

Copyright

by

Robert Henry Bell, Jr.

2005

The Dissertation Committee for Robert Henry Bell, Jr. Certifies that this is the

approved version of the following dissertation:

Automatic Workload Synthesis for Early Design Studies and

Performance Model Validation

Committee:

Lizy K. John, Supervisor

Earl E. Swartzlander, Jr.

Douglas C. Burger

Adnan Aziz

Lieven Eeckhout

Automatic Workload Synthesis for Early Design Studies and

Performance Model Validation

by

Robert Henry Bell, Jr., B.A.; M.S.E.E.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

December 2005

Dedication

To my wife, Susan Carol Honn

And my parents, Robert H. Bell and Joyce W. Bell

 v

Acknowledgements

This work would not have been possible without the support of many people.

I would like to thank my advisor, Dr. Lizy Kurian John, for her advice, support,

wisdom, and guidance. Dr. John had a profound influence on both the overall direction of

this research and the specific content of this dissertation. Her unfailing passion for the

subject matter and sound advice in the face of sometimes difficult issues always pointed

in the correct direction. Her research in the complex fields of computer architecture and

computer performance analysis continues to inspire researchers and developers in both

academia and industry.

I would like to thank my graduate committee for their advice and friendship over

the years. Many thanks are extended to Earl Swartzlander, who co-authored my first

paper as a graduate student at the University of Texas at Austin; Adnan Aziz, whose class

on logic synthesis inspired many analogous thoughts on the automatic synthesis of

workloads; Lieven Eeckhout, for our collaboration on statistical simulation that launched

this work, and his many friendly and helpful comments over the years. Special thanks go

to Doug Burger, whose charm, wisdom, intellect and complete mastery of computer

design are truly an inspiration.

I would also like to thank the many characters that I interacted with in the

Laboratory on Computer Architecture at the University of Texas at Austin, especially Dr.

 vi

Tao Li, Dr. Madhavi Valluri, Dr. Ravi Bhargava, and Dr. Juan Rubio. Their research

ideas, their knowledge in many diverse disciplines, willingness to listen and comment in

many talks and discussions, and friendly help were much appreciated.

I would like to thank the faculty, staff, and administration of the University of

Texas at Austin for providing the venue and resources for a world-class graduate

education in computer architecture and performance analysis. Many thanks go to IBM,

the IBM Systems and Technology Division, and the Advanced Learning Assistance

Program at IBM for providing funding for this work. Thanks to Doug Balser, Tom

Albers, Sam Thomas of IBM, and a special thanks to Jeff Stuecheli. I would like to thank

Dr. Ann Marie Maynard of the IBM Austin Center for Advanced Study for her energy

and enthusiasm in enhancing the interaction between IBM and academia. Thanks to Dr.

James H. Aylor and Dr. Jim Jokl of the University of Virginia, who guided me through

my M.S.E.E. and inspired continuing studies in engineering.

Many thanks go to my family. I would like to thank my father, Robert H. Bell,

who inspired my work in the sciences and engineering, and whose ever-cheerful

demeanor, friendly and helpful company, intellectual curiosity, and unfailing support are

great comforts. Thanks also to my mother, Joyce W. Bell, whose support, kindness,

extensive scientific education, and quest for knowledge are most important to me.

Finally, to my dear wife and friend, Susan C. Honn, a special thanks for enduring

the long hours, late nights, and lost weekends that inevitably result from such an

endeavor; and for her enthusiasm, loving support, and patience over the years - and in

three states - I will be eternally thankful.

Robert H. Bell, Jr.

The University of Texas at Austin

December 2005

 vii

Automatic Workload Synthesis for Early Design Studies and

Performance Model Validation

Publication No._____________

Robert Henry Bell, Jr., Ph. D.

The University of Texas at Austin, 2005

Supervisor: Lizy Kurian John

Computer designers rely on simulation systems to assess the performance of their

designs before the design is transferred to silicon and manufactured. Simulators are used

in early design studies to obtain projections of performance and power over a large space

of potential designs. Modern simulation systems can be four orders of magnitude slower

than native hardware execution. At the same time, the numbers of applications and their

dynamic instruction counts have expanded dramatically. In addition, simulation systems

need to be validated against cycle-accurate models to ensure accurate performance

projections. In prior work, long running applications are used for early design studies

while hand-coded microbenchmarks are used for performance model validation.

One proposed solution for early design studies is statistical simulation, in which

statistics from the workload characterization of an executing application are used to

create a synthetic instruction trace that is executed on a fast performance simulator. In

prior work, workload statistics are collected as average behaviors based on instruction

 viii

types. In the present research, statistics are collected at the granularity of the basic block.

This improves the simulation accuracy of individual instructions.

The basic block statistics form a statistical flow graph that provides a reduced

representation of the application. The synthetic trace generated from a traversal of the

flow graph is combined with memory access models, branching models and novel

program synthesis techniques to automatically create executable code that is useful for

performance model validation. Runtimes for the synthetic versions of the SPEC CPU,

STREAM, TPC-C and Java applications are orders of magnitude faster than the runtimes

of the original applications with performance and power dissipation correlating to within

2.4% and 6.4%, respectively, on average.

The synthetic codes are portable to a variety of platforms, permitting validations

between diverse models and hardware. Synthetic workload characteristics can easily be

modified to model different or future workloads. The use of statistics abstracts

proprietary code, encouraging code sharing between industry and academia. The

significantly reduced execution times consolidate the traditionally disparate workloads

used for early design studies and model validation.

 ix

Table of Contents

Table of Contents... ix

List of Tables ... xiii

List of Figures ..xv

Chapter 1: Introduction ..1
1.1 Early Design Studies and Application Simulation....................................3
1.2 Performance and Power Model Validation...5
1.3 Simulation Strategies ..5
1.4 The Problems and Proposed Solutions ...7
1.5 Thesis Statement ...9
1.6 Contributions...9
1.7 Organization..12

Chapter 2: Workload Modeling and Statistical Simulation13
2.1 Performance Simulation Strategies and Statistical Simulation...............13
2.2 Overview of Statistical Simulation in HLS ..18
2.3 Simulation Results ..21

2.3.1 Experimental Setup and Benchmarks ...21
2.3.2 The HLS Graph Structure ...22
2.3.3 The HLS Processor Model..24
2.3.4 Issues in the Experimental Setup of HLS25
2.3.5 Challenges Modeling the STREAM Loops28

2.4 Improving Processor and Workload Modeling in HLS29
2.4.1 Improving the Processor Model..29
2.4.2 Improvements to Workload Modeling..31

2.4.2.1 Basic Block Modeling Granularity31
2.4.2.2 Basic Block Maps ...34
2.4.2.3 Basic Block Maps for Strong Phases38

2.5 Implementation Costs ...39

 x

2.6 Summary ...41

Chapter 3: Automatic Workload Synthesis..43
3.1 Introduction to Performance Model Validation......................................43
3.2 Synthesis of Representative Workloads..46
3.3 Synthesis Approach ..50

3.3.1 Workload Characterization ...51
3.3.2 Graph Analysis..52

3.3.2.1 Instruction Miss Rate and I-cache Model54
3.3.2.2 Instruction Dependences and Instruction Compatibility.55
3.3.2.3 Loop Counters and Program Termination57
3.3.2.4 Memory Access Model ...57
3.3.2.5 Branch Predictability Model ...60

3.3.3 Register Assignment ...61
3.3.4 Code Generation ...62

3.4 Evaluation of Synthetic Testcase Performance.......................................64
3.4.1 Methodology...64
3.4.2 Evaluation of Synthetic Workload Characteristics65
3.4.3 Evaluation of Design Changes..69
3.4.4 TPC-C Study...75

3.5 Drawbacks and Discussion ...75
3.6 Early Synthesis and Related Workload Synthesis Research...................77
3.7 Summary ...80

Chapter 4: Quantifying the Errors in Workload Characteristics Due to the
 Workload Synthesis Process ..82

4.1 Introduction to Errors in Synthetic Workloads.......................................82
4.2 Sources of Error in Workload Synthesis...84

4.2.1 Sources of Error in Workload Characterization..........................85
4.3.2 Sources of Error in Graph Analysis ..86

4.3.2.1 Instruction Miss Rate and I-cache Model86
4.3.2.2 Instruction Dependences...87

 xi

4.3.2.3 Loop Counters and Program Termination88
4.3.2.4 Memory Access Model ...88
4.3.2.5 Branching Model ..89

4.3.3 Sources of Error in Register Assignment....................................90
4.2.4 Sources of Error in Code Generation..91

4.3 The Flexibility of Statistical Simulation ...92
4.4 Simulation Results ..96

4.4.1 Experimental Setup and Benchmarks ...96
4.4.2 Sensitivities to Changes in Workload Characteristics in
 Statistical Simulation ..97
4.4.3 Sensitivities to Changes in Workload Characteristics from
 Testcase Synthesis ..102

4.5 Summary ...105

Chapter 5: Efficient Power Analysis using the Synthetic Workloads107
5.1 Introduction to Power Dissipation Studies ...107
5.2 Synthetic Testcases and Power Dissipation..109
5.3 Power Simulation Results ...111

5.3.1 Experimental Setup and Benchmarks112
5.3.2 Base Power Dissipation Results..112
5.3.3 Analysis of Design Changes ...116

5.4 Summary ...121

Chapter 6: Performance Model Validation Case Study for the
 IBM POWER5 Chip ...122

6.1 Introduction to the POWER5 Chip ...122
6.2 IBM PowerPC Synthesis and Model Validation124

6.2.1 The POWER5 M1 Performance Model....................................124
6.2.2 PowerPC Performance Model Validation.................................125

6.2.2.1 Validation using RTL Simulation.................................125
6.2.2.2 Validation using a Hardware Emulator.........................128

6.3 Synthesis for PowerPC ...128

 xii

6.3.1 Workload Characterization ...128
6.3.2 Graph Analysis..129

6.3.2.1 Instruction Miss Rate and I-cache Model130
6.3.2.2 Instruction Dependences and Compatibility.................130
6.3.2.3 Loop Counters and Program Termination132
6.3.2.4 Memory Access Model ...132
6.3.2.5 Branch Predictability Model ...137

6.3.3 Register Assignment ...139
6.3.4 Code Generation ...139

6.4 POWER5 Synthesis Results ...140
6.4.1 Experimental Setup...141
6.4.2 Synthesis Results ..141
6.4.3 Design Change Case Study: Rename Registers and Data
 Prefetching ..145

6.5 Performance Model Validation Results ..146
6.5.1 RTL Validation ...146
6.5.2 Hardware Emulation ...149

6.6 Summary ...150

Chapter 7: Conclusions and Future Work..151
7.1 Conclusions...152
7.2 Future Work ..156

Bibliography ..159

Vita ...169

 xiii

List of Tables

Table 1.1: Examples of Modern Benchmarks and Benchmark Suites.....................4

Table 2.1: Machine Configuration for Pisa and Alpha Simulations......................21

Table 2.2: CPI Regression Analysis for the SPEC 95 Benchmark Suites27

Table 2.3: Single-Precision STREAM Loops..27

Table 2.4: Benchmark Information for Implementation Cost Analysis40

Table 2.5: Implementation Costs ...41

Table 3.1: Glossary of Graph Analysis Terms and Reference to Figure 3.354

Table 3.2: Dependence Compatibilities for Alpha and Pisa Synthetic Testcases..55

Table 3.3: Synthetic Testcase Properties ...56

Table 3.4: L1 and L2 Hit Rates as a Function of Stride (in 4B increments)58

Table 3.5: Percent Error by Metric, Synthetics versus Applications.....................66

Table 3.6: Average Synthetic IPC Error and Relative Error by Benchmark Suite....

...72

Table 3.7: Percent IPC Error and Relative Error by Design Change.....................73

Table 4.1: Major Sources of Error in Synthetic Workloads84

Table 4.2: Prominent Workload Characteristics and Pearson Correlation

 Coefficients for Factor Values versus Simulation Results93

Table 4.3: Workload Characteristic Margins (at 3% from Base)101

Table 4.4: Example Workload Characteristic Synthesis Changes (gcc)..............102

Table 4.5: Average Percent Error Differences for Dispatch Window/LSQ and

 Width Studies..105

Table 5.1: Average Power Prediction Error (%), Synthetics vs. Benchmarks113

Table 5.2: Correlation Coefficients of Power Dissipation versus IPC114

 xiv

Table 5.3: Average Absolute and Relative IPC and Power Dissipation Error116

Table 5.4: Correlation Coefficients of Power vs. IPC for Design Changes and

 Quality of Assessing Power Dissipation Changes (Class)..................119

Table 6.1: Graph Analysis Thresholds and Typical Tolerance............................130

Table 6.2: PowerPC Dependence Compatibility Chart131

Table 6.3: L1 and L2 Hit Rate versus Stride (PowerPC).....................................133

Table 6.4: L1 and L2 Hit Rates for Reset Instruction Number (Congruence Class

Walks) ...135

Table 6.5: Synthetic Testcase Properties for the POWER5 Chip........................136

Table 6.6: Synthetic Testcase Memory Access and Branching Factors for the

 POWER5 Chip ..138

Table 6.7: Default Simulation Configuration for the POWER5 Chip141

 xv

List of Figures

Figure 1.1: IPC Prediction Error in Statistical Simulation by Benchmark Suite.....6

Figure 2.1: Overview of Statistical Simulation: Profiling, Synthetic Trace

 Generation, and Trace-Driven Simulation...18

Figure 2.2: Effect of Graph Connectivity in HLS on SPEC INT 95

 Benchmarks..22

Figure 2.3: Effect of Changes in Backward Jump Fraction for gcc.......................23

Figure 2.4: Effect of Changes in Backward or Forward Jump Distance for gcc ...23

Figure 2.5: Error in HLS by Benchmark as Experimental Setup Changes............25

Figure 2.6: Error in HLS by Benchmark Suite as Experimental Setup Changes ..26

Figure 2.7: Disassembled SAXPY Loop in the Pisa Language28

Figure 2.8: Improved Error in HLS by Benchmark as Modeling Changes30

Figure 2.9: Improved Error in HLS by Benchmark Suite as Modeling Changes ..30

Figure 2.10: Improved Error in HLS by Benchmark as Modeling Changes with

 Basic Block Maps ..36

Figure 2.11: Improved Error in HLS by Benchmark Suite as Modeling Changes

 with Basic Block Maps ...36

Figure 2.12: IPC for HLS++ by Benchmark versus SimpleScalar for the

 SPEC 2000 in the Alpha Language ...37

Figure 2.13: Versions of HLS Executing Two-Phase Benchmarks.......................38

Figure 2.14: HLS versus HLS++ for the SPEC 95 Benchmarks38

Figure 2.15: HLS versus HLS++ by Benchmark for the SPEC 95........................39

Figure 3.1: Proprietary Code Sharing using Workload Synthesis49

Figure 3.2: Overview of Workload Synthesis Methodology.................................50

 xvi

Figure 3.3: Step-by-Step Illustration of Synthesis...51

Figure 3.4: Flow Diagram of Graph Analysis Phase of Synthesis53

Figure 3.5: Actual vs. Synthetic IPC ...65

Figure 3.6: Instruction Frequencies ...65

Figure 3.7: Basic Block Sizes ..66

Figure 3.8: I-cache Miss Rates...66

Figure 3.9: Branch Predictability...67

Figure 3.10: L1 D-cache Miss Rates..67

Figure 3.11: L2 Cache Miss Rates...68

Figure 3.12: Average Dependence Distances per Instruction Type and Operand.68

Figure 3.13: Dispatch Window Occupancies per Instruction Type.......................69

Figure 3.14: Dispatch Window Size 32 ...69

Figure 3.15: Dispatch Window Size 64 ...70

Figure 3.16: IPC Error per Dispatch Window ...70

Figure 3.17: Delta IPC as Dispatch Window Increases from 16 to 3270

Figure 3.18: Delta IPC as Dispatch Window Increases from 16 to 6470

Figure 3.19: Delta IPC as L1 Data Latency Increases from 1 to 871

Figure 3.20: Delta IPC as Issue Width Increases from 1 to 4................................71

Figure 4.1: L1 D-cache Hit Rate Factor for gzip ...95

Figure 4.2: L1 I-cache Hit Rate Factor ..97

Figure 4.3: L1 I-cache Hit Rate Factor (expanded) ...97

Figure 4.4: L1 D-cache Hit Rate Factor...98

Figure 4.5: L1 D-cache Hit Rate Factor (expanded)..98

Figure 4.6: L2 Cache Hit Rate Factor..99

Figure 4.7: Branch Predictability Factor..100

 xvii

Figure 4.8: Branch Predictability Factor (expanded)...100

Figure 4.9: Basic Block Changes...101

Figure 4.10: Dependence Distance Factor ...101

Figure 4.11: Changes Due to Synthesis in Statistical Simulation........................103

Figure 4.12: Design Changes (No Synthetic Parameters)104

Figure 4.13: Design Changes (Synthetic Parameters) ...104

Figure 5.1: Power Dissipation per Cycle ...113

Figure 5.2: Power per Cycle vs. IPC for Synthetics ..113

Figure 5.3: Power per Instruction vs. IPC for Synthetics115

Figure 5.4: Power Dissipation per Instruction ...115

Figure 6.1: RTL Validation Methodology using Synthetic Testcases.................126

Figure 6.2: Flow Diagram of Graph Analysis and Thresholds for PowerPC

 Synthesis ...129

Figure 6.3: IPC for Synthetics Normalized to Benchmarks142

Figure 6.4: Average Instruction Frequencies...142

Figure 6.5: Average Basic Block Sizes..143

Figure 6.6: I-cache Miss Rates...143

Figure 6.7: Branch Predictability...143

Figure 6.8: L1 D-cache Miss Rate ...143

Figure 6.9: Average Dependence Distances ..144

Figure 6.10: Normalized Error per Instruction and Cumulative Error for 10K

 Instructions (gcc) ..146

Figure 6.11: Fractions of Instructions with Errors (gcc)......................................148

Figure 6.12: Average Error per Class for All Instructions or Instructions with

 Errors..148

 xviii

Figure 6.13: Numbers of Instructions with Errors by 25-Cycle Bucket (gcc).....148

Figure 6.14: Normalized IPC for M1 versus AWAN for Synthetic Testcases....150

 1

Chapter 1: Introduction

For many years, simulation tools have been used to ease the work of computer

processor design. Among other tasks, simulation tools assess the accuracy and

performance of processor designs before they are manufactured. A processor simulator

applies a program and input dataset to a processor model and simulates the operation of

the processor model.

Processor simulators range from instruction-level (also called functional

simulators) to register-transfer-level (RTL) simulators. Instruction-level simulators

simulate the functionality of the input instructions of a program without regard to how

each instruction is implemented in the hardware. The processor model may be very

simple or non-existent, but the input program and dataset are correctly simulated. RTL

simulators simulate a model of a processor that typically possesses enough detail to be

manufactured. Microarchitectural-level simulators, also known as performance

simulators, operate on performance models that contain more microarchitectural detail

than those exercised by instruction-level simulators but less detail than those exercised by

RTL simulators.

Performance simulators are used to assess the performance of a design with

respect to runtime, or to an aggregate performance metric for a fixed binary, such as

instructions per cycle (IPC) or its inverse, cycles per instruction (CPI). An execution-

driven performance simulator may execute a complete program binary along with an

input dataset on a performance model, while a trace-driven performance simulator may

execute an address trace containing only instruction addresses and partial information for

each instruction [51]. An address trace usually specifies the sequence of executed

 2

instructions in the order that they complete as a program executes dynamically in a

machine.

The workload for a performance simulator is usually the program or collection of

programs that the designer wishes to use to stress the performance model. For example,

the workload of an execution-driven simulator is a program binary and input dataset. The

workloads that are used to assess processor performance are generally known as

benchmarks. A workload is synthetic if it is not a fully functional user program or

application but has specific execution characteristics in common with actual programs. A

synthetic workload may be hand-coded or automatically generated; it may be a program

binary or a trace. The process of automatically creating a synthetic workload is referred

to as workload or program synthesis.

This dissertation is mainly concerned with improving two related tasks that utilize

performance simulators: 1) early design studies and 2) performance and power model

validations. The first task is concerned with the early evaluation of performance and

power on a performance model for many potential designs in a large design space. The

workloads used for early design studies are usually longer-running binaries or traces. The

second task is concerned with deciding how accurate the performance model is with

respect to an RTL model or hardware in later design stages. Because of the slow

execution speed of RTL models, the workloads are usually short hand-coded programs,

known as microbenchmarks or testcases. The benchmarks of interest to the designer,

whether synthetic or not, have much to do with the performance simulation methodology

that is used to carry out these two tasks.

This chapter gives an overview of the problems inherent in carrying out early

design studies and performance model validations. The statistical simulation approach

has been proposed as a solution for early design studies, but it is hampered by inaccurate

 3

traces that are not portable to multiple platforms. The need for complementing synthetic

traces with a workload synthesis capability is presented. One side effect of this solution is

that the traditionally disparate workloads used for early design studies and model

validation are consolidated into the same workload, enabling design studies throughout

the design process with performance models validated using the simulation workloads.

1.1 EARLY DESIGN STUDIES AND APPLICATION SIMULATION

It has long been recognized that many potential design points in a large design

space need to be examined throughout the design process in order to guide and balance

the performance of the overall design as components are added to the design. Thousands

of changes in the microarchitecture of the machine may need to be investigated over the

course of development. Each evaluation requires the execution of a benchmark and input

dataset in a performance simulator. Unfortunately, many performance simulators are four

or more orders of magnitude slower than native hardware.

An additional problem concerns the number of benchmark and dataset pairs that

must be simulated in these design studies. Machines are too complicated to rely on short

testcases or a small set of testcases to assess a design change. Simple codes are

unrepresentative of real application performance; that is, they do not exercise the

machine in the same way as actual codes. Representative codes evoke the same

sequences of machine states as the original application [43], resulting in similar workload

characteristics such as instruction mix, cache miss rates, etc. A code may be partially

representative of an application for some range of instructions or for particular workload

characteristics.

The early synthetic benchmarks such as Whetstone [22] and Dhrystone [103]

were developed to represent the instruction mix of real programs, but they were easily

manipulated by unfair compiler optimizations and became unrepresentative over time.

 4

With synthetic workloads unable to evolve sufficiently, researchers have relied on the

runtimes of real applications to assess computer performance. Recently there has been an

explosion of applications in use as benchmarks. A partial list is given in Table 1.1.

 Table 1.1: Examples of Modern Benchmarks and Benchmark Suites

Application Class Example Benchmark Suites
General, Scientific and Engineering SPEC CPU 89/92/95/2000/2006, STREAM, Livermore Loops
Parallel Processing Perfect Club, NAS loops, SPLASH, Hint
Transactions TPC-A/B/C/D/W
Java SPECjbb, SPECjvm
Servers SFS/LADDIS, SPECweb, AIM, Server Bench, NetBench
Multimedia MiBench, MediaBench, MediaStones
Graphic SPEC GPC, WinBench
Personal Computing WinStone, PCBench, SYSmarks
Miscellaneous Network processing, embedded processors, mobile computing,

telecommunications, bioinformatics…

Trends such as the consolidation of multi-media, telecommunications and

computing technologies on-chip [110] and the emergence of new application classes, like

network processing [111] and bioinformatics [112], and languages, like C++ and Java,

have fueled the benchmark explosion. Ideally, a designer would assess the performance

of design changes using all benchmarks that are similar to any applications an end-user

might execute.

Unfortunately, the length of the benchmarks, in terms of the total dynamic

instruction count, leads to long runtimes and prohibits the simulation of all benchmarks.

For example, the benchmarks in the popular SPEC CPU 2000 suite [89] (also called

SPEC 2000 in this work) have dynamic instruction counts greater than one billion

instructions [37][108] and some have several hundreds of billions of instructions.

Execution times even on the fastest simulators can amount to days for a single design

choice on one benchmark [83][108][28][58].

 5

1.2 PERFORMANCE AND POWER MODEL VALIDATION

Performance model validation seeks to verify that a performance model is

accurate with respect to a cycle-accurate functional model or hardware [13][11].

Inaccurate performance models can lead to incorrect performance projections and design

decisions in the later design studies. Validation of the simulation accuracy of a

performance model is necessary at various points in the design process to minimize

decision errors. To reduce performance simulator runtime, validation is usually not

concerned with machine details that do not contribute significantly to performance such

as manufacturing test structures, elements of the datapath, and specific circuit details.

The validation problem is limited by the speed of the machine model used for

cycle-accurate verification that is being compared to the faster performance simulation.

Just as for early design studies, it is difficult to decide which benchmarks should be used

for model validation, and full simulation of applications on cycle-accurate models is even

worse in terms of runtime than performance simulators.

The problem of validating power models in a microarchitectural simulator has

been approached in the same way as performance model validation. Hand-coded tests or

deductive physical analysis can be used for simple power dissipation validation tests [15],

but validating applications again leads to long runtimes.

1.3 SIMULATION STRATEGIES

Researchers have responded to the long runtimes of modern benchmarks with

various simulation strategies. Analytical models [68] and reduced input datasets [50]

have given way to more accurate sampling techniques [83][108] that can reduce overall

runtimes, but the executions still amount to tens of millions of instructions.

A technique called statistical simulation [71][28] can further reduce the number of

executed instructions used to simulate a workload. In statistical simulation, workload

characteristics are profiled during full benchmark or phase execution, and the resulting

statistics are used to generate a synthetic trace which is then simulated on a performance

model. The simulation typically converges to a result in less than one million

instructions. This property would make synthetic traces very useful as the workloads for

both design studies and model validation.

0
5

10
15
20
25
30
35
40
45
50

All SPECint SPECfp STREAM

Benchmarks

IP
C

 P
re

di
ct

io
n

Er
ro

r (
%

)

SPEC95 Pisa SPEC2000 Alpha

Figure 1.1: IPC Prediction Error in Statistical Simulation by Benchmark Suite

Unfortunately, statistical simulation systems (prior to the present work) can be

inaccurate. Studies have shown that accurate design studies can be carried out when IPC

prediction error is smaller than 10% [27]. Figure 1.1 shows the error in IPC versus cycle-

accurate simulation for the HLS statistical simulation system [71] executing the SPEC

CPU 95 (SPEC 95) Pisa (MIPS) binaries and the SPEC 2000 Alpha binaries. HLS

performs well on the SPEC INT 95 suite, as expected from the results of Oskin et al.

[71], but not as well on the SPEC FP 95 and Pisa STREAM suites, and it is remarkably

poor on all of the Alpha binaries, showing an average error of 27.6%.

 6

 7

In addition to its inaccuracy, the synthetic traces from statistical simulation can

not be executed on execution-driven simulators, RTL models, hardware emulators, or

hardware itself, which would be useful for a variety of validation studies.

1.4 THE PROBLEMS AND PROPOSED SOLUTIONS

In summary, the growing number of applications and the long runtimes of those

applications have caused concern among researchers in the simulation of computer

designs for design studies and model validation. This concern has led to the use of

sampling techniques to reduce runtimes. Statistical simulation further reduces runtimes

and could be useful for consolidation of the workloads for these two tasks, but the

synthetic traces are inaccurate on a variety of application classes, and, even if made

accurate, they can not be executed on the diverse platforms necessary for performance

and power model validation.

This dissertation focuses on the underlying problem: how to create representative

workloads for accurate design studies that are also useful for performance and power

model validations. In proposing a solution, several questions are asked: can the accuracy

of the synthetic traces of statistical simulation be improved such that they are useful for

rapid early design studies on a variety of workloads? Can the improved accuracy of the

simulation technology be harnessed to provide rapid execution on a variety of platforms

for performance and power model validations? Can the very different workloads used for

design studies and model validation be consolidated into a single workload, enabling

design studies with validated performance models?

Similarly, there are primarily three sub-problems that this dissertation addresses:

1) The inaccuracy of the synthetic traces in statistical simulation hinders their

usefulness as tools for design studies.

 8

2) The synthetic traces are not executable on a variety of simulation and

hardware platforms, as would be useful for design studies and performance

and power model validations.

3) The long-running real-world workloads used for design studies are not the

same as the simpler microbenchmarks and testcases used for model validation.

This opens a gap between validation using simpler but unrepresentative

testcases and design studies using workloads which have not been validated

on a performance simulator.

This dissertation provides a conceptual framework to solve these problems. It

proposes specific techniques that improve the workload modeling in statistical simulation

and allow for more accurate trace simulation of a variety of workloads. This makes

possible the improved accuracy of rapid microarchitectural simulations for design

studies. It also proposes the use of the same improved workload modeling technology as

a basis for the synthesis of representative but flexible workloads that converge rapidly to

a result. Workloads are synthesized in a high-level language so that they can be compiled

onto the diverse platforms useful for performance and power model validations without

forfeiting the low-level execution characteristics of the original application. This makes

feasible the performance and power model validations of workloads that better represent

real applications rather than microbenchmarks or other hand-coded workloads. The same

synthetic workloads used for representative early design studies now execute in few

enough instructions to be used for model validation. This consolidates the design study

and model validation workloads into flexible workloads that are useful for a variety of

performance simulation tasks.

 9

1.5 THESIS STATEMENT

Simulation times of modern applications can be extremely long, decreasing their

effectiveness for design studies of performance and power, performance model

validations, and power model validations. Improved statistical modeling of workloads by

modeling at the granularity of the basic block increases simulation accuracy while

keeping runtimes short for rapid design studies. The improved models provide a

foundation for the synthesis of workloads that achieve rapid and accurate performance

and power simulations and model validations, consolidating the workloads used for

design studies and model validation.

1.6 CONTRIBUTIONS

This dissertation makes several contributions to processor modeling and

simulation in statistical simulation, characterization of the performance effects of

individual changes in workload characteristics, a conceptual framework for workload

synthesis, the automatic synthesis of representative workloads, the analysis of processor

power dissipation using synthetic workloads, and performance and power model

validation methodologies. The following paragraphs summarize these contributions:

1) The workload characterization in classical statistical simulation compiles

statistics from executing applications at the granularity of the instruction,

meaning that statistics are collected about a particular instruction class

regardless of the context of the sequence of instructions that led up to its

execution. This dissertation improves the accuracy of the workload modeling

in statistical simulation by compiling statistics at the granularity of the basic

block, that is, it takes into account the sequence of basic blocks encountered

during dynamic execution. This is called a basic block map.

 10

2) Synthetic workloads are useful for design studies, performance model

validation, and power model validation. Classical synthetic workloads are

written at a high language level to be representative of both the static high-

level language features and dynamic low-level instruction frequencies of a

workload. The high-level synthetics have advantages with respect to

portability but they suffer from obsolescence, that is, they lose

representativeness as languages and applications evolve. This dissertation

proposes that workloads synthesized at a high language-level but retaining

low execution-level characteristics using assembly inlining can closely

represent the behavior of applications yet still converge rapidly to a result. It

proposes an automatic workload synthesis process that permits synthetic

workloads to be quickly recreated as the applications or languages change.

3) Because they are written at a high language-level, the synthetic workloads are

portable across a variety of execution-driven and performance simulators and

hardware platforms for the same ISA. They can also be ported across

instruction set architectures by translating one-to-one the inline assembly

instructions to the new instruction set, assuming similar instructions exist in

both ISAs.

4) Since the synthesis process is based on statistical information, altering the

characteristics of the synthetic workload is easy. Individual changes to

program characteristics can be isolated and studied independently. For

example, dependence distances for integer instructions can be modified

changing the dependences of the other instruction types. In addition, changes

to the workload characteristics that are anticipated in future workloads can be

easily incorporated. Continuing with the previous example, if studies of the

 11

workloads of interest show that dependence distances for integer instructions

change by a certain factor per compiler generation, that factor could be

applied to the integer dependences at synthesis-time and instantiated in the

synthetic. Then studies using this future workload could be undertaken. In

addition, the statistical nature of the synthetic workload abstracts the behavior

of the application, effectively hiding its underlying function. The datasets,

function boundaries and variable names are all removed. This encourages the

sharing of proprietary codes for computer architecture research between

industry and academia.

5) The accuracy of a synthetic workload depends on the accurate characterization

of the workload prior to simulation. However, there exists the possibility that

small changes in workload characteristics do not significantly impact

performance in simulation. This has implications for any workload synthesis

process. This dissertation quantifies the effects of the changes in workload

characteristics on performance due to the proposed workload synthesis

methodology.

6) The proposed workload synthesis method attempts to represent application

performance as closely as possible. This dissertation demonstrates that the

synthetic testcases created strictly for representative performance also provide

representative dynamic power dissipation.

7) Performance and power model validation efforts have been limited to

microbenchmarks and random testcases because of the infeasibility of using

long-running applications for validation. Short snippets from the applications

give no guarantee of covering the machine responses of the complete

application. The synthetic workloads created using the proposed techniques

 12

are executable on multiple platforms and can be used for rapid performance

and power model validation. They can also be used for design space

exploration, and a stair-step design exploration approach is suggested.

8) Use of the workload characterization of statistical simulation consolidates the

workloads for both early design studies and model validation in the same

synthetic trace. This closes the gap between the workloads used for early

design studies and those used for validation.

1.7 ORGANIZATION

Chapter 2 presents the proposed workload modeling improvements to statistical

simulation. The concept of modeling and simulation at the granularity of the basic block

is introduced. The cost of the modeling improvements is quantified in terms of the

amount of data collection necessary for the improvements.

Chapter 3 describes the use of the improved workload modeling technology as

input to the proposed representative workload synthesis system. The automatic workload

synthesis methodology is presented.

Chapter 4 investigates the sensitivity of performance results to changes in

workload characteristics in the context of the workload synthesis process. The effects of

the major changes in workload characteristics due to the synthesis process are studied.

Chapter 5 investigates the use of the synthetic workloads for efficient power

dissipation analysis.

Chapter 6 extends the workload synthesis techniques to the detailed performance

models of real-world high-end processors. Performance model validation experiments on

two platforms for an industrial chip, the POWER5 processor, are described.

Chapter 7 concludes the dissertation with a summary of the contributions of the

dissertation and suggestions for future research opportunities.

 13

Chapter 2: Workload Modeling and Statistical Simulation

Statistical simulation systems provide an efficient way to carry out early design

studies for processors [4][27]. This chapter describes statistical simulation and

investigates workload modeling improvements that result in more accurate simulations.

The profiling step is modified to collect dynamic execution statistics at the granularity of

the basic block instead of collecting average statistics at the granularity of each

instruction type.

These improvements to workload modeling also serve as the foundation for the

accurate workload synthesis system discussed in the rest of this dissertation.

2.1 PERFORMANCE SIMULATION STRATEGIES AND STATISTICAL SIMULATION

The increasing complexity of modern processors [46][1][40][82][85] drives detail

into the simulators used to project the performance of the designs and to study design

tradeoffs [27][57][56]. The complexity of the simulator depends on the level of accuracy

required for the performance evaluation, which is related to the maturity of the design in

the development process.

The complexity of the performance simulator is also determined by the kind of

program being simulated. For example, simple bandwidth and latency tests may focus on

the memory subsystem and may not need a detailed processor core model. In general,

however, a performance engineer would like to assess the performance of the full design

and quantify the impact of microarchitectural changes running benchmarks that are

representative of user applications. Applications and their associated datasets are

preferred because microbenchmarks and the synthetic programs like Whetstone [22] and

Dhrystone [103] may not stress the processor in the same manner as actual applications

 14

[36][104][23][7]; that is, simple microbenchmarks and synthetics may not represent the

performance of real programs.

Ideally, the performance of applications would be investigated using a detailed

RTL simulator. However, modern applications and benchmarks like the SPEC 95 and

2000 [89] exhibit dynamic instruction counts in the tens of billions [37][58], making RTL

simulation of the complete programs impractical [83][108][58]. Researchers have turned

to fast architectural simulators like SimpleScalar [16], but even so the runtime for a

complete program can be on the order of hours to days [83][108][58]. The TPC

benchmarks [96] are often used to evaluate database performance, but they are difficult to

set up even in hardware and they also have long runtimes [32][35].

Runtimes can be reduced using reduced input datasets [50], but detailed studies

indicate that accuracies using the smaller datasets are mixed [30][95]. Older codes like

SPEC 89 [89], the debit-credit database benchmark [2], and the PERFECT club scientific

applications [74][18] can be used to reduce runtimes, but they are less representative of

modern applications.

Recent work has shown that there is often more than one benchmark in suites like

the SPEC CPU that exercise machines in essentially the same way when executed [25]

[26][80][28][99][75]. That is, they cover similar workload characteristics [47] when

executed on the machine. The workload characteristics can include IPC, instruction mix,

instruction dependences, cache miss rates, branch predictability, dispatch window

occupancies, average fetches per cyles, etc. In Saveedra-Barrera [80], the runtimes and

workload characteristics of a variety of benchmarks are compared and shown to exhibit

similar behavior. In Dujmovic and Dujmovic [26], the runtimes of the SPEC 95

benchmarks over multiple computer systems are compared and found to contain

significant redundancy with respect to obtaining the same performance on multiple

 15

machines. In Eeckhout [28], principal component and clustering analyses point to

significant similarities in workload characteristics among the SPEC benchmarks. In

Vandierendonck and De Bosschere [99], 80% of the statistical variation in the SPEC

2000 benchmarks can be obtained using only four benchmarks, and 91% using nine

benchmarks. In Phansalkar et al. [75] it is shown that many of the SPEC benchmarks

exhibit similar microarchitecture-independent workload characteristics. These papers

reach the same conclusions, namely, that there are many benchmarks that exhibit similar

workload characteristics.

