, i.e., the sum of the 

absolute differences of the corresponding array entry values divided by the number of 

entries. Consequently, a large interference distance indicates that the CU is more 

likely to be affected by the interfering unit’s setting, while a zero distance means that 

the CU is not interfered by the other unit. 

6.2.2 Interference distances between CUs 

The interference distances between any two of the five configurable units are 

illustrated in Figure 20 to Figure 25. Each figure, corresponding to a CU, contains four 

groups of results that represent the four other units. Each group consists of two subgroups 

of distances that represent the Manhattan distances between the CU’s half-size/quarter-

size BC arrays the full-size BC array. Finally, each subgroup consists of eight bars that 

represent the seven SPECjvm98 benchmarks and their arithmetic mean respectively. 

6.2.2.1 Reorder buffer versus other units 

Issue queue has the largest interference distances to the reorder buffer, 

demonstrating that IQ extensively interferes with ROB’s tuning. This is mainly because 

the size reduction of the IQ impairs its ability to extract ILP and slows down the pipeline. 

As a result, a phase can adapt to a smaller reorder buffer with minimal extra performance 

loss. 

Among the three caches, the L1D and the L2 caches interfere with the reorder 

buffer’s tuning more than the L1I cache. Both the L1D and the L2 caches affect the 

ROB’s tuning decisions by occupying the ROB with missed loads/stores. Two factors 
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determine the ROB occupancies: the number of missed loads/stores and their lifetimes in 

the ROB. Although a program has fewer L2 misses than L1D misses, L2 misses take 

much longer (100s cycles) to fetch than L1D misses (10s cycles). To measure those two 

conflicting factors’ impact on the ROB, the average ROB occupancies are counted and 

normalized to the ones obtained with the caches’ corresponding baseline configurations. 

The results are presented in Figure 21, and indicate that ROB occupancy changes owing 

to L2 cache size reduction is more prominent than those due to L1D cache size reduction. 

In contrast, owing to the good instruction locality, L1I cache’s size reduction rarely 

incurs a dramatic increase of instruction misses that significantly affect the adaptation of 

ROB. Hence, the interference of the L1I cache on the ROB is the smallest among the four 

units. 
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Figure 20. Hardware units’ interference on reorder buffer’s adaptation. 
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Figure 21. Normalized ROB occupancy. 

 

6.2.2.2 Issue queue versus other units 

Figure 22 shows the interference of the other four hardware units on the issue 

queue. Similar to the observation in the prior subsection, the reorder buffer interferes 

with the issue queue’s adaptation, and prevails other units as the reorder buffer size 

reduces to one quarter of its maximal size.  

The L1D and the L2 caches interfere with the reorder buffer’s tuning more than 

the L1I cache. The L1D and the L2 caches interfere with the adaptation of the IQ via 

occupying the IQ with instructions that depend on the missed loads/stores. Note that 

those loads/stores do not stay in the IQ since they are already dispatched, but are still in 

the ROB since they are not committed yet.  

Although the L1I cache has the smallest interference distances on IQ’s tuning 

than other units, its impact on IQ is larger than its impact on ROB. One major reason for 

the difference is that being closer to the L1I cache, the IQ can absorb some of the 

performance impact caused by L1I cache’s size reduction before it affects the tuning of 

the ROB. 
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Figure 22. Hardware units’ interference on issue queue’s adaptation. 

 

6.2.2.3 Level-one data cache versus other units 

Figure 23 shows the interference distances of the hardware units on the level-one 

data cache. As shown in the figure, the L2 cache interferes with the L1D cache’s 

adaptation extensively, which, to some extent, validates the observation in Section 4.2.4 

that the L2 cache’s adaptation is sensitive to the amount of L1 misses. In contrast, the L1I 

cache’s size reduction rarely interferes with the L1D cache’s adaptation. Residing at the 

two end of the pipeline, the L1I cache’s performance impact is absorbed by the execution 

energy before it affects the L1D cache’s adaptation. Finally, the size-reductions of both 

the IQ and the ROB affect the adaptation of the L1D cache via slowing down the 

pipeline. Consequently, a smaller L1D cache can be used with minimal extra 

performance loss. 
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Figure 23. Hardware units’ interference on L1D cache’s adaptation. 
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Figure 24. Hardware units’ interference on L1I cache’s adaptation. 

 

6.2.2.4 Level-one instruction cache versus other units 

Figure 24 provides the interference distances between the L1I cache and the other 

four hardware components. The adaptation of the L1I cache is more likely to be 

interfered by the L2 cache than other units. Comparing with those in Figure 23, the other 

three units’ interference distances on the L1D cache are larger than on the L1I cache, 

implying that those units’ interference on the L1D cache is more intense than on the L1I 

cache. Unable to affect L1I cache’s performance, L1D cache rarely interferes with the 

adaptation of the L1I cache. 
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Figure 25. Hardware units’ interference on L2 cache’s adaptation. 

 

6.2.2.5 Level-two cache versus other units 

The interference distances between the level-two cache and the other hardware 

components are presented in Figure 25. According to the figure, the L2 cache’s 

adaptation is more likely to be interfered by the L1D cache than the other units. In 

contrast, when the L1I cache size is reduced to the half of its maximal size, the L2 

cache’s adaptation is rarely affected. Finally, the interference of both the IQ and the ROB 

on the adaptation of the L2 cache varies by benchmarks. 

6.2.3 Implications to tuning process reduction 

Two trends on the interference between CUs partly validate the efficiency of 

multi-grain adaptation employed by the DO-based hardware adaptation framework 

proposed in Chapter 3. First, units in the execution engine, such as IQ and ROB, are more 

sensitive to other units’ adaptation than those outside the execution engine, such as the 

caches. The units in the execution engine have lower reconfiguration overhead than those 

outside the execution engine. Furthermore, the interference of the L2 cache on the L1D 
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and the L1I caches are much larger than the interference of the level-one caches on the 

L2 cache. Hence, high-overhead CUs are less sensitive to other units’ interference than 

low-overhead CUs, and their adaptation can be decoupled from low-overhead CUs.  

Representing only the intensities, the interference distances presented in Section 

6.2.2 do not fully characterize the interference between two CUs. It is also interesting to 

know how the size reduction of the interfering unit affects the interfered CU’s 

configuration selection. Two types of interference between CUs are of special interest 

since they may be used to reduce the tuning space exploration. The interference between 

two CUs is positive when the size reduction of one CU relieves the performance pressure 

on the other one and allows the later to use the same or a smaller configuration with 

minimal performance loss. The interference between two CUs is negative when the size 

reduction of one CU increases the performance pressure on the other one and prompts the 

later to use the same or a larger configuration to prevent an unacceptable performance 

loss. The interference results for the benchmarks indicate that the interference between 

L1D and L2 caches is negative, while the interference between IQ and ROB is positive. 

Knowing the intensities and types of interference between CUs can aid the reduction of 

the tuning process, which is discussed in the next section. 

The interaction between hardware units is complex. Besides positive and negative 

interference, there could be other types of interference. An extensive examination of all 

those interference types helps us gain a better understanding of the interaction between 

CUs’ adaptation, and may lead to novice strategies to prune the tuning space. 

6.3 REDUCTION OF MULTI-CU TUNING PROCESS  

Although statistically, runtime characteristics may closely relate with some CU’s 

tuning decisions, Section 6.1 shows that for the CUs examined in this work, it will be 

inaccurate to predict a CU’s best configurations based on the value of a  runtime 
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characteristic. On the other hand, knowing the intensities, i.e., the Manhattan distances 

between best configuration arrays, and types of interference between CUs can aid the 

reduction of the tuning process. In this section, two tuning reduction strategies are 

proposed based on the above findings. 

6.3.1 Tuning reduction strategies 

The hardware adaptation framework proposed in Chapter 3 improves the 

efficiency of managing multiple CUs by allowing multi-grain adaptation. With CU 

decoupling, CUs with different reconfiguration intervals can be tuned at different hot spot 

boundaries. On the other hand, for the CUs with the same reconfiguration interval sizes, 

the framework still needs to test all the combinatorial configurations of the CUs. Among 

the five CUs studied in this work, the issue queue and the reorder buffer have the same 

reconfiguration interval size are adapted at the boundaries of the same group of hot spots, 

and so do the L1D and the L1I caches. Hence, to further improve the framework’s 

efficiency, strategies that can reduce the tuning of the CUs with identical reconfiguration 

interval sizes are needed. In this section, two such schemes, based on the findings in 

Section 6.1 and Section 6.2, are proposed. 

