
System-level Max Power (SYMPO) - A Systematic
Approach for Escalating System-level Power Consumption

using Synthetic Benchmarks

Karthik Ganesan, Jungho Jo, W. Lloyd Bircher,
Dimitris Kaseridis, Zhibin Yu and Lizy K John

ECE Department, University of Texas at Austin, TX, USA
{karthik,jungho.jo,kaseridis}@mail.utexas.edu, lloyd.bircher@amd.com,

yuzhibin@mail.hust.edu.cn and ljohn@ece.utexas.edu

ABSTRACT

To effectively design a computer system for the worst case power
consumption scenario, system architects often use hand-crafted max-
imum power consuming benchmarks at the assembly language level.
These stressmarks, also called power viruses, are very tedious to
generate and require significant domain knowledge. In this paper,
we propose SYMPO, an automatic SYstem level Max POwer virus
generation framework, which maximizes the power consumption
of the CPU and the memory system using genetic algorithm and an
abstract workload generation framework. For a set of three ISAs,
we show the efficacy of the power viruses generated using SYMPO
by comparing the power consumption with that of MPrime torture
test, which is widely used by industry to test system stability. Our
results show that the usage of SYMPO results in the generation
of power viruses that consume 14-41% more power compared to
MPrime on SPARC ISA. The genetic algorithm achieved this re-
sult in about 70 to 90 generations in 11 to 15 hours when using a
full system simulator. We also show that the power viruses gen-
erated in the Alpha ISA consume 9-24% more power compared to
the previous approach of stressmark generation. We measure and
provide the power consumption of these benchmarks on hardware
by instrumenting a quad-core AMD Phenom II X4 system. The
SYMPO power virus consumes more power compared to various
industry grade power viruses on x86 hardware. We also provide a
microarchitecture independent characterization of various industry
standard power viruses.

Categories and Subject Descriptors

C.0 [Computer Systems Organization]: GENERAL;
B.8.2 [Hardware]: Performance and Reliability—Performance Anal-

ysis and Design Aids

General Terms

Design, performance, measurement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

Keywords

System-level power virus, synthetic benchmark, thermal design point

1. INTRODUCTION
Excessive power consumption and heat dissipation have been a

critical problem faced by computer designers in the past decade.
The recent trend towards consolidation in server systems (e.g. blade
servers), has resulted in an explosion in power density leading to
high costs related to electricity and cooling system. The ’power
dissipation per square foot’ of recent server systems is estimated to
be 160 Watts per square foot. Data center energy costs are start-
ing to exceed hardware costs and it was estimated that in 2010,
the power a server burns over its lifetime will cost more than the
server itself. This problem has driven data center based companies
to set up sites near power stations and design some of them to be
wind-cooled naturally to save on cooling costs.

Designing processors for a given power budget and the design of
various power management features of computer systems demand
an intimate understanding of the power characteristics of the sys-
tem under design. Specifically, knowing the realistically attainable
worst case power behavior of the system is critical in designing
most of the above mentioned power related utilities. Estimating
this maximum power dissipation of a processor is needed for de-
signing heat sink/cooling for the chip/system. Overheating of chips
can result in timing errors and even failure of the chip/system. For
a variety of such reasons, chip designers, computer architects and
system designers need to understand maximum power character-
istics of designs. This worst-case power consumption has a di-
rect impact on attainable microprocessor performance and imple-
mentation cost. Current generation multi-core performance is al-
most universally limited by power delivery, cooling and reliability
rather than critical path delay. In order to limit the cost of power
delivery and cooling, manufacturers artificially limit the peak fre-
quency of multi-core processors. This eliminates the need to design
costly voltage regulators and cooling solutions to handle worst-case
power consumption. It is crucial that an accurate attainable worst-
case power is known for a given processor. If this value is estimated
too conservatively (i.e. overestimate), performance is unnecessar-
ily limited. If it is estimated too aggressively, the processor will
suffer problems with reliability. Identifying the attainable worst-
case power in current generation microprocessors is a challenging
task that will only become more daunting in the future. As addi-
tional system components are integrated into single packages, it be-
comes increasingly difficult to predict aggregate worst-case power.
Existing designs integrate multiple cores and memory controllers
on a single die. The trend for future designs is to include a wider

19

array of components including graphics processors and IO bus con-
trollers [1] [27].

Chip designers have often written hand crafted power viruses
for this purpose [4]. But, it is very tedious to manually write a
power virus for a given architecture. But perhaps more impor-
tantly, one cannot be sure about the fact that the generated power
virus is actually a maximum case. There are also torture tests
such as MPrime [5] and CPUburn-in [6]. But, industry design-
ers often worry that their max power benchmarks (or stressmarks
as they are often called) are inadequate [3] . We automatically gen-
erate stressmarks by using a machine learning based search through
a workload space constructed with microarchitecture independent
characteristics broadly classified into instruction mix, instruction
level parallelism, control flow behavior, memory access patterns
and memory level parallelism. Joshi et al. [15] also presented an
automatic approach to the generation of power viruses. But, their
work has many limitations, i) their study was limited to the power
consumption of the CPU and did not include the DRAM ii) the
framework was tested only by comparing with SPEC workloads
and not with industry standard hand crafted power viruses iii) the
results were only based on a simulator and was not validated on
real hardware iv) they had not modeled the burstiness of memory
accesses or the Memory Level Parallelism (MLP) of the workloads
v) it was done only for the Alpha ISA