Even internal to the benchmarks themselves, similar workload characteristics

exist. In Sherwood et al. [83], many applications exhibit phase behavior in which IPC

and other workload characteristics repeat over the runtime of the application. In

Wunderlich et al. [108], fewer than ten thousand samples of one thousand instructions

each from the application execution can achieve CPIs within 3% error of that obtained

executing the complete application. The conclusion from these works is that applications

exhibit a small set of representative phases, and that trace samples of these executions are

sufficient to examine the effect of a design choice for a particular set of workload

characteristics.

In spite of the success of phase identification and trace sampling techniques, even

the fastest trace sampling techniques using benchmarks such as SPEC can require hours

to evaluate a single design choice with one sample and dataset pair on an execution-

driven simulator [83][108][58]. Checkpointed sampling [105][98] trades off dynamic

memory usage versus runtime and can reduce runtimes to minutes, but large numbers of

design points still make investigations of large design spaces prohibitive. Researchers

have also used trace-driven simulation to reduce runtimes [51]. However, traces for just a

 16

few seconds of hardware execution time can be prohibitively large, impact simulation

times, and are not easily modified to study a range of workload spaces [28].

Researchers have responded to long runtimes with the development of simulation

systems that model aspects of the workload or performance model statistically. Noonburg

and Shen [68] present a framework that models the execution of a program on a

particular architecture as a Markov chain. The state space is determined by the

microarchitecture and the transition probabilities are determined by program execution.

The approach is demonstrated for simple in-order machines. Modeling of superscalar,

out-of-order machines would result in unmanageably complex Markov chains.

Statistical simulation systems model the workload and aspects of the machine

performance model statistically [17][71][69][70][48][28]. Statistical simulation can

reduce runtimes to seconds or minutes and dynamic instruction counts to under a million.

Statistics that describe workload characteristics are gathered during dynamic execution

using a profiling tool. The statistics are then used to create a synthetic trace. The trace is

applied to a fast and flexible performance model. The profile collects statistics for both

microarchitecture-independent characteristics, such as the instruction mix and inter-

instruction dependence frequencies, and microarchitecture-dependent statistics, such as

cache miss rates and branch predictabilities. The workload characteristics are collected at

the granularity of individual instruction types - the context in which an instruction

appears in the dynamic instruction stream is not considered. For example, statistics about

integer instructions such as the dependence distance distributions are collected in

aggregate for all integers encountered over the entire execution regardless of the

sequence of instructions executed prior to any particular integer instruction.

The execution engine typically models the stages in a superscalar out-of-order

execution machine including fetch, dispatch, issue, execution, and completion. Cache

 17

accesses are modeled statistically using the miss rates from the profile, and, likewise,

branching behavior is modeled using the global branch predictability from the profile.

Cache misses are modeled as additional latency prior to instruction completion.

Specialized workload features such as load-hit-store address collisions or data (for value

prediction studies) are modeled statistically. In Joshi et al. [48], the execution engine is

modeled as a series of delays, and additional statistics facilitate the modeling of read and

write buffers in a multiprocessor system. Since workload characteristics are determined

from a statistical distribution, the simulation converges to a result much faster than

standard performance simulations.

Statistical simulation systems that correlate well with execution-driven simulators

have been shown to continue to exhibit good accuracy as microarchitecture changes are

applied in design studies [28][29]. Studies have achieved average errors less than 5% on

specific benchmark suites [71][28][29], but most studies examine only the integer SPEC

2000 benchmarks, not a variety of codes.

In this chapter, the correlation of a statistical simulation system, HLS [71], over a

range of benchmarks is studied, from general-purpose applications to technical and

scientific benchmarks, and streaming kernels. The inaccuracy of HLS is studied and the

results are used to improve it. The workload model is improved by collecting information

at the granularity of the basic block instead of at the instruction level, and more detail is

added to the processor model. Modeling detail is incrementally added to the HLS

framework to uncover the additional complexity necessary to improve HLS. The cost of

the improvements in terms of additional storage requirements is quantified.

Also, a simple regression model indicates that CPI results for the SPEC INT 95,

the benchmarks originally used to calibrate HLS, can yield to very simple modeling. The

Real
Trace

Statistical
Profiling

Simulation
Results

Synthetic
Trace

Synthetic
Trace

Generation

Functional
Simulation

Workload Characteristics:
Instruction Distribution

Dependency Distribution

Machine Characteristics:
Cache Miss Rates

Branch Predictability

Trace
Driven

Simulation

Figure 2.1: Overview of Statistical Simulation: Profiling, Synthetic Trace
Generation, and Trace-Driven Simulation

analysis points to a larger problem for simulator developers: using a small set of

benchmarks, datasets and simulated instructions to calibrate a simulation system.

In the next section, statistical simulation in HLS is described. Section 2.3

describes workload and processor modeling problems found in the HLS statistical

simulation system. Section 2.4 investigates improvements to the modeling. The costs of

the improvements are quantified in Section 2.5, followed by a summary of the findings.

2.2 OVERVIEW OF STATISTICAL SIMULATION IN HLS

Statistical simulation is carried out in three major steps: profiling the workload,

creating a synthetic trace from the profile, and simulating the synthetic trace on a

machine model [28]. These steps are shown in Figure 2.1 and are described in the

paragraphs below in the context of the HLS statistical simulation system [71]. This

section and the next describe only prior work implemented in HLS.

 18

 19

In the first step, a real trace from a functional simulation of the workload is fed

into a profiler in which workload and machine characteristics are compiled. In HLS,

machine-independent characteristics are profiled using a modified version of the sim-fast

functional simulator from the SimpleScalar toolset [16]. An instruction mix distribution is

computed that consists of the frequencies of five instruction types: integer, float, load,

store and branches. Also computed are the average basic block size, the block size

standard deviation, and a frequency distribution of the read-after-write dependence

distances between instructions for each input of the five instruction types. Profiling does

not consider instruction anti-dependences. The benchmarks are also executed for one

billion cycles in sim-outorder [16], which provides an IPC to compare against the IPC

obtained in statistical simulation. Sim-outorder also computes the machine

characteristics used for statistical modeling of the locality structures: L1 I-cache and D-

cache miss rates, the unified L2 cache rate, and the branch predictability. These

characteristics could also be profiled in a fast cache simulator like sim-cache or a branch

predictor like sim-bpred, both from the the SimpleScalar toolset.

In the second step, the profiled statistics are used to create a synthetic trace. HLS

generates one hundred basic blocks using a normal random variable over the mean block

size and standard deviation. A uniform random variable over the instruction mix

distribution fills in the instructions of each basic block. For each randomly generated

instruction, a uniform random variable over the dependence distance distribution

generates a dependence for each instruction input. If a dependence points to a store or

branch within the current basic block, another random trial chooses another dependence.

If the dependence stretches beyond the limits of the current basic block, no change is

made because the dynamic predecessor instruction is not known.

 20

The basic blocks are connected into a graph structure. Each branch has both a

taken pointer and a not-taken pointer to other basic blocks. The percentage of backward

branches, set statically to 15% in the code, determines whether the taken pointer is a

backward branch or a forward branch. For backward or forward branches, a normal

random variable over either the mean backward or forward jump distances (set statically

to ten and three in the code, respectively) determines the taken target. Later, during

simulation, normal random variables over the overall branch predictability obtained from

the sim-outorder run determine dynamically if the branch is actually taken or not, and the

corresponding branch target pointer is followed. Note that there is no analysis to

determine that simulation does not get stuck in a sub-graph of the full graph.

In the third step, the synthetic trace is simulated. After the machine statistics are

processed and the basic blocks are configured, the instruction graph is traversed. As each

instruction is encountered, it is simulated on a generalized superscalar execution model.

Execution continues for ten thousand cycles and the IPC is averaged over twenty runs.

The generalized model contains fetch, dispatch, execution, completion, and writeback

stages. Fetches are buffered up to the fetch width of the machine. Instructions are

dispatched to issue queues in front of the execution units and executed as their

dependences are satisfied. Neither an issue width nor a commit width is specified in the

processor model. In HLS, the procedure is to first calibrate the generalized processor

model using a test workload and then execute a reference workload.

For loads, stores, and branches, the locality statistics determine the necessary

delay before issue of dependent instructions. To provide comparison with the

SimpleScalar lsq, loads and stores are serviced by a single queue. Parallel cache miss

operations are provided through the two memory ports available to the load-store

execution unit. As in SimpleScalar, stores execute in zero-time when they reach the tail

of their issue queue and the execution unit is available.

2.3 SIMULATION RESULTS

This section describes the experimental setup and benchmarks used in the

statistical simulation experiments, followed by an examination of HLS, which includes

descriptions of several workload and processor modeling issues. This section describes

only results using the original HLS system, except in section 2.3.4, two experimental set-

up errors are found and the results with the fixes are given.

2.3.1 Experimental Setup and Benchmarks

The experimental procedure follows that in Oskin et al. [71][72]. SimpleScalar

and the statistical simulation software are compiled for big-endian Pisa (MIPS) binaries

on an IBM POWER3 p270. Using the parameters in Table 2.1 as in Oskin et al. [71],

sim-outorder is executed on the SPEC 95 Pisa binaries for up to one billion instructions

for the first reference input dataset. The modified sim-fast is executed on the input dataset

for fifty billion instructions, to approximate complete program simulation.

Table 2.1: Machine Configuration for Pisa and Alpha Simulations

Feature Pisa Alpha
Instruction Size (bytes) 8 (effectively 4) 4
L1/L2 Line Size (bytes) 32/64

Machine Width 4
Dispatch Window/LSQ/IFQ 16/8/4

Memory System 16K 4-way L1 D, 16K 1-way L1 I,
256K 4-way unified L2

L1/L2/Memory Latency 1/6/34

Functional Units 4 I-ALU, 1 I-MUL/DIV,
4 FP-ALU, 1 FP-MUL/DIV

Branch Predictor Bimodal 2K table,
3 cycle misspredict penalty

 21

In these experiments, the SPEC 95 integer benchmarks provide direct comparison

with the original HLS results [71]. The SPEC 95 floating point benchmarks and single-

precision versions of the STREAM and STREAM2 benchmarks [64] are added. Results

are also given for Alpha versions of the SPEC 2000 and STREAM benchmarks. Unless

noted, the following figures are for the SPEC 95 Pisa runs. The STREAM benchmarks

are included because of the particular challenges they pose to statistical simulation

systems, discussed in Section 2.3.5.

2.3.2 The HLS Graph Structure

First, the HLS front-end graph structure is examined. The percentages of

backward branches, the backward branch jump distance, the forward branch jump

distance, and the graph connections themselves are varied. Figure 2.2 shows the effect of

varying the front-end graph connectivity. Baseline is the base HLS system running with

the taken and not-taken branches connected as described in Section 3.2. Random not-

taken is the base system with the not-taken target randomly selected from the configured

basic blocks. Single loop is the base system with the taken and not-taken targets of each

0

0.4

0.8

1.2

1.6

2

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rte

x

co
m

pr
es

s

go

li

IP
C

baseline random not-taken single loop

Figure 2.2: Effect of Graph Connectivity in HLS on SPEC INT 95 Benchmarks

 22

Figure 2.3: Effect of Changes in Backward Jump Fraction for gcc

0

0.2

0.4

0.6

0.8

1

0.
05 0.

1

0.
15 0.

2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Backward Jump Fraction

IP
C

basic block both pointing to the next basic block in the sequence of basic blocks, with the

last basic block pointing back to the first. The maximum error versus the base system is

3.6% for perl using the random not-taken strategy. This is well below the average HLS

correlation error versus SimpleScalar of 15.5% error shown in Figure 1.1.

Figure 2.3 shows the IPC for gcc as the fraction of backward jumps is varied. The

hard-coded HLS default is 15% backward jumps, and the maximum error versus that

default is 2.8%. Figure 2.4 shows IPC as the backward and forward jump distances are

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

Backward or Forward Jump Distance

IP
C

backward jump distance forward jump distance

Figure 2.4: Effect of Changes in Backward or Forward Jump Distance for gcc

 23

 24

varied from their HLS defaults of ten and three, respectively. The maximum change

versus either default is 2.0%.

From these figures, it is apparent that the graph connectivity in HLS has no effect

on simulation performance. Intuitively, HLS models the workload at the granularity of

the instruction. All instructions in all basic blocks in the graph are generated identically.

The instruction type and dependences assigned to any instruction slot in any basic block

in the graph is randomly selected from the global instruction mix distribution, so the

instruction found at any slot on a jump is just as likely to be found at any other slot.

There is also a small probability that the random graph connectivity causes

skewed results because the randomly selected taken targets can form a small loop of basic

blocks, effectively pruning sub-graphs of the graph from the simulation. This is not a

major problem for HLS, in which all blocks are statistically the same, but it has

implications for the improvements to HLS described below, so the single loop strategy is

employed for the remainder of this chapter.

2.3.3 The HLS Processor Model

In the generalized execution model of HLS, there is no issue-width concept. The

issue of instructions to the issue queues is instead limited by the queue sizes and dispatch

window and, ultimately, by the fetch window. There is also no specific completion width

in HLS, so the instruction completion rate is also limited by the front-end fetch window.

These omissions are conducive to obtaining quick convergence to an average result for

well-behaved benchmarks, but they make it difficult to correlate the system to

SimpleScalar for a variety of benchmarks, including STREAM.

2.3.4 Issues in the Experimental Setup of HLS

Figures 2.5 and 2.6 show the IPC prediction error [27] over all benchmarks as

workload modeling issues are incrementally addressed. The baseline run gives the HLS

results out-of-the-box with an average error of 15.5%. While SPEC INT 95 does well

with only 5.8% error, as expected from Oskin et al. [71], SPEC FP 95 has twice the

correlation error at 13.6%. The STREAM loop error is more than four times worse at

27.6%. Recalibrating the generalized HLS processor model did not achieve more

accurate results.

In standard HLS, it may be recalled, measuring microarchitecture-independent

characteristics is carried out on the complete benchmark using sim-fast, whereas

microarchitecture-dependent locality metrics are obtained only for the first one billion

instructions using sim-outorder. It stands to reason that workload information and locality

information should be collected over the same instruction ranges. The 1B Instructions run

gives results with sim-fast executing the same one billion instructions as sim-outorder.

Not all benchmarks improve, but the error in SPEC FP 95 drops by half to 6.8%. Overall

0

10

20

30

40

50

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rte

x
co

m
pr

es go
li

to
m

ca
tv

su
2c

or
hy

dr
o2

d
m

gr
id

ap
pl

u
tu

rb
3d

ap
si

w
av

e5
fp

pp
p

sw
im

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

IP
C

 P
re

di
ct

io
n

Er
ro

r (
%

)

baseline 1B Instructions dependency fix

Figure 2.5: Error in HLS by Benchmark as Experimental Setup Changes

 25

0

5

10

15

20

25

30

All SPECint SPECfp STREAM

IP
C

 P
re

di
ct

io
n

Er
ro

r (
%

)

baseline 1B Instructions dependency fix

Figure 2.6: Error in HLS by Benchmark Suite as Experimental Setup Changes

error decreases to 13.1%. The results indicate that, as could be expected, the SPEC FP

workload characteristics in the first one billion instructions are significantly different than

those over the full execution. The difference is probably due to cache warmup effects.

The modified sim-fast makes no distinction between memory instructions that

carry out auto-increment or auto-decrement on the address register after memory access

and those that do not. The HLS sim-fast code always assumes the auto-modes are active.

This causes the code to assume register dependences that do not actually exist between

memory access instructions, and it makes codes with significant numbers of load and

store address register dependences, including the STREAM loops, appear to run slower.

The sim-fast code was modified to check the instruction operand for the condition and

mark dependences accordingly, and the dependence fix bars in the figures give the

results. The STREAM loops are improved, but the SPEC INT 95 error increases from

4.8% to 9.3%. This is most likely due to the original calibration of the generalized HLS

processor model using SPEC INT 95 in the presence of the modeling error.

 Table 2.2 shows a simple regression analysis over the locality features taken from

sim-outorder runs: branch mispredictability, L1 I-cache and D-cache miss rates, and L2

miss rate. The targeted CPI is the particular CPI targeted in the analysis, either

 26

SimpleScalar or the HLS result. The squared correlation coefficient, R2, is a measure of

the variability in the CPI that is predictable from the four features. The SPEC INT 95

benchmarks always achieve high correlation, while the analysis over all benchmarks or

even over SPEC INT 95 together with SPEC FP 95 achieve lower correlation. This is an

indication that a very simple processor model can potentially represent the CPI of the

SPEC INT 95 by emphasizing the performance of the locality features, but it can not as

easily do the same over all three suites.

Table 2.2: CPI Regression Analysis for the SPEC 95 Benchmark Suites

Benchmarks Targeted CPI R2
HLS 0.988 SPEC INT

SimpleScalar 0.970
HLS 0.972 SPEC INT and SPEC FP

SimpleScalar 0.895
HLS 0.757 SPEC INT, SPEC FP and

STREAM SimpleScalar 0.811

The remaining results in this chapter use the one billion instructions and

dependence experimental setup fixes throughout.

Table 2.3: Single-Precision STREAM Loops

Benchmark Equation Instructions per Loop
saxpy z[k] = z[k] + q * x[k] 10

sdot q = q + z[k] * x[k] 9

sfill z[k] = q 5

scopy z[k] = x[k] 7

ssum2 q = q + x[k] 6

sscale z[k] = q * x[k] 8

striad z[k] = y[k] + q * x[k] 11

ssum1 z[k] = y[k] + x[k] 10

 27

2.3.5 Challenges Modeling the STREAM Loops

The errors for STREAM in Figure 1.1 and Figure 2.6 point to additional workload

modeling challenges in HLS. Table 2.3 shows single-precision versions of the STREAM

benchmarks, including the kernel loop equation and the number of instructions in the

kernel loop when compiled with gcc using -O. The STREAM loops are strongly phased,

and in fact have only a single phase. The loops consist of one or a small number of tight

iterations containing specific instruction sequences that are difficult for statistical

simulation systems, including HLS, to model. Figure 2.7 shows one iteration of the saxpy

loop in the Pisa language [16]. If the mul.s and add.s were switched in the random

instruction generation process leaving the dependence relationships the same, the extra

latency of the multi-cycle mul.s instruction is no longer hidden by the latency of the

second l.s, leading to a generally longer execution time for the loop. A similar effect can

be caused by changes in dependence relationships as the dependences are statistically

generated from a distribution.

Shorter runs are also possible. The mul.s has a dependence on the previous l.s. If

the l.s is switched with the one-cycle add.s, keeping dependences the same, the mul.s can

dispatch much faster. While higher-order ILP distributions might work well for some

loops, the results have been mixed and can actually lead to decrease in accuracy for

start: addu $2, $3, $6
l.s $f2, 0($2)
mul.s $f2, $f4, $f2
l.s $f0, 0($3)
add.s $f2, $f2, $f0
addiu $4, $4, 1
slt $2, $5, $4
s.s $f2, 0($3)
addiu $3, $3, 4
beq $2, $0, start

Figure 2.7: Disassembled SAXPY Loop in the Pisa Language

 28

 29

general-purpose programs [28].

The conclusion from this section is that, for strongly phased workloads like the

STREAM loops, the sequence of instructions obtained from the compiler is critical to

performance. The random instruction generation of HLS has little chance of capturing the

performance of these loops, leading to the errors in Figure 1.1.

2.4 IMPROVING PROCESSOR AND WORKLOAD MODELING IN HLS

The last section the errors in workload and processor modeling in HLS including

challenges the methodology has for the STREAM suite. This section presents the

proposed improvements to the processor and workload models in HLS described in the

last section to obtain more accurate simulation results. All improvements described here

are new.

2.4.1 Improving the Processor Model

It is difficult to correlate the generalized HLS processor model to SimpleScalar

for all benchmarks. For this reason, we augment HLS with a register-update-unit (RUU),

an issue width and a completion width. The completion function in HLS is rewritten to be

non-recurrent and called prior to execution, and the execution unit is rewritten to issue

new instructions only after prior executing instructions have been serviced in the current

cycle. Code is added to differentiate long and short running integer and floating point

instructions.

First, the benchmarks are executed on the improved processor model using the

same workload characteristics modeled in HLS. To get accurate results using the new

processor model, we found experimentally that one thousand basic blocks must be

generated instead of one hundred, and twenty thousand cycles must be simulated instead

of ten thousand, so simulation time is about twice that of HLS. Similar increases in basic

blocks and runtimes in HLS did not improve its results. The execution engine flow,

delays, and parameters for both Pisa and Alpha ISAs are chosen to match those in the

configuration in Table 2.1. The baseline system is validated by comparing sim-outorder

traces obtained from executions of the STREAM loops to traces taken from HLS

simulations.

0
5

10
15
20
25
30
35
40
45

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rte

x
co

m
pr

es go
li

to
m

ca
tv

su
2c

or
hy

dr
o2

d
m

gr
id

ap
pl

u
tu

rb
3d

ap
si

w
av

e5
fp

pp
p

sw
im

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

IP
C

 P
re

di
ct

io
n

Er
ro

r (
%

)

baseline sequences dependencies miss rates bpred stream info

Figure 2.8: Improved Error in HLS by Benchmark as Modeling Changes

 Figure 2.8 gives the results for the individual benchmarks, and Figure 2.9 shows

the average results per benchmark suite. The baseline run gives the improved system

0

2

4

6

8

10

12

14

16

18

All SPECint SPECfp STREAM

IP
C

 P
re

di
ct

io
n

Er
ro

r (
%

)

baseline sequences dependencies miss rates bpred stream info

Figure 2.9: Improved Error in HLS by Benchmark Suite as Modeling Changes

 30

 31

results using the default SimpleScalar parameters and using the global instruction mix,

dependence information, and load and store miss rates. There are errors greater than 25%

for particular benchmarks, such as ijpeg, compress and apsi. The overall error of 14.4% is

better than the 15.5% baseline error in HLS, but it is higher than the 13.1% error shown

in Figure 2.6 for HLS with some improved workload modeling. In the following

subsections, the rest of the bars are explained. The results are additive as each level of

modeling is added.

2.4.2 Improvements to Workload Modeling

The workload model is also enhanced to reduce correlation errors. The analysis of

the graph structure shows that modeling at the granularity of the instruction in HLS does

not contribute to accuracy. In Nussbaum and Smith [69], the basic block size is the

granule of simulation. However, this raises the possibility of aliasing among the basic

block sizes, in which many blocks of the same size but very different instruction

sequences and dependence relationships are combined.

2.4.2.1 Basic Block Modeling Granularity

Instead of risking reduced accuracy with block size aliasing, the workload is

modeled at the granularity of the basic block itself. The dynamic frequencies of all basic

blocks (including instruction sequences, and related workload characteristics such as

dependences and locality statistics) are collected during profiling and used as a

probability distribution function for building the sequence of basic blocks in the graph.

The next basic block is determined using a random variable over the probability

distribution function. To capture cache and branch predictor statistics for the basic

blocks, sim-cache is augmented with the sim-bpred code of SimpleScalar.

 32

For the sequences bars results of Figures 2.8 and 2.9, the basic block instruction

sequences are used, but the dependences and locality statistics for each instruction in each

basic block are still taken from the global statistics found for the entire benchmark. The

overall correlation errors are reduced dramatically for the three classes of benchmarks.

However, some benchmarks such as compress and hydro2d, and the STREAM loops, still

show high correlation errors.

For the dependences results, dependence information local to each basic block is

then included in simulation. In order to reduce the amount of information stored, the

dependences are merged into the smallest dependence relationship found in any basic

block with the same instruction sequence, as in Eeckhout et al. [27]. The average error is

reduced significantly from 8.9% to 6.3%.

On investigation, it was found that the global miss rate calculations do not

correspond to the miss rates from the viewpoint of the memory operations in a basic

block. In the cache statistics, HLS pulls in the overall cache miss rate number from

SimpleScalar, which includes writebacks to the L2. But for individual memory operations

in a basic block, the part of the L2 miss rate due to writebacks should not be included in

the miss rate that is compared to the miss rate local to a basic block. This is because the

writebacks generally occur in parallel with the servicing of the miss so they do not

contribute to the latency of the operation. This argues for either a global L2 miss rate

calculation that does not include writebacks or the maintenance of miss rate information

for each basic block. In addition, examination of the STREAM loops reveals that the miss

rates for loads and stores are quite different. In saxpy, for example, both loads miss to the

L1, but the store always hits. Because of these considerations, the L1 and L2 probabilistic

miss rates for both loads and stores are maintained local to each basic block.

 33

The miss rates results in the figures adds this information for simulation. All

benchmarks improve, but a few of the STREAM loops still have errors greater than 10%.

The problem is that the STREAM loops need information concerning how the load and

store misses overlap and cause the phenomenon known as delayed hits [28]. In most

cases load misses overlap, but the random cache miss variables often cause them to not

overlap, leading to an underestimation of performance. Note that this is the reverse of the

usual situation for statistical simulation in which critical paths are randomized to less

critical paths, and performance is overestimated. An additional run, bpred, includes

branch predictability local to each basic block. This helps a few benchmarks like ijpeg

and hydro2d, but, as expected, the STREAM loops are unaffected.

One solution is to maintain statistics about how frequently memory operations

overlap with each other and model the phenomenon statistically. This solves the delayed

hits problem, but it does not provide a more general model of memory dependences.

Instead, when the workload is characterized, one hundred L1 and L2 hit/miss indicators

(i.e. if the memory operation was an L1 hit or miss or an L2 hit or miss) are maintained

for the sequence of loads and stores in each basic block near the end of the one billion

instruction simulation. Later, during statistical simulation, the stream indicators are used

in order (without pairing them explicitly to particular memory operations) to determine

the miss characteristics of the stream as the loads and stores are encountered. Obviously,

this is an ad hoc and simplistic way to operate, since the stream hit/miss indicators are

simply collected at the end of the run and are therefore not necessarily representative of

the entire run. However, the technique may be useful given the trend to identify and

simulate program phases [83] in which stream information may change little. Still,

simulating one billion instructions without regard to phase behavior, the technique is

expected to help only the STREAM loops, and to negatively affect the others.

 34

The stream info bars in Figure 2.8 show the results. As expected, the STREAM

loops improve significantly. However, only a small amount of accuracy is lost for the

others. This indicates that there is only one or a small number of phases in the first one

billion instructions for most benchmarks, at least with respect to the load and store stream

behavior.

2.4.2.2 Basic Block Maps

In the previous simulations, the basic blocks were not associated with each other

in any way since a random variable over the frequency distribution of the blocks is used

to pick the next basic block to be simulated. At branch execution time, a random variable

based on the global branch predictability is used simply to indicate that a branch

misprediction occurred when the branch was dispatched, causing additional delay penalty

before the next instruction can be fetched, but that is not linked to the successor block

decision. All blocks are treated as if no phases exist in which one area of the graph is

favored over another at different times.

By associating particular basic blocks with each other in specific time intervals,

for example during a program phase, it is expected that better simulation accuracy can be

obtained for multi-phase programs. One way to do that is to specify the phases, the basic

blocks executing in those phases, and the relative frequencies of the basic block

executions during those phases. These three things together constitute a basic block map.

Phase identification requires knowledge of when the relative frequencies of the

basic blocks change. The identification of phases at a coarse granularity is most

effectively carried out using an industrial-strength phase identification program such as

SimPoint [83]. Alternatively, phase-like behavior can be identified dynamically during

simulation by traversing a representation of the control flow graph of the program, called

the statistical flow graph [27]. Since identification is carried out continuously as an

 35

artifact of the simulation, the possibility exists for detecting the fine-grained phases,

called micro-phases, which are small shifts in relative block frequencies internal to a

heavy-duty phase. The experiments below and the additional collaborative research in

Eeckhout et al. [27] show that good accuracy can be achieved using this method.

The concept of basic block maps and the statistical flow graph is related to the

work in Iyengar et al. [42][43]. That work introduces the notion of qualified basic blocks;

that is, the basic blocks are qualified with their context, the particular sequence of basic

blocks that led up to their execution. During dynamic execution of a trace, the workload

characteristics of a basic block, such as branch predictability and cache behavior, are

distinguished based on its execution context, i.e. what the preceding k dynamic basic

blocks were. During creation of a representative trace, the workload characteristics for

the current basic block are determined based on the characteristics recorded for the

context. The context is similar to the statistical flow graph in Eeckhout et al. [27], but the

statistical flow graph is reduced by modeling only the basic block instructions,

dependences and branch predictability, not memory addresses and cache histories. The

basic block map retains this statistical flow graph concept but aggregates the results for

all prior basic blocks into one set of statistics (i.e. the context is all prior basic blocks)

and augments the workload characteristics of each basic block with a history of the

memory access behavior of loads and stores.

To implement this in HLS, each basic block is annotated with a list of pointers to

its successor blocks along with the probabilities of accessing each successor (equivalent

to k = 0 modeling in Eeckhout et al. [27]). By traversing the basic blocks as in the

previous section, but using a random variable over the successor probabilities to pick the

successor, the micro-phase behavior is uncovered. The total number of instances of a

0
5

10
15
20
25
30
35
40
45

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rte

x
co

m
pr

es go
li

to
m

ca
tv

su
2c

or
hy

dr
o2

d
m

gr
id

ap
pl

u
tu

rb
3d

ap
si

w
av

e5
fp

pp
p

sw
im

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

IP
C

 P
re

di
ct

io
n

Er
ro

r (
%

)
baseline sequences dependencies miss rates bpred stream info

Figure 2.10: Improved Error in HLS by Benchmark as Modeling Changes with Basic
Block Maps

basic block is limited to be proportional to its frequency in the original application [27].

The same strategies as before are simulated. This improved HLS system is called HLS++.

Figures 2.10 and 2.11 show the results. The overall error using all techniques is

improved only a little from 4.35% to 4.11%, a 5.5% decrease. SPEC INT 95 is improved

from 6.9% to 4.3%, or 38% on average. The STREAM loops are unchanged since they

consist of a single phase, and there is no advantage in using basic block maps in that case.

0

2

4

6

8

10

12

14

16

18

All SPECint SPECfp STREAM

IP
C

 P
re

di
ct

io
n

Er
ro

r (
%

)

baseline sequences dependencies
miss rates bpred stream info

 36

Figure 2.11: Improved Error in HLS by Benchmark Suite as Modeling Changes with
Basic Block Maps

The SPEC FP 95 show an increase in error from 3.3% to 4.7%. Part of this is due to the

negative effects of using stream information. The low overall improvement agrees with

the results found in the last subsection, in which stream information - which should be

phase dependent - causes few adverse effects. Coupled with increased variance from

simulating only twenty thousand cycles, the result is not surprising. Improvements are

also limited by errors in the graph structure, including the merge of dependences

explained earlier.

In an additional experiment, the SPEC 2000 Alpha profiles are executed in the

original HLS system with the default 100 basic blocks and 10K simulated cycles. An

overall error of 29.2% is obtained, with SPEC INT at 25.7% error, SPEC FP at 23.4%,

and STREAM at 44.5%. The error is higher than the original Pisa error because the

Alpha codes contain more unique basic blocks than Pisa over one billion instructions (on

average 746 unique basic blocks per benchmark versus 524 for Pisa) and the fact that

HLS was calibrated for the SPEC INT 95 benchmarks [71]. Executing with 2500 basic

blocks and 20K cycles does not help. However, the improved system is remarkably more

0

0.5

1

1.5

2

2.5

3

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

k
vo

rte
x

tw
ol

f
m

gr
id

m
es

a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

IP
C

SimpleScalar HLS++

Figure 2.12: IPC for HLS++ by Benchmark versus SimpleScalar for the SPEC 2000 in the
Alpha Language

 37

Figure 2.13: Versions of HLS Executing
Two-Phase Benchmarks

Figure 2.14: HLS versus HLS++ for
the SPEC 95 Benchmarks

0

5

10

15

20

25

30

All SPECint SPECfp STREAM

IP
C

P
re

di
ct

io
n

E
rr

or
 (%

)

HLS HLS++

0

10

20

30

40

sdot_ssum1
sdot_sfill

sscale_ssum2

ssum2_sfill

scopy_sdot

ssum2_sdot
avg

IP
C

 P
re

di
ct

io
n

Er
ro

r (
%

)
HLS Improved HLS (no BB maps) HLS++

accurate. Figure 2.12 compares HLS++ simulation to the cycle accurate run for the SPEC

2000. Shown is an overall 4.7% error. The SPEC INT show an overall error of 4.8%,

SPEC FP 5.7%, and STREAM 2.5%. This experiment demonstrates that the new HLS++

workload and processor modeling is robust across many benchmarks in both ISAs.

2.4.2.3 Basic Block Maps for Strong Phases

Basic block maps demonstrate larger improvements for programs with a number

of strong phases. To demonstrate the effectiveness of the technique, several benchmarks

are created using combinations of the STREAM loops. Figure 2.13 shows, for example,

that a simple code created from the concatenation of sdot and ssum1 has correlation

errors of 39.4% and 14.8% in HLS and HLS++ without basic block maps, respectively.

In HLS++ without basic block maps, given that 50% of the blocks are equivalent to sdot

blocks, and 50% are equivalent to ssum1 blocks, the resulting sequence of basic blocks is

a jumble of both. The behavior of the resulting simulations tends to be pessimistic with

long-latency L2 cache misses forming a critical chain in the dispatch window. When the

basic block map technique is applied, the error shrinks to 0.4%.

 38

Figure 2.14 and 2.15 compare HLS to the complete HLS++ system running with

all optimizations including basic block maps. The improvements show a 4.1% average

error, which is 3.78 times more accurate than the original HLS at 15.5% error.

2.5 IMPLEMENTATION COSTS

 Table 2.4 shows the cost of the improvements in bytes as a function of the

number of basic blocks (NBB), the average length of the basic blocks (LBB), the average

number of loads and stores in the basic block (NLS), the average number of successors in

the basic blocks (SBB), and the amount of stream data used (NSD). NSD is NLS x 100 =

4.71 x 100 = 471 in the runs. Table 2.5 shows the error reduction as the average

reduction in correlation error as each technique augments the previous technique.

 There are only five instruction types, so four bits are used to represent each.

There are two dependences per instruction, each of which is limited to within 255; so two

bytes of storage per instruction are needed. Both load and store miss rates for the L1 and

L2 caches are maintained so four floats are needed. For basic block maps, the successor

pointer and frequency are maintained in a 32-bit address and a float.

Figure 2.15: HLS versus HLS++ by Benchmark for the SPEC 95

0

10

20

30

40

50

gc
c

pe
rl

m
88

ks
im

ijp
eg

vo
rte

x
co

m
pr

es go
li

to
m

ca
tv

su
2c

or
hy

dr
o2

d

m
gr

id
ap

pl
u

tu
rb

3d
ap

si

w
av

e5
fp

pp
p

sw
im

sa
xp

y
sd

ot sf
ill

sc
op

y

ss
um

2
ss

ca
le

st
ria

d

ss
um

1

IP
C

 P
re

di
ct

io
n

Er
ro

r (
%

)

HLS HLS++

 39

Table 2.4: Benchmark Information for Implementation Cost Analysis

Name Number of
Basic Blocks

Average
Block Length

Average Ld/St
per Block

Average Number
of Successors

gcc 2714 12.74 6.07 2.19
perl 575 9.39 4.93 1.82
m88ksim 398 10.90 4.7 1.86
ijpeg 661 13.09 6.03 1.76
vortex 1134 14.38 8.53 1.64
compress 151 8.30 3.4 1.94
go 1732 15.17 5.01 2.26
li 318 8.74 4.42 1.96
tomcatv 258 8.91 3.9 1.9
su2cor 406 9.58 3.84 1.76
hydro2d 646 11.91 3.99 1.81
mgrid 450 12.41 4.74 2.02
applu 552 25.24 8.21 1.87
turb3d 496 12.57 4.92 1.77
apsi 1010 17.94 8.45 1.65
wave5 507 9.89 3.96 1.86
fpppp 452 18.94 8.59 1.77
swim 419 12.44 4.66 1.91
saxpy 177 9.01 3.55 2.12
sdot 109 8.58 3.92 2.3
sfill 177 8.94 3.53 2.12
scopy 177 8.97 3.54 2.12
ssum2 109 8.50 3.89 2.3
sscale 177 8.98 3.54 2.12
striad 177 9.03 3.55 2.12
ssum1 177 9.02 3.55 2.12
Average 524.4 10.7 4.71 1.89

Clearly, including detailed stream data is inefficient on average compared to using

the other techniques, but future work, including phase identification techniques, can seek

to reduce the amount of data being collected.