6.3.1.1 Tuning the level-one caches 

The minimal interference between the two caches implies that they can be adapted 

individually (Section 6.2.2.3 and 6.2.2.4). Hence, it is possible to reduce the latency of 

adapting those two caches.  Initially, the most energy consuming combinatorial 

configuration (i.e., 3_3, the two numbers represent the two caches’ configurations 

respectively) is tested first to obtain the baseline performance. Then the twin 

combinatorial ones (i.e., 2_2, 1_1, 0_0) are tested gradually (indicated by the solid lines 

in Figure 26(a)) until the most aggressive one (0_0) is reached or the performance 
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degradation is too large. In the first case, the configuration 0_0 is the best configuration 

for the tuned phase. Otherwise, one can find whether the performance degradation is 

caused by the L1D cache, the L1I cache, or both by examining the changes of L1D and 

L1I cache misses. If the performance is caused by both caches, the tuning processes 

finishes. Otherwise, the performance-impairing cache keeps its prior configuration, while 

the other cache continue tests its smaller configurations until the performance 

degradation is reached or all of its configurations are tested (indicated by the dotted lines 

in Figure 26(a)). Then, the last tested combinational configuration within the 

performance threshold is the most energy efficient one for the phase. This strategy takes 

up to five, instead of sixteen tests, to adapt the two level-one caches. 
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Figure 26. The tuning reduction strategies. 

 

6.3.1.2 Tuning the issue queue and the reorder buffer 

The interference between IQ and ROB is extensive (Section 6.2.2.1 and 6.2.2.2), 

and cannot be tuned separately as the level-one caches. On the other hand, the 

interference type between IQ and ROB is positive, i.e., when one uses a smaller 

configuration, the other one can use the same or a smaller configuration with minimal 
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performance losses (Section 6.2.3). Another observation is that the ROB’s size should be 

the same as the IQ’s size, or larger (Section 6.1.2.1). These two findings inspire us to 

design the following reduced tuning strategy (shown in Figure 26 (b)). 

In the reduced tuning process, the most energy consuming combinatorial 

configuration (i.e., 3_3) is tested first to obtain the baseline performance. Then the twin 

combinatorial ones (i.e., 2_2, 1_1, 0_0) are tested gradually (indicated by the solid lines 

in Figure 26 (b)) until the most aggressive one (0_0) is reached or the performance 

degradation is too large. In the first case, the configuration 0_0 is the best configuration 

for the tuned phase. In the second case, the combinatorial configurations in the same row 

as the last tested twin configuration are tested gradually (indicated by the dotted lines in 

Figure 26 (b)), and one with acceptable performance degradation and the highest energy 

saving is the best one. The configurations in the same column as the last tested twin 

configuration need not to be tested since they represent the configurations that IQ is 

larger than ROB. Consequently, the tuning process for the IQ and the ROB is 

dramatically reduced. 

6.3.2 Evaluation of the tuning reduction strategies 

With the above two tuning reduction strategies incorporated in the hardware 

adaptation framework, they are evaluated by adapting all the five configurable units using 

the framework, and the target performance loss is 5%. To The results are given in Figure 

27 to Figure 31. As a comparison, the energy and performance results of the hardware 

adaptation scheme without those two tuning reduction strategies are presented as baseline 

results. They are the same hot spot results in Figure 4 to Figure 8. For each benchmark, 

the two bars correspond to the percentages of energy reductions with (tuning-reduction) 

and without (baseline) the tuning reduction strategies. On average, using the tuning 

reduction strategies reduce the energy of issue queue, reorder buffer, L1D cache, L1I 
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cache, and L2 cache by 39%, 33%, 42%, 35% and 45%, respectively. Differing to the 

other CUs, the L1I cache’s energy reductions are similar for all the benchmarks, which 

reveals that the instructions streams of those benchmarks have similar characteristics due 

to the extensive virtual machine activities.  
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Figure 27. Reduction in issue queue energy reduction by using the tuning reduction 
strategies. 

 

Figure 28. Reduction in reorder buffer energy reduction by using the tuning reduction 
strategies. 

Reorder buffer

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

comp db jack javac jess mpeg mtrt avg

%
 o

f e
ne

rg
y 

re
du

ce
d

baseline
tuning reduction



 87

 

Figure 29. Reduction in L1D cache energy reduction by using the tuning reduction 
strategies. 

 

 

Figure 30. Impact of the tuning-reduction strategies on L1I cache energy reduction. 

 

Figure 31. Impact of the tuning-reduction strategies on L2 cache energy reduction. 
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Without the two tuning reduction strategies presented in this work, the DO-based 

hardware adaptation scheme reduces issue queue, reorder buffer, L1D cache, L1I cache, 

and the L2 cache’s energy consumption by 33%, 28%, 37%, 31% and 45% respectively. 

Hence, incorporating the two tuning reduction strategies in the DO-based hardware 

adaptation framework further reduces the energy consumed by IQ, ROB, L1D and L1I 

caches. 

 

0%

1%

2%

3%

4%

5%

6%

7%

comp db jack javac jess mpeg mtrt avg

%
 o

f I
PC

 d
eg

ra
da

tio
n

baseline tuning reduction

 

Figure 32. Performance degradation due to the tuning reduction strategies. 

 

The performance degradations of the resource adaptation are illustrated in Figure 

32 as well. The energy reduction achieved by adapting a CU is usually at the cost of 

performance, in terms of IPC degradation. In the experiments, the simulation 

environment is tuned to achieve the target IPC degradation of 5%. The performance 

degradation seen by the BBV technique ranges from 4.5% (mpegaudio) to 6.1% (jess). 

On average the performance penalty for the hot spot technique is 5.0%. In comparison, 

without the tuning reduction strategies, the hardware adaptation framework causes a 

4.9% performance drop on average. The results clearly demonstrate that despite the 

growing complexity on adapting multiple CUs, the two tuning reduction strategies further 
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improve the efficiency of the DO-based framework on managing multiple configurable 

units. 

6.4 DISCUSSION 

Hardware adaptation involves tradeoffs. First, the best configuration achieves the 

highest energy reduction for a given performance budget, and thus is always preferred. 

On the other hand, due to the explosion of the configuration space, traversing the 

configuration space to find the best one is costly. Hence, it is unreasonable for a real 

system to choose a tuning strategy that tests all combinational configurations. However, 

without doing so, a system usually detects sub-optimal configurations, impairing the 

system’s energy efficiency.  

This chapter demonstrates that with a better understanding of the interference 

between CUs, the tuning space can be significantly reduced without affecting the 

accuracy of the best configuration search. The interference analysis is conducted using 

SPECjvm 98 benchmarks. However, the study examines interactions between hardware 

units, and do not relying on any specific features of either the programs or Jikes RVM. 

Hence, the findings should be applicable to other applications and hardware adaptation 

schemes. 

This research discovers three phenomena that can be used to prune the tuning 

space traversed by a tuning algorithm to find the best configuration. First, high-overhead 

configurable units (e.g., L2 cache) are less sensitive to other CU’s adaptation than low-

overhead CUs (e.g., issue queue). Hence, high-overhead CUs’ adaptation can be 

decoupled from low-overhead CUs. Second, some CUs’, such as L1I and L1D caches, 

have minimal mutual interference to each other’s adaptation, and can be adapted in 

parallel. Finally, interference between some CUs (e.g., issue queue and reorder buffer) is 

coupled so that when one’s size is reduced, the other either keeps its current 



 90

configuration or chooses a smaller one with minimal extra performance loss. Hence, 

during the traverse of their tuning space to search for the best configuration, those CUs 

bias towards certain paths. The tuning space is essentially pruned when the tuning 

algorithm focuses on only those promising paths. To utilize those properties in an 

adaptive microarchitecture, we need to obtain the information in advance. 

Exploiting the first phenomenon, we can decouple the adaptation of CUs with 

different reconfiguration costs by associating them with phases of different granularities. 

Each phase adapts only those CUs with similar adaptation costs, which significantly 

reduces the tuning space. 

Then, the tuning space of the CUs with similar adaptation costs can be pruned if 

the CUs are either independent or have positive interference. Two generalized tuning 

reductions algorithms are given in the following subsections. 

6.4.1 Generalized tuning reduction algorithm for independent CUs 

Figure 33 shows the tuning reduction algorithm for two or more independent 

CUs. The algorithm first evaluates the configuration with the highest energy consumption 

and performance to obtain the baseline IPC. Since the goal of hardware adaptation is to 

achieve high energy reduction with the performance budget, the allowed performance 

loss is subtracted from the baseline IPC to get the target IPC. The best configuration must 

yield an IPC equal to or larger than the target IPC to fulfill the performance constraint.  

In Step 1 and 2, we test the configurations one by one, reducing the sizes of the 

tested CUs by one from their current sizes. Those two steps test those CUs in parallel 

since those CUs are independent. By doing so, the algorithm can quickly reach either the 

best configuration or one that incurs a performance loss exceeding the threshold. The 

current configuration is recognized as current_configuration. 

 



 91

  

Figure 33. Generalized tuning reduction algorithms for independent CUs. 