This paper overcomes the aforementioned limitations and gen-
erates system level power stressmarks. Though the processor con-
sumes the maximum power among the various subsystems of a sys-
tem, recent trends have shown that the power consumption of the
DRAM subsystem is significantly high [19] [17] and is predicted
to increase in the future. Thus, it is important to characterize the
power consumption of the entire system rather than just the proces-
sor while constructing max-power viruses. Our metrics include the
burstiness of accesses to DRAM by characterizing memory level
parallelism. The granularity of the instruction mix in the generated
synthetic is very important to generate good power viruses and our
synthetic benchmark generation is more fine grained in terms of
the number of instruction types generated than compared to Joshi
et al’s work [15]. The significant contributions of this paper are: i)
propose the usage of SYMPO, which is an abstract workload gen-
erator integrated with an industry-grade Genetic Algorithm (GA)
tool set, the IBM SNAP [2] [26], for generating system level power
viruses in Sparc, Alpha, and x86 ISAs. ii) validation of the ef-
ficacy of the generated power viruses on a full system simulator
by comparison with that of the popular stressmark MPrime (tor-
ture test) and show that our methodology results in power viruses
that consume 16-40% more power than MPrime. iii) validation of
the generated power virus on real hardware using an instrumented
AMD quad-core Phenom II system. We show that our power virus
has a power consumption higher than most of the other state of the
art hand crafted power viruses. iv) comparison of the efficacy of
the power viruses generated in Alpha ISA to that of the previous
approach by Joshi et. al [15], showing that SYMPO results in con-
sumption of 9-24% more power than the previous approach.

It is to be noted that the worst-case power of a system is not sim-
ply the sum of the maximum power of each component. Due to
underutilization of resources and contention for shared resources,
such as caches or memory ports, the aggregate worst-case is sig-
nificantly less than the sum. The aim of this work is to find a rea-
sonable worst case power virus that is present in the real world
workload space.

The rest of the paper is organized as follows. In section 2, we
provide a survey of the various industry standard power viruses
along with their power consumption on real hardware. Section 3

Figure 1: Power viruses widely used in the industry

introduces SYMPO, our power virus generation framework and
section 4 elaborates on the experimental setup using full-system,
processor simulators and results showing the effectiveness of the
generated power viruses in comparison to that of the MPrime based
torture test. Section 5 provides a microarchitecture independent
characterization of the industry grade power viruses. We provide
the related work in section 6 and summarize in Section 7.

2. STATE OF THE ART POWER VIRUSES
There have been many industry efforts towards writing power

viruses and stress benchmarks. Among them, MPrime [5], CPUburn-

in [6], CPUburn [4] are the most popular benchmarks. We first
give a brief description of these power viruses and then character-
ize them based on microarchitecture independent metrics.

MPrime [5] is a BSD software application that searches for a
Mersenne prime number using an efficient Fast Fourier Transform
(FFT) algorithm. For the past few years, MPrime has been popu-
larly called the torture test and has been used for testing the stability
of a computer system by overclockers, PC enthusiasts and the pro-
cessor design industry. This is because of the fact that this program
is designed to subject the processor and memory to an incredibly
intense workload resulting in errors. The amount of time a pro-
cessor remains successfully stable while executing this workload
is used as a measure of that system’s stability by a typical over-
clocker. MPrime has been used in testing the CPU, memory, L1
and L2 caches, CPU cooling, and case cooling efficiencies.

CPUburn-in [6] is advertised as an ultimate stability testing tool
written by Michal Mienik, which is also written for overclockers.
This program attempts to heat up any x86 processor to the maxi-
mum possible operating temperature. It allows the user to adjust the
CPU frequency to the practical maximum while still being sure that
stability is achieved even under the most stressful conditions. The
program continuously monitors for erroneous calculations ensuring
the CPU does not generate errors during calculations. It employs
FPU intensive functions to heat up the CPU.

CPUburn [4] is a power virus suite written in assembly lan-
guage, copyrighted but freely licensed under the GNU Public Li-
cense by Robert Redelmeier. The purpose of these programs is also
to heat up x86 CPUs as much as possible. Unlike CPUburn-in,
they are specifically optimized for different processors. FPU and
ALU instructions are coded at the assembly level into an infinite
loop. The goal has been to maximize CPU temperature, stressing
the cooling system, motherboard and power supply. The programs
are BurnP5, BurnP6, BurnK6, BurnK7, BurnMMX. The descrip-
tion of each of the power viruses are given in Figure 1.

20

Figure 2: Machine configuration of AMD Phenom II

Figure 3: Power measurement on quad-core AMD Phenom II

2.1 Power Measurement Using Instrumented
Hardware

To see the effectiveness of these power viruses on real hard-
ware, we measure their power and thermal characteristics on the
AMD Phenom II X4 (K10) Processor Model 945 system. Figure
2 shows the configuration of this system. The CPU core power
of this system is measured using in-system instrumentation. A
specialized AMD-designed system board is used which provides
fine-grain power instrumentation for all power rails, including CPU
core. Each high-power rail, such as CPU core, contains a Hall-
Effect current sensor connected at its origin. The sensor provides a
0-5V signal that is linearly proportional to the power flowing into
the rail. The voltage signal is measured by a National Instruments
PCI-6255 data logger. The data logger attaches to the current sen-
sor through a small twisted pair conductor. The data logger sam-
ples current and voltage applied to each rail at a rate of 10KHz.
Since the voltage cannot be assumed to be a constant due to droops,
spikes and drifts, we measure both voltage and current to calculate
power. Using the data logs, application power is calculated off-line
with post-processing software.