The same calculations for the SPEC 2000 Alpha benchmarks show that the

averages generally increase: NBB is 745.9, LBB is 13.9, NLS is 5.78, and SBB is 1.74.

Using the same cost formulae in Table 2.5, the average overall cost increases to 161987

 40

bytes per benchmark, but the error decreases from 29.2% to 4.7%, which is itself an

83.9% drop in error rate.

Table 2.5: Implementation Costs

Technique Cost Formula
(Bytes)

Avg. Cost Per
Benchmark (Bytes)

% Error
Reduction

Cost Per % Error
Reduction (Bytes)

~Storage
per Block

Cumulative
Frequencies NBB x 4 2098 1 Float

Sequences NBB x LBB x ½ 2806
42.7% 115

6 Bytes
Dependences NBB x LBB x 2 x 1 11222 25.4% 442 22 Bytes
Miss Rates NBB x 4 x 4 4195 6.5% 645 4 Floats
Branch
Predictability NBB x 4 2098 2.3% 912 1 Float

Stream Info NBB x NSD x ¼ 61701 25.0% 2468 118 Bytes
Basic Block
Maps NBB x SBB x 2 x 4 7929 5.3% 1496 4 Floats

 Overall 92049 73.5% 1252 186 Bytes

2.6 SUMMARY

In this chapter, the concept of modeling the workload at the granularity of the

basic block is presented. The new workload modeling is used to synthesize traces that

help improve the accuracy for the SPEC 95 and STREAM Pisa benchmarks from 15.5%

error to 4.1% error, and for the SPEC 2000 and STREAM Alpha benchmarks from

27.5% error to 4.7% error. In additional findings, the costs of the improvements in terms

of increased storage requirements are quantified to less than 100K bytes and 200K bytes

on average per benchmark for the SPEC 95 and SPEC 2000, respectively, to achieve the

maximum error reduction. Runtime is approximately twice that of HLS. In addition, a

simple regression analysis shows that the SPEC INT 95 workload is easily simulated

using simplistic processor models. This result points to a major pitfall for simulator

developers: reliance on a small set of benchmarks, datasets and simulated instructions to

qualify a simulation system.

 41

 42

In the next chapter, the improved workload modeling becomes the basis for

synthesizing high-level codes that are portable to diverse simulator and hardware

platforms, making them useful for performance and power model validation. The traces

synthesized here for accurate simulation are coupled with novel memory access and

branch predictability modeling algorithms to synthesize C-code with inline assembly

calls that represent the executing application.

 43

Chapter 3: Automatic Workload Synthesis

This chapter describes a process for automatically creating synthetic workloads

for early design studies and performance model validation [7][6][5]. The improved

workload modeling from Chapter 2 is used to create a synthetic trace, which is coupled

with memory access and branching models to synthesize representative testcases.

A distinction is made between workload, benchmark, and testcase synthesis.

Workload synthesis is a generic phrase that is used to describe any automatic program

synthesis capability. Benchmark synthesis usually refers to the synthesis of programs that

represent the workload characteristics of applications that are normally used as

benchmarks of computer performance. Testcase synthesis refers to the synthesis of

workloads that represent most but not all of the workload characteristics of applications

or benchmarks. Testcases are also called reduced or miniature benchmarks. In this

chapter, testcases are synthesized from the SPEC and STREAM benchmarks. The

synthetic testcases represent real workloads better than random, hand-coded or kernel

testcases.

3.1 INTRODUCTION TO PERFORMANCE MODEL VALIDATION

Chapter 2 motivated and discussed the problem of trace synthesis in the context of

improving statistical simulation for design studies. In this chapter, the synthesis process is

extended further to the synthesis of code in a high-level programming language.

Synthetic codes that are created in a programming language are useful for early design

studies as in Chapter 2, but in addition they can be compiled and executed on various

platforms, enabling performance model validation. The model validation problem is now

described to motivate this next step in the synthesis methodology.

 44

In the later phases of the pre-silicon design process, the validation of a

performance model against a functional model or hardware is necessary at various times

in order to minimize incorrect design decisions due to inaccurate performance models

[13][11]. As functional models are improved, accurate performance models can pinpoint

with increasing certainty the effects of particular design changes. This translates into

higher confidence in late pre-silicon or second-pass silicon design performance. Once a

hardware system exists, validation using internal performance counters is possible, but

the process requires trial and error experimentation [73].

Prior validation efforts have focused on microbenchmarks or short tests of

random instructions [14][91][11][66][65][64][67][56]. These tests are usually hand-

written microbenchmarks that validate the basic processor pipeline latencies, including

cycle counts of individual instructions, cache hit and miss latencies, pipeline issue

latencies for back-to-back dependent operations, and pipeline bypassing. Black and Shen

[11] describe tests of up to 100 randomly generated instructions, not enough to

approximate many characteristics of applications. Desikan et al. [23] use

microbenchmarks to validate an Alpha full system simulator to 2% error, but the

validated simulator still gives errors from 18% to 40% on average when executing the

SPEC 2000 benchmarks.

Ideally, SPEC and other applications would be used for performance model

validation, but this is limited by their long runtimes on RTL simulators [13]. In Singhal et

al. [84], only one billion simulated cycles per month are obtained. In Ludden et al. [56],

farms of machines provide many cycles in parallel, but individual tests on a 175 million-

transistor chip model execute orders of magnitude slower than the hardware emulator

speeds of 2500 cycles per second. Sampling techniques such as SimPoint [83], SMARTS

[108] and Luo et al. [58] can reduce application runtimes, making early design studies

 45

feasible, but it is still necessary to execute tens of millions of instructions. Statistical

simulation creates representative synthetic traces with less than one million instructions

[17][71][27], but traces are not useful for functional model validation.

There have been several efforts to synthesize representative codes. Sakamoto et

al. combine a modified trace snippet with a memory image for execution on a specific

machine and a logic simulator [81], but the method is machine-specific and there is no

attempt to reduce the total number of simulated instructions. Intrinsic Checkpointing [79]

inserts memory preload instructions into a compiled program to create a binary that

represents a SimPoint phase, but there is no attempt to reduce the total number of

executed instructions. In Hsieh and Pedram [38], assembly programs are generated that

have the same power consumption signature as applications. However, all workload

characteristics are modeled as microarchitecture-dependent characteristics, so the work is

not useful for studies involving design trade-offs [28]. Wong and Morris [107]

investigate synthesis for the LRU hit function to reduce simulation time, but no method

of simultaneously incorporating other workload characteristics is developed. The research

community recognizes the need for a general way to synthesize useful workloads [86].

In this chapter, the problem of synthesizing flexible workloads for early design

studies and performance validation is discussed. An example synthesis system is

described that uses the improved workload characterization of statistical simulation in

combination with specific memory access and branching models [7][5]. Testcases are

synthesized as C-code with low-level instructions instantiated as asm statements. When

compiled and executed, the synthetic code reproduces the dynamic workload

characteristics of an application, and yet it can be easily executed on a variety of

performance and functional simulators, emulators, and hardware with significantly

reduced runtimes.

 46

The rest of this chapter is organized as follows. Section 3.2 presents properties

important to the usefulness of the testcases and some of their benefits. Sections 3.3 and

3.4 give an overview of the synthesis concepts, approach and experimental results.

Section 3.5 presents drawbacks and discussion. Section 3.6 presents related synthesis

work, and the last section presents a summary.

3.2 SYNTHESIS OF REPRESENTATIVE WORKLOADS

Automatic workload synthesis is most useful if the synthesized workload has the

following two properties:

1) The workload reproduces the machine execution characteristics or machine

states [43] caused by the application upon which it is based.

2) The workload converges to a result much faster than the original application.

If the first property holds, the workload is said to be representative of the original

application, at least over some range of instructions, characteristics, or states. Prior work

usually focuses on one of the properties at the expense of the other, or on both properties

but over a narrow range. The literature is reviewed from this perspective.

The hand-coded tests and automatic random tests in Black and Shen [11]

converge quickly (property 2), but they provide limited or inefficient coverage of all the

instruction interactions in a real application (property 1). The reverse-tracer system [81]

achieves accurate absolute performance for a short trace (property 1), but no runtime

speedup is obtained. In Hsieh and Pedram [38], both properties are achieved, but

workload characteristics that are important to performance, like the instruction sequences

and the dependence distances [4], are not maintained. Intrinsic Checkpointing [79]

achieves both properties but does not reduce the number of instructions that must be

executed to represent a SimPoint phase [83].

 47

In practice, achieving both properties for the representative phases of an entire

workload is difficult, but in most cases it is not necessary. For validation purposes, a

reduced synthetic benchmark need represent only specific application features of interest,

not all features. For early design studies, many prominent workload features must be

represented, but absolute accuracy [27] need not be high as long as performance trends

from design changes are visible, i.e. relative accuracy [27] is high. By synthesizing

workloads that can be used for both purposes, the longer running traces or programs used

for early design studies and the short microbenchmarks used for model validation into

workloads that are in between in length and representativeness are consolidated.

A distinction is made between benchmark representativeness at a high functional

level and representativeness at a low execution level. The most popular synthetic

benchmarks were written in a high-level language to be representative of both the static

high-level language features and dynamic low-level instruction frequencies of an

application [104]. The fact that they were written at the same functional level as the

original application had advantages: the code could be ported to multiple platforms,

rewritten in different languages, and it would respond to compiler optimizations. None of

these attributes, however, is relevant to the main purpose of the synthetic benchmark,

which is property 1) above, i.e. to represent the machine response of the original

workload. As soon as representative code is ported to another machine or language, or

compiled with new compiler technology, even if the static high-level language

characteristics are maintained, the code is most likely no longer representative of the low-

level execution characteristics of the application undergoing the same transformation. A

better outcome would be obtained by first transforming the application, executing it, then

writing a new synthetic benchmark to represent the new workload characteristics of the

application.

 48

This dissertation proposes that low-level, execution-based representativeness is a

more useful focus for the development of synthetic benchmarks. This representativeness

can be achieved by synthesizing a testcase from a workload characterization of the low-

level dynamic runtime characteristics of a compiled and executing application - the same

workload characterization discussed in Chapter 2. The following key observation is

made: the statistical flow graph [71][27][4] is a reduced representation of the control flow

instructions of the application – a compact representative program. In addition, the

synthetic trace from workload characterization converges to an accurate result in a

fraction of the time of the original workload [17][71][27][4]. The representative trace is

combined with novel algorithms for locality structure synthesis to automatically generate

a simple but flexible testcase. The testcase is a C-code envelope surrounding a sequence

of asm calls that reproduce the low-level behavior of the executing basic blocks. The

testcase is easily retargeted for use on machines with similar ISAs. For example,

transforming a C program with Alpha asm calls to PowerPC asm calls is straightforward

given the similarity of the instruction sets, assuming the instructions used in the assembly

calls are simple and have common operations in both ISAs.

Ideally, the synthetic testcases would be benchmark replacements, but the

memory and branching models used to create them introduce errors (Section 3.3), making

them a solution in the “middle” between microbenchmarks and applications. Many of the

application characteristics are maintained, but there is much room for future work into

more accurate models (Section 3.4).

The synthetic traces in statistical simulation have been shown to exhibit

representative behavior when executed on program phases [27][4]. Likewise, a testcase to

represent an entire program can be created by concatenating together testcases

synthesized from each phase. In this work, testcase synthesis on a single phase is

demonstrated.

The C-code envelope increases portability to a variety of execution-driven

simulators, emulators and hardware. At synthesis-time, user parameters can modify

workload characteristics to study predicted trends of future workloads. At runtime,

parameters can switch between sections of code, changing the mix of program phases or

modeling consolidated programs.

Since synthesis is based on low-level workload statistics, questions related to

high-level programming style, language, or library routines that plagued the

representativeness of the early hand-coded synthetic benchmarks such as Whetstone [22]

and Dhrystone [103] are avoided. Synthesis using statistics rather than actual source also

effectively hides the functional meaning of the code and data, and motivates increased

code sharing between industry and academia. Many vendors hesitate to share their

proprietary applications and data for research. This is particularly true in the database,

embedded and systems software areas. Figure 3.1 shows the proposed path to code

sharing. The vendor isolates the phases of the workload that are of interest, carries out

synthesis on each, and sends the corresponding synthetic testcases to the researcher, who

analyzes the workload characteristics of each.

Proprietary
Application

Testcase
Synthesis

System

Abstracted
Synthetic
Testcase

Vendor Research

Figure 3.1: Proprietary Code Sharing using Workload Synthesis

 49

Trace

Synthetic
Pisa

Statistical
Simulation to
Verify Trace

Representativeness

User parms:
instruction mix
factors, stream

treatment

Available
Machine
Registers

Machine
Instruction

Format

 50

3.3 SYNTHESIS APPROACH

Figure 3.2 depicts the synthesis process at a high level. There are four major

phases: workload characterization; graph analysis; register assignment and code

generation. In this section, the synthesis process for the Pisa and Alpha code targets is

presented. The synthesis process for the PowerPC target is described in detail in Chapter

6. Figure 3.3 gives a step-by-step illustration of the process, described below.

At a high level, the statistical flow graph from statistical simulation [27][4] is

obtained, which is a reduced representation of the control flow instructions of the

application. The graph is traversed, giving a representative synthetic trace. Algorithms

are then applied to instantiate low-level instructions, specify branch behaviors and

memory accesses, and generate code, yielding a simple but flexible program.

Figure 1: Synthesis and Simulation Overview

Workload
Characterization

Graph
Analysis

Execution
Comparison

Register
Assignment

Code
Generation

Synthetic
Alpha

Application

Synthetic
PowerPC

1B Instructions nstructions300K I

Figure 3.2: Overview of Workload Synthesis Methodology

Start

A

CB

D

A

B

C

D

A

D

Br

Br

Br

Br

Br

Br

Ld

St

St

Int

Int

Data0

Data1

A

B

C

D

A

D

Br

Br

Br

Br

Br

Br

Ld

St

St

Int

Int

Data 0

Data 1

A

B

C

D

A

D

Br

Br

Br

Br

Br

Br

Ld

St

St

Int

Int

A

B

C

D

A

D

Br

Br

Br

Br

Br

Br

Ld

St

St

Int

Int

(a) Statistical
Flow Graph

(b) After Graph Walk
and Dependency
Assignment

(c) Program
Termination

(d) Data
Access Model

(e) Branching
Model

Int

BRCNTR

Cmp

Int

Cmp

Int

Cmp

Int

LSCNTR

LSCNTR

LSCNTR

LSCNTR

BPCNTR

Figure 3.3: Step-by-Step Illustration of Workload Synthesis

3.3.1 Workload Characterization

The dynamic workload characteristics of the target program are profiled using a

functional simulator, cache simulator and branch predictor simulator. This is the same

profile used for statistical simulation as described in Chapter 2. The basic blocks, the

instruction dependences, the branch predictabilities, and the L1 and L2 I-cache and D-

cache miss rates are characterized at the granularity of the basic block. Instructions are

abstracted into five classes plus sub-types: integer, floating-point (short or long execution

times), load (integer or float), store (integer or float), and branch (on integer or float).

 51

 52

There is no separate input dataset for the synthetic testcases. The input dataset

manifests itself in the final workload characteristics obtained from the execution profile.

While separate testcases must be synthesized for each possible dataset, the automatic

synthesis approach makes that feasible. The IPC and other execution characteristics of

the original workload are tracked to compare to the synthetic result. The workload

characterization process results in a statistical flow graph [27][4]. An example is given in

Figure 3.3(a). Basic blocks A, B, C and D each has various probabilities of branching to

one or more basic blocks.

3.3.2 Graph Analysis

The workload characterization from statistical simulation is used to build the

pieces of the synthetic benchmark. The statistical flow graph is traversed using the

branching probabilities for each basic block, and a linear chain of basic blocks is

assembled, as illustrated in Figure 3.3(b). This chain will eventually be emitted directly

as the central set of low-level operations in the synthetic benchmark. Figure 3.2 shows

that a synthetic trace generated from the graph traversal can be executed in statistical

simulation to verify the representativeness of the workload characterization.

An alternative to the linear chain would be to emit a statistical flow graph

directly. However, the unsolved problem would then be how to ensure that the branching

probabilities from one basic block to its successors would turn out the same as in the

original workload. For example, for basic blocks with more than two high-frequency

successors, multiple instances of the basic block would have to be synthesized in

different parts of the synthetic benchmark. Investigation is needed to determine how to do

that and still obtain not only the correct frequency of the basic block over the two

instances but also the correct frequency of occurrence of its successors and their

successors. By traversing the graph and generating a chain based on the branching

probabilities, the probability of occurrence of each block and its successors is correct by

construction. This assumes that enough basic blocks can be emitted in the synthetic

workload to cover the high-frequency basic blocks and their successors. This turns out to

be the case, empirically. For most workloads, the instruction mix is within 5% of the

original instruction frequencies (see Table 3.5).

Figure 3.2 also shows that user parameters can influence the graph analysis phase.

The parameters currently in use are given in Table 3.3 and are described in the

paragraphs below.

Figure 3.4 represents the analysis carried out during a pass through synthesis plus

execution of the resulting synthetic benchmark. User parameters adjust factors in the

synthesis algorithms to meet particular thresholds or tolerances for the resulting synthetic

workload characteristics. Those shown are typical and determined experimentally. A

particular parameter is designed to affect only one characteristic, but sometimes

characteristics previously analyzed are adversely affected and must be revisited.

Table 3.1 gives a short glossary of the graph analysis terms used in this section

and their applicability to Figure 3.3.

Init number of
basic blocks

based on
I-cache config

Synthesize,
execute, and

compare results

IL1 miss
rate within

1%?

Avg, BB
size within

5%?

Branch
pred. within

5%?

DL1 miss
rate within

5%?

Adjust number
of basic blocks

Adjust large
basic blk factor

Adjust BP
Factor

Adjust stream factor
or miss rate estimate

No No No No

Yes YesYesYes

Figure 3.4: Flow Diagram of Graph Analysis Phase of Synthesis

 53

Table 3.1: Glossary of Graph Analysis Terms and Reference to Figure 3.3

Term Description Definition Figure
IMR I-cache Miss Rate I-cache miss rate acronym. 3.3 (b)

LSCNTR Ld-St Memory Access Counter Integer instruction used to stride through data for memory
access instructions. 3.3(b,d)

BRCNTR Loop Counter Integer instruction that counts down for the number of iterations
to terminate. 3.3(c)

BPCNTR Branch Prediction Counter Integer instruction, either 0 or 1, inverts to cause branches to
jump or not jump. 3.3(e)

BR Branch Predictability Overall branch predictability determined by configuring
BPCNTRs. 3.3(e)

3.3.2.1 Instruction Miss Rate and I-cache Model

The number of basic blocks to be instantiated in the synthetic testcase is estimated

based on a default I-cache size and configuration (16KB, 32B blocks, direct mapped, 4B

instructions), and a workload that continuously rolls through the I-cache is assumed.

Since there are eight instructions per cache block, there will be two misses for every eight

instructions over 4096 in the workload. An initial estimate of the I-cache miss rate (IMR)

is therefore:

))4096(8/()2(NNIMR +⋅⋅=

where N is the number of instructions over 4096. Solving for N, the initial estimate of the

number of instructions above 4096 is:

)41/()40964(IMRIMRN ⋅−⋅⋅=

This assumes the original IMR is less than 0.25. Starting with this estimate, the number

of synthetic basic blocks is tuned to match the original IMR. Specific basic blocks are

chosen from a traversal of the statistical flow graph, as in [27][4]. Usually a small

number of synthesis iterations are necessary to match the IMR because of the effect of

the branching model described below. The numbers of basic blocks and instructions

synthesized for the Alpha versions of the SPEC 2000 and STREAM benchmarks are

 54

shown in Table 3.3, for the Pisa versions of the SPEC 95 and STREAM in Bell and John

[5], and for the PowerPC versions in Chapter 6.

Obviously, synthesizing to a default I-cache size as a starting point is less than

ideal because it means the I-cache behavior is dependent on the chosen I-cache size. The

alternative would be to instantiate a statistical flow graph directly. Assuming the branch

successor problems discussed earlier can be solved, the problem then becomes how to

emit the flow graph such that the correct I-cache miss rate is obtained, while still getting

a runtime speedup versus the original workload.

3.3.2.2 Instruction Dependences and Instruction Compatibility

For each basic block, the instruction input dependences are assigned, Figure

3.3(b). The starting dependence is exactly the dependent instruction chosen as an input

during statistical simulation. The issue then becomes operand compatibility: if the

dependence is not compatible with the input type of the dependent instruction, then

another instruction must be chosen. The algorithm is to move forward and backward from

the starting dependence through the list of instructions in sequence order until the

dependence is compatible. The average number of moves per instruction input is shown

in Table 3.3 for the SPEC 2000 and STREAM in column dependence moves, and is

generally small. In the case of a store or branch that is operating on external data for

Table 3.2: Dependence Compatibilities for Alpha and Pisa Synthetic Testcases

Dependent Instruction Inputs Dependence Compatibility Comment
Integer 0/1 Integer, Load-Integer
Float 0/1 Float, Load-Float

Load-Integer/Float 0 Integer Memory access counter input
Store-Integer 0 Integer, Load-Integer Data input
Store-Float 0 Float, Load-Float Data input

Store-Integer/Float 1 Integer Memory access counter input
Branch-Integer 0/1 Integer, Load-Integer
Branch-Float 0/1 Float, Load-Float

 55

which no other instruction in the program is compatible, an additional variable of the

correct data type is created.

 Table 3.2 shows the compatibility of instructions for the Pisa and Alpha

instruction sets. The Inputs column gives the assembly instruction inputs that are being

tested for compatibility. For loads and stores, the memory access register must be an

integer type. When found, it is attributed as a memory access counter (LSCNTR) for

special processing during the code generation phase.

Table 3.3: Synthetic Testcase Properties

Name
Number
of Basic
Blocks

Number
of Instr-
uctions

Stream
Pools

Code
Regis-

ters

BP
Factor

Stream
Factor

Miss Rate
Est.

Factor

Loop
Iterations

Depend-
ency

Moves

Actual
Runtime (s)

Synthetic
Runtime

(s)

Runtime
Ratio

gcc 850 4585 9 8 1.15 1.07 1.00 51 0.943 6602.85 3.49 1891.93
gzip 408 4218 7 10 1.10 1.01 1.00 71 0.188 16695.06 3.88 4302.85

crafty 635 4896 9 8 1.15 1.00 1.00 54 0.363 6277.21 3.75 1673.92
eon 580 4394 9 8 1.15 1.00 1.00 50 1.209 67064.77 3.15 21290.40
gap 268 4193 9 8 1.15 1.00 1.00 62 0.477 5283.60 3.37 1567.83

bzip2 311 2515 9 8 1.15 1.00 1.00 109 0.147 10853.61 3.70 2933.41
vpr 550 4135 9 8 1.00 1.04 1.00 74 0.977 6470.38 4.32 1497.77
mcf 727 4189 9 8 1.05 1.00 1.00 61 0.374 18450.95 3.41 5410.84

parser 741 3949 9 8 1.10 1.05 1.00 71 0.567 6459.54 3.95 1635.33
perlbmk 606 4263 9 8 1.00 1.00 1.00 61 0.519 22269.29 3.36 6627.76
vortex 947 5006 9 8 1.10 1.00 1.00 47 0.466 5919.24 3.39 1746.09
twolf 739 4315 9 8 1.04 1.08 1.00 72 0.498 18976.74 4.26 4454.63
mgrid 30 3930 7 10 1.20 1.30 0.25 69 9.413 62918.27 3.81 16513.98
mesa 619 4292 9 8 1.05 1.00 1.00 64 0.867 56597.98 3.60 15721.66
art 450 3762 7 10 0.90 1.50 0.47 73 1.111 89628.10 5.74 15614.65

lucas 210 3359 7 10 1.00 1.00 1.00 164 0.691 14697.19 6.28 2340.32
ammp 715 4092 13 4 1.00 1.50 0.50 88 0.152 21799.12 9.34 2333.95
applu 19 3363 7 10 1.50 1.00 1.10 76 20.293 14149.28 4.00 3537.32
apsi 488 4379 7 10 1.00 1.00 0.30 64 7.195 61669.89 3.62 18693.34

equake 758 4328 7 8 1.00 1.00 1.00 65 1.468 17989.55 3.59 5011.02
galgel 273 3967 7 10 1.00 1.50 0.55 66 0.491 24391.40 4.80 5081.54
swim 131 3866 9 8 1.50 1.10 1.00 91 0.579 18347.04 4.97 3691.56

sixtrack 621 4173 9 8 1.00 1.02 1.00 84 1.810 21028.38 4.55 4621.62
wupwise 176 3656 6 6 1.05 1.03 1.00 224 0.926 18306.39 8.56 2138.60
facerec 176 3126 9 8 1.10 0.95 1.05 89 4.622 17156.95 3.79 4526.90
fma3d 869 4377 6 8 1.03 1.00 1.00 147 0.149 32235.77 6.59 4891.62
saxpy 1 10 2 12 1.00 1.00 1.00 30000 0.000 150.78 3.95 38.17
sdot 1 10 2 12 1.00 1.00 1.00 30000 0.000 417.74 3.75 111.40
sfill 1 6 1 12 1.00 1.00 1.00 70000 0.333 202.00 3.65 55.34

scopy 1 8 2 12 1.00 1.00 1.00 30000 0.000 38.24 3.07 12.46
ssum2 1 6 1 12 1.00 1.00 1.00 30000 0.143 53.27 2.26 23.57
sscale 1 8 2 12 1.00 1.00 1.00 30000 0.000 38.37 3.10 12.38
striad 1 12 3 12 1.00 1.00 1.00 30000 0.000 57.16 4.51 12.67
ssum1 1 10 3 12 1.00 1.00 1.00 30000 0.000 91.49 4.24 21.58

 56

 57

3.3.2.3 Loop Counters and Program Termination

When all instructions have compatible dependences, a search is made for an

additional integer instruction that is attributed as the loop counter (BRCNTR) as in Figure

3.3(c). The branch in the last basic block in the program checks the BRCNTR result to

determine when the program is complete. The number of executed loops, loop iterations

in Table 3.3, is chosen to be large enough to assure IPC convergence. Conceptually, this

means that the number of loops must be larger than the longest memory access stream

pattern of any memory operation among the basic blocks. In practice, the number of

loops does not have to be very large to characterize simple stream access patterns.

Experiments have shown that the product of the loop iterations and the number of

instructions must be around 300K to achieve low branch predictabilities and good stream

convergence. The loop iterations are therefore approximately 300K/(number of

instructions). For most workloads this works out to 300K/4000 or 75 iterations. This can

be tuned with a user parameter.

For the Alpha instruction target, an additional integer instruction is converted to a

cmple to compare the BRCNTR to zero for the final branch test.

3.3.2.4 Memory Access Model

The LSCNTR instructions are assigned a stride based on the D-cache hit rate

found for their corresponding load and store accesses during workload characterization,

Figure 3.3(d). For the Pisa and Alpha targets, the memory accesses for data are modeled

using the 16 simple stream access classes shown in Table 3.4.

The stride for a memory access is determined first by matching the L1 hit rate of

the load or store fed by the LSCNTR, after which the L2 hit rate for the stream is

predetermined. If the L1 hit rate is below 12.5%, the L2 hit rate is matched. The table

was generated based on an idealized direct-mapped cache with an L1 line size of 32

Table 3.4: L1 and L2 Hit Rates as a Function of Stride (in 4B increments)

L1 Hit Rate L2 Hit Rate Stride
0.0000 0.000 16
0.0000 0.0625 15
0.0000 0.1250 14
0.0000 0.1875 13
0.0000 0.2500 12
0.0000 0.3125 11
0.0000 0.3750 10
0.0000 0.4375 9
0.0000 0.5000 8
0.1250 0.5000 7
0.2500 0.5000 6
0.3750 0.5000 5
0.5000 0.5000 4
0.6250 0.5000 3
0.7500 0.5000 2
0.8750 0.5000 1
1.0000 N/A 0

bytes, an L2 line size of 64 bytes, and 4 byte load accessess, and the corresponding stride

is shown in 4 byte increments. An access will miss in the L1 every stride/8 accesses if the

stride is less than 8, while every other access to the L2 is a miss. Similarly, an access will

miss in the L2 every stride/16 accesses if the stride is greater than 8, and every access

will miss in the L1. Therefore Table 3.4 is easily formulated:

⎩
⎨
⎧

≥⋅−
<

=

⎩
⎨
⎧

≥
<⋅−

=

8),64/4(1
8,2/1

2

8,0
8),32/4(1

1

stridestride
stride

L

stride
stridestride

L

HitRate

HitRate

By treating all memory accesses as streams and working from a base cache configuration,

the memory access model is kept simple. This reduces the impact on the testcase

instruction sequences and dependences, which have been shown to be critical for

correlation with the original workload [4]. On the other hand, there can be a large error in

stream behavior when an actual stream hit rate falls between the hit rates in two rows,

 58

 59

and the simple model is responsible for correlation error when the cache hierarchy

changes (see Section 3.5). Also, the table is idealized for loads; store writeback traffic is

not considered. More complicated models might traverse cache congruence classes or

pages (to model TLB misses), or move, add, or convert instructions to implement specific

access functions. Adding a few instructions to implement a more complicated model will

not impact most characteristics. There are many high-level models in the literature that

can be investigated for possible implementation in the synthetics, for example [94][20]

[52][88][24][31][61][75].

 In some cases, additional manipulation of the streams was necessary in order to

correlate the testcases because of the cumulative errors in stream selection. In Table 3.3,

the stream factor multiplies the L1 hit rate taken from the table during each lookup, and

if the result is greater than the original hit rate, the selected stream is chosen from the

preceding row. This has the effect of reducing overall hit rates for the first load or store

fed by an LSCNTR.

Because the dependence analysis may cause several memory access operations to

use the same LSCNTR, the overall access rate at the granularity of the basic block may

be significantly in error. During synthesis, the overall miss rate for the basic block is

estimated as the number of LSCNTRs feeding the block divided by the total number of

loads and stores in the block. The miss rate estimate factor in Table 3.3 multiplies the

calculated miss rate estimate and causes the selected table row for the LSCNTR to

change accordingly. Smaller factors increase the basic block miss rate while larger

factors decrease it. Usually a small number of synthesis iterations are needed to find a

combination of factors to model the overall access rates of the application.

3.3.2.5 Branch Predictability Model

A branch predictability model is superimposed onto the set of basic blocks that

already represent the instruction mix, dependences and data access patterns of the

original workload, Figure 3.3(e). To model branch predictability, the number of branches

that will have taken-targets based on the global branch predictability, BR, of the original

application (assumed greater than 50%) is calculated. An integer instruction (attributed as

the BPCNTR) that is not used as a memory access counter or a loop counter is converted

into an invert instruction operating on a particular register every time it is encountered. If

the register is set, the branch jumps past the next basic block in the default loop. The

invert mechanism causes a branch to have a predictability of 50% for 2-bit saturating

counter predictors. The target BR is:

 NNFNFBR /))5.0()1((⋅⋅−+⋅=

where (1 - F) is the fraction of branches in the synthetic benchmark that are configured to

use the invert mechanism, and N is the total number of synthesized branches. Solving for

(1 - F), the fraction of branches that must be configured is 2*(1 – BR). A uniform random

variable over this fraction is used to pick which branches are configured.

The fraction BR is sometimes not sufficient to model the branch predictability

because of variabilities in the mix of dynamic basic blocks used and the code size. To

compensate, the BP Factor in Table 3.3 multiplies BR to increase or decrease the number

of configured branches. Usually a small number of synthesis iterations are needed to tune

this factor.

 In an additional implementation, a branch jumps past a user-defined number of

basic blocks instead of just one, but this did not result in improved branch predictability.

In another implementation, a branch jumps past a user-defined number of instructions in

the next basic block. This also did not improve predictability except for mgrid and applu,

 60

 61

which have large average basic block sizes such that jumping past an entire basic block

significantly changes the instruction mix. In those cases, the branch jumps past ten

instructions of the next basic block.

During synthesis experiments, it was noticed that benchmarks with large average

basic block sizes and therefore small numbers of basic blocks in the final synthetic code

are prone to have a skewed basic block mix that favors shorter basic blocks. For mgrid

and applu, during basic block selection, if a uniform random variable is greater than an

additional factor, set to 0.5 and 0.9, respectively, then the successors of the previous

block that are on average longer than 50 instructions are checked first to be included.

When configuring branches, the BRCNTR, cmple (for Alpha) and BPCNTR instructions

must not be skipped over by a taken branch, or loop iterations may not converge or the

branch predictability may be thrown off. Code regions containing these attributed

instructions are carefully avoided.

 In practice, there are many synthetic benchmarks that more or less satisfy the

metrics obtained from the workload characterization and overall application IPC. As

mentioned above, the usual course of action is to iterate through synthesis a number of

times until the metric deltas are as small as desired [6]. Sometimes the synthesis

tolerances as in Table 3.4 cannot be satisfied using the factors, in which case the best-

case synthesis result with respect to overall performance is retained [8]. Often this results

in errors in the workload characteristics that cancel each other out, as described for

particular benchmarks in Section 3.4. Usually a small number of synthesis iterations are

needed to obtain reasonably small errors in characteristics and performance.

3.3.3 Register Assignment

All architected register usages in the synthetic testcase are assigned exactly during

the register assignment phase. Most ISAs specify dedicated registers that should not be

 62

modified without saving and restoring. In practice, not all registers need to be used to

achieve a good synthesis result. Various experiments showed that usually only 20

general-purpose registers divided between memory access stream counters and code use

are necessary. For the benchmarks under study, the number of registers available for

streams averages about 8 and for code use about 9 (stream pools and code registers in

Table 3.3). Three additional registers are reserved for the BRCNTR, cmple (in Alpha),

and BPCNTR functions.

Data access streams are pooled according to their stream access characteristics

and a register is reserved for each class (stream pools in Table 3.3). All LSCNTRs in the

same pool increment the same register. For applications with large numbers of stream

pools, synthesis consolidates the least frequent pools together (using the most frequent

LSCNTR stride among them) until the total number of registers is under the limit. A

roughly even split between code registers and pool registers improves benchmark quality.

High quality is defined as a high correspondence between the instructions in the compiled

benchmark and the original synthetic C-code instructions. With too few or too many

registers available for code use, the compiler may insert stack operations into the binary.

The machine characteristics may not suffer from a few stack operations, but for this study

the synthetic code is created without them. The available code registers are assigned to

instruction outputs in a round-robin fashion.

3.3.4 Code Generation

The code generator of Figure 3.2 takes the representative instructions, the

instruction attributes from graph analysis, and the register assignments and outputs a

single module of C-code that contains calls to assembly-language instructions in the Pisa

or Alpha languages. Each instruction in the representative trace maps one-to-one to a

single volatile asm call in the C-code. The steps are detailed in the following paragraphs.

 63

 First, the C-code main header is emitted. Then variable declarations are emitted

to link output registers to memory access variables for the stream pools, the loop counter

variable (BRCNTR), the branching variable (BPCNTR), and the cmple variable (in

Alpha). Pointers to the correct memory type for each stream pool are declared, and

malloc calls for the stream data are generated with size based on the number of loop

iterations. Each stream pool register is initialized to point to the head of its malloced data

structure.

The loop counter register (BRCNTR) is initialized to the number of times the

instructions will be executed, and the assignment is emitted. The instructions associated

with the original flow graph traversal are then emitted as volatile calls to assembly

language instructions. Each call is given an associated unique label. The data access

counters (LSCNTRs) are emitted as addiu or addl instructions (for Pisa or Alpha,

respectively) that add their associated stride to the current register value. The BRCNTR is

emitted as an add of minus one to its register. Long latency floating-point operations are

generated using mul.s or muls and short latency operations are generated using add.s or

adds.. Loads use lw, lwz, or l.s, lds, depending on the type, and similarly for stores.

Branches use the beq type, and can have either integer or float operands.

The basic blocks are analyzed and code is generated to print out any unconnected

output registers depending on a switch value. The switch is never set, but the print

statements guarantee that no code is eliminated during compilation. This mechanism,

plus the use of volatile assembly calls, guarantees that no performance-sensitive code will

be eliminated during compilation. Furthermore, the experiments show that none of the

code is reordered by the gcc compiler using these mechanisms.

In a final synthesis step, code to free the malloced memory is emitted, and finally

a C-code footer is emitted. Table 3.3 gives the synthesis information for the SPEC 2000

 64

and STREAM Alpha codes as described in this section. The runtime ratio is the user

runtime of the original benchmark for one billion instructions (1M for STREAM) divided

by the user runtime of the synthetic testcase on various POWER3 (400MHz) and

POWER4 (1.2 GHz) workstations. Variations in runtime reflect network traffic during

the runs. Each pass through the synthesis process takes about three minutes on an IBM

p270 (400 MHz). An average of about ten passes plus think-time were necessary to tune

the synthesis parameters for each testcase.