 

Steps 3 to 9 are used to identify the configurable units that cause the performance 

loss. This is performed by testing configurations in which each CU’s configuration either 

remains the same, or increases by one from its configuration in current_configuration. In 

0. The available CU list includes all CUs.  
a. Set current_configuration to the most energy consuming configuration, i.e., 

the one with each CU using its largest size. 
b. Record the baseline IPC. 

1. Test the configuration with all the available CUs’ sizes reduced by one from 
current_configuration, and set the new configuration as current_configuration. 
(E.g., if current current_configuration is (C1, C2, …, Cn), the new 
current_configuration is (C1-1, C2-1, …, Cn-1)). 

2. Repeat 1 until performance threshold is exceeded.  
3. Choose one CU from the available CU list. Test the configuration with this CU’s 

size increased by one from current_configuration (e.g., (C1+1, C2, …, Cn) or 
(C1, C2+1, C3, …, Cn)) to find whether the CU that is responsible for the 
performance loss. 

4. If the performance is within the threshold, the tested CU is removed from the 
available CU list. This CU keeps its current configuration afterwards. Go to 1. 

5. Repeat 3 until all such configurations are tested. 
6. Choose two CUs from the available CU list. Test the configuration with the 

CUs’ sizes increased by one from Current_configuration (e.g., (C1+1, C2+1, …, 
Cn) or (C1, C2+1, C3+1, …, Cn)) to find any two units that is responsible for 
the performance loss. 

7. If the performance is within the threshold, the tested CUs are removed from the 
available CU list. Those CUs keep their current configurations afterwards. Go to 
1. 

8. Repeat 6 until all combinations of two CUs are tested. 
9. Repeat 6-8 to test incremental number of CUs to find the set of CUs that are 

responsible for the performance loss. 
10. If all CUs are responsible for the performance loss, stop. 



 92

those tests, the CUs whose sizes increase are evaluated to find out whether they cause the 

performance loss. Such tests are possible since those CUs are independent with each 

other and the performance loss is due to CUs’ size reduction, instead of the interaction 

between CUs. 

After one or more CUs are detected to be responsible for the performance loss, 

those CUs keep their configurations afterwards. Other CUs continue steps 1 and 9 to test 

configurations that further save energy until the best configuration is found. 

 

 

Figure 34. Generalized tuning reduction algorithms for CUs with positive interference. 

0. Initially, 
a. Set Current_configuration to the most energy consuming configuration, i.e., 

the one with each CU using its largest size. 
b. Record the baseline IPC. 

1. Quickly reach a combinatorial configuration that reduces energy and satisfies the 
performance constraint. 
a. Test the configuration with all the available CUs’ sizes reduced by one from 

current_configuration, and set the new configuration as 
current_configuration. (E.g., if current current_configuration is (C1, C2, …, 
Cn), the new current_configuration is (C1-1, C2-1, …, Cn-1)). 

b. Repeat 2 until performance threshold is exceeded. 
c. Set current_configuration to the previous one that satisfies the performance 

constraint. 
2. Fine-grain adjust each CU’s configuration to achieve higher energy reduction 

a. Select one CU from all available CUs. Test the configuration with this CU’s 
size decreased by one from Current_configuration (e.g., (C1-1, C2, …, Cn) or 
(C1, C2-1, C3, …, Cn)).  

b. If Current_IPC > Overall_Target_IPC, the current configuration is set as 
current_configuration; Otherwise, keep current current_configuration. 

c. Repeat 2.a until no CU changes its configuration. 
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6.4.2 Generalized tuning reduction algorithm for CUs with positive interference 

Figure 34 shows the tuning reduction algorithm for two or more CUs with 

positive interference. The algorithm first evaluates the configuration with the highest 

energy consumption and performance to obtain the baseline IPC. Since the goal of 

hardware adaptation is to achieve high energy reduction with the performance budget, the 

allowed performance loss is subtracted from the baseline IPC to get the target IPC. The 

best configuration must yield an IPC equal to or larger than the target IPC to fulfill the 

performance constraint. 

In Step 1, we test the configurations one by one, reducing the sizes of all CUs by 

one from their current sizes. This step tests the CUs in parallel in accordance with the 

positive interference between the CUs. Testing those configurations allows the algorithm 

to quickly reach either the best configuration or one that incurs a performance loss 

surpassing the budget. The current configuration is recognized as current_configuration. 

Starting from current_configuration, Step 2 searches locally to find the best 

performing configuration. Each test examines the configuration with one CU reducing its 

size by one from current_configuration while other CUs keeping their current sizes. If the 

new configuration still satisfies the performance constraint, it becomes the new 

current_configuration. Since the CUs interfere positively, the size reduction of one CU 

may prompt other CUs to use smaller sizes that are still satisfy the performance 

constraint. Hence, the tests continue until the size of no CU can be reduced without 

incurring a performance loss exceeding the threshold. 
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Chapter 7. The Role of JIT Optimization and Garbage Collection on 
Microprocessor Energy Consumption and Hardware Adaptation 

The above two chapters demonstrate that efficient management of multiple 

configurable units is vital for maximizing energy reduction, and a dynamic optimization 

system’s inherent capabilities of detecting and optimizing hot spots can be employed to 

efficiently manage multiple configurable units for energy reduction. 

With the growing popularity of DO systems and importance to reduce surging 

microprocessor energy consumption, it is important to understand the impact of DO 

systems on programs’ energy consumption and power dissipation. This chapter 

characterizes the energy and power impact of two most important services of DO 

systems, Just-in-time (JIT) optimization and garbage collection. Moreover, the 

interference of those two DO services on hardware adaptation is examined for five 

configurable hardware units: issue queue, reorder buffer, level-one instruction and data 

caches, and level-two unified cache. 

This chapter also compares application, JIT optimizer and garbage collector on 

energy reduction and adaptation preferences. To identify the affiliation of dynamic code 

sequences, we instrument the code boundaries of the JIT optimizer and the garbage 

collector. The instrumentations are recognized when simulated in Dynamic Simplescalar, 

and indicate that the subsequent code sequences belong to either application, JIT 

optimizer, or garbage collector. 

7.1 ENERGY IMPACT OF JIT OPTIMIZATION AND GARBAGE COLLECTION 

The runtime characteristics of a program’s dynamic execution (i.e., execution in a 

dynamic optimization system) vary significantly from its statically compiled counterpart 

due to the following reasons. First, optimizations used in offline and JIT compilers may 
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differ substantially. Although a JIT optimizer usually contains some commonly used 

offline compiler optimizations, many other offline optimizations, such as loop 

transformations, are hard to be adopted in DO systems owing to their high runtime 

overheads. Meanwhile, novel adaptive optimizations utilizing feedback information are 

designed specifically for DO systems [6]. Hence, dynamically optimized programs 

usually exhibit characteristics that differ to their statically optimized counterparts [67]. 

Second, as an important part of many DO systems, the garbage collector may also change 

a program’s runtime behavior by compacting and rearranging heap objects. Finally, a 

program’s dynamic execution comprises the application, as well as numerous assisting 

DO services, such as JIT optimization and garbage collection. Being integral parts of the 

dynamic execution, JIT optimization and garbage collection have distinct characteristics 

to applications, and thus affect the overall runtime characteristics [29]. In this section, the 

energy and power impact of two most important DO services, JIT optimization and 

garbage collection, are examined. 

7.1.1 Impact of JIT optimization 

Jikes RVM has two compilers. Jikes RVM’s baseline compiler is a fast non-

optimizing compiler that converts Java bytecodes to machine code. The optimizing 

compiler of Jikes RVM has three levels of optimizations (JIT0, JIT1, and JIT2), each one 

consisting of its own group of optimizations as well as the optimizations that belong to 

lower levels. The lower two levels (JJT0 and JIT2) perform optimizations that are fast 

and high-payoff. JIT0 performs inlining and register allocation. JIT1 contains 

optimizations, such as such as common sub-expression elimination, copy and constant 

propagation, and dead-code elimination. JIT2 contains more expensive ones, such as 

those based on static single assignment (SSA) form. In this research, we do not use Jikes 

RVM’s sampling based adaptive optimization system. All methods are compiled only 
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once, and are optimized if the optimizing compiler is used. Lee et al. [52] evaluate the 

performance impact of various Jikes RVM’ optimizations on PowerPC and IA-32 

machines. 

In this section, JIT1 optimizations are compared with the baseline compiler 

(BASE). We did not show results for JIT optimization level zero since they are similar to 

JIT1 results [52]. Unfortunately, JIT2 optimizations cannot be tested in this work since 

Dynamic Simplescalar fails when high level optimizations generate instructions or call 

system calls that are not implemented in Dynamic Simplescalar. If DSS does not fail, we 

expect that using high level optimizations will yield incremental energy reduction over 

the first level. The main source of energy reduction has been performance improvement. 