The measured power of the various power viruses are shown in
Figure 3. Four copies of these benchmarks were run on the quad-
core hardware until the power consumption reached a stable state,
which was around 200 seconds. It can be noted that BurnK7 con-
sumes the maximum power on this hardware of 72.1 Watts after
reaching a steady state. Even the highest power consuming two
SPEC CPU2006 workloads, 416.gamess and 453.povray consume
only 63.1 and 59.6 Watts respectively. BurnK7 consuming maxi-
mum power on this hardware can be attributed to the fact that the
machine configurations of the AMD Phenom II (K10) and K7 are to
some extent similar to each other. It can be observed that the power
viruses generated for other machines like the BurnP5, BurnP6 do
not consume as much power as BurnK7, again showing the impor-
tance of developing a specialized power virus for each of the mi-
croarchitectures. In the next two sections, we describe our power
virus generation framework and the validation by comparison with
the industry grade MPrime torture test.

abstract
workload

specs
Performance/Power

Simulator

Fitness values 1, 2 ... n

Code Generator

Synth
1

IBM SNAP
(GA)

Synth
2

Synth
n

. . . .

Power
Virus

Figure 4: Overall methodology

Figure 5: Search space and parameter settings

3. SYMPO FRAMEWORK
The overall power virus generation methodology is given in Fig-

ure 4. Our framework consists of 3 important components as de-
scribed below.

3.1 Abstract Workload Model and Code Gen-
erator

Our workload space consists of a set of 17 dimensions falling
under the categories of control flow predictability, instruction mix,
instruction level parallelism, data locality and memory level paral-
lelism as shown in Figure 5. An abstract workload synthesizer was
developed to be able to generate a C file with embedded assembly
instructions following the characteristics of a given workload spec-
ification. These embedded assembly instructions are packed into a
loop and this loop is iterated until the performance characteristics
converge. The workload specification consists of the following,
Instruction mix: Specifies the frequency of each type of instruc-
tion in the program. Each of the instruction type in the abstract
workload model has a weight associated with it ranging from 0 to
4. The proportion of this instruction type in the generated synthetic
is not only governed by this weight, but also based on the weights
associated with the remaining instruction types as they are corre-
lated with each other. As different instruction types have different
latencies and power consumption, the instruction mix has a major
effect on the overall power consumption of a workload. Since the

21

(a) IPC (b) Power

Figure 6: Comparison of IPC and power between the synthetic projection and the original workloads

code generator generates embedded assembly, we have direct con-
trol over the instruction mix of the generated workload. Based on
a static analysis of the power consumption, the typical power con-
sumption of integer and floating point ALUs for an out-of-order
superscalar processor is around 4%-6% and 6%-12% respectively.
Number of basic blocks: The number of basic blocks in the pro-
gram combined with the basic block size determines the instruction
footprint of the application. The number of basic blocks present in
the program has a significant impact on the usage of the instruction
cache and its power consumption.
Basic block size: The basic block size of a program determines
the frequency of branches and hence affects the control flow pre-
dictability of the workload. The percentage of correctly predicted
branches in the generated code dictates the activity level of the
branch predictor. The power consumption of a typical branch pre-
dictor is usually around 4%-5% of the overall processor power.
Register dependency distance distribution: The register depen-
dency distance distribution has a significant impact on the overall
ILP of the workload. This parameter affects the throughput of the
pipeline directly. The overall throughput of the pipeline is related
to the power consumed by the instruction window, clock and re-
name logic. The instruction window and the clock power are sig-
nificant contributors to the power consumption of a processor rang-
ing around 8% and 20% respectively.
Branch predictability: The branch predictability of a workload is
an important characteristic that also affects the overall throughput
of the pipeline. When a branch is mispredicted, the pipeline has to
be flushed and this results in a reduced activity in the pipeline.
Local strides: The memory access pattern of the workload is mod-
eled using the stride based model for each of the static load and
stores in the generated code. Each of the static load and store in
the workload walk a bounded array of memory references with a
constant stride. This parameter along with the data footprint of the
application directly controls the power consumption in various lev-
els of caches and the pipeline throughput due to cache misses.
Data footprint: The data footprint of the application controls the
number of cache lines that will be touched by the different static
loads and stores. Also, it has a direct impact on the power con-
sumption of the data caches.
Memory level parallelism: The average number of long-latency
loads (loads with big strides that can miss in the last level of the
cache) outstanding when there is at least one long-latency load out-
standing is called as the Memory Level Parallelism (MLP) present
in a workload. The memory level parallelism of a workload also af-
fects the power consumption due to its impact on the DRAM power
and also the pipeline throughput.

The code generator goes through 4 steps in the process of gener-
ating the synthetic, viz., i) generating the skeleton of the code using
the number of basic blocks, basic block size and the instruction mix

information ii) configure the branches to a particular predictability
iii) configure the memory access instructions to follow the spec-
ified memory access model iv) assign the source and destination
registers to each instruction based on the specified dependency dis-
tance distribution. The memory access model used in this paper is
governed by 3 parameters in our model i) a constant stride based
walk of each static load/store through a declared memory array as
detailed by Ganesan et al [11]). ii) resetting the memory pointers
to the starting address of the array to make the walk a bounded
memory stream equal to the desired data footprint iii) the load-load
dependency distance is varied to control the memory level paral-
lelism in the workload. To achieve a given branch predictability for
the workload, each of the branches in the code are classified into
two categories, viz., branches which have a high transition rate be-
tween taken and not taken paths and branches which have very low
transition rate. Branches are made to transition between the taken
and the not taken paths based on a modulo operation. By having
the right mix of these two kinds of branches, we can achieve almost
any given branch predictability.