3.4 EVALUATION OF SYNTHETIC TESTCASE PERFORMANCE

In this section, the performance results for the SPEC 2000 Alpha synthetic

testcases are presented. The results for the SPEC 95 Pisa testcases are found in Bell and

John [5], and synthesis and analysis for the SPEC 2000 PowerPC testcases can be found

in Chapter 6. Aggregate performance metrics are examined, including workload

characteristics as well as the machine responses to the synthetics.

3.4.1 Methodology

The system modified from HLS [71][72] as described in Section 3.2 is used.

SimpleScalar Release 3.0 [16] was downloaded and sim-cache was modified to carry out

the workload characterization. The SPEC 2000 Alpha binaries were executed in sim-

outorder on the first reference dataset for the first one billion instructions, corresponding

to a single program phase [4]. In addition, single-precision versions of the STREAM and

STREAM2 benchmarks [64] with a ten million-loop limit were compiled on an Alpha

machine. The default SimpleScalar configuration in Table 2.1 is used in order to compare

results to the simulations of Section 3.2 and the results of Oskin et al. [71]. While the

machine configuration is relatively small, in the experiments below and in Section 3.6,

the window size and other machine parameters are varied significantly and good

correlations are obtained. It is also a useful configuration for the study of smaller

embedded, DSP or ASIC designs.

The code generator was built into HLS, and C-code was produced using the

synthesis methods of Section 3.3. The synthetic testcases were compiled on an Alpha

machine using gcc with optimization level –O2 and executed to completion in

SimpleScalar.

3.4.2 Evaluation of Synthetic Workload Characteristics

The following figures show results for both the original applications, actual, and

the synthetic testcases, synthetic. Figure 3.5 shows the IPC for the benchmarks. The

average error for the synthetic benchmarks is 2.4%, with a maximum error of 8.0% for

facerec. The reasons for the errors are discussed in the context of the figures below and

Table 3.5, which summarizes the average percent error and maximum error for each

workload characteristic.

Figure 3.6 compares the average instruction percentages over all benchmarks for

each class of instructions. The average prediction error for the synthetic testcases is 3.4%

with a maximum of 7.7% for branches. Figure 3.7 shows that the basic block size varies

per benchmark with an average error of 7.2% and a maximum of 21.1% for mgrid. The

0

0.5

1

1.5

2

2.5

3

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

vo
rte

x
tw

ol
f

m
gr

id
m

es
a

ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

IP
C

actual synthetic

0

0.1

0.2

0.3

0.4

0.5

Integer Float Load Store Branch

In
st

ru
ct

io
n

Fr
eq

ue
nc

ie
s

actual synthetic

Figure 3.6: Instruction Frequencies Figure 3.5: Actual vs. Synthetic IPC

 65

0

22

44

66

88

110
gc

c
gz

ip
cr

af
ty

eo
n

ga
p

bz
ip

2
vp

r
m

cf
pa

rs
er

pe
rlb

m
k

vo
rte

x
tw

ol
f

m
gr

id
m

es
a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

A
ve

ra
ge

 B
lo

ck
 S

iz
e

actual synthetic

Figure 3.8: I-cache Miss Rates

0

0.01

0.02

0.03

0.04

0.05

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

vo
rte

x
tw

ol
f

m
gr

id
m

es
a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

M
is

s
R

at
e

actual synthetic

Figure 3.7: Basic Block Sizes

errors are caused by variations in the fractions of specific basic block types in the

synthetic benchmark with respect to the original workload, which is a direct consequence

of selecting a limited number of basic blocks during synthesis. For example, mgrid is

synthesized with a total of 30 basic blocks made up of only six different unique block

types. Applu is synthesized with 19 basic blocks but 18 unique block types.

The I-cache miss rates are shown in Figure 3.8. They show an error of 8.6% for

benchmarks with IMRs above 1%, with a maximum of 22.9% for sixtrack. The number

of synthetic instructions, however, is within 2.8% of the expected number given the I-

cache configuration calculation in Section 3.3. The errors are due to the process of

choosing a small number of basic blocks with specific block sizes and implementing the

Table 3.5: Percent Error by Metric, Synthetics versus Applications

Metric Avg. %Error Max. %Error
IPC 2.4 8.0 (facerec)
Instruction Frequencies 3.4 7.7 (branches)
Dependence Distances 13.3 41.9 (integers)
Dispatch Occupancies 4.6 11.7 (floats)
Basic Block Sizes 7.2 21.1 (mgrid)
L1 I-cache Miss Rate (>1%) 8.6 22.9 (sixtrack)
L1 D-cache Miss Rate (>1%) 12.3 55.7 (mgrid)
L2 Cache Miss Rate (>15%) 18.4 61.2 (applu)
Branch Predictability 1.5 6.4 (art)

 66

branching model. For miss rates close to zero, a number of instructions less than 4096 is

used, up to the number needed to give an appropriate instruction mix for the testcase. For

the STREAM loops, only one basic block is needed to meet both the IMR and the

instruction mix requirements. For the synthetic testcases, there appears to be a small but

non-zero IMR, versus an essentially zero miss rate for some of the applications. This is

because the synthetic testcases are only executed for about 300K instructions, far fewer

than necessary to achieve a very small I-cache miss rate. However, since the miss rates

are small, their impact on IPC when coupled with the miss penalty is also small.

The average branch predictability error is 1.9%, shown in Figure 3.9. The largest

error is shown for art at 6.4%, and mgrid has the third largest error at 4.9%. The L1 data

cache miss rates are shown in Figure 3.10. For miss rates greater than 1%, the error is

12.3%. For these miss rates, the trends using the synthetic testcases clearly correspond

with those of the original workloads. Again, there is more variation for smaller miss

rates, but again the execution impact is also small.

In Figure 3.11, the unified L2 miss rates are shown. The large errors due to the

simple streaming memory access model are often mitigated by small L1 miss rates. A

good example is gcc, which has only a 2.6% L1 miss rate, and even the small L2 miss

0

0.1

0.2

0.3

0.4

0.5

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

k
vo

rte
x

tw
ol

f
m

gr
id

m
es

a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

M
is

s
R

at
e

actual synthetic

0

0.22

0.44

0.66

0.88

1.1

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

vo
rte

x
tw

ol
f

m
gr

id
m

es
a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

B
ra

nc
h

Pr
ed

ic
ta

bi
lit

y

actual synthetic

Figure 3.9: Branch Predictability Figure 3.10: L1 D-cache Miss Rates

 67

0

0.2

0.4

0.6

0.8

1
gc

c
gz

ip
cr

af
ty

eo
n

ga
p

bz
ip

2
vp

r
m

cf
pa

rs
er

pe
rlb

m
vo

rte
x

tw
ol

f
m

gr
id

m
es

a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

M
is

s
R

at
e

actual synthetic

0

2

4

6

8

I0 I1 F0 F1 L0 S0 S1 B0

A
vg

. D
ep

en
de

nc
y

Di
st

.

actual synthetic

Figure 3.12: Average Dependence Distances
per Instruction Type and OperandFigure 3.11: L2 Cache Miss Rates

rate will not impact IPC significantly. Even though art and ammp have large L1 miss

rates, the smaller L2 miss rates are offset by relatively larger I-cache miss rates and

smaller branch predictabilities. The main cause of these errors is the fact that the current

memory access model focuses on matching the L1 hit rate, and the L2 hit rate is simply

predetermined as a consequence. The large error for ammp is partially explained by the

fact that the small data-footprint synthetic testcases have data-TLB miss rates near zero,

while the actual ammp benchmark has a data-TLB miss rate closer to 13%. As a

consequence, the synthetic version does not correlate well when the dispatch window is

increased and tends to be optimistic.

Figure 3.12 shows the average dependence distances, with 13.3% error on

average. The largest components of error are the integer dependences, caused by the

conversion of many integer instructions to LSCNTRs, the memory access stride counters.

A stride counter overrides the original function of the integer instruction and causes

dependence relationships to change. Another source of error is the movement of

dependences during the search for compatible dependences in the synthesis process. The

movement is usually less than one position (Table 3.3), but mgrid and applu, the

 68

Figure 3.13: Dispatch Window Occupancies
per Instruction Type

Figure 3.14: Dispatch Window Size 32

0

0.5

1

1.5

2

2.5

3

3.5

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

k
vo

rte
x

tw
ol

f
m

gr
id

m
es

a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

IP
C

actual synthetic

0

1

2

3

4

5

6

Integer Float Load Store Branch

A
ve

ra
ge

 O
cc

up
an

cy
actual synthetic

benchmarks with the largest average block sizes at 100.07 and 93.42, respectively, show

significant movement. The branching model also contributes errors.

 Despite the dependence distance errors, Figure 3.13 shows that the average

dispatch window occupancies are similar to those of the original benchmarks with an

average error of 4.6%.

3.4.3 Evaluation of Design Changes

Design changes using the same synthetic testcases are studied; that is, the same

testcases used in the last section are re-executed after changing the machine parameters in

SimpleScalar. Table 3.6 shows average results over all benchmarks for several design

studies using Pisa and Alpha benchmarks. Several of these are investigated in more depth

below with the help of figures that display results for all benchmarks. Some of the studies

show significant change in IPC when the design change is applied; this issue is examined

more carefully in Chapter 5.

Figures 3.14 and 3.15 show the absolute IPCs using a dispatch window of 32 and

64 and no change in LSQ with average errors of 3.0% and 3.1%, respectively. These

numbers do not include ammp; as explained in the last section, ammp tends to be

optimistic when the dispatch window changes because the small data footprint testcases

 69

0

0.5

1

1.5

2

2.5

3

3.5
gc

c
gz

ip
cr

af
ty

eo
n

ga
p

bz
ip

2
vp

r
m

cf
pa

rs
er

pe
rlb

m
k

vo
rte

x
tw

ol
f

m
gr

id
m

es
a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

IP
C

actual synthetic

0

10

20

30

40

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

vo
rte

x
tw

ol
f

m
gr

id
m

es
a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

IP
C

 P
re

di
ct

on
 E

rr
or

 (%
)

32 64

Figure 3.16: IPC Error per Dispatch Window Figure 3.15: Dispatch Window Size 64

do not model data-TLB misses. Figure 3.16 graphs the IPC prediction errors for the

dispatch windows. Most errors, except for ammp, are below 5%.

 Figures 3.17 and 3.18 show the absolute change in IPC, delta IPC, as the same

benchmarks and testcases are executed first with the default configuration (dispatch

window of 16) and then with the dispatch window sizes changed to 32 and 64

respectively. The average relative errors are 1.3% and 1.5%, respectively. The graphs

show that, when an application change is large with respect to the changes in the other

applications, the synthetic testcase change is also large relative to the change in the other

synthetic testcases. These IPC changes would be large enough to trigger additional

studies using a detailed cycle-accurate simulator, including an analysis of ammp. Chip

0

0.1

0.2

0.3

0.4

0.5

0.6

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

vo
rte

x
tw

ol
f

m
gr

id
m

es
a

ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

D
el

ta
 IP

C

actual synthetic

0

0.1

0.2

0.3

0.4

0.5

0.6

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

vo
rte

x
tw

ol
f

m
gr

id
m

es
a

ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

D
el

ta
 IP

C

actual synthetic

Figure 3.18: Delta IPC as Disp. Window
Increases from 16 to 64

 70

Figure 3.17: Delta IPC as Disp. Window
Increases from 16 to 32

0

0.2

0.4

0.6

0.8

1

1.2
gc

c
gz

ip
cr

af
ty

eo
n

ga
p

bz
ip

2
vp

r
m

cf
pa

rs
er

pe
rlb

m
vo

rte
x

tw
ol

f
m

gr
id

m
es

a
ar

t
lu

ca
s

am
m

p
ap

pl
u

ap
si

eq
ua

ke
ga

lg
el

sw
im

si
xt

ra
ck

w
up

w
is

fa
ce

re
c

fm
a3

d
sa

xp
y

sd
ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

De
lta

 IP
C

actual synthetic

Figure 3.20: Delta IPC as Issue Width
Increases from 1 to 4

0

0.5

1

1.5

2

2.5

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

k
vo

rte
x

tw
ol

f
m

gr
id

m
es

a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

D
el

ta
 IP

C

actual synthetic

Figure 3.19: Delta IPC as L1 Data Latency
Increases from 1 to 8

designers are looking for cases in a large design space in which a design change may

improve or worsen a design. In the case of the dispatch window studies, the results would

trigger further cycle-accurate studies of lucas, ammp, swim, wupwise, fma3d and the

STREAM benchmarks. Alternatively, the designers might be curious why the change did

not help the SPEC INT testcases.

Figure 3.19 shows the delta IPC as the L1 D-cache latency is increased from 1 to

8. The average absolute IPC error is 9.5% and the relative error is 9.7%. The errors are

high, but the larger changes in the actual benchmarks over 1B instructions are reflected in

the synthetic testcases that run in seconds. However, it is apparent that the memory

access model is less accurate for SPEC INT than for the other testcases. In fact, the

average relative error for SPEC INT is 19.9% versus 4.2% for the others.

Figure 3.20 shows better results for the delta IPC as the issue width increases

from 1 to 4. The average absolute error is 1.9%, and the relative error is 2.4%. Similar

results for commit width changes, doubling the L1 D-cache (to 256 sets, 64B cache line,

8-way set associative), and doubling the L1 I-cache configuration (to 1024 sets, 64B

cache line, 2-way set associativity) are shown in Table 3.6. Results are reproduced from

 71

the technical report [5] for the SPEC 95 testcases synthesized the same way but targeting

the Pisa ISA.

Table 3.7 lists results for the SPEC 2000 programs and gives results for additional

design change studies to facilitate comparative analysis. A change in machine width

implies that the decode width, issue width and commit width all change by the same

amount from the base configuration in Table 3.5. When the caches are increased or

decreased by a factor, the number of sets for the L1 I-cache, D-cache and L2 cache are

increased or decreased by that factor. Likewise, when the bimodal branch predictor is

multiplied by a factor, the table size is multiplied by that factor from the default size. As

before, the L1 D-cache 2x and L1 I-cache 2x specify a doubling of the L1 D-cache (to

256 sets, 64B cache line, 8-way set associativity), and a doubling of the L1 I-cache

configuration (to 1024 sets, 64B cache line, 2-way set associativity). Also as before, the

numbers here do not include ammp; as explained, ammp tends to be optimistic when the

dispatch window changes because the small data footprint testcases do not model data-

TLB misses.

Table 3.6: Average Synthetic IPC Error and Relative Error by Benchmark Suite

SPEC 95
(Perfect Branching)

SPEC 95
(Branching Model)

SPEC 2000
(Branching Model)

Design Change
%Error %Rel.Err. %Error %Rel Err. %Error %Rel Err.

Dispatch Window 16, LSQ 8 3.9 n/a 2.4 n/a 2.4 n/a
Dispatch Window 32, LSQ 8 3.2 2.1 3.1 2.2 3.1 1.3
Dispatch Window 64, LSQ 8 3.1 2.7 3.3 2.4 3.0 1.5
Issue Width 1 (other widths 4) 2.6 4.1 2.1 2.2 1.9 2.3
Commit Width 1 (other widths 4) 2.8 4.2 3.2 3.9 2.8 2.7
Commit Width 8 (other widths 4) 3.7 1.1 2.6 1.4 2.4 0.2
L1 I-cache 2x (1024:64:2) 9.8 8.2 8.7 7.5 3.0 1.3
L1 D-cache 2x (256:64:8) 4.3 2.1 3.2 2.4 3.1 1.0
L1 D-cache Latency 8 8.9 6.9 11.1 10.4 9.5 9.7

 72

Table 3.7: Percent IPC Error and Relative Error by Design Change

Design Change Avg. %Error Avg. %Rel. Err.
Dispatch Window 8, LSQ 4 2.8 2.4
Dispatch Window 32, LSQ 16 3.7 2.1
Dispatch Window 48, LSQ 24 4.9 3.8
Dispatch Window 64, LSQ 32 6.1 5.1
Dispatch Window 96, LSQ 48 8.3 7.5
Dispatch Window 128, LSQ 64 9.0 8.3
Machine Width 2 2.7 1.6
Machine Width 6 2.6 1.1
Machine Width 8 2.6 1.1
Machine Width 10 2.6 1.1
Issue Width 1 1.9 2.3
Issue Width 8 2.7 1.0
Commit Width 1 2.8 2.1
Commit Width 8 2.4 0.2
Instruction Fetch Queue 8 2.6 0.5
Instruction Fetch Queue 16 2.7 0.8
Instruction Fetch Queue 32 3.0 1.1
Caches 0.25x 20.1 19.4
Caches 0.5x 24.8 23.9
Caches 2x 4.1 3.3
Caches 4x 4.7 3.8
L1 I-cache 2x 3.0 1.3
L1 D-cache 2x 3.1 1.0
L1 D-cache Latency 8 9.5 9.7
BP Table 0.25x 2.5 1.1
BP Table 0.5x 2.3 0.3
BP Table 2x 2.3 0.3
BP Table 4x 2.3 0.4

Looking at the Dispatch Window rows with the LSQ size now changing, when the

synthetics are executed on configurations close to the default configuration, the average

IPC prediction error and average relative errors are below 5%. However, as the

configuration becomes less similar to the configuration used to synthesize the

benchmarks, the errors increase.

 One conclusion is that the synthetics are most useful for design studies and

validations closer to the synthesis configuration, and that testcases should be

resynthesized when the configuration strays farther away - in this case, when the dispatch

window rises to four times the default size. This suggests a stair-step synthesis approach

for early design studies using the synthetics: as the design space is explored and a

configuration choice changes by a multiple of two or four times its starting value,

 73

 74

resynthesize from executions based on the new configuration and proceed with the

exploration. This concept is left for future investigation.

The Machine Width results differ from the dispatch window results in that the

errors are small regardless of the width change. For the dispatch studies, the absolute

change in IPC from the default configuration for both synthetics and applications is

greater than 17% for each case (for a dispatch window of 128 the change is over 56%).

Likewise, when the width is reduced to 2, the absolute change in IPC is over 23%, which

indicates that the low average prediction error and relative error are meaningful. But

when the width increases to 6, 8 and 10, the change is never more than 2.3%, which is on

the order of the IPC prediction errors of the synthetics versus the applications. However,

the fetch queue size did not change from the default and it supplies too little ILP to stress

the wider machine width. These configurations therefore cannot test the accuracy of the

synthetics.

Similarly, the absolute IPC change from the default IPC for the Issue Width 8 and

Commit Width 8 rows never gets greater than 1.4%, and likewise for the instruction fetch

queue and branch predictability rows, it never gets greater than 1.6%. Simply changing

the IFQ size, issue, or commit width without addressing the other pipeline bottlenecks

does not improve performance, as expected. Other machine configurations may be

needed to stress the branch predictor models.

The remaining studies yield changes in IPC significantly greater than the error of

the synthetics versus the applications, except for the Caches 0.25x and Caches 0.5x

studies. The synthetics underestimate performance when the cache is significantly

reduced due to capacity misses among the synthetic data access streams.

 75

3.4.4 TPC-C Study

In an additional study, a code generation target for the PowerPC ISA is

implemented, and an internal IBM instruction trace for TPC-C (described in [12]) is fed

through the synthesis system using the methods described in this chapter. The resulting

testcase is then compiled and executed on a detailed performance simulator for the IBM

POWER4 processor [93] and compared to results for the original trace that had a runtime

more two orders of magnitude longer. A 6.4% IPC prediction error is obtained,

demonstrating the flexibility and retargetability of the synthesis approach. Chapter 6

improves synthesis for the TPC-C testcase and other PowerPC testcases and describes

advanced synthesis techniques for the POWER5 processor.

3.5 DRAWBACKS AND DISCUSSION

The main drawback of the approach is that the microarchitecture independent

workload characteristics, and thus the synthetic workload characteristics, are dependent

on the particular compiler technology used. It is argued that the use of low-level, post-

compiler characteristics is necessary for representativeness. Since a synthesis pass is

automatic, resynthesis based on workload characterization after the use of new compiler

technology is simplified. It also avoids questions of high-level programming style,

language, or library routines that plagued the representativeness of the early hand-coded

synthetic benchmarks such as Whetstone [22] and Dhrystone [103].

One objection is that the synthetics are comprised of machine-specific assembly

calls. However, use of low-level operations are a simple way to achieve true

representativeness in a much shorter-running benchmark, and the asm calls are easily

transformed to assembly instructions in other ISAs, assuming simple operations common

to all ISAs are used for the synthetic instructions.

 76

Another drawback is that only features specifically modeled among the workload

characteristics appear in the synthetic benchmark. This will be addressed over time as

researchers uncover additional features needed to correlate with execution-driven

simulation or hardware [47], although the present state-of-the-art is quite good [27][4].

For certain experiments, researchers may want some workload characteristics be included

and others not included. User parameters at synthesis time can specify which workload

characteristics should or should not appear in the synthetics as necessary.

One consequence of the present method is that dataset information is assimilated

into the final instruction sequence of the synthetic benchmark. For applications with

multiple datasets, a family of synthetic benchmarks must be created. The automatic

process makes doing so possible, but future research could seek to find the workload

features related to changes in the dataset and model those changes as runtime parameters

to the synthetic benchmark.

Ideally, the miniature programs would be benchmark replacements, but I-cache

and D-cache memory access models and the branching models used in their creation

introduce significant errors. This makes them a solution in the “middle” between micro-

benchmarks and applications. However, as shown in Section 3.4, many of the

characteristics of the original applications are maintained, and the synthesis approach

provides a framework for the investigation of advanced cache access and branching

models each independently of the other. As the design space is explored, if the cache and

branch predictors should change significantly, the stair-step synthesis approach should be

used. In that case, synthesis at the new design point is carried out, including perhaps

using new synthesis methods that are appropriate to the caches or branch predictors being

explored, and design space exploration can then continue.

 77

The synthetics use a small number of instructions in order to satisfy the I-cache

miss rate. This small number causes variations in workload characteristics, including

basic block size, with corresponding changes in instruction mix, dependence

relationships, and dispatch window occupancies. One solution is to instantiate additional

basic blocks using replication [107]. Multiple sections of representative synthetic code

could be synthesized and concatenated together into a single benchmark. Each section

would satisfy the I-cache miss rate, but the number of basic blocks would increase

substantially to more closely duplicate the instruction mix. Similarly, multiple sections of

synthetic code, and possibly initialization code, could be concatenated together to

recreate program phases [83]. Additionally, phases from multiple benchmarks could be

consolidated together and configured at runtime through user parameters.

3.6 EARLY SYNTHESIS AND RELATED WORKLOAD SYNTHESIS RESEARCH

Decades ago, computer performance was quantified using synthetic workloads.

The earliest metrics included single-instruction runtime, such as that of an ADD

instruction [36], and the runtime of simple synthetic instruction mixes [33], but these

were quickly outmoded as complex microarchitectural techniques to improve

performance, including pipelining, the use of memory hierarchies, and the use of address

translation mechanisms, made individual instruction execution times highly

unpredictable.

The early synthetic benchmarks such as Whetstone [22] and Dhrystone [103]

were developed to represent more contemporaneous program features. They were written

by hand and proved difficult to maintain as languages evolved rapidly [55][45]. They

were quickly made obsolete by new language paradigms such as object-oriented

programming, concurrent programming (e.g. Ada), virtual machines and languages such

as Java, the use of standard object code libraries and multi-language applications.

 78

Inefficient coding styles, made possible by cheap memory, led to complex applications

that were not easily represented by the early synthetics. A major problem was that

compilers would “cheat” and eliminate code in the synthetics specifically intended to test

machine performance but not contributing to a functional result [104]. Other problems

included a lack of standards related to compiler parameters, input dataset use, and

performance metrics [36]. The present work addresses these concerns by synthesizing

low-level volatile asm calls that represent the original workload but cannot be pruned by

compiler optimizations. The automatic synthesis process ensures that synthetics can be

created quickly for new language paradigms.

Synthetic kernel programs such as the Lawrence Livermore Loops [62] and the

Numerical Aerodynamic Simulation (NAS) kernels [55] represent inner loops of

applications found in engineering and science. Kernels by themselves are not

representative of any complete application and therefore are not used for general-purpose

computer system evaluation. Other microbenchmarks, such as in the STREAM loops

[64], LMBench [65], and Keating et al. [49] were developed to study the memory

hierarchy or database functions, but again they do not represent real applications.

Several ad-hoc techniques to synthesize representative workloads were developed

[107][90][106]. In Wong and Morris [107], a linear combination of microbenchmarks is

found that, when combined in a process called replication and executed, duplicates the

LRU hit function of the target benchmark. There is no clear way to incorporate other

execution characteristics like instruction mix into the technique. In Sreenivasan and

Kleinman [90], the joint probability distribution function of CPI over a set of chosen

benchmark characteristics is used to combine microbenchmarks to create a synthetic

workload. In Williams [106], database transactions are performed by a synthetic

 79

workload built from four kernel programs. The resulting synthetics are difficult to

correlate with applications [55][90].

The primary focus in program synthesis is on mathematical theorem-provers or

frameworks for synthesizing high-performance programs from formal specifications [59]

[60][77][9][3]. The workload characteristics of existing programs are not factors. In

McCalpin and Smotherman [63], scientific programs are automatically generated for a

particular machine from a concise specification of a mathematical algorithm. Similarly,

in Whaley and Dongarra [102], a process for automatically tuning scientific code to

improve performance is described. In both works the goal is to obtain the best

performance given a particular cache configuration but not to match the performance of a

particular workload. In Corno et al. [21], random instructions are generated to

functionally verify processor designs without considering the performance of actual

workloads.

Automatic methods have been developed to synthesize benchmark circuits that

are similar to other circuits but sufficiently different to stress electronic design

automation tools [100][54][76]. These works analyze graphs of nodes that represent

physical circuits and generate other similar sets of nodes. Again, there is no attempt to

match the performance characteristics of existing designs.

The well-organized microarchitectures of ASICs and DSPs lend themselves to

automatic code scheduling from simple code specifications [19]. The goal is to schedule

instructions to maximize performance with complete knowledge of the machine resources

and pipeline structure, and no attempt is made to generate programs based on the

workload characteristics of other programs

 In Hsieh and Pedram [38], assembly programs are generated that have the same

power consumption signature as applications. However, all workload characteristics are

 80

modeled as microarchitecture-dependent characteristics, so the work is not useful for

studies involving design trade-offs [28]. In particular, the instruction sequences and

dependence relationships of the synthetic programs are not representative of the original

workload, in contrast to the present work. The cache access and branch predictor models

in Hsieh and Pedram [38] are useful as high-level ideas or starting points, but the specific

implementations in that work allow and rely on modifications to the workload features

shown to be required for representative performance.

Sakamoto et al. [81] present a method to create a binary image of a trace and

memory dump and execute those on a specific machine and a logic simulator, but the

required binary image and fixup code are complicated and not easily portable to other

systems and simulators. No attempt is made to create an abstract trace from statistics in

order to reduce runtimes.

In SimSnap [92], programs are instrumented and executed on hardware, and

checkpoints are emitted. The checkpoint is then used to initialize execution in a cycle-

accurate simulator. At the end of simulation another checkpoint is emitted. That

checkpoint can then be compared to the same checkpoint emitted by hardware,

effectively validating the cycle-accurate simulator. Similarly, Intrinsic Checkpointing

[79] inserts memory preload instructions into a program binary to represent a SimPoint

phase. In neither method is there an attempt to reduce the total number of instructions that

must be executed to represent the behavior of the original application.

3.7 SUMMARY

This chapter proposes the automatic synthesis of testcases from the dynamic

workload characteristics of executing applications. The improved workload modeling and

trace synthesis of Chapter 2 is combined with memory access and branch predictability

models to synthesize testcases in the C language with inline assembly language calls to

 81

preserve representative workload characteristics. The method is used to synthesize

testcases for the SPEC 2000 and STREAM Alpha benchmarks to IPCs within 2.4% on

average of the IPCs of the target applications with similar average instruction mix, cache

access characteristics, dispatch window occupancies, and dependence characteristics,

while runtimes are often three orders of magnitude shorter.

Unlike prior synthesis efforts, the focus is on the low-level workload

characteristics of the executing binary in order to create a workload that behaves like a

real application executing on the machine. Multiple synthetic benchmarks are necessary

if the application is executed on multiple machines, significantly different ISAs, or

multiple datasets, but the automatic process minimizes the cost of creating new

benchmarks and enables consolidation of multiple representative phases into a single

small benchmark.

Other benefits include portability to various platforms and flexibility with respect

to benchmark modification to isolate and study particular workload characteristics and to

study future workloads. The synthesis technique abstracts the functionality of the original

workload and thereby encourages code sharing between industry and academia. The

significantly shorter-running testcases make feasible the consolidation of the workloads

used for early design studies and performance model validation. The use of the stair-step

synthesis approach is proposed for early design studies.

The next chapter continues the investigation of the synthetic workloads by

detailing and quantifying the errors in the synthetics due to the synthesis process.

 82

Chapter 4: Quantifying the Errors in Workload Characteristics Due to
the Workload Synthesis Process

Chapter 2 presents improved workload modeling and trace synthesis for early

design studies. Chapter 3 coupled the improved workload modeling with memory access

and branching models to synthesize flexible workloads useful for design studies and

performance model validation. This chapter continues the investigation of the synthetic

workloads and synthesis process by quantifying the errors due to the synthesis process.

While synthetic workloads have been shown to compare well against real workload

executions with respect to performance metrics, the synthetic workload characteristics are

often different from those of the original workload. The sources of error are described.

The results indicate that application of the major workload changes found in the

synthetic testcases leads to performance errors that are within 1% on average of the base

statistical simulation results. It is also shown that as design changes are investigated,

application of the workload changes from the synthetics results in errors that remain

small (less than 2% on average) relative to the base results. The conclusion is that small

changes in workload characteristics, such as those produced in the synthesis process,

have only a small impact on overall performance results.

In addition, no prior study has determined how exact workload characteristics

must be to get good statistical simulation correlation. This chapter quantifies the impact

of changes to workload characteristics in statistical simulation and shows that significant

changes in workload characteristics often result in only small reductions in accuracy.

4.1 INTRODUCTION TO ERRORS IN SYNTHETIC WORKLOADS

As discussed in Chapter 2, statistical simulation has been proposed for rapid and

accurate early design studies [4][27]. In statistical simulation, specific workload and

 83

machine characteristics are collected during dynamic execution of workload and

processor model using a cycle-accurate simulator. Prior works attempt to model specific

characteristics as accurately as possible in order to reduce IPC prediction error with

respect to the original cycle-accurate simulation. No prior work studies the effect of using

less accurate versions of the workload characteristics even though there is a trade-off

between speed and the accuracy of profiling.

In Eeckhout et al. [29], the impact of changes in error is discussed and results are

estimated using a mathematical extrapolation from accurate results. Extrapolations in the

presence of small errors are shown to lead to correct design decisions. Also, errors in

statistical simulation are shown to be small in general, indicating that statistical

simulation is accurate enough for early design studies. The impact of changing the

characteristics themselves is not studied.

In workload synthesis as proposed in this dissertation, the statistical flow graph is

actualized as compilable source code. The synthesis process traverses the graph similar to

synthetic trace generation, but the instructions in each basic block are instantiated as

assembly calls inside a C-code wrapper. Memory models are instantiated from the cache

and memory access statistics and branching models from the branch predictabilities.

When the synthetics are executed, errors in dynamic execution characteristics versus the

original application result because of the wrapper code and the use of these locality

models. This chapter quantifies how performance is affected as the runtime

characteristics change.

However, it is difficult to manipulate the synthetic testcases to study specific

percentage changes in workload characteristics and to develop intuition about the impact

of the errors due to the testcase synthesis process. In this work, statistical simulation is

used to assess the impact of percentage changes in general and the changes found in the

Table 4.1: Major Sources of Error in Synthetic Workloads

Synthesis Phase Sources of Error in Synthetic
Workload
Characterization

Retention of basic blocks,
instruction abstraction

Graph Analysis

I-cache miss rate model, number of
basic blocks, compatible
dependences, loop iterations,
memory access model, pool
elimination, branching model

Register Assignment

Stack instructions, register range,
number of registers used, round-
robin assignment, dependence
models, stream pools

Code Generation Header and footer overhead

synthetic workloads in particular. The workload characteristic changes due to the

synthesis process are found to cause less than a 2% change in performance versus the

original application. Other contributions of this chapter are:

i. The sources of error in the workload characteristics due to the synthesis process

are listed and described.

ii. Statistical simulation is presented as a means for studying the impact of errors

in workload characteristics on performance, and it is used to quantify the errors of

specific errors, including the effects of changes in instruction dependences and mix.

iii. Statistical simulation is used to study the effects of the errors found in

synthesis, and the impact on specific design changes is quantified as well.

In the next section, the errors in the synthesis process are identified. In Section

4.3, the challenges to quantifying performance changes using statistical simulation are

quantified. In Section 4.4, the results of the studies are presented and the errors are

quantified.

4.2 SOURCES OF ERROR IN WORKLOAD SYNTHESIS

In this section, some facts about workload synthesis are reviewed as a context for

presenting the sources of the errors in the synthetics that result from the synthesis

 84

 85

process. Section 4.4 quantifies the errors for specific workload features. Recall from

Figure 3.2, the synthesis process has four major phases: workload characterization;

graph analysis; register assignment and code generation. Each piece is reviewed at a

high level and the errors in the synthesis process that result are presented. Table 4.1 lists

the sources of error discussed in this section.

4.2.1 Sources of Error in Workload Characterization

The dynamic workload characteristics of the target program are profiled using a

functional simulator, cache simulator and branch predictor simulator [71][4]. The

characterization system currently takes input from fast functional simulation using

SimpleScalar [27] or trace-driven simulation in an IBM proprietary performance

simulator. The dynamic basic block instruction sequences are characterized, including the

instruction dependences, the branch predictabilities, and the L1 and L2 I-cache and D-

cache miss rates at the granularity of the basic block. Instructions are abstracted into five

basic classes: integer, floating-point, load, store, and branch. Long and short execution

times for integer and floating-point instructions are distinguished. The IPC of the original

workload is tracked to compare to the synthetic result. The statistical flow graph [71][4]

is assembled from the workload characterization.

Several sources of error can result in the final synthetic workload from this step.

In practice, not all basic blocks are retained due to file space limitations. Probabilistically,

very low frequency basic blocks will not be instantiated in a short synthetic testcase, so a

typical system may only keep the basic blocks that account for 99% of the dynamic

blocks seen during execution. Without the basic blocks themselves, their instruction

sequences, dependence information, and machine characteristics will also not be

represented in the synthetic workload. This adds a small but measurable error to the final

workload characteristics of the synthetic workload.

 86

Similarly, for the basic blocks that are retained, abstracting the instructions to five

canonical types adds error. For example, all types of branches are abstracted to one

conditional branch class. Specific opcodes and their associated number of operands have

subtle effects in the machine when executing the original workload that are not exhibited

by the synthetic workload.

4.3.2 Sources of Error in Graph Analysis

In this section, the steps of graph analysis are examined and errors related to each

step are listed. The sources of error in the synthetic workload from graph analysis are

numerous.

4.3.2.1 Instruction Miss Rate and I-cache Model

The workload characterization is used to build the pieces of the synthetic

benchmark. The statistical flow graph is traversed using the branching probabilities for

each basic block, and a linear chain of basic blocks is assembled. This chain will be

emitted directly as the central operations of the synthetic workload. The number of

instantiated basic blocks is equal to an estimate of how many blocks are needed to match

the I-cache miss rate of the application given a default I-cache configuration (see Chapter

3). The number of synthetic basic blocks is then tuned to match the I-cache miss rate and

instruction mix characteristics by iterating through synthesis a small number of times. For

the particular I-cache size used in these experiments, anywhere from one to 1000 basic

blocks may be necessary to meet the I-cache miss rate of a particular application, or

approximately 4000 instructions.

With respect to errors versus the original workload, the final I-cache miss rate

using these methods will not exactly match that of the original application even for the

default cache configuration. For workloads like the SPEC CPU, the I-cache miss rates are

 87

non-zero but very small, and the major requirement for a synthetic code is that it fits in

the I-cache. Even though errors are large for many benchmarks, the miss rates are so

small in an absolute sense they usually do not impact performance significantly, as

discussed in Chapter 3. Because of the low miss rates for the SPEC CPU, errors in the

synthetic workload in which the I-cache miss rate decreases generally does not impact

performance, but errors in which it increases can impact performance significantly.

If too few passes through the synthesis process occur, a non-optimal I-cache miss

rate may result. Figure 3.4 shows one pass through synthesis. The parameter tuning

process itself can perpetuate errors for certain characteristics since the focus is usually to

reduce differences in those characteristics that cause the largest error.