In a compiler with multiple levels of optimizations, lower level optimizations usually 

achieve the largest performance improvements over no optimization, while high level 

optimizations yield diminishing improvements. Hence, the energy reduction achieved by 

high level optimization should also diminish. 

The impact of JIT optimization on a program’s dynamic execution is two-folded. 

First, JIT optimization alters a program’s runtime behavior. Second, as an integral part of 

programs’ dynamic execution, the JIT optimizer normally possesses distinct 

characteristics to the applications. The following subsections first studies the overall 

impact of JIT optimization. Then, the performance and energy impact of each of the 

above two factors is evaluated. In the experiment, the 200M heap is used to minimize 

garbage collection activities in SPECjvm 98 benchmarks. 

7.1.1.1 Impact on performance, energy, and power 

Table 10 presents the instruction counts, cycle counts, energy consumption, and 

average power of SPECjvm 98 benchmarks with JIT1 optimizations as fractions of the 

corresponding BASE results. Using the JIT optimizations significantly reduces a 
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program’s instruction count, execution time, and energy consumption. On average, JIT1 

optimizations reduce a program’s instruction count, cycle count, and energy consumption 

to 32%, 36%, and 33% of those without JIT optimization. 

 

Table 10. Performance, energy and power of JIT optimized system as fractions of the 
corresponding results of un-optimized system. 

JIT1/BASE compress jess db javac mpegaudio mtrt jack avg 
Instr. count (%) 17.1 32.2 40.4 40.1 27.1 33.3 32.0 31.7
Cycle count (%) 19.1 39.1 47.1 44.1 33.7 33.3 37.0 36.2

Energy (%) 17.7 35.9 41.5 42.3 28.8 33.0 34.3 33.4
Power (%) 92.6 91.8 88.3 96.0 85.6 99.1 95.4 92.7

 

 

JIT1 optimizations reduce both dynamic instruction counts and execution time. 

Nevertheless, those optimizations are more effective on reducing instruction counts than 

execution time. JIT optimizations can be broadly classified into two groups: those that 

reduce instruction counts, and those that improve ILP without reducing instruction 

counts, such as instruction scheduling. Most JIT1 optimizations, such as common sub-

expression elimination, copy and constant propagation, and dead code elimination, 

belong to the first group. Hence, for all programs studied, the reduction of execution time 

is not as much as the reduction of instruction counts. The increases of L1D miss rates 

(Table 11) also contribute to the growing disparities between programs’ instructions and 

cycles. 

A program’s energy consumption is related to both the total amount of work done 

by the program (instruction count) and the time taken to finish the work (cycle count). 

Apparently there is more idling when the optimized code is executed. Consequently, 

SPECjvm 98 benchmarks’ average power dissipation decreases due to the JIT 
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optimizations. On average, a program’s JIT-optimized execution dissipates 93% of the 

power as its non-JIT-optimized execution. 

Among the seven benchmarks, compress benefits the most from JIT optimization. 

The benchmark compress spends most of its execution on two loops. The first loop 

compresses input files, which are then decompressed in the second loop. Hence, 

compress has a few hot methods within the loops that dominate its execution. Optimizing 

those hot methods can significantly improve the performance and energy consumption 

while incurring minimal overhead. In contrast, javac and jack achieve the least 

performance improvement and energy reduction among all the workloads. The 

benchmark javac is a Java compiler that translates Java source code into binary code, 

while jack is a Java parser generator with lexical analysis. Comparing with other 

benchmarks, they contain more methods that require more time to optimize.  

7.1.1.2 Impact on instruction window and caches  

To examine the impact of JIT optimization on program execution, the 

characteristics for the instruction window and the cache hierarchy are obtained. Those 

metrics include issue queue and reorder buffer occupancies, and L1D/L1I/L2 cache miss 

rates, which are closely related with the CUs examined in the next subsection, and help 

us understand how those CUs’ adaptation is interfered by JIT optimization. The results 

presented in Table 11 are the fractions of the JIT1 results over the corresponding BASE 

ones. 

All fractions, except L2 miss rate, increase as the JIT optimizations are applied. 

During the JIT optimizations, large data structures are used to store intermediate 

representations of methods and other information. Since the L1D cache can rarely hold 

all the data structures, the JIT optimizer’s traversing of the data structures incurs many 

L1D misses. Hence, programs’ overall L1D miss rates increase. As the pipeline is slowed 
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down to wait for the missed data accesses, many dependent instructions stall in the issue 

queue and the reorder buffer and result in high IQ and ROB occupancies.  

 

Table 11. Runtime characteristics of JIT optimized system as fractions of the 
corresponding results of un-optimized system. 

JIT1/BASE  compress jess db javac mpegaudio mtrt jack avg
IQ occupancy (%) 123.1  99.4 109.0 100.9 115.0  117.7 117.7 111.8 

ROB occupancy (%) 126.2  104.0 111.1 103.3 121.3  113.3 123.2 114.6 
L1D miss rate (%) 110.9  109.6 106.3 117.6 113.7  107.1 107.3 110.4 
L1I miss rate (%) 103.0  100.2 105.2 101.8 103.3  100.2 98.9  101.8 
L2 miss rate (%) 102.2  94.0 97.8 91.9 105.6  95.6  93.9  97.3 

 

The JIT optimizations’ impact on the L1I cache is two folded. First, JIT 

optimizations generate more compact code, resulting in fewer L1I capacity misses. On 

the other hand, after the optimized code is generated, the instruction cache must be 

flushed to bring in the newly generated code, incurring more cold misses. Determined by 

those two conflicting factors, L1I miss rates increasing slightly. For the L2 cache, JIT 

optimization greatly reduces the sizes of programs’ instruction working sets, improving 

the L2 cache miss rates. In contrast to the L1D cache, the L2 cache is much larger to hold 

most of the intermediate data structures, and thus is barely affected by the JIT optimizer’s 

accesses to those data structures. Hence, JIT optimization reduces the L2 miss rates. 

Note that all characteristics examined in Table 11 are fractions by themselves. 

The biggest impact of JIT optimization is the instruction and cycle count reduction (Table 

10). Comparing the fractional characteristics allows us identifies program behavior 

changes hidden by instruction and cycle count reduction. For instance, a program has 

more instructions (Table 10), and thus more L1D misses and accesses in the BASE 
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configuration than in the JIT1 configuration, although the L1D miss rates increase after 

the JIT optimization. 

7.1.1.3 JIT optimizer versus application 

JIT optimization’s impact on a program’s dynamic execution is two-folded. First, 

JIT optimization alters a program’s runtime behavior. Second, as an integral part of 

programs’ dynamic execution, the JIT optimizer normally possesses distinct 

characteristics to the applications. Both factors attribute to the overall characteristics of a 

program’s dynamic execution, which is investigated in the previous subsection.  

This subsection evaluates the performance and energy impact of each of the above 

two factors. To do so, the Jikes RVM is instrumented to identify code regions belonging 

to the JIT optimizer from the rest of the programs’ dynamic execution, which is 

dominated by the execution of the application code. Table 12 gives the portions of overall 

execution time (% of JIT cycle count), instruction count (% of JIT instr. count), and 

energy consumption (% of JIT energy) corresponding to the JIT optimizer. The 

differences between 100% and the JIT percentages are the portions taken by applications. 

On average, the JIT optimizer accounts for 9.8% of total instructions, 11% of total cycles, 

and 10.7% of total energy consumed in a program’s JIT-optimized execution. 

 

Table 12. Comparison of JIT optimizer and application's energy consumption and power 
dissipation. 

.  
compr

ess jess db javac
mpega
udio mtrt jack avg 

% of JIT instr. count 5.1 9.7 6.3 15.3 8.7 10.9 12.8 9.8 
% of JIT cycle count 5.7 10.7 7.4 17.5 10.9 11.1 14.0 11.0 

% of JIT energy 5.6 10.7 7.3 16.2 10.4 11.0 13.6 10.7 
Norm. JIT power % 91.5 91.2 87.7 88.8 82.4 98.9 92.8 90.5 

Norm. App. power % 92.6 91.8 88.3 96.0 85.6 99.1 95.4 92.7 
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The last two columns of Table 12 represent the normalized power results for the 

JIT compiler and the applications respectively. Those power results are normalized to the 

ones corresponding to the programs’ non-JIT-optimized execution, and represent the 

power changes of the JIT optimizer and the applications as the JIT optimizations are 

applied. A normalized power value smaller than 100% means that the average power 

drops due to JIT optimization. Table 12 implies that both the JIT optimizer and the JIT-

optimized applications dissipate less power than the non-JIT-optimized applications, and 

contribute to the decrease of overall power due to JIT optimization (Table 10). 