3.2 Validation of the Search Space
After setting up the abstract workload model that needs to be

searched through to find a power virus, the next step is to validate
the fact that this workload space is representative of the real world
applications. This is an important step in this study, because our
aim in this work is not to find the theoretically max-power consum-
ing virus, rather to generate a virus that can be possibly written by
a normal user. Since our workload model is completely indepen-
dent of the underlying microarchitecture, the model being detailed
enough is very important to enable the machine learning algorithm
to be able to stress fine grain processor components. To validate our
workload model, we have projected a set of the SPEC CPU2006
workloads onto our abstract workload space and measured the sim-
ilarity in the performance and power characteristics between the
projection (miniature synthetic) and the original workload. Figures
6(a) and 6(b) show the errors in IPC and power metrics for this
projection between the original and the synthetic. The error in IPC
averages around 2.8% and that in power averages around 14%. The
higher error in power consumption can be attributed to the fact the
generated synthetics almost always underestimate the power con-
sumption to some extent than the original workloads.

3.3 Power Estimation Using Simulators
In our framework, we use two simulator tool sets to evaluate the

power consumption of a workload on a given machine configura-
tion. For the SPARC ISA, we use the Simics full system simulation
environment with the Multifacet GEMS [22] tool set with an inte-
grated DRAMsim [29] simulator to find the system level power
consumption. We use the cycle accurate out-of-order processor
simulator Opal and the detailed memory simulator Ruby, both in-

22

(a) Config 1 (b) Config 2

(c) Config 3 (d) Comparison with SPEC CPU2006

Figure 7: Power consumption of the best individual of the different generations of GA execution for the SPARC ISA using the

Simics/GEMS environment

cluded in GEMS for all our experiments. Opal integrates power
models from Wattch [23] and can produce both power and perfor-
mance estimates. The DRAMsim is integrated with Ruby to ac-
curately simulate the memory controller and a DDR2 DRAM. We
compile all our workloads using GCC 3.4 compiler on the Solaris
10 operating system for the SPARC V9 architecture. This infras-
tructure is used to evaluate the power consumption of the system
including the processor core, caches and the main memory for a
given workload and a machine configuration. For the experiments
using the Alpha ISA, we use the Wattch simulator built on the Sim-
pleScalar [7] simulation framework to evaluate the CPU power con-
sumption. We compile our workloads on an alpha machine running
the Tru64 UNIX operating system using gcc 4.2. We use the most
aggressive clock gating model cc3 provided by Wattch for both the
SPARC and the Alpha ISAs.

3.4 IBM SNAP - The GA Tool Set
Among the various machine learning techniques, Genetic Algo-

rithm (GA) [9] is known to be very effective with respect to global
optimization problems. GA is a particular class of search heuristics
that use techniques like mutation, crossover, inheritance and selec-
tion to solve optimization problems. A population in the genetic
space is referred to as the set of potential candidate solutions. Ini-
tially, GA starts with a population of a set of random individuals
or chromosomes. In each generation, the fitness of each individ-
ual in the population is evaluated and based on these fitness values,
multiple individuals are selected from the current population. The
individuals are crossed over or randomly mutated to form a new
population for the next generation. The above process of evolution
happens until the desired fitness is achieved. The GA tool set, IBM
SNAP [2] [26] takes in the description of the search space in terms
of the bounds for the various parameters in the abstract workload
model given as input by the user. SNAP initializes the individuals
of the first population with random workload characteristics. The
fitness of each of the individuals is evaluated, which in our case is
the power consumption on the microarchitecture under investiga-
tion using the simulation infrastructure as described above. Based
on the fitness of each of the different individuals, the next genera-
tion of individuals is generated using the genetic operations of copy,

Figure 8: Machine configurations used to evaluate SYMPO on

SPARC ISA

crossover and mutation. SNAP provides the following parameters
to control how the individuals are chosen for the next generation,
i) Mutation rate: number of individuals that should be probabilisti-
cally chosen to mutate ii) Reproduction rate: number of individuals
that should be probabilistically chosen to copy into new population
iii) Elite reproduction rate: number of fittest individual of previous
generations that should be copied into new generation iv) Crossover
rate: number of individuals probabilistically chosen to serve as par-
ents for point crossover, where a crossover point within a parent is
selected and then interchange the two parent chromosomes at this
point to produce two new offsprings. v) Uniform crossover rate:
number of individuals probabilistically chosen to serve as parents
for uniform crossover. Uniform crossover is the process in which
individual bits in the chromosome are compared between two par-
ents and are swapped with a fixed probability of 0.5.

After the workload parameters of the individuals for the next
generation are constructed, they are fed to the code generator to
generate the synthetic clone. This synthetic clone is automatically
compiled and run on the corresponding processor/full-system sim-
ulator to evaluate the power consumption, which is used as a feed-
back to generate the next generation of individuals. SNAP contin-
ues to explore the space until the required fitness is reached or until
there is no forward progress for a given number of generations.

4. RESULTS AND ANALYSIS
The effectiveness of the power viruses generated by SYMPO are

validated on the SPARC and the Alpha ISAs by comparing with the
industry grade power virus MPrime torture test along with mea-

23

(a) (b)

(c) (d) Comparison with SPEC CPU2006

Figure 9: Comparison of the power consumption of the generated power virus to that of MPrime on Alpha ISA using SimpleScalar

Figure 10: Machine configurations used to validate the power

viruses on SimpleScalar

surements on the instrumented quadcore AMD system. Among
the different industry grade power viruses discussed in section 3,
MPrime is the only benchmark for which the source code is avail-
able. Most of the other power viruses discussed were handcrafted
using x86 assembly and can only be used on x86 machines. Due to
this limitation, we compare the power consumption of the SYMPO
viruses only with that of MPrime on SPARC and Alpha ISAs. But,
on x86 ISA, we use all the industry grade power viruses for com-
parison.