4.3.2.2 Instruction Dependences

For each basic block, instruction input dependences are assigned. The starting

dependence for each instruction is taken from the average found for the instruction during

workload characterization. If the dependence is not compatible with the input operand

type of the dependent instruction, then another instruction is chosen. The algorithm is to

move forward and backward from the starting dependence through the list of instructions

until the dependence is compatible, as explained in Chapter 3.

The algorithm as implemented may create synthetic dependences that would not

exist in the actual application. In practice, the average number of moves away from the

starting dependence per instruction input is small, usually fewer than one, but for

particular benchmarks it can be larger. Looking at Table 3.3, mgrid and applu have the

largest average number of moves per dependence assignment, at 9.4 and 20.3,

respectively. Both of those workloads have very large average basic block sizes which

results in small numbers of basic blocks being instantiated in order to properly match the

I-cache miss rate. This limits the availability of the variety of dependences that the

 88

original workload exhibited. Also, the workload characterization records the shortest

dependences among identical basic blocks with different dependence distances [27][4],

so not only is the starting dependence sometimes in error, but movement is inevitable.

4.3.2.3 Loop Counters and Program Termination

When all instructions have compatible dependences, a search is made for an

additional integer instruction that is attributed as the loop counter. The branch in the last

basic block in the program checks the loop counter to determine when the program is

complete. The number of executed loops is chosen to be large enough to assure IPC

convergence given the memory accesses of the load and store instructions in the

benchmark. In practice, the number of loops does not have to be very large to

characterize simple stream access patterns. Experiments have shown that the product of

the loop iterations and the number of instructions must be around 300K to achieve low

branch predictabilities and good stream convergence. The loop iterations are therefore

approximately 300K/4000 for most benchmarks.

Errors are introduced by limiting the iterations of the basic block in the synthetic

to provide for fast convergence. Errors may be introduced for any of the spectrum of

workload characteristics and may necessitate changes in synthesis parameters or

additional parameters to adjust the synthesis algorithms to compensate.

4.3.2.4 Memory Access Model

The data access counter instructions are assigned a stride based on the D-cache hit

rate found for the corresponding load and store accesses during workload

characterization. The L1 and L2 hit rates are used to obtain the synthetic stride in a table.

The problem with a stride-based model is that it is simplistic and does not support

“random” accesses or frequent address interactions between separate operations. Errors

 89

are introduced into the cache hierarchy at all levels. Future work is needed to determine

what the best modeling trade-off is between realistic, but complicated, access behavior

and simple, stride-based models. Cache warm-up prior to synthetic execution may be

necessary to replicate specific locality features such as capacity misses. Intrinsic

Checkpointing [79] describes a memory initialization capability that could be integrated

with the synthetics to potentially reduce cache misses.

Even with the stride-based model, there can be a large error in stream behavior

when an actual stream hit rate falls between the hit rates in two rows of the stride table. In

Section 3.4, the idealized load model is responsible for correlation error when the cache

line sizes change from the default. The table does not consider cache size and

associativity. Errors in the synthesized cache miss rates must then be compensated for by

algorithm adjustments using parameters such as the stream factor and miss rate estimate

factor in Table 3.3.

Another source of error is the consolidation of streams pools necessary to limit

the number of data access registers that at being used. Ideally each load and store would

have its own access stride, but this is not possible with a limited number of registers in

use and the memory access model proposed here.

4.3.2.5 Branching Model

A branch predictability model is superimposed onto the set of basic blocks that

already represent the instruction mix, dependences and data access patterns of the

original workload. A number of branches in the trace are configured to branch past the

next basic block or a number of instructions based on the global branch predictability of

the original application. The mechanism causes a configured branch to have a fixed

predictability for predictors that use 2-bit saturating counters.

 90

The branching model is fairly accurate, giving 1.9% average error in Chapter 3,

but it tracks overall branch predictability, not specific predictabilities local to basic

blocks. Also, Table 3.3 shows large adjustments to the BP factor for a variety of

benchmarks, including mgrid and applu that have large average basic block sizes.

The branching model only accounts for branch history tables that use 2-bit

saturating counters, such as bimodal predictors. It is not designed for predictors that use

branch shift register histories or global history, but it still seems to do well on the

tournament predictor used in the POWER5 processor in Chapter 6. The branching model

is usually not an issue for model validation, but it is an important consideration if the

branch predictor configuration changes in design studies. Also, when the testcases

synthesized for one machine are executed on another with a different branch predictor

strategy, there may be a change in performance only explained by the synthetic branching

model.

4.3.3 Sources of Error in Register Assignment

All architected register usages in the synthetic benchmark are assigned exactly

during the register assignment phase. Only 20 or so general-purpose registers divided

between data access counters and code use are necessary, and 30 floating point registers

are used. These numbers were determined experimentally. With too few or too many

registers available for code use, the compiler may insert stack operations into the binary.

The machine characteristics may not suffer from a few stack operations, but for this study

they are excluded. The available code registers are assigned to instruction outputs in a

round-robin fashion.

Data access streams are pooled according to their stream access strides and a

register is reserved for each class. All data access counters in the same pool increment the

same register. The algorithm is to merge the least frequent two pools together using the

 91

most restrictive (highest miss rate) stride from the two pools until the total number of

registers is under the register use limit.

No attempt is made to use the register ranges and numbers of registers in the

original application. Subtle register usage patterns implemented by the compiler will not

be exhibited in the synthetic. Also, only read-after-write (RAW) dependences are

accounted for, as in statistical simulation [4][27], so the behavior of the resulting

synthetic will not exhibit other types of dependence hazards.

The algorithm for merging stream pools is somewhat ad hoc and tends to disturb

the access behaviors of the least frequent streams. These errors might necessitate

additional adjustments using stream access parameters.

4.2.4 Sources of Error in Code Generation

The code generator takes the representative instructions and the attributes from

graph analysis and register assignment and outputs a single module of C-code that

contains calls to assembly-language instructions in the target language. Each instruction

in the representative trace maps one-to-one to a single asm call in the C-code. Ordinary

C-code is emitted for functions not related to the trace, as, for example, to instantiate and

initialize data structures and variables. Emitted are the C-code main header and variable

declarations to link output registers to data access variables for the stream pools, the loop

counter variable, and the branching variable. Pointers to the correct memory type for each

stream pool are declared, and Malloc calls for the stream data are generated with size

based on the number of loop iterations. Each stream pool register is initialized to point to

the head of its malloced data structure. The loop counter register initialization is emitted,

and the instructions associated with the original graph traversal are emitted as volatile

calls to assembly language instructions. The data access counters are emitted as integer

additions of its output register value to the associated stride for the stream. The loop

 92

counter is emitted as an integer subtraction of one to its output register value. The basic

blocks are analyzed and code is generated to print out unconnected output registers

depending on a switch value. The switch is never set, but the print statements and volatile

asm calls guarantee that no code is eliminated during compilation. Furthermore, using the

gcc compiler, instructions are not reordered. Code to free the malloced memory is

generated, and, finally, a C-code footer is emitted.

Emitting asm calls for low-level operations creates errors related to the

abstraction of the instruction mix mentioned earlier. The instruction sequences

instantiated in the assembly calls are designed to reproduce the performance impact of

the original application, so it would be best for the C-code header and footer to not

contribute error to the performance result. However, the number of iterations through the

sequences of instructions is kept small to reduce runtimes. The header and footer account

for about five thousand instructions, but this can add up to almost 2% of a synthetic that

runs for only 300K instructions.

4.3 THE FLEXIBILITY OF STATISTICAL SIMULATION

As in the last section, there are many aspects of the testcase synthesis process that

can lead to errors in the workload characteristics. The effects of these errors are assessed

in general and in particular for the errors observed for a specific synthesis system. For the

general case, each error is investigated independently of other errors so that a qualitative

view or intuition about how specific error levels affect performance can be obtained.

It is difficult to quantify the effect of changes in workload characteristics

independently of each other using synthetics or other source codes. The source code can

be changed, compiled, and executed on a system, but it is difficult to know a priori what

changes to make to only affect one characteristic. For example, it is a challenge to make a

change to source code to get only a 1% change in L2 hit rate. After some work, a set of

appropriate changes may be isolated to match the L2 hit rate, but the likelihood is that the

same changes will also impact other observed workload characteristics. The memory

access changes that affect the L2 hit rate will also affect the L1 hit rate, L3 hit rate, and

main memory access patterns. The changes to source code would also affect such things

as instruction mix and dependences since the change in L2 hit rate implies that different

code areas are being exercised. The situation is even more complicated for operand

dependence and branch predictability investigations.

Table 4.2 lists the workload characteristics that are investigated in this study.

Characteristics are chosen that have a large impact on the synthesis result. Additional

characteristics from Table 4.1 could also be modeled and studied. Statistical simulation

provides a means to investigate changes in the workload characteristics of Table 4.2

independently of each other. In statistical simulation, the microarchitecture-independent

and microarchitecture-dependent workload characteristics are captured from an executing

application using profiling tools. The statistical profile is then input to a trace-driven

performance simulator which contains a model that is always less detailed than a cycle-

accurate RTL model.

The statistical profiling tools currently available can be divided into two

Table 4.2: Prominent Workload Characteristics and Pearson Correlation Coefficients for
Factor Values versus Simulation Results

Class Factor Correlation Coefficient
Instruction Mix
(Integer, Float, Load, Store)

(0.988, 0.998,
0.997, 0.999)

Dependence Distances
(I0, I1, F0, F1, L0, S0, S1, B0, B1)

 93

(0.979, 0.970, 0.984,
0.981, 0.974, 0.977,
0.913, 0.980, 0.999)

Microarchitecture-
Independent

Number of Basic Blocks n/a
L1 I-cache Hit Rate 0.971
L1 D-cache Hit Rate 0.978
L2 Hit Rate 0.978

Microarchitecture-
Dependent

Branch Predictability 0.990

 94

categories: those that collect statistics as an aggregate without regard to the basic blocks

[17][71][28], and those that collect statistics at the granularity of the basic block [4][27].

Profiling at the granularity of the basic block increases storage requirements for the

profile, but accuracy is also significantly increased. There are major differences between

Eeckhout et al. [27] and Bell et al. [4]. In the former, the k =1 flow graph maintains

statistics for any basic block based on any possible prior block. The statistics are quite

detailed and generally map one-to-one with the instruction classes implemented in the

SimpleScalar microarchitecture. In Bell et al. [4], the basic block map maintains

aggregate statistics for all prior basic blocks and the statistics are quite simplified. The

instructions, for example, are abstracted to the five generic types described in Section 4.2.

Also, the machine model is simplified and generalized compared to SimpleScalar and

must be calibrated to the machine-under-study [71][4]. Both systems obtain average IPC

prediction errors significantly less than 10%.

Table 4.2 shows seven classes of workload characteristics that are investigated

using these statistical simulation capabilities. User parameters are implemented that

specify factors to be multiplied with corresponding characteristics as basic blocks are

selected during the traversal of the flow graph.

For the instruction mix metrics, random variables over the user parameter factors

determine a new instruction mix. For example, if the integer factor is 1.03, then the

floating point, load, and store instruction fractions are each converted to integer

instructions by an amount equal to 1% of the integer fraction, leading to a total increase

in integer instructions by 3%. Note that the branch instruction fraction is not modified

because of the difficulty of removing branches and thereby joining basic blocks (and

increasing the average basic block size) in the current simulator implementation, but this

could be done in future work. To implement combinations of mix changes, as a non-

branch instruction is encountered, the factors for the other three instruction types are

applied in the following order based on a random variable over each factor: integer,

floating point, load, and store. For example, if the current instruction is an integer, a

random variable over the floating-point factor is applied. If the result is not less than the

factor, then the same process is carried out for the load factor. If that test also fails, then

the same is done for the store factor. Note that this can result in fractions of instructions

that are slightly different from the specified fractions since, for example, the store factor

is only checked if the previous two tests fail. In an ideal case in which instruction type

frequencies are roughly equal, the round-robin application of the factors would give a

roughly equal number of changes for all types.

The dependence distances in each basic block are multiplied by the dependence

parameter factor and rounded to the nearest integer. Separate factors for all inputs of each

instruction type are not modeled, just one global factor multiplied by all. The number of

basic blocks is simply applied as specified in the parameter. The L1 and L2 hit rates for

each basic block are multiplied by their corresponding parameter factors. Likewise, the

branch predictability factor multiplies the branch predictability of each basic block.

Figure 4.1 shows the percentage change in L1 D-cache hit rate as the factor

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Scaling Factor

L1
 D

-c
ac

he
 H

it
R

at
e

Figure 4.1: L1 D-cache Hit Rate Factor for gzip

 95

 96

changes for gzip in the statistical simulation system described in the next section. It is

apparent that the resulting percentage follows the factor change. The roll-off for a factor

larger than 1.0 is due to the presence of some very low hit rates in some basic blocks that

continue to show small improvement even for large factors. The Pearson correlation

coefficient for the figure is shown in Table 4.2.

Table 4.2 also gives the Pearson correlation coefficients for the other factors as

they are applied for gzip, except that the floating point instruction mix and the zeroth and

first operand (F0 and F1) dependence distance coefficients are for wupwise since gzip has

few floating point instructions. The dependence distance coefficients are given for all

operands of each instruction type in the order shown in the second column (e.g. I0 is

integer operand 0 and has correlation coefficient equal to 0.979). Most are higher than

0.97, which includes the effect of any roll-off due to low hit rates or saturating to a hit

rate of 1.0 for large factors.

In Eeckout et al. [27], statistical simulation IPC prediction errors less than 10%

are shown to be useful for early design studies. In this paper, the range of change in a

workload characteristic that keeps error within 3% of the base system error is quantified;

this gives a good cushion for accurate design studies in spite of the change.

4.4 SIMULATION RESULTS

In this section, statistical simulation is used to study the effects of changes in

workload characteristics.

4.4.1 Experimental Setup and Benchmarks

The experimental setup and benchmarks are the same as in the statistical

simulation experiments in Chapter 2. The SPEC 2000 and STREAM Alpha binaries are

again simulated on the machine configuration in Table 3.5. For each benchmark, a

4.53

2

4

6

8

10

12

14

16

18

0.
99

0

0.
99

1

0.
99

2

0.
99

3

0.
99

4

0.
99

5

0.
99

6

0.
99

7

0.
99

8

0.
99

9

1.
00

0

1.
00

1

1.
00

2

1.
00

3

1.
00

4

1.
00

5

1.
00

6

1.
00

7

1.
00

8

1.
00

9

1.
01

0

Scaling Factor

IP
C

 P
re

di
ct

io
n

Er
ro

r (
%

)

All SPECint SPECfp STREAM

0

20

40

60

80

100

120

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

Scaling Factor

IP
C

 P
re

di
ct

io
n

Er
ro

r (
%

)
All SPECint SPECfp STREAM

Figure 4.3: L1 I-cache Hit Rate Factor
(expanded) Figure 4.2: L1 I-cache Hit Rate Factor

synthetic trace of 2500 basic blocks is generated and simulated for 20k cycles. The base

results are given in Figure 2.11 and show an average IPC prediction error of 4.7% with a

maximum error of 15.2% for ammp. As mentioned in Chapter 3, a large TLB miss rate

coupled with large L1 and L2 D-cache miss rates make ammp a challenge for the more

generalized machine model .

4.4.2 Sensitivities to Changes in Workload Characteristics in Statistical Simulation

Incremental percentage changes to the workload characteristics are examined in

Table 4.2. For each characteristic, the factor value versus the error in IPC versus

SimpleScalar for all benchmarks is shown and it is also broken down by suite: SPEC

INT, SPEC FP and STREAM. As mentioned, the factors generally multiply the value of

the corresponding characteristic. For example, an L1 D-cache factor of 0.5 reduces the L1

D-cache hit rate to 50% of its base value. A factor equal to 1.0 always gives the base

system result.

Figure 4.2 shows the sensitivity to I-cache hit rate for the benchmarks. The x-axis

shows the factor value and the y-axis gives the IPC prediction error [27] as the factor is

applied. It is apparent that the benchmarks are very sensitive to smaller I-cache hit rates,

 97

4.87

1

3

5

7

9

11

0.
95

0.
96

0.
97

0.
98

0.
99 1

1.
01

1.
02

1.
03

1.
04

1.
05

1.
06

1.
07

1.
08

1.
09 1.
1

IP
C

 P
re

di
ct

io
n

Er
ro

r (
%

)

 98

but less so to larger hit rates. This confirms that the SPEC and STREAM hit rates are

already extremely high for the base system.

To understand the range in which errors are less than a 3% change from the base

system, Figure 4.3 shows the sensitivity over a narrower range, from 0.99 to 1.01. The

average IPC prediction error is 4.5% for the base system, and increases to 7.1% for a

factor of 0.994, and 7.3% for a factor of 1.007. So there is a 1.3% margin or range for the

factor within which the average error change is less than 3% from the base. For average

errors less than 10%, the margin would start at 0.991 and end well above 1.01, giving

more than a 2% margin. Figures 4.2 and 4.3 show that the STREAM benchmarks are the

most sensitive to low I-cache hit rates. Performance in many of the STREAM is highly

dependent on the simultaneity of hits and outstanding misses for two loads [4].

Figures 4.4 and 4.5 give the sensitivity to L1 D-cache hit rate changes. Here the

margin is larger than 15%, ranging from 0.95 well up past 1.10. The figures show the

highest sensitivity for SPEC INT. In the base run, the hit rates for SPEC INT are

generally higher than those for SPEC FP and STREAM, and as a consequence SPEC INT

has generally higher sensitivity to change than the others.

Figure 4.6 shows the sensitivity to L2 hit rate. There is a wide margin of 60%

from 0.70 to more than 1.30. The STREAM benchmarks are the most sensitive, but the

13

All SPECint SPECfp STREAM

Figure 4.4: L1 D-cache Hit Rate Factor

0

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

Scaling Factor

IP
C

 P
re

di
ct

io
n

Er
ro

r (
%

)

70

Figure 4.5: L1 D-cache Hit Rate Factor
(expanded)

All SPECint SPECfp STREAM

4.87

1

3

5

7

9

11

0.
95

0.
96

0.
97

0.
98

0.
99 1

1.
01

1.
02

1.
03

1.
04

1.
05

1.
06

1.
07

1.
08

1.
09 1.
1

Scaling Factor

IP
C

 P
re

di
ct

io
n

Er
ro

r (
%

)

13

All SPECint SPECfp STREAM

0

2

4

6

8

10

12

14

16

18

20

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

Scaling Factor

IP
C

 P
re

di
ct

io
n

Er
ro

r (
%

)

All SPECint SPECfp STREAM

Figure 4.6: L2 Cache Hit Rate Factor

start of their margin only narrows to 0.80. The intuition behind these results is that

generally the L1 I-cache and D-cache miss rates are low, which reduces sensitivity to L2

hit rate. But L1 miss rates for STREAM are higher, so it is more sensitive. These results

confirm the observations in Bell and John [7] for the synthetic testcases. Note that the

margin would almost certainly be reduced for L2 caches with higher latencies, but here a

balanced design is assumed in which the lower memory latency compensates for no L3.

Obviously, even though sensitivities are low, one would not want to run early

design studies either in statistical simulation or using synthetics containing such large

changes to the L2 hit rate. One reason is that the standard deviation of the average errors

in these studies is large, up to 4% around the mean for the base configuration. Therefore

the results in this chapter specify trends that aid our intuition about the errors due to the

synthesis process, but the effect for individual benchmarks may be larger or smaller and

is usually not known a priori to simulation. Also, studies of cache design changes are

obviously precluded at the limits of the margin, but statistical simulation is not currently

used to study any design changes in the cache hierarchy [29]. The results argue that

statistical simulation could be augmented with somewhat inexact memory access models

 99

0

5

10

15

20

25

30

35

40

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

Scaling Factor

IP
C

 P
re

di
ct

io
n

Er
ro

r (
%

)
All SPECint SPECfp STREAM

2

4

6

8

10

12

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

1.
02

1.
04

1.
06

1.
08

1.
10

Scaling Factor

IP
C

 P
re

di
ct

io
n

Er
ro

r (
%

)

All SPECint SPECfp STREAM

Figure 4.8: Branch Predictability Factor
(expanded) Figure 4.7: Branch Predictability Factor

and still achieve reasonable accuracies against the machine responses of the original

applications. The models would then be useful for synthesizing testcases for portability to

various platforms. Statistical simulation may be the best platform to prove the validity of

potential models before implementing them in the synthetic testcases.

 Figures 4.7 and 4.8 show the sensitivity to branch predictability. The margin is

over 16%, ranging from 0.94 to above 1.10. Similar to the L1 I-cache results, the

benchmarks are much more sensitive to smaller factors because of already high branch

predictabilities.

 Figure 4.9 shows the effect of changing the number of basic blocks implemented

in the statistical flow graph. It is apparent that quite representative behavior can be

obtained using more than 500 basic blocks in the graph. Fewer than 200 blocks can

increase errors. As mentioned, this leads to errror in some of the synthetic testcases which

have very long average basic block sizes (e.g. mgrid and applu with average sizes of 100

and 93 instructions, respectively) and therefore can only use a small number of blocks to

satisfy their I-cache miss rates (30 and 19, respectively) [7]. These errors are

compensated for by larger parameter changes to tune the synthesis algorithms. The two

hundred basic block limit only applies to the machine configurations and workloads
 100

Figure 4.9: Basic Block Changes Figure 4.10: Dependence Distance Factor

0

4

8

12

16

20

0 500 1000 1500 2000 2500 3000

Basic Blocks

IP
C

 P
re

di
ct

io
n

Er
ro

r (
%

)
All SPECint SPECfp STREAM

0

10

20

30

40

50

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9
Scaling Factor

IP
C

 P
re

di
ct

io
n

Er
ro

r (
%

)

All SPECint SPECfp STREAM

studied here. Larger designs and different phases of instructions may need more or less

basic blocks to represent the specific machine and instruction interactions in it.

Figure 4.10 shows the sensitivity to dependence distance changes. A margin from

0.8 to 1.50 is observed. As shown in Table 4.3, similar studies were carried out for the

integer, load, store, and float instruction mixes. The figures show that some changes are

better tolerated for specific classes of benchmarks. For example, the SPEC INT are very

tolerant to large changes in floating point instructions since their base percentage of those

is very low.

It is interesting that large changes in the instruction mix and dependence distances

can be independently tolerated. This suggests that these microarchitecture-independent

Table 4.3: Workload Characteristic Margins (at 3% from Base)

Sensitivity Margin Start/End Margin (%)
L1 I-cache Hit Rate 0.994, 1.007 1.3%
L1 D-cache Hit Rate 0.95, 1.10 15%
L2 Hit Rate 0.70, 1.30 60%
Branch Predictability 0.94, 1.10 16%
Number of Basic Blocks 200, 3000 n/a
Dependence Distance 0.80, 1.50 70%
Integer Instructions 0.80, 1.30 50%
Float Instructions 0.85, 1.30 45%
Load Instructions 0.80, 1.30 50%
Store Instructions 0.10, 1.30 120%

 101

characteristics are less critical to performance than many microarchitecure-dependent

characteristics. The empirical results suggest that the margins can be exploited in

simulation, since there is a likely profiling effort versus accuracy tradeoff involved. As

noted, the margins may not easily be determined a priori to simulation and, also,

combinations of changes may multiply their effects and cause larger errors; therefore

margin should not be traded for extremely simple modeling effort. The gist of these

studies is that small changes are not likely to cause disruption to the machine responses

of a synthetic workload and that this observation is germane to testcase synthesis.

4.4.3 Sensitivities to Changes in Workload Characteristics from Testcase Synthesis

In this section, the sensitivity of statistical simulation to the changes in workload

characteristics exhibited by the synthetic testcases created in Chapter 3 is investigated.

From the workload characteristics obtained for each benchmark, the factor corresponding

to the percentage change versus the base statistical simulation system is obtained. The

factors for each benchmark are then applied singly or all simultaneously to the statistical

simulation system, and the average IPC prediction errors for the benchmark suites are

plotted. The goal is to confirm one of the results from Chapter 3, namely, that the

changes in workload characteristics due to the synthesis process have a minimal impact

Table 4.4: Example Workload Characteristic Synthesis Changes (gcc)

Sensitivity Actual Value Synthetic Value Factor
L1 I-cache Hit Rate 0.971 0.972 1.001
L1 D-cache Hit Rate 0.974 0.975 1.001
L2 Hit Rate 0.964 0.849 0.880
Branch Predictability 0.880 0.906 1.030
Number of Basic Blocks n/a 850 850
Dependence Distance (average dep) 5.765 5.263 0.913
Integer Instructions 0.394 0.385 0.977
Float Instructions 0.000 0.000 1.000
Load Instructions 0.337 0.348 1.033
Store Instructions 0.112 0.083 0.741

 102

2

3

4

5

6

7

8

9

Ba
se

L1
I H

it
R

at
e

L1
D

 H
it

R
at

e

L2
 H

it
R

at
e

In
te

ge
r M

ix

Fl
oa

t M
ix

Lo
ad

 M
ix

St
or

e
M

ix

Al
l M

ix

Br
an

ch
 P

re
d

N
um

 B
as

ic
 B

lk

Av
g.

 D
ep

en
d.

Al
l C

ha
ng

es

IP
C

 P
re

di
ct

io
n

Er
ro

r (
%

)

All SPECint SPECfp STREAM

Figure 4.11: Changes Due to Synthesis in Statistical Simulation

on performance. In so doing, additional evidence is obtained that the synthetics are useful

for early design and model validation studies.

Table 4.4 gives an example of the workload characteristics obtained from

synthesis of gcc. The factors that are used in statistical simulation are the ratio of the

synthetic value and the actual benchmark value. The number of basic blocks is not

applicable to the original benchmark execution since its execution did not use a synthetic

trace. Since there is only one dependence distance factor in the statistical simulation

system, it is calculated from the ratio of the sum of the average dependence distances for

the instruction type weighted by the frequency of the type. For example, the two integer

input dependence distances are averaged and weighted by the frequency of integers in the

benchmark. Then the result obtained for the five instruction types are summed.

Figure 4.11 shows the results. The base system results are given, followed by the

ten workload characteristics applied singly, and then all changes applied simultaneously.

Also included is the case of all instruction mix changes applied together. One sees that

 103

0

5

10

15

20

25

di
sp

8l
sq

4

di
sp

16
ls

q8

di
sp

32
ls

q1
6

di
sp

48
ls

q2
4

di
sp

64
ls

q3
2

di
sp

96
ls

q4
8

di
sp

12
8l

sq
64

w
id

th
2

w
id

th
4

w
id

th
6

w
id

th
8

w
id

th
10

w
id

th
12

w
id

th
14

w
id

th
16

IP
C

 P
re

di
ct

io
n

Er
ro

r

All SPECint SPECfp STREAM

0

5

10

15

20

25
di

sp
8l

sq
4

di
sp

16
ls

q8

di
sp

32
ls

q1
6

di
sp

48
ls

q2
4

di
sp

64
ls

q3
2

di
sp

96
ls

q4
8

di
sp

12
8l

sq
64

w
id

th
2

w
id

th
4

w
id

th
6

w
id

th
8

w
id

th
10

w
id

th
12

w
id

th
14

w
id

th
16

IP
C

 P
re

di
ct

io
n

Er
ro

r
All SPECint SPECfp STREAM

Figure 4.12: Design Changes (No Synthetic
Parameters)

Figure 4.13: Design Changes
(Synthetic Parameters)

the largest errors are exhibited when the L2 hit rates are applied, as expected from

Chapter 3. The final error of 5.4% is only 0.75% different from the base error of 4.65%.

Note that the errors offset each other, since the final average error is less than the

largest errors. This confirms the analysis in Chapter 3 in which large errors in

characteristics are often mitigated by more significant offsetting errors in other

characteristics. If the errors had been both large and significant, the effects might not

have been seen in the synthetic behavior but would be more likely exposed in this study

of individual error factors. The only case in which a significant factor (such as for L1 D-

cache hit rate) was found is ammp, which is excluded from study due to its TLB miss

rate, as previously mentioned. Still, the existence of large offsetting errors is a cause for

concern and must be ruled out for any new synthetic.

The final IPC is close to the base statistical simulation IPC, but it is somewhat

removed from the 2.4% average error for the synthetic testcases themselves. This

difference is due to the additional sources of error in Table 4.1 that are not modeled in the

statistical simulation runs. Examples include the use of loop iterations, the register usage

errors, and the header and footer errors.

 104

Also investigated are the error differences using the synthetic testcase factors

when applying design changes. The dispatch window/LSQ size is varied from 8/4 to

128/64, and the machine width is varied from 2 to 16 (keeping fetch width fixed at 16).

Figure 4.12 shows the results for the base system, and Figure 4.13 shows the results with

the synthetic testcase factors applied. The figures are very similar. Table 4.5 gives the

error differences averaged over the two classes of changes. No average error is greater

than 2.5%. As usual, ammp is not included in the dispatch window runs.

Note that the width2 base case has a remarkably larger error than the other cases,

and in general the errors versus SimpleScalar become larger than those in Eeckhout et al.

[27] as the dispatch window becomes larger. This is due to the simplicity of the HLS++

workload profile and machine model, including the instruction abstraction and

generalized model. The machine was calibrated to model a dispatch window of 16 and

LSQ size of 8. When the window becomes smaller, the machine model gives generally

higher performance than the SimpleScalar model because subtle instruction interactions

are not modeled.

4.5 SUMMARY

This chapter continues the investigation of the synthetic workloads from Chapter

3 by quantifying the errors in them due to the synthesis process. The results indicate that

application of the major workload changes found in the synthetic testcases leads to

performance errors that are within 1% on average of the base statistical simulation

results. It is also shown that as design changes are investigated, application of the

Table 4.5: Average Percent Error Differences for Dispatch Window/LSQ and Width Studies

Study All SPEC INT SPEC FP STREAM
Dispatch/LSQ 1.6% 2.5% 1.4% 0.6%
Width 1.3% 1.0% 1.8% 0.8%

 105

 106

workload changes from the synthetics results in errors that remain small (less than 2% on

average) relative to the base results. The conclusion is that small changes in workload

characteristics, such as those produced in the synthesis process, have only a small impact

on overall performance results.

It is also found that errors in various workload characteristics offset each other

when executed together, so it is important to investigate the acceptability of the

magnitudes of the errors in individual workload characteristics. The statistical simulation

methodology described here provides a means for isolating and quantifying the individual

errors.

The next chapter continues the investigation of the synthetic workloads with a

study of power dissipation. The power dissipation of the synthetic workloads is compared

to the power dissipation of the longer running workloads from which they are

synthesized.

 107

Chapter 5: Efficient Power Analysis using the Synthetic Workloads

Chapters 2 and 3 leveraged improved workload modeling and synthesis

techniques into more representative synthetic traces and workloads that are useful for

rapid early design studies and model validations with respect to performance. This

chapter investigates the synthetic workloads as a means for early power dissipation

studies and power model validation [8].

Power dissipation has recently become an important parameter in the design

process. Just as for performance studies, assessing power using performance simulators is

problematic given the long runtimes of real applications and is even exacerbated by the

addition of counters to track events that contribute to power dissipation. In this chapter, it

is shown that the synthetic workloads can rapidly and accurately assess the dynamic

power dissipation of real programs. The synthetic testcases from Chapter 3 can predict

the total power per cycle to within 6.8% error on average of the power dissipation of the

original workloads, with a maximum of 15% error, and total power per instruction to

within 4.4% error. In addition, for many design changes for which IPC and power change

significantly, the synthetic testcases show small errors, many less than 5%. It is also

shown that simulated power dissipation for both applications and synthetics correlates

well with the IPCs of the real programs, often giving a correlation coefficient greater than

0.9.

5.1 INTRODUCTION TO POWER DISSIPATION STUDIES

Power dissipation has recently become an important consideration in the design of

processors [34]. As frequencies have passed into the multiple gigahertz range and the

number of transistors integrated onto a single chip has surpassed 100 million [93][85], the

maximum power dissipation for high-end processors has surpassed 100 watts [93][97].

 108

The increases in power dissipation are of significant impact to chip reliability and mobile

system battery life [10]. In an effort to study and alleviate increases in on-chip power

dissipation early in the design process at the same time that design tradeoffs are being

studied, researchers have integrated microarchitectural power estimators into processor

simulation systems [15][109][78][54].

Architectural level simulators can obtain accurate results in assessing the dynamic

power dissipation of an executing workload. However, the long runtimes for the latest

benchmarks such as SPEC 2000 make full program simulation impractical [15][109].

Statistical simulation creates representative synthetic traces of less than one million

instructions and has successfully analyzed power-performance trade-offs in a trace-driven

simulation system [109][27], but, as described in Chapter 3, traces are not very portable

to many modern design platforms including execution-driven simulators, RTL models,

hardware emulators, and hardware itself. That is important because execution-driven

simulators are useful for assessing the power dissipation of more accurate simulation

systems including operating system effects [54]. RTL models and hardware emulators are

useful for performance model validation [7], and performance monitor counters in

hardware facilitate rapid power dissipation studies [10].

The synthetic testcases from Chapter 3 execute orders of magnitude faster than

the original workloads while retaining good accuracy. Prior work shows that IPC has a

good correlation to average power dissipation [54][10]. Even though power is not

considered in the synthesis process, the synthetic benchmarks display good IPC

correlation with actual programs, so it is natural to expect that they can also be used to

speed up power dissipation analysis for the applications with low errors.

 109

In this chapter, the dynamic power dissipation characteristics of the synthetic

testcases are described. The synthetics are executed on the Wattch simulation framework

[15]. The specific contributions of this chapter are:

i) It is shown that the synthetic testcases generated strictly for performance

purposes are also useful for analysis of dynamic power dissipation, giving reasonable

errors while executing orders of magnitude faster.

ii) The synthetics are also shown to be useful for the relative power analysis of

design changes.

iii) The results of the IPC and power dissipation design changes are classified to

facilitate analysis.

iv) Prior results that demonstrate a good correlation between IPC and dynamic

power dissipation are confirmed, and the results are extended to design change

correlations.

In the next section, qualitative reasons are given for why power dissipation is

expected to correlate using the synthetic testcases, and the benefits for power model

validation are presented. In Section 5.3, the quantitative results of the power analyses are

shown.

5.2 SYNTHETIC TESTCASES AND POWER DISSIPATION

Several studies have shown that the synthetic traces in statistical simulation

exhibit power dissipation similar to cycle-accurate simulations [27][109]. The synthetic

traces contain specific basic block sequences that represent the major components of the

performance of the workload. The number of instructions is reduced because instruction

sequences that do not contribute to performance are not included. Since the number of

instructions is reduced, the total energy for execution of the synthetic trace cannot be

compared to that of the original application.

 110

Synthetic traces [4][27] provide accurate power analysis because the basic block

sequences that provide accurate performance results must also exercise the machine such

that the power dissipation is accurate. As found in Chapter 3, the synthetic traces exhibit

dynamic workload features similar to those of the original applications, including

instruction mix, number and type of operands, instruction-level parallelism, dependence

distances, and memory access and branching behavior. The workload similarities imply

that reorder buffer occupancies, pipeline throughput, cache hierarchy access and miss

rates, pipeline stalls, and branch predictabilities will be similar. To a large extent, these

machine features determine the dynamic power dissipation of the system [15][97][10]. As

an example, the abstracted instruction types used for synthesis use one, two or three (for

PowerPC) operands as in the original workload, so the proper power dissipation with

respect to register port access is obtained.

The synthetic testcases described in Chapter 3 have dynamic workload

characteristics similar to those of the synthetic traces, except that the locality models are

less accurate. Memory accesses are modeled as strides through uninitialized data

structures in order to match miss rates for a default cache configuration. The overall miss

rates of the original application are obtained, but particular miss rates at the granularity of

individual loads and stores may be quite different from those of the original since integer

stride values only generate particular miss rate quanta, rather than a continuous spectrum

of miss rates [6]. Microarchitecture-independent memory access models would seek to

model more closely the original workload access patterns.

The branching models are also not accurate at the granularity of individual

branches. The overall application predictability is matched by configuring a subset of

branches to jump past the next basic block 50% of the time. The synthetic testcases

would benefit from an exact analysis and configuration of particular branches in the

 111

workload. Other anomalies in the synthetic testcases include the retargeting of integer

instructions for data structure access and testcase looping, register usage, and the other

sources of error described in Chapter 4.

All of these inaccuracies imply that instruction dependences, memory accesses

and branch behavior are different from the original workload, that the machine responses

to the workload will be correspondingly different, and that the power dissipation results,

in turn, will contain inaccuracies. However, Chapter 4 shows that the performance errors

are relatively small or, if large, less relevant to the performance of the machine, so it is

expected that the power dissipation errors will be correspondingly low, as shown in the

next section.