In this section, we observe that Jikes RVM’s JIT1 optimizations reduce average 

power since both JIT optimizer and optimized application dissipate less power than the 

un-optimized system. A different dynamic optimization system may not have the same 

trends. First, JIT optimizer has relative lower power than SPECjvm 98 benchmarks. It is 

possible that a different application may dissipate much less power than both SPECjvm 

98 benchmarks and the JIT optimizer. Second, as explained in Section 7.1.1.1, optimized 

applications dissipate less power than un-optimized system since the JIT1 optimizations 

are more effective on reducing instruction counts than cycle counts. Another DO system 

with different JIT optimizations may act otherwise. In such a system, optimized 

applications may dissipate more power than un-optimized one. 

7.1.2 Impact of garbage collection 

The garbage collector used in this research is Appel’s generational collector [4] 

from the GCTk toolkit [12]. The Appel collector uses a size-adaptable nursery, and 

initially it is the whole heap. Each collection reduces the nursery size by the survivors. A 

full heap triggers a full heap collection. To test various garbage collection activities, three 

heap sizes, 25M, 42.5M, and 60M, are used in our simulations, and the results are 
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compared with those obtained with no GC activities (using a 200M heap). For several 

benchmarks, 25M is the minimal size in which the Appel collector works [38]. 

In this subsection, the performance, energy, and power results of programs 

executed by Jikes RVM with different heap sizes are obtained. Those results are then 

compared with the ones obtained with a 200M heap that is large enough to have no 

garbage collection in all benchmarks. The energy impact of the garbage collector is also 

examined and compared with that of the mutator (i.e., a program’s execution other than 

the garbage collections). The experiment uses JIT1 optimizations. 

7.1.2.2 Impact on performance, energy, and power 

For each benchmark, Figure 35 shows the normalized instruction count, execution 

time, and energy consumption by dividing the results for the small heaps by the 

corresponding ones with the 200M heap. 

The energy consumed is again directly proportional to the number of instructions. 

javac’s performance and energy consumption are significantly affected by garbage 

collection. With a 25M heap, javac’s instruction count, cycle count, and energy all 

increase by 65% over no GC, which is in accordance with the fact that javac has more 

garbage collections than other benchmarks (Table 13). In contrast, with 42.5M and 60M 

heaps, mpegaudio’s performance and energy consumption almost equal to the 

corresponding ones with no garbage collection, reflecting the fact that mpegaudio 

allocates very little heap space [78]. All the other benchmarks’ performance degradation 

and energy increases are between those of javac and mpegaudio. 
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Figure 35. Changes in performance, energy, and power due to garbage collection. 
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Garbage collection slightly reduces programs’ average power dissipation. As 

Table 13 shows, many benchmarks’ L2 misses increase very fast as heap size decreases. 

Such cache misses can often stall the pipeline, and considerably affect the execution time. 

On the other hand, since idle units consumes less power, energy is less sensitive to 

pipeline stalls than execution time, resulting in the lower power dissipation during 

garbage collection. Among the evaluated workloads, compress and javac’s average 

power results drop most, varying between 2% and 4%. According to Table 13, both 

benchmarks’ L2 cache performance and jack’s L1 cache performance are impaired by 

garbage collection. 

Note that the energy results in Figure 35 account for only the microprocessor, not 

the main memory. In our experiment, different heap sizes are used. Heaps reside in the 

virtual memory, which is usually larger than the physical memory. Several factors 

determine an application’s memory energy consumption. First, accessing a small physical 

memory consumes less power than accessing a large one. One study on SDRAM energy 

consumption shows that as the memory size doubles, its energy consumption increases by 

up to 10% [40]. On the other hand, if the application’s data working set is larger than the 

physical memory, page swaps may occur frequently between the physical memory and 

storage devices, hurting both performance and energy consumption. Third, the heap size 

can also affect an application’s memory energy consumption. A small heap has to be 

collected more frequently, and thus has more memory accesses than a larger heap. As 

shown in Table 13, reducing heap size dramatically increases the amount of L2 misses, 

i.e., memory accesses. The overall memory energy consumption is determined by those 

factors as well as the memory access patterns. Unfortunately, a detailed study on memory 

energy consumption is out of the scope of this research.  



 105

7.1.2.1 Impact on caches  

Table 13 lists the number of garbage collections (Number of GCs) conducted 

throughout program execution with heap sizes varying from 25MB to 60MB. A 

program’s number of GCs is highly dependent on the program’s memory requirements 

and lifetimes of the objects allocated. Both compress and mpegaudio have few garbage 

collections than other benchmarks, confirming that those two benchmarks allocate very 

little heap space [78]. In contrast, javac performs many more garbage collections than the 

other benchmarks. 

Since the task of garbage collection is to compact and reallocate heap objects, its 

major performance impact is on the memory subsystem. Table 13 provides the 

normalized L1D/L1I/L2 misses for each benchmark, obtained by dividing the numbers of 

misses with the 25M/42.5M/60M heaps by the ones with the 200M heap. The difference 

between a normalized value and 100% represent the percentage of misses increased due 

to garbage collection. For comparison, the average instruction counts increase by 21% 

(25M heap), 12% (42.5M) and 6% (60M) respectively over no GC, and each 

benchmark’s normalized instruction counts are drawn in Figure 35. 

 

Table 13. Number of garbage collections and changes of cache misses due to garbage 
collection. 

Number of GCs L1D misses (%) L1I misses (%) L2 misses (%) 
 25M 42.5M 60M 25M 42.5M 60M 25M 42.5M 60M 25M 42.5M 60M

compress 38 18 8 103.4 101.4 100.1 103.3 102.2 100.6 152.0 125.0 102.0
jess 91 87 23 117.4 110.0 102.5 101.0 100.9 99.1 137.0 119.0 104.0
db 73 32 9 103.2 101.8 102.2 104.9 103.3 100.9 103.0 100.0 100.0
javac 606 133 76 152.1 130.4 114.4 100.2 99.6 100.8 186.0 153.0 124.0
mpegaudio 23 9 5 101.8 100.4 100.1 101.8 100.9 103.6 114.0 107.0 104.0
mtrt 153 46 11 108.5 105.3 101.6 104.8 102.7 100.8 120.0 110.0 103.0
jack 171 101 81 129.3 118.2 112.2 103.6 101.3 104.8 147.0 131.0 120.0
avg 122  61  30  116.5 109.6 104.7 102.8 101.5 101.5 137.0 121.0 108.0
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As heap size decreases, the numbers of L1D and L2 misses increase faster than 

L1I misses. Since the garbage collector is small enough to be held in the L1I cache, its 

execution incurs only a few L1I misses. On the other hand, during the garbage collections 

a series of memory locations are traversed to find surviving objects, yielding many cold 

data misses. Furthermore, the garbage collector’s accesses to heap objects usually evict 

data required by the mutator, inflicting many conflict data misses. Although those two 

factors impair the performance of both L1D and L2 caches, being much larger, the L2 

cache’s performance is more sensitive to the factors than the L1D cache. Furthermore, 

since the misses to the L1I and the L1D caches access the L2 cache, more L1I/L1D 

misses also contribute the increases of L2 misses. Consequently, with more garbage 

collections, most programs’ L2 misses increase much faster than their L1D/L1I misses 

and instruction counts. 

7.1.2.3 Garbage collection versus mutator 

Similar to JIT optimization, garbage collection’s impact on a program’s dynamic 

execution is two-folded. First, garbage collector alters a program’s runtime behavior by 

compacting and rearranging heap objects. Second, being an integral part of the 

applications’ dynamic execution, the garbage collector normally possesses distinct 

characteristics to the applications. The previous subsection investigates the overall impact 

of garbage collection. It is also important to evaluate the performance and energy impact 

of each of the above two factors.  

To do so, the Jikes RVM is instrumented to separate activities of the garbage 

collector from those of the mutator. Table 14 presents the portions of overall execution 

time (% of GC cycle count), instruction count (% of GC inst. count), and energy 

consumption (% of GC energy) spent on the garbage collections. The differences 
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between 100% and the GC percentages are the portions taken by the mutator. The results 

confirm that with smaller heaps, the garbage collector is more active, and is responsible 

for more of the overall work done and energy consumed by a program.  

 

Table 14. Comparison of garbage collector and mutator's energy consumption and power 
dissipation. 