4.1 Results on SPARC ISA
To see the efficacy of using SYMPO to find power viruses, we

compare the power consumption of the industry grade MPrime tor-
ture test with that of the individuals chosen by SYMPO for a set
of 3 entirely different microarchitecture configurations using the
GEMS full system processor simulator. The 3 microarchitecture
configurations used are given in Figure 8. The microarchitectures
differ in terms of number of functional units, cache sizes, instruc-
tion window size, DRAM size and the machine width. Figures
7(a), 7(b) and 7(c) show the increase in the power consumption of
the best power virus as SYMPO progresses with each generation
for each of the 3 microarchitectures respectively. The same figures
also show the power consumption of MPrime torture test for com-
parison. The power viruses generated by SYMPO consume 14%,
24% and 41% more power than MPrime for microarchitectures 1, 2
and 3 respectively. For the above results, GA was seeded with ran-
dom workloads and run for 91, 69 and 79 generations for each of
the microarchitectures resulting in 728, 552 and 632 simulations.
The number of dynamic instructions in the power viruses were set

to be 10 million. It is to be noted that the caches get warmed up
in just a few thousand instructions in the synthetic and the power
consumption converges to steady state in not more than 10 mil-
lion dynamic instructions. Since these simulations were done on a
Xeon parallel machine, the fitness evaluation for the individuals in a
generation were let to run in parallel resulting in an efficient explo-
ration consuming a total simulation time of 15 hours, 11 hours and
13 hours for SYMPO to generate the viruses for the machine con-
figurations 1, 2 and 3 respectively. The GA parameters that were
used and found to be well suited to explore this particular search
problem are a mutation rate of 0.03, reproduction rate of 0.01, elite
reproduction rate of 0.125, crossover rate of 0.825 and a uniform
crossover rate of 0.01. Since many parameters in our search space
are correlated with each other, having a higher non-disruptive point
crossover rate performs better than having higher disruptive uni-
form crossover rate.

To further compare the power consumption of the generated power
virus to that of the real world applications, the SPEC CPU2006
workloads were simulated on our full system simulation infras-
tructure for 1 billion dynamic instructions after fast forwarding
for 2 billion instructions on machine configuration 1. Figure 7(d)
shows the power consumption of the SYMPO virus compared to
real world SPEC workloads. The SPEC workloads have an aver-
age power consumption of 53.4 Watts compared to 89.8 Watts con-
sumed by the SYMPO virus. It is to be noted that the power viruses
generated for each of the configurations are different. For instance
the characteristics of the power virus generated for machine config-
uration 1 are a basic block size of 10 instructions, 200 static basic
blocks, the memory pointers are reset to beginning every 200 iter-
ations, a branch transition rate of 0.98, 10% of the memory access
instructions having a stride of 12 and 90% of the memory access
instructions have a stride of zero, a memory level parallelism of 1.
The instruction mix of this power virus was int ALU-19.5%, int
mul-6.5%, int div-19.5%, FP mov-19.5%, load-6.5%, store-19.5%
and branch-10%. The characteristics of the virus generated for ma-
chine configuration 3 was significantly different in its instruction
mix compared to that generated for machine configuration 1. The
instruction mix of the power virus generated for machine configu-
ration 3 was int ALU-18%, load-36.3%, store-36.3% and branch-
10%. It is very hard to make general inferences about the im-

24

(a) SPARC config 1 (b) SPARC config 3

(c) Alpha config 2 (d) Alpha config 3

Figure 11: Comparison of the power consumption of individual components of the generated power virus to that of MPrime on

SPARC ISA using Simics/GEMS and Alpha ISA using SimpleScalar

portance of the characteristics of the synthetics for the various hot
cases as they vary extensively based on the targeted machine con-
figuration. The main aim of using micro-architecture independent
characteristics along with machine learning for this problem is to
be able to have a black box approach towards the generation of the
power virus and avoid making models/inferences about how the
power virus should be designed given a machine configuration.

4.2 Results on Alpha ISA
Figures 9(a) 9(b) 9(c) show the results of using SYMPO for gen-

erating power viruses in the Alpha ISA to maximize the power con-
sumption in the processor core for configurations 1, 2 and 3 as given
in Figure 10. The machine configurations used for the experiments
on the Alpha ISA are the same as used in the previous work by
Joshi et. al [15] to enable us to do a direct comparison of the power
consumption of the generated viruses. The power virus generated
using SYMPO consumes 30%, 7.5% and 29% more power in the
processor core than MPrime torture test on Alpha ISA. To be able to
make a fair comparison to the stressmarks of the previous approach
[15] we compare only the CPU power for all the experiments in the
Alpha ISA. It is to be noted that the power viruses generated using
SYMPO consume 15%, 9%, and 24% more power than the stress-
marks generated for the same set of machine configurations using
the Wattch simulator by the previous approach. This improvement
in the power consumption is attributed to the fact that we model the
instruction mix at a finer granularity and we also model the memory
level parallelism in the synthetic. In our previous work [11] aimed
at generating miniaturized clones for long running workloads, we
show that the memory level parallelism of a workload is a very
significant factor when modeling the performance and power con-
sumption of a workload even at the core level. We show an im-
provement of 12.5% in the accuracy of the workload model when
including memory level parallelism. It should also be noted that
our GA framework (SNAP) is more sophisticated, enabling us to
explore a larger search space than what was used in [15].