One of the benefits of the synthetic testcases is their portability to multiple

platforms [7]. Combined with overall runtimes that are two or three orders of magnitude

faster than those of the original applications, the synthetic testcases are ideal for

performance model validations using combinations of detailed execution-driven

simulators, system simulators, RTL model simulators, hardware emulation systems, and

hardware itself [7]. Likewise, the synthetic testcases are useful for power model

validation. Simulators that assess dynamic power can be validated against slow RTL and

circuit simulators with greater assurance that the validated simulator will give more

accurate performance and power results for longer runs.

The next section compares the absolute and relative accuracy of the power

dissipation of the synthetic testcases to those of longer running programs.

5.3 POWER SIMULATION RESULTS

In this section, the power dissipation results using the synthetic testcases from

Chapter 3 are given.

 112

5.3.1 Experimental Setup and Benchmarks

The SPEC 2000 and STREAM Alpha benchmarks and testcases described in

Chapter 3 are used. As before, sim-cache from SimpleScalar release 3.0 is modified to

carry out the workload characterization. To sim-outorder are added the event counters,

the power.h includes, and cacti code from Wattch [15]. Wattch models the power

dissipation of circuits and structures for a 0.35 micro, 600 MHz machine. Results are

presented for an aggressive clock gating design with 10% leakage power [15].

As in Chapter 3, the Alpha binaries were executed in sim-outorder on the first

reference dataset for the first billion instructions using the configuration in Table 3.5.

While the machine configuration is relatively small, in the experiments below the

window size and other machine parameters are varied significantly and good power

dissipation correlations as IPC increases are still obtained. Another consideration is that

this machine configuration is appropriate for use with the original Wattch model [34]

[15][109]. It is also still a useful power model for smaller embedded or ASIC designs.

The synthetic benchmarks were executed to completion in Wattch on an IBM p270 (400

MHz).

5.3.2 Base Power Dissipation Results

Figure 5.1 shows the power dissipation per cycle in Watts for the actual programs

and the synthetics, which are uniformly lower. The average error is 6.8%, with a

maximum error of 15% for mcf. The significant errors for dispatch window, register file,

I-cache, D-cache, result bus, and clock are all low for the synthetics; the reason appears

to be the uniformly lower window occupancy errors, with an average of 4.1%, shown in

Figure 3.13. The SPEC INT synthetics exhibit larger average errors than the SPEC FP

and STREAM, at 9.9% and 5.1% respectively, as shown in Table 5.1. Individual machine

components generally show larger errors for SPEC INT, especially for the L1 I-cache and

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3 3.5
IPC

Po
w

er
 (W

at
ts

)

Figure 5.2: Power per Cycle vs. IPC
for Synthetics Figure 5.1: Power Dissipation per Cycle

0

5

10

15

20

25

30
gc

c
gz

ip
cr

af
ty

eo
n

ga
p

bz
ip

2
vp

r
m

cf
pa

rs
er

pe
rlb

m
k

vo
rte

x
tw

ol
f

m
gr

id
m

es
a

ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

i
fa

ce
re

c
fm

a3
d

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Po
w

er
 (W

at
ts

)
actual synthetic

D-cache, the result bus, and the clock power. As mentioned in Section 5.2, the

explanation for the cache errors is that the more complicated memory access behavior in

SPEC INT is less likely to be well modeled by the simple synthetic streams, resulting in

additional error in power dissipation in the I-cache and D-cache. This occurs in spite of

the fact that IPC errors for synthetics with L1 cache miss rates above 1% are generally

small [7] because the small miss rates have little impact on performance or are offset by

errors in other parts of the memory subsystem [7]. However, these

Metric/Structure %
Error

%Error
SPEC INT

%Error SPEC
FP/STREAM

Table 5.1: Average Power Prediction Error (%), Synthetics versus Benchmarks

Max.
%Error

Power per Cycle 6.8 9.9 5.1 15.0 (mcf)
Power per Instruction 4.4 5.4 3.9 11.2 (twolf)
Rename 2.4 2.8 2.1 7.4 (mcf)
Branch Predictor 3.7 4.3 3.3 15.8 (apsi)
Dispatch Window 5.3 7.1 4.3 12.5 (wupw)
LSQ 2.8 2.5 3.0 15.2 (applu)
Register File 6.4 4.5 7.4 22.1 (wupw)
L1 I-cache 6.0 11.0 3.2 14.1 (mcf)
L1 D-cache 5.8 7.3 4.9 18.5 (applu)
L2 cache 2.3 2.6 2.2 11.8 (applu)
ALU 1.8 1.7 1.8 5.2 (facerec)
Result Bus 6.6 10.9 4.3 16.1 (gcc)
Global Clock 12.4 17.7 9.5 27.0 (mcf)
Fetch 3.4 6.0 2.1 9.7 (mcf)
Dispatch Logic 2.4 2.8 2.1 7.4 (mcf)
Issue Selection Logic 3.6 4.9 2.9 8.2 (mcf)

 113

results indicate that the SPEC INT could especially benefit from more accurate

microarchitecture-independent memory access models.

 The synthetics also have relatively low clock power dissipation versus the

applications. A partial explanation is the uniformly lower dispatch window occupancies

for the synthetics, which exhibit an average decrease in occupancy error of 4.1% [7].

Additional errors for the SPEC INT again point to the memory access model as a major

contributor to the overall clock and result bus power dissipation errors. The large errors

in many features for mcf mirror its relatively large IPC error, 7.4%.

Figure 5.2 is a scatter plot of the IPC versus the power per cycle for the

synthetics. The correlation is quite good, with a Pearson correlation coefficient of 0.96.

Table 5.2 gives correlation coefficients for the power dissipation metrics and the various

machine features for both the actual programs and synthetics. The synthetic correlation

coefficients generally follow those of the actual programs.

The results of Table 5.2 generally confirm the findings in prior microarchitectural

Table 5.2: Correlation Coefficients of Power Dissipation versus IPC

Metric/Structure Actual Synthetic
Power per Cycle 0.94 0.96
Power per Instruction -.84 -.84
Rename 0.99 0.99
Branch Predictor 0.65 0.62
Dispatch Window 0.96 0.97
LSQ 0.30 0.22
Register File 0.77 0.75
L1 I-cache 0.91 0.96
L1 D-cache 0.43 0.46
L2 cache 0.016 -0.033
ALU 0.83 0.81
Result Bus 0.90 0.94
Global Clock 0.91 0.95
Fetch 0.88 0.92
Dispatch Logic 0.99 0.99
Issue Selection Logic 0.90 0.90

 114

0

5

10

15

20

25

30

0 1 2 3 4
IPC

Po
w

er
 (W

at
ts

)

Figure 5.3: Power per Instruction vs.
IPC for Synthetics

0

5

10

15

20

25

30

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

k
vo

rte
x

tw
ol

f
m

gr
id

m
es

a
ar

t
lu

ca
s

am
m

p
ap

pl
u

ap
si

eq
ua

ke
ga

lg
el

sw
im

si
xt

ra
ck

w
up

w
i

fa
ce

re
c

fm
a3

d
sa

xp
y

sd
ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1

Po
w

er
 (W

at
ts

)

actual synthetic

Figure 5.4: Power Dissipation per
Instruction

power simulations [54][10]. For many features the correlation is greater than 0.90.

However, there are some important exceptions. The LSQ, L1 D-cache, and L2 D-cache

power dissipations appear not to be correlated with IPC, at least over the instructions

executed. Also, the branch predictor, register file, and ALU power dissipations are only

weakly correlated. IPC can generate a good rough estimate of overall power dissipation,

especially for the pipeline structures, but additional analysis is necessary to estimate the

power dissipation for many machine structures, especially the data cache hierarchy.

Figure 5.3 shows that the power dissipation per instruction decreases as IPC

increases. The power dissipation of unused structures is 10% of maximum in the

conditional clocking scheme used in Wattch, and as IPC increases the unused structure

overhead is amortized over more instructions per cycle, but it never reaches zero. In

Table 5.3, a negative 0.84 correlation for both actual programs and synthetics is found

because the curve is non-linear, and the minimum power appears to be asymptotic to a

line below 9 Watts as IPC increases in Figure 5.3. This trend would extrapolate to a

maximum power of about 36 Watts for this four-issue machine.

Figure 5.4 breaks down the per instruction power dissipation by benchmark. The

average error from Table 5.1 is 4.4%, with a maximum error of 11.3% for twolf. At 5.4%,

 115

the error in power per instruction is more evenly distributed for SPEC INT than is power

per cycle, while SPEC FP and STREAM give 3.9% error.

5.3.3 Analysis of Design Changes

The power dissipation for design changes using the same synthetic workloads is

now studied; that is, the testcases described in the last section are re-executed with

changes to the machine configurations in Wattch, and the results are compared to

executions of the actual programs on the same configurations.

Table 5.3 gives information for the absolute and relative IPC prediction errors

[27] and the absolute and relative power dissipation prediction errors when executing

Table 5.3: Average Absolute and Relative IPC and Power Dissipation Error
 IPC Power Dissipation

Design Change %Err
or

Max
%Err

Rel.
%Err

Max
Rel.
%Err

%Cha
nge

%Err
or

Max
%Err

Rel.
%Err

Max
Rel.
%Err

%Cha
nge

Max Avg.
Structure
%Err(strc)

Max %Err
Structure
(synth)

Disp 8 LSQ 4 2.8 16.1 2.3 7.5 23.8 4.9 10.9 2.5 6.6 16.8 9.2(clk) 21.2 (gap)
Disp 32 LSQ 16 3.7 9.9 2.2 9.4 16.1 8.5 18.5 1.8 8.8 18.5 14.3(clk) 28.9 (mcf)
Disp 48 LSQ 24 5.0 12.3 3.9 14.3 24.6 9.2 17.9 2.9 10.9 31.7 15.4(clk) 32.4(applu)
Disp 64 LSQ 32 6.1 18.1 5.2 20.8 31.0 9.5 18.4 3.6 13.7 41.5 16.0(clk) 36.6(applu)
Disp 96 LSQ 48 8.3 29.3 7.6 32.2 43.2 9.9 22.4 4.8 18.9 63.4 17.1(clk) 41.4(applu)
Disp 128 LSQ 64 9.1 34.0 8.5 37.0 52.0 10.0 23.3 5.2 22.7 82.8 17.7(clk) 43.4(applu)
Issue Width 1 1.5 5.3 1.9 6.5 53.6 1.6 3.2 5.9 14.9 38.2 5.8(rbus) 16.9(fma3d)
Issue Width 8 3.0 9.4 1.6 9.2 7.0 6.3 13.1 1.0 7.3 11.3 11.4(clk) 26.7(wupw)
Commit Width 8 2.9 9.1 1.4 8.9 7.0 5.4 11.9 2.3 11.4 42.5 9.9(clk) 24.3(wupw)
Machine Width 2 2.8 7.6 2.0 6.5 23.5 5.4 10.9 1.7 5.6 17.6 10.4(regf) 26.8(wupw)
Machine Width 6 3.2 9.8 1.0 7.6 5.6 6.9 15.6 0.68 4.4 9.23 12.5(clk) 16.9(mcf)
Machine Width 8 3.2 8.8 1.1 7.6 6.0 6.6 13.7 0.79 6.2 14.5 11.9(clk) 24.4(wupw)
Machine Width 10 3.1 9.2 1.5 9.1 6.5 6.0 12.5 1.2 8.1 20.1 11.1(clk) 24.7(wupw)
Machine Width 12 3.1 9.3 1.5 9.1 6.6 5.6 11.7 1.6 9.4 25.7 10.5(clk) 25.0(wupw)
Machine Width 14 3.1 9.4 1.5 9.2 6.6 5.2 11.6 2.0 10.8 30.2 9.8(clk) 25.3(wupw)
Machine Width 16 3.2 9.4 1.5 9.2 6.7 4.7 11.2 2.6 12.1 34.1 10.0(Icac) 26.7(wupw)
IFQ 8 3.0 9.3 1.2 7.7 5.4 4.6 10.8 2.6 11.5 33.2 8.9(clk) 25.5(wupw)
IFQ 16 3.2 9.4 1.5 9.2 6.7 4.8 11.2 2.5 12.1 34.2 10.0(regf) 26.7(wupw)
IFQ 32 3.3 9.0 1.3 8.9 7.4 5.0 11.3 2.2 11.8 34.9 9.7(Icac) 26.7(wupw)
Caches 0.25x 19.4 49.8 18.8 48.8 15.2 14.1 34.8 9.2 28.5 22.8 18.6(rbus) 45.0(wupw)
Caches 0.50x 23.9 46.7 23.1 47.0 7.0 17.6 33.2 11.9 26.7 13.2 23.0(wind) 45.5(fma3d)
Caches 2.0x 4.2 16.0 3.2 18.8 4.3 6.5 15.6 1.6 7.6 18.7 12.7(clk) 28.1(mcf)
Caches 4.0x 4.9 17.8 3.9 12.6 6.2 9.2 19.0 3.1 8.4 40.5 15.8(clk) 32.1(twolf)
L1 I-cache 2.0x 3.0 10.7 1.3 5.9 7.0 8.1 18.6 2.0 6.9 36.5 14.5(clk) 35.1(sfill)
L1 D-cache 2.0x 3.2 14.3 1.2 12.8 2.2 7.5 16.6 1.1 4.1 30.9 13.3(clk) 31.0(mcf)
L1 D-cache Lat 8 9.7 38.0 9.9 34.8 22.0 2.6 7.2 6.4 21.3 13.4 6.7(regf) 19.4(perlb)
BPred 0.25x 2.9 8.6 1.3 6.0 0.63 6.4 14.3 0.67 2.7 0.40 12.0(clk) 25.9(mcf)
BPred 0.50x 2.5 8.6 0.60 3.0 0.18 6.7 15.4 0.31 1.4 0.22 12.2(clk) 26.7(mcf)
BPred 2.0x 2.6 8.3 0.32 1.8 0.15 6.9 15.5 0.18 0.88 0.20 12.4(clk) 26.9(mcf)
BPred 4.0X 2.5 8.0 0.40 2.0 0.22 6.9 15.2 0.21 0.87 0.52 12.4(clk) 26.7(mcf)

 116

 117

various design changes. Included here are the IPC data from Chapter 3 to ease discussion.

The only differences with those results are for the studies of machine width, issue and

commit width and IFQ size. For each of those, the other parameters related to machine

width are held at 16, instead of 4 in Chapters 2 and 3, to give larger changes in IPC as the

parameter changes.

In the table, Disp is the dispatch window size. A change in Machine Width

implies that the decode width, issue width and commit width all change by the same

amount from the base configuration in Table 3.5. When the caches are increased or

decreased by a factor, the number of sets for the L1 I-cache, D-cache and L2 cache are

increased or decreased by that factor. Likewise, when the bimodal branch predictor is

multiplied by a factor, the table size is multiplied by that factor from the default size. The

L1 D-cache 2x and L1 I-cache 2x specify a doubling of the L1 D-cache (to 256 sets, 64B

cache line, 8-way set associativity), and a doubling of the L1 I-cache configuration (to

1024 sets, 64B cache line, 2-way set associativity). The numbers here do not include

ammp or galgel. Those benchmarks tend to be optimistic when the dispatch window

changes because, as mentioned in Chapter 3, the small data footprint benchmarks do not

model data-TLB misses, and the actual programs have large TLB miss rates, over 13%

each.

A commit width change from 4 to 1 was also studied, but the data for some actual

programs is inconsistent, so it is not used. Speculation is that there is a power modeling

error when the commit width is reduced to one. Evidence that the modeling is incorrect is

given in Table 5.4, where most correlation coefficients for IPC and power dissipation are

above 0.90, except when the commit width equals one. The commit width equal one

results are not examined further in this paper.

 118

The other correlation coefficients in Table 5.4 indicate that the power dissipation

achieved by the synthetics for a design change follows fairly well the IPC change for that

design change. Table 5.3 shows that the absolute and relative IPC errors and power

dissipation errors (%Error and Rel. %Error) due to a design change for the synthetics

versus the actual programs is often below 5% or 10%, except for the two cases in which

the caches are reduced in size. The synthetics underestimate performance when the cache

is significantly reduced due to capacity misses among the synthetic data access streams

[6].

There are four classes of results in Table 5.3 that shed light on the quality of the

power dissipation analysis using the synthetics and provide a starting point for

discussion. One is concerned about whether the synthetic testcases properly indicate

power dissipation changes when the IPC changes significantly:

Class 1: The change in IPC and the change in power dissipation (%Change in

Table 5.3) are greater than two times (or more) their absolute or relative errors for the

design change.

Class 2: The change in IPC is greater than two times its absolute or relative error,

but the change in power dissipation is not.

Class 3: The change in power dissipation is greater than two times its absolute or

relative error, but the change in IPC is not.

Class 4: Neither the change in IPC nor the change in power dissipation is greater

than two times its error.

The classes for each design change are given in Table 5.4. The choice of threshold

equal to 2x is ad hoc, but it gives a good cushion between the average errors and the

average change that is being indicated. Evidence that that is a good metric is given by the

max absolute and relative error columns (Max %Err and Max Rel. %Err) for the design

Table 5.4: Correlation Coefficients of Power vs. IPC for Design Changes and
Quality of Assessing Power Dissipation Changes (Class)

Design Change Actual Synthetic Class
Disp 8 LSQ 4 0.95 0.97 1
Disp 32 LSQ 16 0.92 0.95 1
Disp 48 LSQ 24 0.91 0.94 1
Disp 64 LSQ 32 0.90 0.93 1
Disp 96 LSQ 48 0.92 0.93 1
Disp 128 LSQ 64 0.93 0.94 1
Issue Width 1 0.87 0.91 1
Issue Width 8 0.95 0.97 1
Commit Width 1* -0.27 0.74 N/A
Commit width 8 0.95 0.95 1
Machine Width 2 0.92 0.94 1 (borderline 3)
Machine Width 6 0.95 0.97 1 (borderline 3)
Machine Width 8 0.95 0.97 1
Machine Width 10 0.95 0.97 1
Machine Width 12 0.95 0.96 1
Machine Width 14 0.95 0.96 1
Machine Width 16 0.95 0.95 1
IFQ 8 0.95 0.95 1 (borderline 3)
IFQ 16 0.95 0.95 1 (borderline 3)
IFQ 32 0.95 0.95 1 (borderline 3)
Caches 0.25x 0.98 0.99 4
Caches 0.50x 0.96 0.99 4
Caches 2.0x 0.92 0.96 3
Caches 4.0x 0.89 0.95 3
L1 I-cache 2.0x 0.94 0.98 1
L1 D-cache 2.0x 0.82 0.89 3
L1 D-cache Lat 8 0.97 0.97 1
BPred 0.25x 0.94 0.96 4
BPred 0.50x 0.94 0.96 4
BPred 2.0x 0.94 0.96 4
BPred 4.0X 0.94 0.96 4

changes. Generally the max errors are less than or not too far removed from the

%Change. The %Change is the minimum change for either the actual or synthetic

workload. For all cases the %Change for either is close to that of the other.

Most of the design changes are class 1 (or borderline class 3) and none of the

design changes are class 2, which indicates that significant power dissipation changes can

be assessed when the IPC changes significantly. The class 3 and borderline class 3 design

changes indicate that the correct power dissipation changes are reflected even though the

IPC changes may not be significant. In these cases, the correlation coefficients between

IPC and power dissipation are lower.

 119

 120

The class 4 design changes indicate that the changes in IPC and power were not

much different from the errors in the synthetics themselves. As mentioned, the reduced

cache sizes put pressure on the memory access streams used in the synthetics, causing

large percent errors. For the branch predictor studies, the percent errors are small, but the

increase or decrease in the bimodal predictor table causes little change in performance

(%Change), whether for the actual or synthetic workloads. A different predictor

configuration is needed to assess the quality of predictor design changes for the

synthetics.

Table 5.3 also gives the maximum average percent power dissipation error from

among all the structures listed in Table 5.2 for each design change (Max Avg. Structure

%Err). Similar to the absolute structure errors in the last section, the most prominent

error is the global clock (clk), but the errors average only 12.5%, and for the strong class

1 design changes they are well below the average change in power dissipation.

The table also shows the maximum error found among all the synthetics for any

particular structure for the design change (Max %Err Structure Synthetic). This is usually

the global clock structure. Since these are much larger than the average structure errors

(Max Avg. Structure %Err), these particular points are outliers.

The results indicate that the synthetics for mcf, applu, and wupwise have predicted

power dissipations that are more variable than those of many others when the design

changes. Chapter 3 shows that mcf has a relatively low IPC compared to the original

workload which translates to lower power dissipation. It also has large I-cache power

underestimation of 14% and clock power underestimation of 27%. Applu has an

underestimated I-cache miss rate of 32% and a clock power underestimation of 19%. All

three workloads have the largest register file power underestimations, the largest being

wupwise at 22%. Other benchmarks have errors as evidenced in Figure 5.1, but these

 121

large errors set these three up to be outliers in the power studies. Ultimately the errors in

power estimation trace back to the inaccuracies in the synthesis process described in

Chapter 4.

5.4 SUMMARY

This chapter shows that synthetic workloads from Chapter 3 can rapidly and

accurately assess the power dissipation of real programs. Synthetic versions of the SPEC

2000 and STREAM benchmarks predict the total power per cycle to within 6.8% error on

average, with a maximum of 15% error, and total power per instruction to within 4.4%

error. Since the testcases execute orders of magnitude fewer instructions while

maintaining accuracy, performance and power model validations using more realistic

tests are feasible.

In addition, for many design changes for which IPC and power change

significantly, the synthetic workloads show small errors, many less than 5%. Also,

simulated power dissipation for both applications and synthetics correlates well with the

IPCs of real programs, often giving a correlation coefficient greater than 0.9. This

confirms prior results that demonstrate a good correlation between IPC and power

dissipation for simulated processors and hardware performance counters, and it verifies

that the synthetic testcases produce similar results.

The next chapter extends workload synthesis to the PowerPC instruction set

architecture. A case study of performance model validation for the POWER5 chip is

presented.

 122

Chapter 6: Performance Model Validation Case Study for the IBM
POWER5 Chip

The previous chapters propose synthetic workloads for early design studies and

model validation. The SimpleScalar performance simulator was used for the

investigations, and the machine configuration was chosen for direct comparison of results

to prior work [71][15]. While correlation was often good as the machine configuration

was changed, the base configuration is relatively small, at least with respect to the

dispatch window. The base dispatch window was set to 16, versus windows of more than

100 for modern processors [85]. Also, SimpleScalar does not model an L3, so the

memory latency of the base configuration is shortened to compensate. The configuration

is still a useful model for smaller machines, embedded designs and ASICs. However, the

configuration begs the question of how synthesis does for modern designs.

In this chapter, the synthesis methodology from Chapter 3 is augmented to

support the PowerPC instruction set architecture and the POWER5 chip. Additional

memory access models and synthesis parameters are added to help create representative

PowerPC versions of the SPEC 2000, STREAM, TPC-C and Java benchmarks. Specific

examples of performance model validation and analysis are presented. An average IPC

error of 2.4% versus the original benchmarks is obtained.

6.1 INTRODUCTION TO THE POWER5 CHIP

Modern high-performance microprocessors are quite complex. For example, the

POWER4 and POWER5 chips are dual-core PowerPC microprocessors used in IBM

high-end server systems [93][85]. The POWER4 chip is built from 1.5 million lines of

VHDL and 174 million transistors [56], and the POWER5 chip contains 276-million

transistors [85].

 123

This complexity poses challenges to performance modeling, model simulation,

and performance model validation efforts. As complexity increases, the gap in accuracy

can grow quickly, so validation is needed more frequently. While the relative error of

design changes based on inaccurate performance models is often similar to the relative

error using accurate models, subtle instruction interactions in the POWER4 and

POWER5 chips necessitate very accurate performance models.

To achieve accurate performance projections, the performance models must be

written at a very detailed level, which reduces the efficiency of the model simulation. The

detail also exacerbates the problem of performance model validation, which seeks to

execute codes and compare results between performance models and hardware or

functional models built from hardware descriptions of the machine. As described in

Chapter 3, the current state-of-the-art is to use simple hand-coded bandwidth and latency

testcases, but these are not comprehensive for most processors, especially processors as

complex as the POWER5 chip. Applications and benchmark suites such as SPEC CPU

are more difficult to set up or take too long to execute on detailed performance models.

In this chapter, the synthesis effort of Chapter 3 is broadened to support high-

performance PowerPC processors such as the POWER4 and POWER5 chips. The

specific contributions of this chapter are the following:

i) The synthesis system is extended to include the PowerPC ISA target.

ii) Current synthesis techniques are extended and new techniques are presented

that are necessitated by the features of the POWER5 chip, including new memory access

models.

iii) Two performance model validation approaches with validation results are

presented using the POWER5 synthetics.

 124

The rest of this chapter is organized as follows. Section 6.2 gives a quick

overview of synthesis and model validation for IBM PowerPC processors. Section 6.3

describes the extensions to synthesis to support the PowerPC ISA. Section 6.4 presents

experimental synthesis results for the POWER5 processor. Section 6.5 presents validation

results for a follow-on PowerPC processor using the POWER5 testcases. The last section

presents a summary.

6.2 IBM POWERPC SYNTHESIS AND MODEL VALIDATION

Just as in Chapter 3, representative testcase synthesis is achieved based on the

workload characterization and statistical flow graph of statistical simulation [27][4]. A

fast profiler is incorporated into the IBM performance tools, and synthesis is carried out

using the resulting profile. The microarchitecture-independent workload characteristics

are combined with memory access and branching models to build a representative

synthetic tsetcase.

In the case of the IBM PowerPC processors, executions of a cycle-accurate model

built directly from the functional VHDL hardware description language model [101][56]

can be compared against the detailed M1 performance model [44][41] used for

performance projections.

6.2.1 The POWER5 M1 Performance Model

The IBM PowerPC performance modeling environment is trace-driven to reduce

modeling and simulation overhead [66][51][41]. Traces are collected from executions on

real machines. The M1 performance model implements a detailed, cycle-accurate core.

Coupled with the M1 is a realistic model of the L2, L3 and memory [41].

The M1 captures the functional details of the processor. The POWER5 chip

features out-of-order instruction execution, two fixed point and two floating point units,

 125

120 general purpose rename registers, 120 floating point rename registers, complex

pipeline management, 32-entry load and store reorder queues, on-board L2 controller and

1.9-MB cache, L3 cache controller, 36-MB off-chip victim L3, memory controller, SMP

fabric bus interface, dynamic power management, and support for simultaneous

multithreading [85]. Table 6.7 gives additional configuration parameters.

6.2.2 PowerPC Performance Model Validation

The POWER5 M1 performance model was validated by hand to within 1% for

particular microbenchmarks [41]. However, executing more realistic code traces

produces larger errors for the M1, as was found in the literature [23]. The M1 often needs

to be validated against codes that are more representative of actual programs. However, it

is a difficult and time consuming proposition to validate a detailed model on realistic

programs. Automatic testcase synthesis seeks to automate the synthesis process and

synthesize high level codes that can target various platforms. In this work, two platforms

for validating the performance model are targeted: cycle-accurate RTL model simulation

and simulation on a hardware emulator.

6.2.2.1 Validation using RTL Simulation

Figure 6.1 shows the RTL validation methodology. The synthetic testcase is

compiled and converted to execute on a VHDL model using the standard IBM functional

verification simulation methodology [101][56]. The converted code is then executed to

completion on the VHDL model. The converted testcase is also unrolled into a trace

using a PowerPC instruction interpreter [66][51][12]. Only completed instructions are

maintained in the trace. The trace is then executed to completion on the M1 performance

model.

Synthetic Benchmark
(PowerPC C-code)

Convert to
VHDL Input

Format

Completed
Instruction
Information

Interpret
into Trace of
Completed
Instructions

VHDL
Model

Execution

M1
Performance

Model
Execution

Completed
Instruction
Information

Instruction-by-
Instruction

Comparison

Figure 6.1: RTL Validation Methodology using Synthetic Testcases

Both VHDL and performance model executions generate information at the level

of the instruction, including the cycle the instruction completes (write back register

result), address and opcode. The cycles at which an instruction completes in both the

VHDL and performance models are not identical in an absolute sense because of how

cycles are maintained and counted in the two simulators. However, the performance

model is of sufficient detail such that the completion cycle of an instruction minus the

completion cycle of the previous instruction, that is, the cycle difference between any two

completing instructions, should be equivalent.

The analysis relies on the fact that the methodology generates instructions for

both models from a compilation of a single piece of code. Each and every instruction is

executed on both the VHDL and M1 models and completes in the same order in both.

Instructions may complete in different completion buffers in the same cycle, but should

complete in the same cycle.

The instantaneous error, E(i), for each i instruction is defined in terms of the

difference in cycles between the completion time of the current instruction and the

 126

completion time of the previous instruction in both VHDL and M1 models. The

instantaneous error for the ith instruction is defined as:

 127

PR)()()(iDiDiE −=

where

)1()()(−−= iCiCiD RRR

and likewise

)1()()(−−= iCiCiD PPP

In these equations, CR(i) is the completion cycle of the ith instruction when

executing the VHDL (RTL) model, and CP(i) is the completion cycle of the ith instruction

when executing the M1 (Performance) model. The intuition behind the E calculation is

that an instruction is using the same machine resources and completing in the same order,

putatively in the same cycle, in both models, so differences between sequential

instructions should be identical. A difference indicates that resource allocations or

execution delays are not modeled similarly. Note that instruction dependences and

resource usages using the same workload in both models will limit the instantaneous

error and push it toward zero; there can be no large accumulation of error between any

two related instructions. However, the completion time of an instruction that is modeled

properly may be underestimated if an older instruction in program order fails to complete

on time and the younger instruction is not dependent on the older but on a prior

instruction and has been ready to complete for some time. It is therefore advisable to first

analyze the modeling errors of instructions with larger instantaneous errors.

The instantaneous errors can be categorized to narrow down the search for

microarchitectural bugs in which a hardware feature was not implemented properly, and

also to find modeling, abstraction, and specification errors [11] in the performance

model. Section 6.5 gives an example model validation analysis.

 128

6.2.2.2 Validation using a Hardware Emulator

The compiled synthetic testcases can also be input to an RTL model executing on

the AWAN hardware accelerator [56]. AWAN is composed of programmable gate arrays

and can be configured to emulate a VHDL model. The AWAN array supports very large

chips. The entire POWER4 chip, for example, can be emulated at a rate of more than

2500 cycles per second [56]. The cycle counts for a run are obtained from AWAN

registers and can be compared to the M1 performance model cycle counts. Detailed

execution information can also be obtained. In Section 6.5, validation results using

AWAN are presented.

6.3 SYNTHESIS FOR POWERPC

Following Chapter 3, the four major phases of synthesis are described, but

particular attention is paid to additions for the PowerPC ISA and high-performance chips

like the POWER5. Recall that the four phases are workload characterization, graph

analysis, register assignment and code generation.

6.3.1 Workload Characterization

The workload characterization for the PowerPC ISA is similar to the

characterization for the Alpha and Pisa ISAs in Chapter 3. The M1 was augmented with

the same workload characterization code used for the other ISAs. The dynamic execution

of a benchmark trace in the M1 produces a set of workload characteristics. Instructions

are still abstracted into five classes plus sub-classes, except that the floating-point

instructions have three sub-classes: short execution times, such as for a floating-point

move or add; long execution times, as for a floating-point multiply or divide; and

extremely long execution times, only for the PowerPC fma operations. As usual, the

Initial NBB
based on
I-cache

configuration

Synthesize,
execute, and

compare results

IMR
within
δI ?

Average
Basic Block
Size within

δBB?

Adjust
Number
of BBs

Adjust
Large Basic
Block Factor
And Length

No No

Yes Yes

Adjust
Branch Jump
Granularity

Can adjust
Number of

BBs?

Dependency
Moves
within
δM?

Allow
Dependency Insert

and Set
Maximum Moves

No

Yes Dependency
Averages

within
δD?

Adjust
Dependency

Factor

No

Yes

Branch
Pred

within
δB ?

IPC
within
δIPC?

DL1 and
DL2 MRs

within
δMR?

Ratio
(DL1/DL2)

within
δR?

Adjust
Branch Jump
Granularity

Adjust
Branch Multiplier

Factor
Adjust Bounded Factor,

Stream Multiplier Factor,
and/or Bounded Multiplier Factor

Adjust
Ld/St Offset

Factor

Adjust
Ld-Hit-St

Factor

Can adjust
Branch Multi-

plier?

No
NoNoNo

No

No Yes

YesYesYes
Yes

Start

Finish

Yes

Figure 6.2: Flow Diagram of Graph Analysis and Thresholds for PowerPC Synthesis

workload characterization process results in a statistical flow graph which is traversed to

produce a set of synthetic basic blocks [27][4].

6.3.2 Graph Analysis

The graph analysis phase has some significant additions. Figure 6.2 shows a flow

diagram of graph analysis. The diagram represents one pass through synthesis, at each

stage of which a workload characteristic is checked against a threshold. The thresholds

are defined in Table 6.1 and typical tolerances for them, determined experimentally, are

given. If a characteristic is above a threshold after a synthesis pass, an adjustment is made

to a parameter, or factor, that putatively changes a synthesis algorithm to meet the

threshold, and synthesis is repeated.

 129

In addition to the usual synthesis information, the factors in Table 6.6 and

additional factors are described in the following sections, as well as the final properties of

the synthetic testcases in Table 6.5.

6.3.2.1 Instruction Miss Rate and I-cache Model

As in Chapter 3, the number of basic blocks to be instantiated in the synthetic

testcase is estimated based on a default I-cache size and configuration. The number of

synthetic basic blocks is then tuned to match the original I-cache miss-rate (IMR). In the

PowerPC experiments, it was noticed that the IMR can change after the branches are

configured in the branching model (Section 6.3.2.5). To compensate, the branch jump

granularity is adjusted to change the number of basic blocks or instructions that a

configured branch jumps.

Usually a small number of synthesis iterations are necessary to match the IMR.

The numbers of basic blocks and instructions synthesized for the PowerPC versions of

the SPEC 2000 and STREAM benchmarks are shown in Table 6.5.

6.3.2.2 Instruction Dependences and Compatibility

All instruction input dependences are assigned. The starting dependence is exactly

the dependent instruction chosen as an input during statistical simulation. If the

dependence is not compatible with the input type of the dependent instruction, then

Table 6.1: Graph Analysis Thresholds and Typical Tolerance

Threshold Tolerance Definition Typical Value
δI I-cache Miss Rate 1%
δBB Basic Block Size 3%
δM Dependence Moves 10
δD Dependence Average 5%
δB Branch Predictability 5%
δR L1/L2 Miss Rate Ratio 5%
δMR L1 or L2 Miss Rate 5%
δIPC IPC 5%

 130

another instruction must be chosen. The algorithm is to move forward and backward from

the starting dependence through the list of instructions in sequence order until the

dependence is compatible.

In the PowerPC experiments, some benchmarks have very high average numbers

of moves away from the starting dependence. To compensate, after 25 moves, a

compatible instruction is inserted into the basic block near the starting dependence. The

total number of inserts for each benchmark is shown in the dependence inserts column of

Table 6.5. The highest numbers are associated with mgrid and applu, which have the

largest average basic blocks sizes, at 125 and 115 respectively. Inserts are also used for

some codes with short average basic block sizes, like gcc, due to long sequences of

branches without sufficient intervening instructions for proper dependences. Using the

inserts, the average number of moves per instruction input, shown in column dependence

moves, is reduced. In the case of a store or branch that is operating on external data for

which no other instruction in the synthetic instructions is compatible, an additional

variable of the correct data type is created.

 Table 6.2 shows the compatibility of instructions for the PowerPC instruction set.

The columns are the same as in Table 3.3. The PowerPC fma operations have three input

operands. In some cases, the dependence factor in Table 6.6 is used to multiply the

synthetic dependences to more closely match the overall averages in the original

Table 6.2: PowerPC Dependence Compatibility Chart

Dependent
Instruction Inputs Dependence

Compatibility Comment
Integer 0/1 Integer, Load-Integer

3 Inputs for fma Float 0/1/2 Float, Load-Float
Load-Integer/Float 0 Integer Memory access counter input
Store-Integer 0 Integer, Load-Integer Data input
Store-Float 0 Float, Load-Float Data input
Store-Integer/Float 1 Integer Memory access counter input
Branch 0/1 Integer, Load-Integer Condition registers

 131

 132

application. The dependence adjustment for mgrid was necessary due to its large average

basic block size and, therefore, small number of synthetic basic blocks. This factor was

not needed for the Pisa and Alpha syntheses. Note that branch operands specify condition

code registers, not indirect jumps to register values. This causes errors in the synthetic

branch dependences when the branching model is implemented (see Sections 6.3.2.5 and

Figure 6.9) but there is minimal performance impact.

6.3.2.3 Loop Counters and Program Termination

As in Chapter 3, a search is made for an additional integer instruction that is

attributed as the loop counter (BRCNTR). The branch in the last basic block in the

program checks the BRCNTR result to determine when the program is complete. The

number of executed loops, loop iterations in Table 6.5, is chosen to be large enough to

assure IPC convergence. As for the other ISAs, PowerPC experiments show that if the

product of the loop iterations and the number of instructions is around 300K instructions,

low branch predictabilities and good stream convergence are achieved. An mtspr

instruction initializes the internal count register to the loop iterations, and the final branch

checks for zero in the count register and decrements it.