% of GC cycle count % of GC inst. count % of GC energy GC power % Mutator power %  
  25M 42.5M 60M 25M 42.5M 60M 25M 42.5M 60M 25M 42.5M 60M 25M 42.5M 60M

compress 8.9 3.5 1.1 8.6 3.1 1.0 8.6 3.1 1.0 93.8 86.9 88.2 98.2 98.4 98.9
jess 16.2 11.6 4.3 14.9 10.1 3.7 14.9 10.1 3.7 90.2 87.3 85.8 99.8 101.5 100.6
db 11.0 4.7 1.4 11.0 4.7 1.4 11.0 3.4 1.4 99.1 71.8 97.6 99.1 100.8 99.3
javac 44.4 31.5 20.9 45.4 30.9 17.3 41.8 29.9 18.8 94.0 94.9 89.8 101.8 101.5 101.6
mpegaudio 5.0 1.5 1.2 4.7 1.3 1.1 4.7 1.3 1.1 94.4 87.2 90.3 99.8 99.6 99.1
mtrt 16.7 4.1 3.2 14.0 3.8 2.9 14.0 3.8 2.9 82.9 93.2 91.2 101.4 100.0 100.2
jack 21.8 14.7 9.5 20.6 13.1 8.6 20.6 13.1 8.6 91.3 88.0 89.7 98.4 99.3 99.7
avg 17.7 10.2 5.9 17.0 9.6 5.1 16.5 9.2 5.4 92.2 87.1 90.4 100.2 100.4 100.1

 

Table 14 also includes the average power results for the garbage collector and the 

mutator respectively, which are normalized to the ones obtained with the 200M heap. A 

normalized power value smaller than 100% means that the average power drops due to 

garbage collection. On average, the garbage collector’s power dissipation is between 87% 

and 92%, varying by heap sizes and programs, of the mutator’s. This is mainly because 

the poor data locality of the garbage collector impairs its execution time more than its 

energy consumption. On the other hand, garbage collection only slightly changes the 

mutator’s average power, with variations below 2% in all benchmarks and heap sizes. 

Garbage collection improves a program’s data locality [11], which may speed up the 

execution and increase the power of the mutator. Table 14 shows that for most programs, 

except for jess and javac, the power increase due to improved data locality is minimal. 

Figure 35 indicates that with garbage collection, a program’s average power dissipation 
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usually drops. The results in Table 14 denote that the garbage collector, instead of the 

mutator, is responsible for the drop of overall power dissipation.  

7.1.3 Key insights 

By reducing instruction and cycle counts, JIT optimization is effective on 

reducing a program’s energy consumption. On the other hand, many of the JIT 

optimizations studied in this work reduce instruction counts more than execution time. As 

a result, JIT optimization decreases a program’s average power dissipation. A detailed 

study implies that both the JIT optimizer and the JIT-optimized applications contribute to 

the drop of the average power. 

Garbage collection incurs significant performance and energy overhead. 

However, poor data locality of the garbage collector affects execution time more than 

total energy consumption. Hence, garbage collection decreases the average power 

dissipated by a program. In contrast to JIT optimization, the drop of a program’s average 

power is mainly contributed by the garbage collector, while the mutator’s average power 

is rarely affected by varying garbage collection activities. 

7.2 INTERFERENCE OF JIT OPTIMIZATION AND GARBAGE COLLECTION ON 
HARDWARE ADAPTATION 

Both JIT optimizations and garbage collection can alter the runtime behavior of 

dynamically executed programs. Such changes of program behavior may interfere with 

the tuning of configurable units and affect their energy reduction. Hence, it is important 

to understand how JIT optimization and garbage collection interact with configurable 

hardware units to achieve overall energy reduction.  

This section investigates the interference of JIT optimization and garbage 

collection on the adaptation of the five configurable units listed in Table 2. The hardware 

adaptation framework presented in Chapter 3 manages those configurable units. To allow 



 109

a fair comparison between the CUs, each CU has a performance degradation budget of 

1%. 

7.2.1 Interference of JIT optimization 

7.2.1.1 Energy consumption of hardware units 

To evaluate the interference of JIT optimization on the five configurable units, it 

is important to know the energy impact of JIT optimization on the corresponding fixed 

size units. For the five fixed size units, Table 15 presents the JIT1 energy results as 

fractions of the BASE ones. The smaller the result, the less energy a JIT optimized 

program consumes. 

 

Table 15. Hardware units’ energy consumption in JIT optimized system as fractions of 
those of un-optimized system. 

JIT1/BASE compress jess db javac mpegaudio mtrt jack avg 
IQ (%) 19.0 34.4 39.5 41.4 28.1 36.2 40.8 34.2 
ROB (%) 18.6 35.6 39.3 42.5 27.3 35.1 41.5 34.3 
L1D (%) 20.0 39.6 47.3 44.5 33.9 33.9 43.4 37.5 
L1I (%) 18.0 36.7 40.0 43.0 30.9 34.0 41.5 34.9 
L2 (%) 17.5 32.9 36.8 40.5 27.4 33.6 40.1 32.7 

 

 

Due to JIT optimization, all five hardware units’ energy consumption drops. With 

L2 miss rates reduced by JIT optimization (Table 11), L2 cache enjoys higher energy 

reduction than other units. In contrast, JIT optimization reduces less energy on the L1D 

cache than on others units, owing to the poor L1D performance under JIT optimization 

(Table 11). JIT optimization’s energy impact on the other three units roughly equals to its 

energy impact on the microprocessor (Table 11). Note that higher IQ and ROB 

occupancies (Table 11) do not necessarily mean higher IQ and ROB energy consumption. 
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Despite their high occupancies, both issue queue and reorder buffer are rarely idle, i.e., 

not accessed, in a cycle. Hence, there are no significant changes in those two units’ 

energy consumption. 

7.2.1.2 Impact on overall energy reduction 

To measure the impact of JIT optimization on hardware adaptation, we simulate 

each configurable hardware unit’s energy consumption results in both BASE and JIT1 

levels. To avoid the interference of one CU to another one’s adaptation, each time only 

one CU is adapted, and all other units keep their largest sizes throughout program 

execution. Averaged over all the benchmarks, the results in Figure 36 represent the 

percentages of energy reduced by hardware adaptation in both JIT optimization levels. 

The differences between those two sets of results represent the impact of JIT optimization 

on the CUs’ adaptation. 
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Figure 36. Impact of JIT optimization on configurable unit energy reduction. 

 

According to Figure 36, JIT optimization impairs the adaptation of issue queue, 

reorder buffer, and L1D cache. As Table 11 shows, L1D miss rates increase as JIT 

optimizations are applied. In this case, the L1D cache may choose a larger size to prevent 
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high performance loss and incurs less energy reduction in JIT1 than in BASE. One 

interesting observation is that although higher IQ and ROB occupancies do not mean 

higher energy consumption in the fixed size IQ and ROB, they prevent the configurable 

IQ and ROB to use more aggressive configurations for higher energy saving. Similarly, 

since JIT optimization improves L2 cache’s performance, the cache can use smaller sizes 

for higher energy reduction. Finally, the L1I cache performance is barely affected by JIT 

optimization. Consequently, L1I cache’s adaptation efficiencies (i.e., percentage of 

energy reduction due to hardware adaptation) barely change as the JIT optimizations are 

applied. 

7.2.1.3 JIT optimizer versus application 

Figure 37 further investigates the CUs’ adaptation efficiencies on the JIT 

optimizer (JIT) and the applications (App). For each CU, the energy results are obtained 

for the JIT optimizer and the applications respectively, and are then normalized to the 

corresponding ones using fixed size units to obtain the portions of energy reduced by 

adapting the CUs on the JIT optimizer and the applications. The results in Figure 37 are 

the arithmetic means of the seven benchmarks. 
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Figure 37. Comparison of JIT optimizer and application on configurable unit energy 
reduction. 
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Comparing with the applications, the JIT optimizer achieves higher energy 

reduction on issue queue and reorder buffer, but lower energy reduction on L1D and L2 

caches. During JIT optimization, large intermediate data structures are traversed, 

resulting in a lot of data misses. Examining various conditions to find optimization 

opportunities causes a lot of branches. Consequently, the JIT optimizer usually has little 

ILP and prefers a simpler processor core, and issue queue and reorder buffer achieve 

more energy reduction on the JIT optimizer than on the applications. On the other hand, 

since the intermediate data structures are held in both L1D and L2 caches, it is hard to 

reduce the sizes of the two caches without impairing their performance. Hence, those two 

caches tend to choose more larger configurations on the JIT optimizer than on the 

applications. Finally, the L1I cache achieves similar energy reduction on both the JIT 

optimizer and the applications. 

7.2.2 Interference of garbage collection 

7.2.2.1 Energy consumption of hardware units 

To evaluate the interference of garbage collection on the five configurable units, it 

is important to know the energy impact of garbage collection on the corresponding fixed 

size units. For each fixed size unit, we obtain its energy consumption under different heap 

sizes. Those results are then normalized to those using 200M heap. The results are 

presented in Table 16. Figure 38 presents each unit’s energy averaged across all 

benchmarks, and the three bars for each hardware unit correspond to the three heap sizes. 

The higher the bar, the higher energy the specific unit consumes. For comparison, the 

energy results for the overall system (overall) are also presented in the figure, which are 

the arithmetic means of the one presented in Figure 35. 
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Table 16. Fixed size hardware units’ energy consumption with small heaps as fractions of 
those with 200M heap. 