Figure 9(d) shows the power consumption of the SYMPO virus
compared to real world SPEC workloads. The SPEC workloads
have an average power consumption of 63.22 Watts compared to
111.79 Watts consumed by the SYMPO virus. The sum of the
power consumption numbers of all the units present in a machine

defines the ’theoretical maximum’ for this max-power search prob-
lem. Since all the units of a machine cannot be kept busy all the
time by any practical real world workload, reaching this theoretical
maximum is almost an impossible event. For example, the theoret-
ical maximum for the machine configuration 3 is 220 Watts and the
power virus generated for this configuration consumes a sustain-
able average power of 112 Watts. Designing a system with a worst
case power behavior equal to that of the theoretical maximum can
result in highly wasteful over provisioning. This further motivates
the necessity towards using an automatic search to be able to design
a system for a reasonable worst case behavior.

4.3 Suitability of Genetic Algorithm (GA)
for SYMPO

Figures 11(a) and 11(b) show the break down of the power con-
sumption in each individual component of the system including
the DRAM for the SPARC configurations 1 and 3 respectively.
From this breakdown, It can be observed that SYMPO leverages
the power consumption in the DRAM to maximize the overall sys-
tem level power consumption. This shows that a power virus gen-
erated specifically for the CPU may not be the best power virus
at the system level. It is to be noted that the virus generated by
SYMPO does not always consume more power than MPrime in
various components. This is due to the reason that the fitness func-
tion that the search algorithm targets to maximize is the total power
consumption of the system. The same framework can be used to
generate different types of stressmarks as in [15] by changing the
fitness function evaluation. For the Alpha ISA, Figures 11(c) and
11(d) show the components of the power consumption in the var-
ious parts of the CPU. Figure 9 shows that each of the synthetic
workloads have interacted with the different microarchitectures in
a unique fashion. This shows that how non-trivial it is to hand craft
a max-power virus by speculating about this complex interaction,
thus emphasizing the need for an automatic search methodology.
Machine learning based approaches are considered to be more ef-
ficient than most of the brute force searches and GA has proven to
be a promising solution to this problem. In the machine configu-
rations, SPARC config-3 has a lower access latency for L1 cache
than config-1 and one can observe that SYMPO is aware of this
and generates a power virus that stresses the L1 cache effectively.

25

(a) Instruction mix (b) Instruction level parallelism

(c) Memory footprint (d) Memory reuse distribution

Figure 12: The instruction mix, instruction level parallelism, memory footprint and memory reuse distance of the industry standard

power viruses

4.4 Validation of SYMPO on Real Hardware
Having validated the power consumption of the viruses gener-

ated using SYMPO on simulators using two different ISAs, the next
step is to measure the power consumption of a the viruses on real
hardware. Since our code generator was not equipped to gener-
ate code using CISC ISAs, we constructed a microarchitecturally
equivalent system for the instrumented AMD Phenom II system on
GEMS full system infrastructure and first generated power viruses
in SPARC ISA. These viruses were ported to x86 ISA with the help
of the LLVM [16] compiler infrastructure and the power consump-
tion was measured on real hardware. These indirectly generated
virus has a power consumption of 72.5 Watts on the cores, which
is more than all the other hand crafted power viruses that were ex-
ecuted on this hardware, viz., CPUburn-in-68.42 W, MPrime-68.1
W, BurnK6-64.2 W, BurnK7-72.1 W, BurnMMX-58.4 W, BurnP5-
48.7 W and BurnP6-62.4 W. The difference in the way the power
viruses were generated for the SPARC/Alpha ISAs and the x86 ISA
is that the automatic feed back loop was complete in the case of
SPARC/Alpha ISAs due to the usage of the cycle accurate simula-
tors, but there was no automatic feedback to SYMPO in the case of
x86. The hardware power readings were manually fed to GA and
since this process was too tedious, GA was run only for 3 genera-
tions. If the feedback loop could have been automated in x86, the
generated power virus might have consumed even higher amounts
of power. This shows the importance of automating the process of a
max-power virus generation as compared to the usage of enormous
human effort.

5. CHARACTERISTICS OF THE

INDUSTRY GRADE POWER VIRUSES
In this section, we analyze the characteristics of the industry

grade power viruses and compare them to the power virus gen-
erated by SYMPO using microarchitecture independent metrics.
To understand the functional behavior of the industry grade hand
crafted power viruses, we use the tool MICA [13] to record and
analyze the microarchitecture independent characteristics viz., the
instruction mix, Instruction Level Parallelism (ILP) , memory foot-

print, memory reuse distance, branch predictability, register reuse
distance and stride based memory access patterns. We also charac-
terize two arbitrarily chosen SPEC CPU2006 benchmarks 450.so-
plex and 462.libquantum to see how different the power viruses are
from normal workloads. Figure 12(a) shows the instruction mix of
these different power viruses. It can be found that most of the work-
loads have a high percentage of integer operations. This can be at-
tributed to the fact that the integer operations are relatively short
latency compared to floating point operations and have the ability
to keep the activity factor of the pipeline by keeping all stages of
the pipeline occupied. Almost all the power viruses also have mod-
erately high percentage of memory reads compared to other oper-
ations and with the help of a Pin [21] tool, we observed that these
power viruses tend to always hit in the first level data cache. This
can be attributed to the fact that caches in a processor are known
to consume relatively more power than other components. Though
the presence of short latency integer operations are known to in-
crease power due to high activity, the floating point ALUs consume
more power than the integer ALUs. This fact is evident from the
presence of a substantial number of floating point operations in the
power viruses written for AMD K7, AMD K6, Intel P5 and Intel
P6. The instructions classified under ’other’ in Figure 12(a) include
semaphore, rotate, conditional move and interrupts.