6.3.2.4 Memory Access Model

As for the other ISAs, the LSCNTR instructions are assigned a stride based on the

D-cache hit rate found for their corresponding load and store accesses during workload

characterization. The memory accesses for data are modeled using the stream access

classes shown in Table 6.3. The stride assignment for a memory access is determined first

by matching the L1 hit rate of the load or store fed by the LSCNTR, after which the L2

hit rate for the stream is predetermined. The first two rows are only useful for stores in

store-through POWER5 machines. Stores in the L2 gather such that a simple traversal

through memory results in a 50% L2 hit rate. If the L1 hit rate is below 3.17%, the L2 hit

rate is matched.

The L1 Hit Rate for both loads and (non-zero hit rate) stores is based on the line

size of 128 bytes in the POWER4/5 chip:

4)128/(11 ⋅−= strideL HitRate

where the stride is given in increments of 4 bytes.

By treating all memory accesses as streams and working from a base cache

configuration, the memory access model is kept simple. This reduces additional impact

on the testcase instruction sequences and dependences, which have been shown to be

Table 6.3: L1 and L2 Hit Rate versus Stride (PowerPC)

L1 Hit Rate L2 Hit Rate Stride
0.0000 1.00 0
0.0000 0.50 1
0.0000 0.00 32
0.0313 0.00 31
0.0625 0.00 30
0.0942 0.00 29
0.1250 0.00 28
0.1563 0.00 27
0.1875 0.00 26
0.2188 0.00 25
0.2500 0.00 24
0.2813 0.00 23
0.3125 0.00 22
0.3438 0.00 21
0.3750 0.00 20
0.4063 0.00 19
0.4380 0.00 18
0.4688 0.00 17
0.5000 0.00 16
0.5313 0.00 15
0.5625 0.00 14
0.5938 0.00 13
0.6250 0.00 12
0.6563 0.00 11
0.6875 0.00 10
0.7188 0.00 9
0.7500 0.00 8
0.7813 0.00 7
0.8125 0.00 6
0.8438 0.00 5
0.8750 0.00 4
0.9063 0.00 3
0.9375 0.00 2
0.9688 0.00 1
1.0000 n/a 0

 133

important for correlation with the original workload [4]. On the other hand, there can be a

large error in stream behavior for two reasons. An actual L1 hit rate may fall between the

hit rates in two rows, but for the PowerPC configuration this maximizes to only about 3%

error. A larger error is associated with the lack of distinguishing L2 hit rate quanta. Since

the L1 and L2 line sizes are the same in the POWER5 machine, it is difficult to get

positive L2 hit rates with simple stride models.

Consequently, traversals through particular cache congruence classes are

implemented. They are called bounded streams to differentiate them from streams that

continually increment through memory, i.e. unbounded streams. The implementation

makes use of the default 4-way set associative L1 and 10-way set associative L2 in the

machines under study. The difference in associativity means that traversals through a

class will hit in the L2 but miss in the L1 to the extent that the entire class is traversed. If

the L2 hit rate is greater than the L1 hit rate multiplied by the bounded factor in Table

6.6, then the stream in the basic block is changed from a simple stride stream (stream

pools in Table 6.5) to a congruence class traversal (bounded stream pools in Table 6.5).

To achieve the particular L1 and L2 hit rates in a row of Table 6.4, the instruction

reset column gives the total number of 8K accesses that are necessary before starting over

and repeating the same access sequence in the congruence class. In equation form:

⎩
⎨
⎧

≤≤−
<≤

=

⎪
⎩

⎪
⎨

⎧

≤<
≤≤−
<≤

=

2011,/)20(
110,0.1

2

208,0
84,/)8(
41,0.1

1

resetresetreset
reset

L

reset
resetresetreset
reset

L

HitRate

HitRate

Note that, for studies of cache size design changes, congruence class traversals essentially

clamp the hit rates to a particular level, since the rates will not change unless the

associativity changes. The effect of the use of this factor is to adjust the ratio of the L1

 134

and L2 hit rates to more closely match that of the original application. This is also shown

in Figure 6.2.

 In some cases, additional manipulation of the streams was necessary to correlate

the testcases because of the cumulative errors in stream selection. In Table 6.6, the stream

factor multiplies the moving average of the L1 hit rate taken from the table during each

lookup, and if the result is greater than the original hit rate by (N·10%), the selected

stream is chosen from the preceding (N+1)st row. This has the effect of reducing overall

hit rates for the first load or store fed by an LSCNTR. Similarly for the bounded streams,

the bounded stream factor in Table 6.6 multiplies the L1 hit rate.

 For the Pisa and Alpha syntheses, the miss rate estimate factor in Table 3.3 was

implemented to estimate and modify the basic block miss rate [5][7]. This was not

needed for the PowerPC synthesis, but additional related factors were added. The load-

store-offset factor in Table 6.6 changes the address offset of loads and stores to a value

from one to 8K based on a uniform random variable. Interestingly, the factor value

usually has a proportional effect on cache miss rates and IPC because of the random

access but fewer load-stores address collisions. The load-hit-store factor changes the

Table 6.4: L1 and L2 Hit Rates for Reset Instruction Number (Congruence Class Walks)

L1 Hit Rate L2 Hit Rate Instruction Reset
1.0000 1.0000 4
0.6000 1.0000 5
0.3333 1.0000 6
0.1429 1.0000 7
0.0000 1.0000 8
0.0000 0.8182 11
0.0000 0.6667 12
0.0000 0.5385 13
0.0000 0.4286 14
0.0000 0.3333 15
0.0000 0.2500 16
0.0000 0.1765 17
0.0000 0.1111 18
0.0000 0.0526 19
0.0000 0.0000 20

 135

number of stores that have the same word address offset as loads. The factor value has an

inversely proportional effect on IPC. Both factors are shown as knobs in the flow

diagram of Figure 6.2. An additional simple way to increase both L1 and L2 misses is

implemented by configuring a fraction of non-bounded streams to stride by a fraction of a

4KB page. Mcf configures three streams to walk with stride equal to a page, and art and

java configure one stream to traverse 0.8 and 0.6 of a page, respectively.

Ideally, these last few factor values would be based on a characterization of the

workload, but load-hit-stores, load-offsets and page walks were not analyzed in the

Table 6.5: Synthetic Testcase Properties for the POWER5 chip

Name Number of
Basic Blks

Number of
Instructions

Loop
Iterations

Stream
Pools

Bounded
Stream
Pools

Code
Registers

Dependence
Moves

Dependence
Inserts

Runtime
Ratio

gcc 750 2524 80 5 3 12 6.093 60 437.58
gzip 840 3683 119 4 4 12 0.465 1 481.1

crafty 360 3699 56 5 3 12 0.797 4 718.11
eon 330 3879 41 3 5 12 3.113 40 1181.51
gap 510 3940 65 4 4 12 0.33 0 954

bzip2 300 1859 144 5 5 10 0.418 0 562.62
vpr 400 2855 121 7 3 10 0.648 13 1051.48
mcf 800 3561 71 7 3 10 0.649 0 495.19

parser 795 4013 54 8 2 10 0.833 0 1113.85
perlbmk 600 3834 55 9 1 10 1.95 0 998.11
vortex 500 2417 90 2 8 10 0.889 0 994.29
twolf 540 3952 71 3 7 10 0.596 1 1190.29
mgrid 30 4008 65 8 2 10 1.632 255 1050.13
mesa 400 3362 81 5 3 12 1.32 23 1123
art 200 4213 46 6 2 12 1.4 228 902.18

lucas 80 2367 141 3 5 12 1.915 0 872.08
ammp 200 1700 160 4 4 12 6.608 0 749.18
applu 30 3851 63 6 2 12 1.204 272 378.77
apsi 200 3208 70 8 0 12 4.585 0 345.54

equake 50 2459 71 7 1 12 9.499 0 700.57
galgel 120 3868 53 6 2 12 11.225 0 583.31
swim 70 3468 71 4 4 12 1.769 85 1079.23

sixtrack 150 2624 144 5 2 12 1.12 0 494.55
wupwise 200 2756 69 5 3 12 11.095 0 1258.9
facerec 200 2530 113 5 3 12 3.982 0 616.75
fma3d 150 3596 49 6 2 12 5.594 0 445.68
saxpy 1 8 33334 2 0 12 0 0 28.27
sdot 1 6 50001 2 0 12 0.125 0 71.85
sfill 1 3 100001 1 0 12 6.25 0 22.47

scopy 1 6 50001 2 0 12 0 0 61.75
ssum2 1 4 100001 1 0 12 0.2 0 18.67
sscale 1 7 50001 2 0 12 0 0 23.23
striad 1 9 33334 3 0 12 0 0 27.16
ssum1 1 9 33334 3 0 12 0 0 26.97
tpc-c 4500 23102 12 2 8 10 0.571 0 447.77
java 4750 23391 14 3 7 10 0.416 0 447.59

 136

 137

current version of the code and are left as future work. As discussed in Chapter 3, more

complicated models might move, add, or convert instruction types to implement more

realistic access functions. There are also many access models in the literature that can be

investigated as future work. Usually a small number of synthesis iterations are needed to

find a combination of factors to model the overall access rates of the application,

although more were needed for the PowerPC syntheses than for Pisa and Alpha.

6.3.2.5 Branch Predictability Model

The same branch predictability model from Chapter 3 is used. An integer

instruction (the BPCNTR) that is not used as a memory access counter or a loop counter

is converted into an invert instruction (nor.) operating on a particular register every time

it is encountered. When the condition code is set by the inversion, the configured branch

checking it jumps past the next basic block in the default loop. The invert mechanism was

designed to yield a predictability of 50% for 2-bit saturating counter predictors. The

POWER5 branch predictor uses combined tables of single bit predictors [85], but the

invert mechanism still gives good correlation. To compensate for the resulting errors and

variabilities in the mix of synthetic basic blocks and code size, the BP Factor in Table 6.6

multiplies the calculated branch predictability to increase or decrease the number of

configured branches. Usually a small number of synthesis iterations are needed to tune

this factor.

 In an additional implementation, the branch jump granularity is adjusted such

that a branch jumps past a user-defined number of basic blocks instead of just one, but as

for the Alpha and Pisa syntheses, this did not result in improved branch predictability. In

another implementation, the branch jumps past a user-defined number of instructions in

the next basic block. Unlike for the Pisa and Alpha syntheses, this was not needed for

mgrid and applu because their POWER5 versions have very high branch predictabilities,

but it was effective in tuning the branch predictability for several SPEC INT benchmarks

such as eon and twolf, which have relatively low branch predictabilities. In those cases,

the branch jumps past one instruction of the next basic block.

The capability to skew the average length of the basic block by choosing sized

successors as in Chapter 3 was not needed for mgrid and applu, but it was used for slight

tunings of the average block sizes of various benchmarks. In Table 6.6, as the basic block

size factor is reduced from unity, the block size is skewed toward the basic block length

value.

Table 6.6: Synthetic Testcase Memory Access and Branching Factors for the
POWER5 Chip

Name Dependence
Factor

Bounded
Factor

Stream
Factor

Bounded
Stream Factor

Load-Hit-
Store Factor

Load-Store
 Offset Factor BP Factor Basic Block Size

Factor
Basic Block

Length
gcc 1 1 1 1 0.58 0.24 1.01 0.95 4
gzip 1 1 1.2 1.2 1 1 0.65 1 -

crafty 1 1 0.9 0.9 0.15 0.97 1 0.8 10
eon 1 1 0.9 0.9 0.1 1 0.8 0.9 10
gap 1 1 1 1 0.28 0.98 1.03 1 -

bzip2 1 1 1 1 0.92 0.965 0.5 0.96 6
vpr 1 1.05 0.75 0.7 1 1 0.75 1 -
mcf 1 1 1 1 1 1 0.9 1 -

parser 1 1 1 1 1 1 1.02 0.9 5
perlbmk 1 1.05 1 1 0.85 0.998 1.05 0.95 5
vortex 1.5 0.01 1.1 0.1 0.01 1 1 0.9 5
twolf 1 1 1.05 1.1 1 1 0.8 1 -
mgrid 3.0 0.75 0.8 0.8 0.1 0.92 1 1 -
mesa 0.9 1 0.96 0.95 1 0.96 0.95 1 -
art 1 1.5 1.5 1.5 1 0.01 1 1 -

lucas 1 0.1 1 1 1 0.83 1 0.9 20
ammp 1 0.9 1.35 1 1 0.89 1 1 -
applu 1 1 1 1 1 0.7 1 1 -
apsi 1 1.05 1 1 0.53 0.93 1 1 -

equake 1 0.98 1.1 1.1 0.33 0.88 1 1 -
galgel 1 1.1 1 1.1 0.22 0.74 1 1 -
swim 1 1 1.05 1.2 0.98 0.99 1 1 -

sixtrack 1.5 1.1 0.9 0.9 0.08 0.78 1.03 1 -
wupwise 1 1 1 1 0.29 0.98 1.03 0.95 10
facerec 1 1 1 1 1 0.85 1 1 -
fma3d 1 1 1 1.02 0.25 1 0.93 0.98 20
saxpy 1 1 1 1 1 1 1 1 -
sdot 1 1 1 1 1 1 1 1 -
sfill 1 1 1 1 1 1 1 1 -

scopy 1 1 1 1 1 1 1 1 -
ssum2 1 1 1 1 1 1 1 1 -
sscale 1 1 1 1 1 1 1 1 -
striad 1 1 1 1 1 1 1 1 -
ssum1 1 1 1 1 1 1 1 1 -
tpc-c 2.0 1 1 1 0.3 1 1 0.93 5
java 1 1 1 1 1 1 1.05 0.95 5

 138

 139

6.3.3 Register Assignment

All architected register usages in the synthetic testcase are assigned exactly during

the register assignment phase. As for the Alpha and Pisa experiments in Chapter 3, only

20 general-purpose registers divided between memory access stream counters and code

use are necessary. For the PowerPC codes under study, the number of registers available

for streams averages about 8 and for code use about 12 (stream pools + bounded stream

pools, and code registers in Table 6.5). Two additional registers are reserved for the

BRCNTR and BPCNTR functions.

Memory access streams are pooled according to their stream access characteristics

and a register is reserved for each class (stream pools and bounded stream pools in Table

6.5). All LSCNTRs in the same pool increment the same register, so new stream data are

accessed similarly whether there are a lot of LSCNTRs in the pool and few loop

iterations or few in the pool but many iterations. For applications with large numbers of

stream pools, synthesis consolidates the least frequent pools together until the total

number of registers is under the limit. In the Pisa and Alpha studies, pools are greedily

consolidated by iteratively combining the two least frequent pools until the limit is

reached. For the PowerPC codes, the top most frequent pools are never watered down

with less frequent pools; the last pool under the limit consolidates all less frequent pools.

In all cases, the consolidated pools use the pool stride or reset value that minimizes the

hit rate. The stream pools and bounded stream pools are consolidated separately.

6.3.4 Code Generation

As in Chapter 3, the code generator takes the representative instructions, the

instruction attributes from graph analysis, and the register assignments and emits a single

module of C-code that contains calls to assembly-language instructions in the PowerPC

language. As before, the C-code main header is emitted, then variable declarations,

 140

stream pool pointer declarations, malloc calls for the stream data, and memory access

pointer initializations, loop counter (BRCNTR) initialization, the volatile asm

instructions themselves, and a C-code footer.

For the PowerPC ISA, the data access counters (LSCNTRs) are emitted as addi

instructions that add their associated stride to the current register value. The BRCNTR is

emitted as an add of minus one to its register. Long latency floating-point operations are

generated using fmul and short latency operations are generated using fadd. Loads use lwz

or lfs, depending on the type, and stw or stfs for stores. Branches use the bc with operands

set to check the same condition register set by the BPCNTR. The basic blocks are

analyzed and code is generated to print out unconnected output registers depending on a

switch value. The switch is never set, but the print statements and volatile asm calls

guarantee that no code is eliminated or reordered during compilation.

Tables 6.5 and 6.6 give the synthesis information for the PowerPC SPEC 2000

and STREAM codes as described in this section. The runtime ratio is the user runtime of

the original benchmark for up to one hundred million instructions divided by the user

runtime of the synthetic testcase on various POWER3 and POWER4 workstations. Each

pass through the synthesis process takes less than five minutes on an IBM p270 (400

MHz). The results show a two or three order of magnitude speedup using the synthetics.

6.4 POWER5 SYNTHESIS RESULTS

In this section, results are presented for the synthetic POWER5 testcases obtained

using the methods in the last section.

Table 6.7: Default Simulation Configuration for the POWER5 Chip
Instruction Size (bytes) 4
L1/L2 Line Size (bytes) 128/128

Machine Width 8
Dispatch Window;LSQ;IFQ 120 GPRs, 120 FPRs;32 LD, 32ST;64

Memory System 32KB 4-way L1 D, 64KB 2-way L1 I,
1.9M 10-way L2, 36MB 12-way L3

Functional Units
2 Fixed Point Units,

 2 Floating Point Units

Combined 16K Tables, 12 cycle
misspredict penalty Branch Predictor

6.4.1 Experimental Setup

The profiling system from Chapter 3 is again used. The POWER5 M1

performance model described in Section 6.2 is augmented with profiling code to carry out

the workload characterization. The 100M instruction SPEC 2000 PowerPC traces used in

Jacobson et al. [44] and Hur and Lin [41] and described in Borkenhagen et al. [12] are

executed on the augmented M1. Also added is an internal DB2 instruction trace of TPC-

C [12][39] and a 100M instruction trace for SPECjbb (java) [89]. In addition, single-

precision versions of the STREAM and STREAM2 benchmarks [64] with a one million-

loop limit are compiled on a PowerPC machine. The default POWER5 configuration in

Table 6.7 is used along with other parameters in Sinharoy et al. [85].

A code generator for the PowerPC target is built into the synthesis system, and C-

code is synthesized. The synthetic testcases are compiled on a PowerPC machine using

gcc with optimization level –O2 and executed to completion in the M1.

6.4.2 Synthesis Results

The following figures show results either for the synthetics normalized to the

original application results or for both the original applications, actual, and the synthetic

testcases, synthetic. Figure 6.3 shows the normalized IPC for the testcases. The average

IPC prediction error [27] for the synthetic testcases is 2.4%, with a maximum error of

 141

Figure 6.3: IPC for Synthetics Normalized to
Benchmarks

0.8

0.85

0.9

0.95

1

1.05

1.1

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

k
vo

rte
x

tw
ol

f
m

gr
id

m
es

a
ar

t
lu

ca
s

am
m

p
ap

pl
u

ap
si

eq
ua

ke
ga

lg
el

sw
im

si
xt

ra
ck

w
up

w
i

fa
ce

re
c

fm
a3

d
sa

xp
y

sd
ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1
tp

c-
c

ja
va

N
or

m
al

iz
ed

 IP
C

Figure 6.4: Average Instruction
Frequencies

0

0.05

0.1

0.15

0.2

0.25

0.3

Integer Float Load Store Branch

In
st

ru
ct

io
n

Fr
eq

ue
nc

y

actual synthetic

9.0% for java. The other commercial workload, tpc-c, gives 4.0% error. The reasons for

the errors are discussed in the context of the figures below.

Figure 6.4 compares the average instruction percentages over all benchmarks for

each class of instructions. The average prediction error for the synthetic testcases is 1.8%

with a maximum of 3.4% for integers. Figure 6.5 shows that the basic block size varies

per benchmark with an average error of 5.2% and a maximum of 18.0% for apsi. The

largest absolute errors by far are for mgrid and applu. The errors are caused by variations

in the fractions of specific basic block types in the synthetic benchmark with respect to

the original workload, which is a consequence of selecting a limited number of basic

blocks during synthesis. For example, mgrid is synthesized with a total of 30 basic blocks

made up of eight unique block types. The top 90% of basic block frequencies in the

synthetic mgrid differ by 27.5% on average from the basic block frequencies of the

original workload. This is in contrast to testcases with large numbers of basic blocks such

as gcc, which differ by only 3.5% for the top 90% of blocks.

The POWER5 I-cache miss rates normalized to the maximum miss rate are all

accounted for in Figure 6.6, but they are not very interesting because most are less than

1%, and much less than the tpc-c and java miss rates. The low miss rates are due to the

 142

0

0.2

0.4

0.6

0.8

1

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

k
vo

rte
x

tw
ol

f
m

gr
id

m
es

a ar
t

lu
ca

s
am

m
p

ap
pl

u
ap

si
eq

ua
ke

ga
lg

el
sw

im
si

xt
ra

ck
w

up
w

is
e

fa
ce

re
c

fm
a3

d
sa

xp
y

sd
ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1
tp

cc
_6

2M ja
va

I-c
ac

he
 M

is
s

R
at

e
N

or
m

al
iz

ed
 to

 M
ax

im
um

0

20

40

60

80

100

120

140

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

k
vo

rte
x

tw
ol

f
m

gr
id

m
es

a
ar

t
lu

ca
s

am
m

p
ap

pl
u

ap
si

eq
ua

ke
ga

lg
el

sw
im

si
xt

ra
ck

w
up

w
i

fa
ce

re
c

fm
a3

d
sa

xp
y

sd
ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1
tp

c-
c

ja
va

A
ve

ra
ge

 S
iz

e
actual synthetic actual synthetic

Figure 6.5: Average Basic Block Sizes Figure 6.6: I-cache Miss Rates

effectiveness of instruction prefetching in the POWER5 chip [85][93]. The results also

support the common wisdom that the SPEC do not sufficiently challenge modern I-cache

design points. The synthetic benchmarks do well on the commercial workloads but still

average 7% error. These errors could probably be reduced by carrying out more synthesis

passes. In general, the synthetics have larger I-cache miss rates than the applications

because they are executed for fewer instructions [7]. However, since the miss rates are

small, their impact on IPC when coupled with the miss penalty is also small.

The average branch predictability error is 1.1%, shown normalized in Figure 6.7.

The largest errors are is bzip2 at 5.4% and equake at 4.7%. The L1 data cache miss rates

are shown normalized in Figure 6.8. The average error is 4.3% with a maximum error of

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

k
vo

rte
x

tw
ol

f
m

gr
id

m
es

a
ar

t
lu

ca
s

am
m

p
ap

pl
u

ap
si

eq
ua

ke
ga

lg
el

sw
im

si
xt

ra
ck

w
up

w
i

fa
ce

re
c

fm
a3

d
sa

xp
y

sd
ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1
tp

c-
c

ja
va

N
or

m
al

iz
ed

 B
Pr

ed

0

0.2

0.4

0.6

0.8

1

1.2

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

vp
r

m
cf

pa
rs

er
pe

rlb
m

k
vo

rte
x

tw
ol

f
m

gr
id

m
es

a
ar

t
lu

ca
s

am
m

p
ap

pl
u

ap
si

eq
ua

ke
ga

lg
el

sw
im

si
xt

ra
ck

w
up

w
i

fa
ce

re
c

fm
a3

d
sa

xp
y

sd
ot sf
ill

sc
op

y
ss

um
2

ss
ca

le
st

ria
d

ss
um

1
tp

c-
c

ja
va

N
or

m
al

iz
ed

 L
1

D
 M

is
s

R
at

e

Figure 6.7: Branch Predictability Figure 6.8: L1 D-cache Miss Rate
 143

0

1

2

3

4

5

6

7

8

9

I0 I1 F0 F1 F2 L0 S0 S1 B0 B1

A
vg

. D
ep

en
de

nc
y

D
is

ta
nc

e

actual synthetic

Figure 6.9: Average Dependence Distances

31% for eon. But eon has a very small miss rate, as do the other benchmarks with errors

much greater than 4%, so again the execution impact of their errors is also small.

Looking at the raw miss rates, the trends using the synthetic testcases clearly correspond

with those of the original workloads. This can not be seen in the normalized results.

For the unified L2 miss rates, the average error is 8.3% for those benchmarks with

miss rates higher than 3%. For the others, errors can be large. Large errors due to the

simple streaming memory access model are often mitigated by the small magnitude of the

L1 and L2 miss rates [7]. But problematic situations occur when a large L2 miss rate

error is offset by an L1 miss rate that is smaller than that of the original application. Still,

for larger L2 miss rates, the trends in miss rates using the synthetics clearly correspond to

those of the original applications. The L3 miss rates are also generally very small and

often not represented well by the synthetics. As mentioned, research into more accurate

memory access models is needed to represent all levels of the memory hierarchy.

Figure 6.9 shows the average dependence distances for the input operands over all

benchmarks. It shows a 7.5% error on average for the non-branch dependence distances.

For the branch dependence errors, the M1 profiler classifies certain PowerPC trap and

interrupt operations as unconditional jumps to the next basic block, i.e. they define the

end of a basic block, and their dependences are not modeled. Also, the profiler records
 144

 145

particular condition registers as the dependences for conditional branches, while

synthesis uses one specific condition register to implement the branching model; the

performance impact is small compared to the branch predictability itself.

The integer dependence errors are caused by the conversion of many integer

instructions to LSCNTRs, the memory access stride counters. A stride counter overrides

the original function of the integer instruction and causes dependence relationships to

change. Another source of error is the movement of dependences during the search for

compatible dependences in the synthesis process. The movement is usually less than one

position (Table 6.5), but several benchmarks show significant movement. The

dependence insertion technique reduces errors for the dependent instruction, but the

inserted instruction may itself contain dependence errors.

6.4.3 Design Change Case Study: Rename Registers and Data Prefetching

A set of design changes using the same synthetic codes is now presented; that is,

the testcases described in the last section are applied along with changes to the machine

parameters in the M1 model and re-executed. In this study, pipeline resources are

increased by more than 2x. These are the number of rename registers available to the

mapper for GPRs, FPRS, condition registers, link/count registers, FPSCRs, and XERs

[85][93]. This effectively increases the dispatch window of the machine. Data prefetching

is also enabled and execution is in “real” mode, i.e. with translation disabled. With these

enhancements the average increase in IPC for the applications for the full 100M

instructions is 56.7%.

The synthetics are executed using the same configuration. The average change in

IPC for the synthetics is 53.5%. The raw IPC comparison again clearly shows that the

trends in the IPC changes for all synthetics follow those of the original applications. The

average absolute IPC prediction error is 13.9%, much less than half of the IPC change

percentage, an important consideration when deciding if the testcase properly evaluates

the design change [8]. The average relative error [27] for the change is 13.3%. The

synthetic IPC change is generally lower than that of the application. This effect is

explained by the use of bounded streams in PowerPC synthesis, which clamps particular

synthetic stream miss rates to the base levels, as explained Section 6.3.

6.5 PERFORMANCE MODEL VALIDATION RESULTS

The synthetic testcases are now used to validate the performance model of a

POWER5 follow-on processor. This is an actual case study carried out using an early

version of a performance simulator for a new processor.

6.5.1 RTL Validation

Several of the same traces used in Section 6.4 for the POWER5 are executed on

the VHDL and M1 models of the new PowerPC processor using the process described in

Section 6.2.2. Figure 6.10 illustrates a detailed analysis that was carried out using the

-1

-0.5

0

0.5

1

0 2000 4000 6000 8000

Instructions

N
or

m
al

iz
ed

 E
rr

or
 (C

yc
le

s)

Instantaneous Instruction Error Cumulative Error

Figure 6.10: Normalized Error per Instruction and Cumulative Error for 10K Instructions (gcc)

 146

 147

RTL validation methodology. Information for each instruction in the execution of the

first 10K instructions of the synthetic gcc is plotted, normalized to the maximum

cumulative error.

The instantaneous errors are plotted as individual points either above or below the

x-axis. If above the axis, the error is positive, meaning that the execution of the

instruction in the VHDL model took longer than execution in the M1 performance model.

It is difficult to see the small errors that are close to zero, but many errors are zero even

near the end of execution. This indicates that many instructions are modeled correctly.

The focus of examination is on the instructions that exhibit errors.

Ideally, the performance model would execute at the same rate or slower than the

RTL model, so that designers do not project overestimates of performance for their

designs. The cumulative sum of the instantaneous errors is plotted in Figure 6.10. It is

clear that the M1 is providing overly-optimistic projections for gcc after only 10K

instructions. The slope of the cumulative error later in the testcase indicates the direction

of the performance model projections where positive is worse than flat or negative. The

error is more erratic at the beginning of the execution because the early instructions are

associated with the header and initialization C-code, not the body of the testcase, and they

are not repeated.

The cumulative error plot can also be seen to indicate repeating sequences of

behavior, or phases, at various scales in the synthetic testcases. The phases are related to

specific code areas, and their identification can lead to rapid performance model fixes.

Viewed at a particular scale, a phase starts after 2800 instructions and ends at about 4000.

Another phase starts there and ends at 5200, and then the phases repeat. Both phases

together are about as long as the body of the synthetic testcase. The shape of the curve

indicates a steady, repeating set of instruction errors.

 148

To pinpoint the differences between VHDL and M1 model execution for gcc, the

errors are analyzed by instruction class as in Figure 6.11. All classes show a large

percentage of errors (gcc has no floating point instructions), but Figure 6.12 shows that

average load and store errors, whether calculated over all instructions or just instructions

with errors, have the largest impact on performance.

Figure 6.13 breaks down the fraction of instructions with errors into buckets of

Figure 6.11: Fractions of Instructions
with Errors (gcc)

Figure 6.12: Average Error per Class for
All Instructions or Instructions
with Errors

Figure 6.13: Fraction of Instructions with Errors by 25-Cycle Bucket (gcc)

0

0.2

0.4

0.6

0.8

1

Alu Float Load Store Branch

Fr
ac

tio
n

0

5

10

15

20

25

30

35

40

Alu Load Store Branch

A
ve

ra
ge

 E
rr

or
 (C

yc
le

s)

All instructions Error Instructions

0

0.1

0.2

0.3

0.4

ALU Load Store Branch

Error Buckets Per Instruction Type
(25 Cycle Intervals)

Fr
ac

tio
n

of
 In

st
ru

ct
io

ns
w

ith
 In

st
an

ta
ne

ou
s

Er
ro

rs

100+

75-99

50-74

25-49

1-24

 149

errors that are multiples of 25 cycles. The vast majority of ALU and Branch operations

with errors have errors that are less than 25 cycles, while 12.0% of loads and 6.8% of

stores with errors have errors that are higher than 100 cycles, deep into the memory

hierarchy.

An additional issue relates to how error is assigned for instructions that follow

branches. Branches complete even if the branch prediction is incorrect, and the next

instruction potentially experiences a larger completion delay because the mispredicted

prior branch causes the pipe to flush. If the instantaneous error for the instruction

following the branch is large, the problem may be the modeling of the branch predictor.

For gcc, 9.3% of the loads and stores have errors greater than ten cycles and occur after a

branch.

Regardless of the accuracy of the memory access models used to create the

synthetic streams, the results using the models indicate that loads and stores are very

likely to be modeled incorrectly in the performance model. This is valuable information

to feed back to the performance modeling team. Note that these errors in the performance

model were found prior to manufacturing the design in silicon.

6.5.2 Hardware Emulation

The same synthetic testcases are input to an AWAN hardware emulator executing

the PowerPC VHDL models and to the M1 models used in the last section. In this case

the runtime to collect the data is many times faster than VHDL simulation [56]. Figure

6.14 shows the M1 IPC normalized to the AWAN results for some of the testcases. The

average error is 12.7%. Most of the errors are within 20%, but there are several outliers,

including bzip2 and galgel. The hardware emulator provides more rapid VHDL

simulation to speed model validation investigations.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

gc
c

gz
ip

cr
af

ty
eo

n
ga

p
bz

ip
2

pa
rs

er
pe

rlb
m

k
vo

rte
x

m
es

a
lu

ca
s

am
m

p
ap

pl
u

ap
si

ga
lg

el
sw

im
w

up
w

is
e

fa
ce

re
c

sa
xp

y
sd

ot sf
ill

sc
op

y
ss

um
2

st
ria

d
ss

um
1

N
or

m
al

iz
ed

 IP
C

Figure 6.14: Normalized IPC for M1 versus AWAN VHDL for Synthetic Testcases

6.6 SUMMARY

This chapter extends the synthesis techniques of Chapter 3 to support the

PowerPC ISA and presents a case study of the POWER5 processor. Representative

versions of the SPEC 2000, STREAM, TPC-C and Java benchmarks are synthesized,

compiled and executed, and an average IPC within 2.4% of the average IPC of the

original benchmarks is obtained. The synthetic testcases often execute two orders of

magnitude faster than the original applications, typically in less than 300K instructions.

The synthetic workloads are then used in example performance model validations to

compare the results of an IBM proprietary performance model to those of a VHDL model

using RTL simulation and execution on the IBM AWAN hardware emulator.

 150

 151

Chapter 7: Conclusions and Future Work

This dissertation discusses the growing number of applications and the long

runtimes of those applications that has caused concern about the simulation of computer

designs for design studies and performance and power model validations. For design

studies, researchers have responded with various methods to reduce runtimes, including

analytical modeling, reduced input datasets, sampling techniques and statistical

simulation. Statistical simulation converges the most rapidly to a result, but prior work

shows that it can be inaccurate. This dissertation improves the accuracy of trace synthesis

in statistical simulation by modeling workload characteristics at the granularity of the

basic block.

In spite of the runtime reductions achieved for performance simulation, no similar

evolution in simulation capability has occurred for performance and power model

validation. The improved synthetic traces of statistical simulation can not be used

because traces can not be executed on the variety of platforms necessary for model

validation. Short snippets of benchmark instructions can be transformed for use on

simulators or hardware, but since no attempt is made to analyze a larger simulation phase

and reduce the number of instructions intelligently, it is unlikely that validation over the

snippets can cover the behavior of the benchmark in the machine. The state-of-the-art in

model validation has been to use hand-coded testcases and microbenchmarks to study

individual components of the latency and bandwidth in cycle-accurate and performance

model simulations. This dissertation proposes a new methodology for automatically

synthesizing more representative workloads from the improved workload characterization

of statistical simulation together with locality models and workload synthesis methods.

 152

The core technology in representative workload synthesis is conceptually easy to

grasp. The workload characterization generates a flow graph that includes the most

frequent basic blocks found in the executing workload, a list of the successors of each

basic block and a list of the probabilities that each successor is branched to. More

complicated flow graphs can keep lists of sequences of basic blocks to further improve

accuracy. A synthetic trace is generated by traversing the flow graph; the trace forms the

spine of a representative workload synthesis.

This dissertation advocates the application of this core technology to both the

early design and model validation problems. By holding to this philosophy, the

simulation methodology used for design studies of performance and power dissipation is

consolidated with that used for performance and power model validations. The

representative trace forms a single starting point for all performance simulation tasks.

From that base, workloads can be synthesized to reduce runtime, enhance simulation

flexibility, and improve portability to diverse platforms. The full potential of synthetic

workloads requires future research into synthetic memory access and branching models

and their integration into the workloads.

 Additional conclusions and future work are discussed in the next sections.

7.1 CONCLUSIONS

This dissertation makes the following specific contributions to computer

engineering research related to workload synthesis, performance model simulation and

model validation:

1) The accuracy of the workload characterization in statistical simulation is

improved by compiling statistics at the granularity of the basic block rather

than the granularity of the instruction. Specifically, instruction sequences,

dependences, miss rates, branch predictability and cache access history are all

 153

modeled at the basic block level and contribute to improvements in accuracy

for a variety of workloads. In addition, basic block maps add successor

information at the basic block level, which provides more accurate modeling

of micro-phases, or small shifts in relative block frequencies inside a larger

number of instructions. The SPEC 95 benchmarks are improved from 15.5%

IPC prediction error on average to 5.3% error, and the SPEC 2000

benchmarks are improved from 27.6% error to 4.7% error. The cost of the

additional modeling is quantified to less than 100KB per benchmark in SPEC

95 and less than 200KB in SPEC 2000. In an additional collaboration with

researchers at the University of Ghent, Belgium, the ideas presented here are

implemented in the statistical flow graph, which maintains up to k lists of

prior basic blocks [27]. In that study, errors in IPC on the SPEC INT 2000 are

shown to be less than 7%, and relative errors are typically less than 3%,

confirming the usefulness of modeling at the granularity of the basic block.

These improvements facilitate more accurate simulations of designs and

design change studies without large increases in runtimes.

2) This dissertation presents a method for synthesizing workloads into C-code

with inline assembly calls that represent the low-level execution

characteristics of the application. Specific workload synthesis approaches for

the Pisa, Alpha and PowerPC instruction set architectures are presented. It is

shown that average performance using the synthetic workloads matches the

original applications within 2.4% for all three ISAs while runtimes are often

three orders of magnitude shorter. Small relative errors are also obtained when

the machine configuration changes. These results indicate that the synthetic

workloads are useful for design studies and performance model validations.