IQ (%) ROB (%) L1D (%) L1I (%) L2 (%) 
  25M 42.5M 60M 25M 42.5M 60M 25M 42.5M 60M 25M 42.5M 60M 25M 42.5M 60M

compress 110.9 105.4 103.1 110.9 105.4 103.1 108.1 101.3 99.1 107.9 102.2 99.5 111.6 107.3 103.8
jess 119.7 113.2 106.2 119.7 113.0 105.8 114.9 108.1 101.4 114.8 108.4 102.0 120.2 113.2 106.0
db 113.0 106.5 103.6 112.9 106.2 103.8 111.4 102.1 99.8 111.3 102.6 100.0 112.8 106.1 104.2
javac 166.2 146.7 122.9 166.2 145.7 122.6 163.1 137.7 116.7 163.1 141.7 118.5 166.5 144.9 122.4
mpegaudio 106.1 103.3 103.1 106.0 103.2 103.1 103.5 99.3 99.2 103.5 99.5 99.4 106.6 103.7 103.9
mtrt 117.3 102.4 102.3 117.2 102.6 102.6 114.8 97.7 98.1 114.8 99.4 99.2 117.5 105.5 104.8
jack 127.3 117.3 111.7 127.3 117.5 111.9 123.7 112.4 107.2 123.7 113.6 108.0 128.0 119.8 113.7
avg 122.9 113.5 107.6 122.9 113.4 107.6 119.7 108.4 103.1 119.9 109.6 103.8 123.3 114.4 108.4
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Figure 38. Fixed size hardware units’ energy consumption with small heaps as fractions 
of those with 200M heap. (The results are the same as the ones in the last 
column of Table 16). 

As heap size decreases, both level-one caches’ energy increases slower than the 

other hardware units and the microprocessor, due to the two caches’ good performance 

with garbage collection (Table 13). On the other hand, garbage collection significantly 

increases L2 cache misses (Table 13). Consequently, the L2 cache’s energy consumption 

increases much faster than other units. The issue queue and the reorder buffer perform 

similarly to the whole system, implying that garbage collection rarely affect the power 

dissipation of those two units. 
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7.2.2.2 Impact on overall energy reduction 

Both garbage collection and hardware adaptation affect a configurable unit’s 

energy consumption. To examine the two factors, we first obtain each fixed size unit’s 

energy consumption using the 200M heap, which is used as the baseline. Then hardware 

adaptation is enabled, and each unit’s energy consumption is obtained using different 

heap sizes. To prevent the interference between CUs, each experiment tests only one 

configurable unit, and the other units keep constant with their largest configurations. The 

results are normalized to the baseline ones to show the relative change caused by 

hardware adaptation and garbage collection, which are then averaged all benchmarks and 

presented in Figure 39. 
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Figure 39. Impact of garbage collection and hardware adaptation on configurable unit 
energy consumption. 

For all hardware units, a program’s energy consumption is reduced by hardware, 

but increased by garbage collection. With all heap sizes, hardware adaptation reduces all 

CUs’ energy consumption by 20% or more over the baseline. Hence, hardware adaptation 

effectively offsets the energy increase owing to garbage collection. Garbage collection’s 

impact on CU energy consumption varies by CUs. With more frequent garbage 
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collections, issue queue, reorder buffer, and L2 cache’s energy consumption increases 

faster than L1I and L1D cache, similar to the fixed size units (Figure 38). 

Since garbage collection changes program behavior, it may affect hardware 

adaptation’s performance. To study the impact of garbage collection on hardware 

adaptation, we obtain each configurable hardware unit’s energy consumption results with 

different heap sizes. To avoid the interference of one CU to another one’s adaptation, 

each time only one CU is adapted, and all other units keep their largest sizes throughout 

program execution. Then the configurable unit energy results are normalized to the 

corresponding fixed size unit results with the same heap sizes. The results, averaged 

across all benchmarks, are shown in Figure 40. 
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Figure 40. Impact of garbage collection on configurable unit energy reduction. 

 

First, garbage collection’s impact on the three caches differs. The adaptation 

efficiencies of both level-one caches increase as the heap size decreases. As shown in 

Table 13, garbage collection improves L1D and L1I caches’ miss rates, allowing the two 

caches to use more aggressive configurations for higher energy reduction. On the other 
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hand, garbage collection hurts L2 cache’s adaptation efficiency, owing to the increase of 

L2 cache misses caused by garbage collection (Table 13). In this case, reducing the L2 

cache size will inevitably incur more misses and impair the performance. Hence, with 

more garbage collection activities, the L2 cache tends to uses more larger configurations 

and reduces less energy. Moreover, garbage collection adversely affects the adaptation of 

issue queue, while has minimal impact on the reorder buffer’s adaptation. 

7.2.2.3 Garbage collection versus mutator 

Figure 41 separates the activities of the garbage collector from those of the 

mutator, and investigates the CUs’ adaptation efficiencies on the garbage collector (GC) 

and the mutator (Mt) respectively.  

First, the CUs tend to use smaller configurations on the garbage collector than on 

the mutator. Comparing with the mutator, the garbage collector possesses distinct runtime 

characteristics that prefer a simple processor core and small caches for high energy 

reduction. Being small enough [12], the GC code can normally be held in a small 

instruction cache. During garbage collection, pointer-chasings to find surviving heap 

objects result in many data accesses that have poor temporal locality. Hence, reducing 

L1D and L2 cache sizes rarely affects the garbage collector's performance. Being 

memory bound, the garbage collector usually has little ILP, and thus smaller issue queue 

and reorder buffer can be used with minimal performance impact. Hence, all the five CUs 

achieve higher energy reduction on the garbage collector than on the mutator. 

Furthermore, as heap size decreases, the variations of the CUs’ energy reduction on the 

garbage collector are minimal, implying that they are rarely changed by the frequency of 

garbage collections. 

The mutator results in Figure 41 represent the garbage collection’s impact on the 

mutator, which vary by configurable units. With smaller heaps and more garbage 
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collections, IQ, ROB, and L2 cache’s energy reduction on the mutator drops. On the 

other hand, L1D and L1I caches’ adaptation efficiencies rarely changes as heap size 

decreases. The mutator is responsible for the overall variations of CUs’ adaptation 

efficiencies (Figure 39) as heap size changes. 
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Figure 41. Comparison of garbage collector and mutator on configurable unit energy 
reduction. 

 

7.3 DISCUSSION 

The study in this section reveals that dynamic execution interferes with hardware 

adaptation. Both JIT optimization and garbage collection alter programs’ behavior and 

runtime requirements. In an adaptive microarchitecture, such runtime requirements 

changes can considerably interfere with the adaptation of configurable units, and 

eventually affect the overall energy consumption.  

Furthermore, the JIT optimizer and the garbage collector have runtime 

characteristics that differ considerably from application code. Consequently, the 

configurable units’ adaptation preferences on the two DO services can differ substantially 

from the units’ adaptation decisions on the application code. In a multi-threaded dynamic 

optimization system like Jikes RVM, the JIT compiler and the garbage collector use 
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separate threads to the application, which eases the separation of DO services from 

applications and makes hardware tuning for the dynamic optimization services feasible. 

With the growing popularity of dynamic optimization systems in many software 

levels, it is important for a future system to provide high performance for such dynamic 

optimization system. For instance, the code of garbage collector is usually compact, and 

can be fixed in a very small instruction cache [12]. Hence, by providing a very small 

instruction cache configuration, instruction cache energy can be significantly reduced for 

the garbage collector. 

Coprocessors for JIT compilation and garbage collection are proposed previously 

for improving the performance of dynamic optimization systems [57][66]. The study in 

this chapter implies that coprocessors may also benefit a system’s energy efficiency. 

Differing from most applications, both the JIT compiler and the garbage collector prefer a 

simple and narrow execution engine. Such coprocessors should be much simpler and 

dissipate far less power than the main processor. The energy consumed by a coprocessor 

can be further reduced by carefully adjusted its parameters at design time to balance its 

performance and energy. Furthermore, using coprocessors avoids the hardware 

adaptation related overheads for the DO services. Hence, executing the dynamic 

optimization services on coprocessors may consume less energy than executing them on 

the main processor, even though the latter uses hardware adaptation for improved energy 

efficiency. 
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Chapter 8. Conclusions and Future Research 

8.1 CONCLUSIONS 

In adaptive microarchitectures, efficient management of the configurable 

resources is vital for maximizing energy reduction. To achieve high energy reduction, an 

adaptive microarchitecture usually has multiple configurable units. The tuning space 

explodes quickly as more hardware units become configurable. Since hardware units can 

hardly be adapted individually, the straightforward tuning strategy of testing all 

combinatorial configurations results in long tuning process and high tuning overhead, and 

impairs performance significantly. 