Figure 12(b) shows a measure of the Instruction Level Paral-
lelism (ILP) of the different power viruses. In this case, instruc-
tion level parallelism is measured as the number of instructions that
can be executed per cycle assuming a perfect cache, perfect branch
predictor and all instruction latencies to be one cycle. It is found
that most of these applications have higher ILP compared to the
SPEC workloads. It is to be noted that BurnK7 has a very high ILP
measure of about 8.5. Figure 12(c) shows the memory footprint
of these different applications compared to the SPEC workloads in
a logarithmic scale. It can be noted that the most of these power
viruses have a data foot print which is many orders less than the
real world SPEC workloads. Figure 12(d) shows the memory reuse
distance distribution for the various power viruses in terms of 64
byte blocks. Memory reuse distance is an important metric used
to characterize the cache access behavior (locality) of a workload.

26

(a) Branch predictability (b) Register reuse distance distribution

(c) Stride distribution of memory reads (d) Stride distribution of memory writes

Figure 13: The branch predictability, register reuse distance and stride distribution of the industry standard power viruses

For each of the memory accesses, the cache block being accessed is
determined. The number of unique cache blocks accessed since the
last time it was referenced is recorded using an LRU stack. Figure
12(d) shows that most of the cache blocks being accessed by the
power viruses are reused within 2 to 8 of other cache blocks being
accessed. It is evident that these power viruses have a lot of mem-
ory reuse compared to the real world SPEC workloads to enable a
quicker execution leading to higher power consumption. A Pin tool
was used to simulate a DL1 cache size of 64 KB and the miss rates
of these power viruses were studied. It was observed that MPrime

had a miss rate of 3.35%, CPUburn-in had a miss rate of 12.5%
and all the other benchmarks had a hit rate greater than 99.9%.

Figure 13(a) shows the percentage of branches that are mispre-
dicted for the power viruses and the SPEC workloads. It can be
observed that these power viruses have highly predictable branches
compared to normal applications. High activity factor and high ILP
is required to keep power high. Higher mispredictions will drain
the pipeline and reduce chances of the pipeline being full/active.
Most of these power viruses have high register reuse distances as
given in Figure 13(b) showing the presence of high amounts of ILP
in these workloads. Figures 13(c) and 13(d) show the distribution
of a stride based memory access pattern, which is another metric to
measure the data locality of the workloads under study. We observe
that most of these power viruses have very small strides compared
to real world applications showing the presence of high amounts of
data locality in these workloads. CPUburn-in is the only applica-
tion that has a dominant higher stride of 64 for the memory writes.

6. RELATED WORK
Joshi et al. [15] introduced the idea of automatic stressmark gen-

eration using an abstract workload generator. Joshi et al. also show
that the characteristics of stressmarks significantly vary across mi-
croarchitecture designs, emphasizing the fact that separate custom
stressmarks should be developed for different microarchitectures.
In the VLSI community, there has been a lot of research to estimate
the power consumption of a given CMOS circuit [8] [20]. To maxi-
mize the switching activity in these circuits, test vector patterns are
generated using heuristics and statistical methods. Our approach

and goals in this paper are similar to these previous research, ex-
cept the fact that we generate embedded assembly instructions that
can be compiled into a legal program instead of the generation of
test vectors. The advantage of using legal programs to search for a
stressmark is that it guarantees that the maximum power consump-
tion is achieved within the normal operating constraints. Industry
has developed hand-crafted power viruses [10] [12] [28] [14] [24]
to estimate the maximum power dissipation and thermal character-
istics of their microprocessors. Hand-crafted benchmarks are also
used in generating temperature differentials across microarchitec-
ture units [18]. Synthetic benchmark generation has been investi-
gated in the past in [11] [25] for speeding up processor performance
estimation. Ganesan et. al [11] show the importance of characteriz-
ing the memory level parallelism of applications to accurately clone
modern workloads.

7. SUMMARY
In this paper we have proposed the usage of SYMPO, a frame-

work to automatically generate system level max-power viruses for
a given machine configuration. We have shown that with the pro-
posed workload space along the machine learning based search, we
can automatically generate reasonably good power viruses for any
given microarchitecture within a few hours. We have shown the ef-
ficacy of the power viruses by comparing their power consumption
with that of MPrime for various microarchitectures in the SPARC,
Alpha and x86 ISAs. A summary of these results are shown in Fig-
ure 14. These results clearly show that SYMPO is very effective
in leveraging the power consumption on the SPARC, Alpha ISAs
compared to the x86 ISA. If the feedback loop could have been
completed in x86, the generated power virus might have consumed
much high amounts of power. This shows the importance of au-
tomating the process of a max-power virus generation as compared
to the usage of time consuming human effort.

We also show that the power viruses generated by SYMPO are
superior compared to the automatically generated power viruses us-
ing the previously proposed methodology as in [15]. We measure
the power consumption of the various industry grade hand crafted
power viruses on an instrumented AMD Phenom II system and

27

Figure 14: Comparison of the power consumption of the virus generated by SYMPO to MPrime on Alpha, SPARC and x86 ISAs

compare it with that of an x86 power virus generated by SYMPO.
We also provide a detailed analysis of these various industry grade
hand crafted power viruses and the x86 virus generated by SYMPO
based on a set of microarchitecture independent characteristics.