 154

An automatic process is presented that permits workloads to be quickly

recreated as the applications or languages change. User parameters can tune

the synthesis process to more closely match application workload

characteristics. This work demonstrates that if synthesis starts with the locality

models of the machine-under-study, good correlation can be obtained versus

the original workload for many workload characteristics and for performance

of design changes. Results generally become worse as the configuration under

study moves farther away from the configuration used for synthesis.

Therefore, the present techniques should not be used to study large changes in

machine configuration. However, a stair-step synthesis approach to design

studies is suggested in which resynthesis occurs when machine configuration

parameters change significantly from their starting value.

3) By synthesizing the workloads in a high-level language, they are portable

across multiple platforms including execution-driven and trace-driven

performance simulators, functional RTL simulators, emulators and hardware.

This variety makes them useful for both design studies and model validations.

This dissertation demonstrates the same workload running on a trace-driven

performance simulator, a RTL simulator, and an RTL hardware emulator.

4) Since the synthesis process is based on a statistical workload characterization,

altering the characteristics of the synthetic workload is straightforward.

Individual changes to program characteristics can be isolated and studied

independently, and changes to the workload characteristics thatare anticipated

for future workloads can be easily incorporated. The statistical nature of the

workload characterization removes the dataset and abstracts the details and

 155

behavior of the application, effectively hiding its underlying function. This

encourages the sharing of proprietary codes between industry and academia.

5) The accuracy of the synthetic workloads depends on the accurate

characterization of the original workload prior to synthesis. It is shown that

relatively large margins exist wherein performance is not impacted as

workload characteristics change. These results indicate that the relatively

small changes in workload characteristics due to the workload synthesis

process do not impact performance significantly.

6) This dissertation demonstrates that the synthetic workloads created strictly for

representative performance also match the dynamic power dissipation per

cycle of the applications within 6.8% error on average, and for many design

changes the average error is less than 5%. The results also confirm prior

correlation between IPC and power dissipation and extend the correlations to

design changes. These strong correlations indicate that the synthetic testcases

are useful for early design studies of power and power model validations.

7) This dissertation demonstrates specific performance model validation

techniques. For example, synthetic testcases are executed in both a

performance simulator and an RTL simulator and the instruction completion

times are compared. The results give specific instructions, instruction types,

and error buckets that can be examined in more detail to isolate significant

problems in the performance model or RTL. The notion of Instantaneous

Error is introduced. Validation using a hardware emulator is also presented.

8) This dissertation demonstrates that the same synthetic workloads that are

useful for design studies are also useful for performance and power model

validations. It shows that the workloads used for early design studies and

 156

model validations are not only consolidated at an abstract level by the use of

synthetic traces as the basis for execution and synthesis, but that the

workloads can also be consolidated together more concretely as codes that can

be compiled and executed on various simulation and hardware platforms. This

process gives higher confidence in performance projections as the detailed

RTL level models are available in the design process.

7.2 FUTURE WORK

There are several areas that could benefit from additional work.

1) The memory access models as formulated in this dissertation are based on the

cache hit rates of loads and stores in individual basic blocks and are therefore

microarchitecture-dependent. Those models show large errors versus the

original applications, especially in response to design changes. Many models

of memory access behavior exist in the literature and could be formulated for

use in the synthetic testcases. Such models could make the synthetics more

independent of any particular microarchitecture and therefore more amenable

to design studies and other studies related to changes in the cache hierarchy.

The problem with the stride-based model presented here is that it is simplistic

and does not support “random” accesses or frequent address interactions

between separate operations. Future work could determine what the best

modeling trade-off is between realistic, but complicated, access behavior and

simple, stride-based models. Cache warm-up prior to synthetic execution may

be necessary to match specific locality features such as capacity misses.

Intrinsic Checkpointing [79] provides a memory initialization capability that

could be integrated into the methodology.

 157

2) Similarly, the branching model described here is formulated to operate

correctly only for 2-bit saturating counters in the branch history table with out

global branch history or local branch history shift registers. While branch

predictability errors are very low for the cases studied here, more

microarchitecture-independent models could make the workloads more useful

for studies involving changes in the branch predictor technology.

3) In the current synthesis approach, a synthetic trace is developed from a

traversal of the statistical flow graph, and low-level instructions from the trace

are instantiated in the testcase. Future work could seek methods to instantiate

all or part of the flow graph, or a reformulated flow graph, directly into a

synthetic benchmark, with the instructions necessary to branch correctly from

one basic block to another. The major problem with that approach appears to

be the retention of representative branching and dependence compatibilities.

4) The workload characterization used for statistical simulation and workload

synthesis is obtained from a profile of a specific set of workload

characteristics. While the present collection of characteristics gives good

simulation results, many additional features of workloads could be collected

to make the synthetic traces more realistic. Examples include detailed memory

address stream features, such as the probability of a load address hitting a

store address, the probability and extent of unaligned accesses, or address

index and offset relationships. Likewise, more detailed dependence

information could be modeled, including write-after-write and write-after-read

anti-dependences.

5) Similarly, there are currently only five abstract instruction types with sub-

types instantiated in the synthetics. Future work could expand these categories

 158

to provide more representative execution, or minimize abstraction in favor of

actual instructions taken from the source code.

6) In the current synthesis approach, the microarchitecture-independent workload

characteristics, and therefore the synthetic workload characteristics, are

dependent on the compiler technology used to compile the original

application, as is the case in statistical simulation. The automatic process

ensures that resynthesis based on new compiler technology operating on the

original application is not difficult, and it is argued that the low-level

instruction behavior is necessary to achieve representativeness. However,

future work might find combinations of synthesis techniques and compiler

technology to instantiate part or all of the functional workload as higher-level

code without significantly impacting representativeness, thereby enabling

optimizations using new compiler technology.

7) Synthesis could be extended to create representative multiprocessor

workloads. The major issues are related to characterization and modeling of

coherency and locking mechanisms. A multiprocessor or full system simulator

would likely be needed to carry out these studies.

8) In the current approach, workload characteristics from both user code and

operating system code are profiled together. Future work using full system

simulation could separate these instruction streams and create separate

sections in the synthetic to represent each. The interaction between the OS and

user contexts could be modeled.

 159

Bibliography

[1] V. Agarwal, M. S. Hrishikesh, S.W. Keckler and D. Burger, "Clock Rate versus IPC:
The End of the Road for Conventional Microarchitectures," Proceedings of the
International Symposium on Computer Architecture, June 2000, pp. 248-259.

[2] Anonymous, “A Measure of Transaction Processing Power,” Datamation, Vol. 31,
No. 7, 1985, pp. 112-118.

[3] G. Baumgartner, D. E. Bernholdt, D. Cociorva, R. Harrison, S. Hirata, C.-C. Lam, M.
Nooijen, R. Pitzer, J. Ramanujam and P. Sdayappan, “A High-Level Approach to
Synthesis of High Performance Codes for Quantum Chemistry,” Proceedings of
the ACM/IEEE Conference on Supercomputing, November 2002, pp. 1-10.

[4] R. H. Bell, Jr., L. Eeckhout, L. K. John and K. De Bosschere, “Deconstructing and
Improving Statistical Simulation in HLS,” Proceedings of the Workshop on
Debunking, Duplicating, and Deconstructing, June 20, 2004, pp. 2-12.

[5] R. H. Bell, Jr. and L. K. John, Experiments in Automatic Benchmark Synthesis,
Technical Report TR-040817-01, Laboratory for Computer Architecture,
Department of Electrical and Computer Engineering, University of Texas at
Austin, August 17, 2004.

[6] R. H. Bell, Jr. and L. K. John, “The Case for Automatic Synthesis of Miniature
Benchmarks,” Proceedings of the Workshop on Modeling, Benchmarking and
Simulation, June 4, 2005, pp. 88-97.

[7] R. H. Bell, Jr. and L. K. John, “Improved Automatic Testcase Synthesis for
Performance Model Validation,” Proceedings of the International Conference on
Supercomputing, June 20, 2005, pp. 111-120.

[8] R. H. Bell, Jr. and L. K. John, “Efficient Power Analysis using Synthetic Testcases,”
Proceedings of the IEEE International Symposium on Workload
Characterization, October 7, 2005, pp. 110-118.

[9] J. Bilmes, K. Asanovic, C.-W. Chin and J. Demmel, “Optimizing Matrix Multiply
using PHiPAC: a Portable, High-Performance, ANSI C Coding Methodology,”
Proceedings of the International Conference on Supercomputing, June 1997, pp.
340-347.

[10] W. L. Bircher, M. Valluri, J. Law and L. K. John, “Runtime Identification of
Microprocessor Energy Saving Opportunities,” Proceedings of the International
Symposium on Low Power Electronics and Design, August 2005, pp. 275-280.

 160

[11] B. Black and J. P. Shen, “Calibration of Microprocessor Performance Models,”
IEEE Computer Magazine, May 1998, pp. 59-65.

[12] J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla and S. R. Kunkel, “A
Multithreaded PowerPC Processor for Commercial Servers,” IBM J. Res. and
Dev., Vol. 44, 2000, pp. 885-898.

[13] P. Bose and T. M. Conte, “Performance Analysis and Its Impact on Design,” IEEE
Computer Magazine, May 1998, pp. 41-49.

[14] P. Bose, “Architectural Timing Verification and Test for Super-Scalar Processors,”
Proceedings of the International Symposium on Fault-Tolerant Computing, June
1994, pp. 256-265.

[15] D. Brooks, V. Tiwari and M. Martonosi, “Wattch: A Framework for Architectural-
Level Power Analysis and Optimizations,” Proceedings of the International
Symposium on Computer Architecture, June 2000.

[16] D. C. Burger and T. M. Austin, The SimpleScalar Toolset Version 2.0, Technical
Report 1342, Computer Sciences Department, University of Wisconsin, June
1997.

[17] R. Carl and J. E. Smith, "Modeling Superscalar Processors Via Statistical
Simulation," Workshop on Performance Analysis and Its Impact on Design, June
27, 1998.

[18] Z. Cvetanovic, E. G. Freedman and C. Nofsinger, “Perfect Benchmarks
Decomposition and Performance on VAX Multiprocessors,” Proceedings of the
Conference on Supercomputing, 1990, pp. 455-464.

[19] W. K. Cheng and Y. L. Lin, “Code Generation for a DSP Processor,” Proceedings of
the Seventh International Symposium on High Level Synthesis, May 1994, pp. 82-
87.

[20] T. Conte and W. Hwu, “Benchmark Characterization for Experimental System
Evaluation,” Proceedings of the Hawaii International Conference on System
Science, 1990, pp. 6-18.

[21] F. Corno, E. Sanchez, M. S. Reorda and G. Squillero, “Automatic Test Program
Generation: A Case Study,” IEEE Design & Test of Computers, March-April
2004, pp. 102-109.

[22] H. J. Curnow and B.A. Wichman, "A Synthetic Benchmark," Computer Journal,
Vol. 19, No. 1, February 1976, pp. 43-49.

 161

[23] R. Desikan, D. Burger and S. Keckler, “Measuring Experimental Error in
Microprocessor Simulation,” Proceedings of the International Symposium on
Computer Architecture, 2001, pp. 266-277.

[24] C. Ding and Y. Zhong, “Predicting Whole Program Locality Through Reuse-
Distance Analysis,” Proceedings of the Conference on Programming Languages,
Design and Implementation, 2003.

[25] J. J. Dujmovic, “Evaluation and Design of Benchmark Suites,” K. Bagchi, G. Zobrist
and K. Trivedi, editors, State-of-the-Art in Performance Modeling and
Simulations: Theory, Techniques, and Tutorials, Chapter 12, Gordon and Breach
Publishers, 1996.

[26] J. J. Dujmovic and I. Dujmovic, “Evolution and Evaluation of SPEC Benchmarks,”
ACM Sigmetrics Performance Evaluation Review, Vol. 26, No. 3, December
1998, pp. 2-9.

[27] L. Eeckhout, R. H. Bell, Jr., B. Stougie, L. K. John and K. De Bosschere, “Control
Flow Modeling in Statistical Simulation for Accurate and Efficient Processor
Design Studies,” Proceedings of the International Symposium on Computer
Architecture, June 2004, pp. 350-361.

[28] L. Eeckhout, Accurate Statistical Workload Modeling, Ph.D. Thesis, Ghent
University, 2003.

[29] L. Eeckhout and K. De Bosschere, “How Accurate Should Early Design Stage
Power/Performance Tools Be? A Case Study with Statistical Simulation,” The
Journal of Systems and Software, Vol. 73, No. 1, 2004, pp. 45-62.

[30] L. Eeckhout, H. Vandierendonck and K. De Bosschere, “Designing Computer
Architecture Research Workloads,” IEEE Computer Magazine, Vol. 36, No. 2,
February 2003, pp. 65-71.

[31] C. Fang, S. Carr, S. Onder and Z. Wang, “Instruction Based Memory Distance
Analysis and Its Application,” Proceedings of the Conference on Parallel
Architectures and Compilation Techniques, September 2005, pp. 27-37.

[32] D. F. Garcia and J. Garcia, “TPC-W E-Commerce Benchmark Evaluation,” IEEE
Computer Magazine, February 2003, pp. 42-48.

[33] J. C. Gibson, The Gibson Mix, IBM Technical Report 00.2043, IBM Systems
Development Division, Poughkeepsie, N.Y., 1970.

[34] M. K. Gowan, C. Polychronopoulos and G. Stamoulis, “Power Considerations in the
Design of the Alpha 21264 Microprocessor,” Proceedings of the Design
Automation Conference, 1998, pp. 726-731.

 162

[35] Richard Hankins, Trung Diep, Murali Anavaram, Brian Hirano, Harald Eri, Hubert
Nueckel and John P. Shen, "Scaling and Characterizing Database Workloads:
Bridging the Gap between Research and Practice," Proceedings of the
International Symposium on Microarchitecture, December 2003, pp. 151-164.

[36] J. Hennessy and D. Patterson, Computer Architecture, A Quantitative Approach, 2nd
Edition, San Francisco: Morgan-Kaufman, 1996.

[37] J. L. Henning, “SPEC CPU2000: Measuring CPU Performance in the New
Millenium,” IEEE Computer Magazine, Vol. 33, No. 7, July 2000, pp. 28-35.

[38] C. T. Hsieh and M. Pedram, "Microprocessor power estimation using profile-driven
program synthesis," IEEE Transactions on Computer Aided Design of Integrated
Circuits and Systems, Vol. 17, 1998, pp. 1080-1089.

[39] W. W. Hsu, A. J. Smith and H. C. Young, “Characteristics of Production Database
Workloads and the TPC Benchmarks,” IBM Systems Journal, Vol. 40, 2001, pp.
781-802.

[40] J. Huk, S. W. Keckler and D. Burger, "Exploring the Design Space of Future
CMPs," Proceedings of the Conference on Parallel Architectures and
Compilation Techniques, October 2001, pp. 199-210.

[41] I. Hur and C. Lin, “Adaptive History-Based Memory Schedulers,” Proceedings of
the International Symposium on Microarchitecture, 2004.

[42] V. S. Iyengar, L. H. Trevillyan and P. Bose, “Representative Traces for Processor
Models with Infinite Cache,” Proceedings of the Symposium on High
Performance Computer Architecture, February 1996, pp. 62-73.

[43] V. S. Iyengar and L. H. Trevillyan, Evaluation and Generation of Reduced Traces
for Benchmarks, IBM Technical Report RC 20610, IBM Research Division, T. J.
Watson Research Center, October 1996.

[44] H. Jacobson, P. Bose, Z. Hu, A. Buyuktosunoglu, V. Zyuban, R. Eickemeyer, L.
Eisen, J. Griswell, D. Logan, B. Sinharoy and J. Tendler, “Stretching the Limits
of Clock-Gating Efficiency in Server-Class Processors,” Proceedings of the
International Symposium on High-Performance Computer Architecture, February
2005.

[45] R. Jain, The Art of Computer Systems Performance Analysis, New York: John Wiley
& Sons, 1991.

[46] M. Johnson, Superscalar Microprocessor Design, Englewood Cliffs: P T R Prentice
Hall, New Jersy, 1991.

 163

[47] L. K. John, P. Vasudevan and J. Sabarinathan "Workload Characterization:
Motivation, Goals, and Methodology," Proceedings of the Workshop in Workload
Characterization, November 29, 1998, pp. 3-14.

[48] C. P. Joshi, A. Kumar and M. Balakrishnan, "A New Performance Evaluation
Approach for System Level Design Space Exploration," Proceedings of the
International Symposium on System Synthesis, October 2002, pp. 180-185.

[49] K. Keaton and D. A. Patterson, “Towards a Simplified Database Workload for
Computer Architecture Evaluations,” Proceedings of the Workshop on Workload
Characterization, October 1999, pp. 115-124.

[50] A.J. KleinOsowski and D.J. Lilja, “MinneSPEC: A New SPEC Benchmark
Workload for Simulation-Based Computer Architecture Research,” Computer
Architecture Letters, Vol. 1, June 2002, pp. 22-30.

[51] S. R. Kunkel, R. J. Eickemeyer, M. H. Lipasti, T. J. Mullins, B. O’Krafka, H.
Rosenberg, S. P. VanderWiel, P. L. Vitale and L. D. Whitley, “A Performance
Methodology for Commercial Servers,” IBM J. Res. and Develop., Vol. 44, 2000,
pp. 851-872.

[52] T. Lafage and A. Seznec, “Choosing Representative Slices of Program Execution for
Microarchitecture Simulations,” Proceedings of the Workshop on Workload
Characterization, September 16, 2000, pp. 102-110.

[53] C. Lee and M. Potkonjak, "A Quantitative Approach to Development and Validation
of Synthetic Benchmarks for Behavioral Synthesis," Proceedings of the
International Conference on Computer Aided Design, November 1998, pp. 347-
350.

[54] T. Li and L. John, “Run-Time Modeling and Estimation of Operating System Power
Consumption,” Proceedings of the International Conference on Measurement and
Modeling of Computer Systems, June 10-14, 2003, pp. 160-171.

[55] D. J. Lilja, Measuring Computer Performance, Cambridge: Cambridge University
Press, 2000.

[56] J. M. Ludden, W. Roesner, G. M. Heiling, J. R. Reysa, J. R. Jackson, B.-L. M Chu,.
L. Behm, J. R. Baumgartner, R. D. Peterson, J. Abdulhafiz, W. E. Bucy, J. H.
Klaus, D. J. Klema, T. N. Le, F. D. Lewis, P. E. Milling, L. A. McConville, B. S.
Nelson, V. Paruthi, T. W. Pouarz, A. D. Romonosky, J. Stuecheli, K. D.
Thompson, D. W. Victor and B. Wile, “Functional Verification of the Power4
Microprocessor and the Power4 Multiprocessor Systems,” IBM J. Res. and Dev.,
Vol. 46, 2002, 53-76.

[57] V. T. Lund, Preface to the IBM J. of Res. and Dev., Vol. 46, 2002, pp. 3-4.

 164

[58] Y. Luo, A. Joshi, A. Phansalkar, L. K. John and J. Ghosh, “Analyzing and
Improving Clustering Based Sampling for Microprocessor Simulation,”
Symposium on Computer Architecture and High-Performance Computing,
October 2005.

[59] Z. Manna and R. Waldinger, “Toward Automatic Program Synthesis,”
Communications of the ACM, Vol. 14, No. 3, March 1971, pp. 151-165.

[60] Z. Manna and R. Waldinger, “A Deductive Approach to Program Synthesis,” ACM
Transactions on Programming Languages and Systems, Vol. 2, 1980, pp. 90-121.

[61] G. Marin and J. Mellor-Crummey, “Cross-Architecture Performance Predictions for
Scientific Applications using Parameterized Models,” Proceedings of the
International Conference on Measurement and Modeling of Computer Systems,
Vol. 32, pp. 2-13.

[62] F.H. McMahon, Livermore FORTRAN Kernels: A Computer Test of the Numerical
Performance Range, Lawrence Livermore National Laboratories, Livermore,
California, 1986.

[63] J. D. McCalpin and M. Smotherman, “Automatic Benchmark Generation for Cache
Optimization of Matrix Operations,” Proceedings of the 33rd Annual Southeast
Conference, March 1995, pp. 195-204.

[64] J. D. McCalpin, “Memory Bandwidth and Machine Balance in Current High
Performance Computers,” IEEE Technical Committee on Computer Architecture
Newsletter, December 1995, pp. 19-25.

[65] L. McVoy, “lmbench: Portable Tools for Performance Analysis,” Proceedings of the
USENIX Technical Conference, January 22-26, 1996, pp. 279-294.

[66] M. Moudgill, J. D. Wellman and J. H. Moreno, “Environment for PowerPC
Microarchitecture Exploration,” IEEE Micro Magazine, May-June 1999, pp. 15-
25.

[67] A. Nanda and L. M. Ni, “Benchmark Workload Generation and Performance
Characterization of Multiprocessors,” Proceedings of the IEEE Supercomputing
Conference, November 1992, pp. 20-29.

[68] D. B. Noonburg and J. P. Shen, “Theoretical Modeling of Superscalar Processor
Performance,” Proceedings of the International Symposium on High Performance
Computer Architecture, February 1997, pp. 298-309.

[69] S. Nussbaum and J. E. Smith, "Modelling Superscalar Processors Via Statistical
Simulation," Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, September 2001, pp. 15-24.

 165

[70] S. Nussbaum and J.E. Smith, "Statistical Simulation of symmetric Multiprocessor
Systems," Proceedings of the 35th Annual Simulation Symposium, April 2002, pp.
89-97.

[71] M. Oskin, F. T. Chong and M. Farrens, "HLS: Combining Statistical and Symbolic
Simulation to Guide Microprocessor Design," Proceedings of the International
Symposium on Computer Architecture, June 2000, pp. 71-82.

[72] http://www.cs.washington.edu/homes/oskin/tools.html

[73] D. A. Penry, D. I. August and M. Vachharajani, “Rapid development of a Flexible
Validated Processor Model,” Proceedings of the Workshop on Modeling,
Benchmarking and Simulation, June 4, 2005, pp. 21-30.

[74] M. Berry, The Perfect Club Benchmarks: Effective Performance Evaluation of
Supercomputers, Center for Supercomputing Research and Development,
University of Illinois at Urbana-Champagne, CSRD report #896, May 1989.

[75] A. Phansalkar, A. Joshi, L. Eeckhout and L. K. John, “Measuring Program
Similarity: Experiments with the SPEC CPU Benchmark Suites,” Proceedings of
the International Symposium on Performance Analysis of Systems and Software,
March 2005, pp. 10-20.

[76] Joachim Pistorius, Edmee Legai and Michel Minoux, “Generation of Very Large
Circuits to Benchmark the Partitioning of FPGA’s,” Proceedings of the
International Symposium on Physical Design, April 1999, pp. 67-73.

[77] A. Pnueli and R. Rosner, “On the Synthesis of a Reactive Module,” Proceedings of
the Symposium on Principles of Programming Languages, 1989, pp. 179-190.

[78] R. Rao, M. Oskin, F. T. Chong, “HLSpower: Hybrid Statistical Modeling of the
Superscalar Power-Performance Design Space,” International Conference on
High Performance Computing, December 2002, pp. 620-629.

[79] J. Ringenberg, C. Pelosi, D. Oehmke and T. Mudge, “Intrinsic Checkpointing: A
Methodology for Decreasing Simulation Time Through Binary Modification,”
Proceedings of the International Symposium on Performance and Simulation
Systems, March 2005, pp. 78-88.

[80] R. H. Saavedra-Barrera, CPU Performance Evaluation and Execution Time
Prediction Using Narrow Spectrum Benchmarking, Ph. D. Thesis, UC Berkeley,
Technical Report No. UCB/CSD 92/684, Feb. 1992.

[81] M. Sakamoto, L. Brisson, A. Katsuno, A. Inoue and Y. Kimura, “Reverse Tracer: A
Software Tool for Generating Realistic Performance Test Programs,” Proceedings

 166

of the Symposium on High-Performance Computer Architecture, February 2002,
pp. 81-91.

[82] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keckler
and C. R. Moore, "Exploiting ILP, TLP, DLP with Polymorphous TRIPS
Architecture," Proceedings of the International Symposium on Computer
Architecture, June 2003, pp. 422-433.

[83] T. Sherwood, E. Perleman, H. Hamerly and B. Calder, “Automatically
Characterizing Large Scale Program Behavior,” Proceedings of the Conference
on Architected Support for Programming Languages and Operating Systems,
October 2002, pp. 45-57.

[84] R. Singhal, K. S. Venkatraman, E. Cohn, J. G. Holm, D. Koufaty, M.-J. Lin, M.
Madhav, M. Mattwandel, N. Nidhi, J. Pearce and M. Seshadri, “Performance
Analysis and Validation of the Intel Pentium4 Processor on 90nm Technology,”
Intel Tech. J., Vol. 8, No. 1, February 2004, pp. 33-42.

[85] B. Sinharoy, R. N. Kalla, J. M. Tendler, R. J. Eickemeyer and J. B. Joyner,
“POWER5 System Microarchitecture,” IBM J. Res. & Dev., Vol. 49, 2005, pp.
505-521.

[86] K. Skadron, M. Martonosi, D. I. August, M. D. Hill, D. J. Lilja and V. S. Pai,
“Challenges in Computer Architecture Evaluation,” IEEE Computer Magazine,
August 2003, pp. 30-36.

[87] J. E. Smith and G. S. Sohi, "The Microarchitecture of Superscalar Processors,"
Proceedings of the IEEE, Vol. 83, 1995, pp. 1609-1624.

[88] E. S. Sorenson and J. K. Flanagan, “Evaluating Synthetic Trace Models using
Locality Surfaces,” Proceedings of the Workshop on Workload Characterization,
November 2002, pp. 23-33.

[89] http://www.spec.org

[90] K. Sreenivasan and A.J. Kleinman, "On the Construction of a Representative
Synthetic Workload," Communications of the ACM, March 1974, pp.127-133.

[91] S. Surya, P. Bose and J. A. Abraham, “Architectural Performance Verification:
PowerPC Processors,” Proceedings of the International Conference on Computer
Design, 1999, pp. 344-347.

[92] P. K. Szwed, D. Marques, R. M. Buels, S. A. McKee, and M. Schulz, “SimSnap:
Fast-Forwarding via Native Execution and Application-Level Checkpointing,”
Proceedings of the Workshop on Interaction Between Compilers and Computer
Architecture, February 2004.

 167

[93] J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le and B. Sinharoy, "POWER4
System Microarchitecture," IBM J. of Res. and Dev., Vol. 46, 2002, pp. 5-25.

[94] D. Thiebaut, “On the Fractal Dimension of Computer Programs and its Application
to the Prediction of the Cache Miss Ratio,” IEEE Transactions on Computers,
Vol. 38, 1989, pp. 1012-1026.

[95] R. Todi, “SPEClite: Using Representative Samples to Reduce SPEC CPU2000
Workload,” Proceedings of the Workshop on Workload Characterization,
December 2001, pp. 15-23.

[96] http://www.tpc.org

[97] M. Valluri and L. John, “Is Compiling for Performance == Compiling for Power?”
Proceedings of the Workshop on the Interaction Between Compilers and
Computer Architectures, 2001.

[98] M. Van Biesbrouck, L. Eeckhout and B. Calder, “Efficient Sampling Startup for
Sampled Processor Simulation,” International Conference on High Performance
Embedded Processors and Compilers, November 2005.

[99] H. Vandierendonck and K. De Bosschere, “Many Benchmarks Stress the Same
Bottlenecks,” Workshop on Computer Architecture Evaluation using Commercial
Workloads, February 14 2004, pp. 57-64.

[100] P. Verplaetse, J. Van Campenhout and D. Stroobandt, "On Synthetic Benchmark
Generation Methods," Proceedings of the International Symposium on Circuits
and Systems, May 28, 2001, pp. 213-216.

[101] D. W. Victor, J. M. Ludden, R. D. Peterson, B. S. Nelson, W. K. Sharp, J. K. Hsu,
B.-L. Chu, M. L. Behm, R. M. Gott, A. D. Romonosky and S. R. Farago,
“Functional Verification of the POWER5 Microprocessor and POWER5
Multiprocessor Systems,” IBM J. Res. and Dev., Vol. 49, 2005, pp. 541-553.

[102] R. C. Whaley and J. J. Dongarra, “Automatically Tuned Linear Algebra Software,”
Proceedings of the International Conference on Supercomputing, November
1998, pp. 38-38.

[103] R. P. Weicker, "Dhrystone: A Synthetic Systems Programming Benchmark,"
Communications of the ACM, Vol. 27, 1984, pp. 1013-1030.

[104] R. P. Weicker, “An Overview of Common Benchmarks,” IEEE Computer
Magazine, December 1995, pp. 65-75.

[105] T. F. Wenisch, R. E. Wunderlich, B. Falsafi and J. C. Hoe, “TurboSMARTS:
Accurate Microarchitecture Simulation in Seconds,” poster session in the

 168

International Conference on Measurement and Modeling of Simulation Systems,
June 2005.

[106] J. N. Williams, “The Construction and Use of a General Purpose Synthetic Program
for an Interactive Benchmark for on Demand Paged Systems,” Communications
of the ACM, 1976, pp. 459-465.

[107] W. S. Wong and R. J. T. Morris, "Benchmark Synthesis Using the LRU Cache Hit
Function," IEEE Transactions on Computers, Vol. 37, 1988, pp. 637-645.

[108] R. E. Wunderlich, T. F. Wenisch, B. Falsafi and J. C. Hoe, “SMARTS:
Accelerating Microarchitecture Simulation via Rigorous Statistical Sampling,”
Proceedings of the International Symposium on Computer Architecture, June
2003, pp. 84-95.

[109] L. Eeckhout and K. De Bosschere, “Early Design Phase Power/Performance
Modeleing Through Statistical Simulation,” Proceedings of the International
Symposium on Performance Analysis of Systems and Software, November 2001,
pp. 10-17.

[110] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer and D. Shippy,
“Introduction to the Cell Multiprocessor,” IBM J. Res. and Dev., Vol. 49, 2005,
pp. 589-604.

[111] B. K. Lee and L. K. John, “Implications of Executing Compression and Encryption
Applications on General Purpose Processors,” IEEE Transactions on Computers,
Vol. 54, 2005, pp. 917-922.

[112] C.-B. Cho, A. V. Chande, U. Li and T. Li, “Workload Characteristics of Biometrics
Applications on Pentium 4 Microarchitecture,” Proceedings of the International
Symposium on Workload Characterization, October 2005, pp.76-86.

 169

Vita

Robert Henry Bell, Jr. was born in Richmond, Virginia, on November 1, 1964, the

son of Robert H. Bell and Joyce W. Bell. He received his high school diploma from St.

Christopher’s School in Richmond in 1983, followed by the Bachelor of Arts degree in

Mathematics from the University of Virginia in 1987. Following two years working as a

programmer-analyst specializing in statistics at Information Management Services, Inc.,

in Rockville, Maryland, he completed the degree of Master of Science in Electrical

Engineering with a major in Computer Engineering at the University of Virginia in

January, 1992. He joined the International Business Machines Corporation in Essex

Junction, Vermont and transferred to IBM Austin in 1996. He entered the Ph.D. program

at the University of Texas at Austin in August, 1999, while working full time at IBM. He

is employed by the IBM Systems and Technology Division in Austin, specializing in

computer design and performance analysis.

Permanent Address: 9304 Le Conte Cove

 Austin, Texas 78749

This dissertation was typed by the author.

	The Dissertation Committee for Robert Henry Bell, Jr. Certifies that this is the approved version of the following dissertation:
	Automatic Workload Synthesis for Early Design Studies and Performance Model Validation
	 Automatic Workload Synthesis for Early Design Studies and Performance Model Validation
	by
	Robert Henry Bell, Jr., B.A.; M.S.E.E.
	Dissertation
	Doctor of Philosophy
	The University of Texas at Austin
	December 2005
	Dedication
	Acknowledgements
	 Automatic Workload Synthesis for Early Design Studies and Performance Model Validation
	 Table of Contents
	 List of Tables
	 List of Figures
	Chapter 1: Introduction
	1.1 Early Design Studies and Application Simulation
	 Table 1.1: Examples of Modern Benchmarks and Benchmark Suites

	1.2 Performance and Power Model Validation
	1.3 Simulation Strategies
	Figure 1.1: IPC Prediction Error in Statistical Simulation by Benchmark Suite

	1.4 The Problems and Proposed Solutions
	1.5 Thesis Statement
	1.6 Contributions
	1.7 Organization

	 Chapter 2: Workload Modeling and Statistical Simulation
	2.1 Performance Simulation Strategies and Statistical Simulation
	2.2 Overview of Statistical Simulation in HLS
	2.3 Simulation Results
	2.3.1 Experimental Setup and Benchmarks
	Table 2.1: Machine Configuration for Pisa and Alpha Simulations

	2.3.2 The HLS Graph Structure
	2.3.3 The HLS Processor Model
	2.3.4 Issues in the Experimental Setup of HLS
	Table 2.3: Single-Precision STREAM Loops

	2.3.5 Challenges Modeling the STREAM Loops

	2.4 Improving Processor and Workload Modeling in HLS
	2.4.1 Improving the Processor Model
	2.4.2 Improvements to Workload Modeling
	2.4.2.1 Basic Block Modeling Granularity
	2.4.2.2 Basic Block Maps
	2.4.2.3 Basic Block Maps for Strong Phases

	2.5 Implementation Costs
	2.6 Summary

	 Chapter 3: Automatic Workload Synthesis
	3.1 Introduction to Performance Model Validation
	3.2 Synthesis of Representative Workloads
	3.3 Synthesis Approach
	3.3.1 Workload Characterization
	3.3.2 Graph Analysis
	3.3.2.1 Instruction Miss Rate and I-cache Model
	3.3.2.2 Instruction Dependences and Instruction Compatibility
	3.3.2.3 Loop Counters and Program Termination
	3.3.2.4 Memory Access Model
	3.3.2.5 Branch Predictability Model

	3.3.3 Register Assignment
	3.3.4 Code Generation

	3.4 Evaluation of Synthetic Testcase Performance
	3.4.1 Methodology
	3.4.2 Evaluation of Synthetic Workload Characteristics
	3.4.3 Evaluation of Design Changes
	3.4.4 TPC-C Study

	3.5 Drawbacks and Discussion
	3.6 Early Synthesis and Related Workload Synthesis Research
	3.7 Summary

	 Chapter 4: Quantifying the Errors in Workload Characteristics Due to the Workload Synthesis Process
	4.1 Introduction to Errors in Synthetic Workloads
	4.2 Sources of Error in Workload Synthesis
	4.2.1 Sources of Error in Workload Characterization
	4.3.2 Sources of Error in Graph Analysis
	4.3.2.1 Instruction Miss Rate and I-cache Model
	4.3.2.2 Instruction Dependences
	4.3.2.3 Loop Counters and Program Termination
	4.3.2.4 Memory Access Model
	4.3.2.5 Branching Model

	4.3.3 Sources of Error in Register Assignment
	4.2.4 Sources of Error in Code Generation

	4.3 The Flexibility of Statistical Simulation
	4.4 Simulation Results
	4.4.1 Experimental Setup and Benchmarks
	4.4.2 Sensitivities to Changes in Workload Characteristics in Statistical Simulation
	4.4.3 Sensitivities to Changes in Workload Characteristics from Testcase Synthesis

	4.5 Summary

	 Chapter 5: Efficient Power Analysis using the Synthetic Workloads
	5.1 Introduction to Power Dissipation Studies
	5.2 Synthetic Testcases and Power Dissipation
	5.3 Power Simulation Results
	5.3.1 Experimental Setup and Benchmarks
	5.3.2 Base Power Dissipation Results
	5.3.3 Analysis of Design Changes

	5.4 Summary

	 Chapter 6: Performance Model Validation Case Study for the IBM POWER5 Chip
	6.1 Introduction to the POWER5 Chip
	6.2 IBM PowerPC Synthesis and Model Validation
	6.2.1 The POWER5 M1 Performance Model
	6.2.2 PowerPC Performance Model Validation
	6.2.2.1 Validation using RTL Simulation
	6.2.2.2 Validation using a Hardware Emulator

	6.3 Synthesis for PowerPC
	6.3.1 Workload Characterization
	6.3.2 Graph Analysis
	6.3.2.1 Instruction Miss Rate and I-cache Model
	6.3.2.2 Instruction Dependences and Compatibility
	6.3.2.3 Loop Counters and Program Termination
	6.3.2.4 Memory Access Model
	6.3.2.5 Branch Predictability Model

	6.3.3 Register Assignment
	6.3.4 Code Generation

	6.4 POWER5 Synthesis Results
	6.4.1 Experimental Setup
	6.4.2 Synthesis Results
	6.4.3 Design Change Case Study: Rename Registers and Data Prefetching

	6.5 Performance Model Validation Results
	6.5.1 RTL Validation
	6.5.2 Hardware Emulation

	6.6 Summary

	 Chapter 7: Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	 Bibliography
	 Vita