This dissertation proposes a hardware adaptation framework that utilizes the 

inherent capabilities of dynamic optimization systems to manage multiple configurable 

units efficiently. Most dynamic optimizers typically detect hot spots for performance 

related optimizations. In the framework, hot spot boundaries are used for phase detection 

and hardware adaptation. Since hot spots are of variable sizes and are often nested, 

program phase behavior that is hierarchical in nature is automatically captured in this 

technique. Utilizing this capability, the framework decouples the reconfiguration of 

different CUs by adjusting the granularity of adaptation based on each CU’s 

reconfiguration cost. This strategy significantly reduces the tuning process, and achieves 

better balance of benefit/overhead for each configurable unit.  

The goal of a hardware adaptation framework is to reduce the overall 

microprocessor energy consumption. In this work, we implement five configurable units, 

and our results indicate that those configurable units consume 60% of a microprocessor’s 

energy. Hence, reducing the energy consumed by those CUs can considerably reduce the 

overall microprocessor energy consumption. Figure 42 presents the percentages of energy 
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reduced for the microprocessor, achieved by adapting the five configurable units using 

the DO-based hardware adaptation framework that employs both CU decoupling and the 

two tuning reduction strategies described in Chapter 6. Using the framework, each CU’s 

energy reduction results and the performance degradation results are presented in Section 

6.3.2. As Figure 42 shows, with a 5% performance loss, the framework reduces a 

microprocessor’s energy consumption by 23% on average. With its ability to manage 

multiple configurable units efficiently, the hardware adaptation framework can further 

improve the microprocessor energy efficiency if more hardware units are configurable. 
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Figure 42. Percentage of a microprocessor’s energy reduced by using the hardware 
adaptation framework to manage the five configurable units.  

 

The following are the major findings and contributions to efficient adaptation of 

multiple configurable units. 

• Efficient adaptation of CUs with diverse adaptation costs via CU decoupling 

This research demonstrates how inherent capabilities of a dynamic optimization 

system can be synergistically employed for efficient management of adaptive 

computing environments. Utilizing existing DO hot spot detection mechanisms, 

the proposed technique accurately detects program behavior at varying 
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granularities, providing the opportunity to significantly reduce the overhead 

associated with adaptation decisions. By matching each hot spot with a subset of 

available configuration units, the number of tested configurations is reduced while 

searching for the most energy-efficient one, thereby reducing the tuning process 

significantly. 

CU decoupling requires that the phases are nested and of variable sizes. As 

demonstrated by the BBV scheme in this work, other hardware adaptation 

schemes can be extended to provide hierarchical phase detection. With this 

capability, they can employ the CU decoupling technique to improve energy 

efficiency. 

• Tuning space reduction via adaptation interference analysis 

During the tuning process of a multi-CU environment, two major factors affecting 

CUs’ tuning decisions are the program runtime characteristics and the interference 

between CUs’ adaptation. The following finds are gained during the investigation 

of those two factors.  

1) One CU's size reduction may relieve/increase the performance pressure on 

the other one, and allows it to use smaller/larger sizes. Such positive 

interference exists between issue queue and reorder buffer. 

2) The interference intensity between CUs varies. L1D and L1I caches have 

minimal mutual interference, and thus can be adapted independently.  

3) For the CUs studied in this dissertation, it is inaccurate to predict a CU’s 

best configuration based on the value of a microarchitecture-dependent 

runtime characteristic, such as IPC.  

With the findings, two tuning reduction strategies are designed to further improve 

the hardware adaptation framework’s efficiency on managing multiple 
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configurable units. The first strategy reduces the latency of tuning L1D and L1I 

caches by adapting them in parallel. Exploiting the positive property between 

issue queue and reorder buffer, the second one reduce the tuning latency of those 

two CUs by avoiding testing combinational configurations that conflict with the 

property. The tuning reduction algorithms are generalized for prune the tuning 

space of multiple independent CUs, or CUs with positive interference. 

• Impact of dynamic optimization services on energy consumption and hardware 

adaptation 

As dynamic optimization systems have been increasingly popular, it is important 

to evaluate the impact of dynamic optimization systems on microprocessor energy 

consumption and hardware adaptation. This paper characterizes the energy and 

power impact of the two most important services of DO systems, Just-in-time 

(JIT) optimization and garbage collection. By reducing instruction counts, JIT 

optimization significantly reduces a program’s energy consumption, while 

garbage collection incurs runtime overhead that consumes more energy. 

Interestingly, both JIT optimization and garbage collection decrease the average 

power dissipated by a program. Detailed analysis reveals that both JIT optimizer 

and JIT optimized code dissipate less power than un-optimized code. Since both 

JIT optimizer and JIT optimized code stress the level-one data cache, during a JIT 

optimized system’ execution, hardware units in the execution engine are more 

likely to be idle and thus dissipate less power than an un-optimized system. On 

the other hand, being memory bound and with low ILP, the garbage collector 

dissipates less power than the mutator, but rarely affects the mutator’s average 

power. This research also reveals that JIT optimization and garbage collection 

interfere with hardware adaptation. Both JIT optimization and garbage collection 
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alter programs’ behavior and runtime requirements. In adaptive 

microarchitectures, such changes of runtime requirements can considerably affect 

the adaptation decisions of configurable hardware units, and eventually influence 

the overall energy consumption of the underlying adaptive microarchitecture. This 

research also studies the adaptation preferences of configurable units on the JIT 

optimizer and the garbage collector. Owing to their distinct runtime 

characteristics, such as both DO services’ poor data cache performance, the two 

dynamic optimization services have adaptation preferences differing substantially 

from the applications. 

8.2 DIRECTIONS FOR FUTURE RESEARCH 

• More configurable units for higher overall energy reduction 

This research implements and investigates reconfiguration of five configurable 

units: issue queue, reorder buffer, level-one instruction and data caches, and level-

two caches. As shown in Section 2.1, many other configurable units, such as 

branch predictors and the filter cache, are proposed. Adapting more configurable 

units efficiently can further improve the energy efficiency of an adaptive 

microarchitecture. Furthermore, those units may possess distinct adaptation 

requirements to the units studied in this research, and the interference between 

those CUs and the existing CUs may be more complex. Investigating those 

configurable units may lead to new tuning-reduction strategies that are specific 

for those configurable units. 

• Accurate prediction of CUs’ best configurations 

One of this research’s findings is that it is inaccurate to predict a CU’s 

configuration from a microarchitecture dependent characteristic. However, it is 

still possible to predict a CUs’ optimization configurations via examining multiple 
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runtime characteristics. A CU’s best configuration for a given phase is the 

smallest one that satisfies the phase’s requirements. Statistical tools, such as 

Principle Component Analysis, can help identify the runtime characteristics that 

are closely correlated with a configurable unit’s adaptation decisions. Another 

way is to analyze the program code to estimate its runtime requirements. In a 

dynamic optimization, the JIT optimizer analyzes the code to find optimization 

opportunities. The same code analysis mechanism can be augmented to help find 

the best configuration for the code. For instance, the code analysis can estimate 

the available instruction-level parallelism of the code, and guide the tuning of 

configurable units, such as pipeline width or functional units, by ruling out 

unpromising configurations, or even avoiding the whole tuning process of the 

CUs if the best configuration can be accurately predicted. With accurate 

prediction of CUs’ best configurations, the lengthy tuning process can be avoided 

to achieve significant reduction of the CUs’ energy consumption. 

• DO-service-aware adaptation 

This research indicates that the configurable units’ adaptation preferences on the 

JIT optimizer and the garbage collector differ considerably from their adaptation 

decisions on the application code. The phenomenon can be exploited by both 

adaptation microarchitectures and hardware adaptation schemes for high energy 

efficiency. A DO-service-aware adaptive microarchitecture can improve its 

energy efficiency by providing hardware configurations accurately matching the 

runtime requirements of the DO services. With a better understanding of the DO 

services’ runtime requirements, a hardware adaptation scheme can also 

significantly reduce the tuning process for those DO services by avoiding testing 
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unpromising configurations, which further improves the energy efficiency of the 

underlying adaptive microarchitecture. 

• Integrated management of adaptive microarchitecture and dynamic voltage and 

frequency scaling 

Currently, the DO-based hardware adaptation framework manages only 

configurable units. It can further improve a system’s energy efficiency by 

incorporating other energy reduction techniques, such as dynamic voltage and 

frequency scaling (DVFS). Integrated management of adaptive microarchitecture 

and DVFS allows the DO-based framework to choose a better technique or a 

combination of both techniques for a given phase, and thus achieves higher 

energy efficiency. 

 

Designing and developing techniques applicable to dynamic optimization systems 

to achieve high energy efficiency is extremely important. A dynamic optimization based 

hardware adaptation framework incorporating some of the techniques mentioned in this 

section will further improve the overall energy efficiency, and enhance its ease of use and 

commercial viability. 
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