8. ACKNOWLEDGMENTS
This work has been supported and partially funded by SRC under

Task ID 1797.001, National Science Foundation under grant num-
bers 0702694, 0751112, 0750847, 0750851, 0750852, 0750860,
0750868, 0750884 and 0751091, Lockheed Martin, Sun Microsys-
tems, IBM and NSF China under grant number 60973036. Any
opinions, findings, conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation or other sponsors.

9. REFERENCES
[1] The industry changing impact of accelerated computing

http://sites.amd.com/us/Documents/AMD_

fusion_Whitepaper.eps.

[2] Private Communication with Jason F Cantin, IBM.

[3] Private Communication with Leslie Barnes, Advanced Micro
Devices.

[4] http://pages.sbcglobal.net/redelm.

[5] http://www.mersenne.org/freesoft.

[6] http://www.softpedia.com/get/System/

Benchmarks/CPU-Burnin.shtml.

[7] D. C. Burger and T. M. Austin. The simplescalar tool set,
version 2.0. Technical Report CS-TR-97-1342. University of

Wisconsin, Madison, June 1997.

[8] T. Chou and K. Roy. Accurate power estimation of cmos
sequential circuits. IEEE Transactions on VLSI Systems,,
1996.

[9] L. D. Davis and M. Mitchel. Handbook of genetic
algorithms. Van Nostrand Reinhold, 1991.

[10] W. Felter and T. Keller. Power measurement on the apple
power mac g5. IBM Tech Report RC23276, 2004.

[11] K. Ganesan, J. Jo, and L. K. John. Synthesizing
Memory-Level Parallelism Aware Miniature Clones for
SPEC CPU2006 and ImplantBench Workloads. International

Symposium on Performance Analysis of Systems and

Software (ISPASS), March 2010.

[12] M. Gowan, L. Biro, and D. Jackson. Power considerations in
the design of the alpha 21264 microprocessor. Design

Automation Conference, 1998.

[13] K. Hoste and L. Eeckhout. Microarchitecture-independent
workload characterization. IEEE Micro Hot Tutorials, (Vol.

27, No. 3) pp. 63-72, May/June 2007.

[14] R. Joseph, D. Brooks, and M. Martonosi. Control techniques
to eliminate voltage emergencies in high performance
processors. High Performance Computer Architectures,
2003.

[15] A. Joshi, L. Eeckhout, L. K. John, and C. Isen. Automated
microprocessor stressmark generation. The 14th

International Symposium on High Performance Computer

Architecture (HPCA), February 2008.

[16] C. Lattner and V. Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. Proc. of the

2004 International Symposium on Code Generation and

Optimization (CGO’04), Palo Alto, California, March 2004.

[17] J. Laudon. UltraSPARC T1: Architecture and Physical
Design of a 32-threaded General Purpose CPU. Proceedings

of the ISSCC Multi-Core Architectures, Designs, and

Implementation Challenges Forum, 2006.

[18] K. Lee, K. Skadron, and W. Huang. Analytical model for
sensor placement on microprocessors. ICCD, 2005.

[19] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler,
and T. Keller. Energy management for commercial servers.
IEEE Computer, 36(12):39âĂŞ48, December 2003.

[20] C. Lim, W. Daasch, and G. Cai. A thermal-aware superscalar
microprocessor. ISQED, 2002.

[21] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, W. S. a. V.
J. R. Lowney, G., and K. Hazelwood. Pin: building
customized program analysis tools with dynamic
instrumentation.

[22] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, , and
D. A. Wood. Multifacet’s General Execution-driven
Multiprocessor Simulator (GEMS) Toolset. Computer

Architecture News (CAN),, September 2005.

[23] M. Martonosi, V. Tiwari, and D. Brooks. Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations. isca, pp.83, 27th Annual International

Symposium on Computer Architecture (ISCA 2000).

[24] F. Najm, S. Goel, and I. Hajj. Power estimation in sequential
circuits. Design Automation Conference, 1995.

[25] J. Robert H. Bell, R. R. Bhatia, L. K. John, J. Stuecheli,
J. Griswell, P. Tu, L. Capps, A. Blanchard, and R. Thai.
Automatic Testcase Synthesis and Performance Model
Validation for High Performance PowerPC Processors. IEEE

International Symposium on Performance Analysis of

Systems and Software (ISPASS 2006), March 2006.

[26] S. Sharkawi, D. Desota, R. P, R. Indukuru, S. Stevens, and
V. Taylor. Performance Projection of HPC Applications
Using SPEC CFP2006 Benchmarks. IEEE International

Parallel & Distributed Processing Symposium, May 2009.

[27] S. L. Smith. Intel roadmap overview. intel developer’s forum
2009 san francisco, ca. http://download.intel.
com/pressroom/kits/events/idffall_2009/

pdfs/IDF_SSmith_Briefing.eps. September 2009.

[28] R. Vishwanath, V. Wakharkar, A. Watwe, and V.Lebonheur.
Thermal performance challenges from silicon to systems.
Intel Technology Journal, 2000.

[29] D. Wang, B. Ganesh, N. Tuaycharoen, K. Baynes, A. Jaleel,
and B. Jacob. DRAMsim: A memory-system simulator.
Computer Arch. News, vol. 33, no. 4, pp. 100-107, Sep 2005.

28

