
Optimizing GPGPU Kernel Summation for
Performance and Energy Efficiency

Jiajun Wang1, Ahmed Khawaja1, George Biros2, Andreas Gerstlauer1, and Lizy K. John1

1Department of Electrical and Computer Engineering
2Institute for Computational Engineering and Sciences

The University of Texas at Austin
{jiajunwang,ahmedkhawaja}@utexas.edu, gbiros@acm.org, {gerstl, ljohn}@ece.utexas.edu

Abstract—Kernel summation is a widely used computational
kernel that involves matrix-matrix multiplication (GEMM) and
matrix-vector multiplication (GEMV) computational primitives.
The parallelism exhibited in kernel summation suggests perfor-
mance improvement when running on GPGPU. State of the art
GPU solutions apply cuBLAS library but cannot exploit much
of the data locality because intermediate results are written back
to main memory in between key operations. This paper presents
an optimized implementation that yields better performance and
high energy efficiency. Our contributions are fusing all steps of
kernel summation into the matrix multiplication code structure
and optimizing memory access ordering to make good use of
shared memory and cache hierarchy. We decompose the kernel
summation problem into individual tasks with few dependencies
and strike a balance between finer grained parallelism and
reduced data replication. Based on hardware characteristics, we
map threads to matrix elements in an interleaved way, and
reposition matrix elements to avoid shared memory load and
store bank conflicts. We also apply double buffering to hide
memory access latency.

We analyze both performance and energy benefits of our fused
kernel summation compared with the implementation based on
cuBLAS. We show that in low dimensions our approach achieves
a speedup of up to 1.8X, and saves up to 33% of total energy in
all tested problem sizes.

I. INTRODUCTION

Kernel summation is a technique used to approximate the
interactions between two sets of points in a high dimensional
space. Kernel summation is widely used in data analysis,
electrostatics, and particle physics, most famously N-body
simulations. Given αi,β j ∈ RK from a set of source points
and target points, a kernel K(αi,β j) describes the pairwise
interaction between two points. In this work, K is denoted as
the dimension of the space. We select Gaussian kernel as an
example in this work. This kernel is defined as

K(αi,β j) = exp−
‖αi−β j‖22

2h2 (1)

where h is a constant. The kernel summation problem is to
compute a scalar value Vj (associated with the target point β j)
such that

Vj =
N

∑
i=1

K(αi,β j)Wi (2)

where V ∈ RN is an N dimensional potential vector, and
W ∈ RN is an N dimensional weight vector. Solving kernel

summation problem requires computing the Gaussian interac-
tion between every source point αi ∈RN and every target point
β j ∈RN . An efficient way to compute the N2 interactions is to
use the following identity for the Euclidean distance between
two K dimensional points αi and β j:

‖αi−βj‖2
2 = ‖αi‖2

2 +‖β j‖2
2−2α

T
i β j (3)

Here we focused on accelerating the evaluation of the Equation
2, for modest N (O(10,000)).

An obvious way of evaluating all the pairwise interaction
(Equation 1) is to treat source point set and target point
set as two K by N input matrices and apply a GEMM to
compute the −2αT

i β j component of the Equation 3 for all
i ∈ N and j ∈ N. Each elements of the GEMM output matrix
will be added to the remaining components, ‖αi‖2

2 + ‖β j‖2
2,

to achieve the computation of Equation 3. By performing an
exponential function (Equation 1) on the output matrix of the
previous step, we get a matrix K whose element locating at
(row i, column j) represents the Gaussian kernel interaction
between the source point αi and the target point β j. In the end
according to Equation 2, a GEMV is applied to the matrix K
and the weight vector W to get the result vector V. However,
as we discuss here, this is not the most efficient approach.
The kernel summation problem typically involves large data
sets, and the long memory access latency is the crucial bot-
tleneck of program execution. Vendor-provided Basic Linear
Algebra Subprograms (BLAS) library, such as the Intel Math
Kernel Library (MKL) [1] and the NVIDIA CUDA Basic
Linear Algebra Subroutines (cuBLAS) [2], are often hand-
optimized in assembly code and usually achieve over 80% of
the peak performance. Using vendor-provided libraries brings
performance benefit through the highly optimized BLAS, but
it also sacrifices data locality because the intermediate matrix,
as the return value of GEMM call, is written back to main
memory due to its huge size not fitting into caches.

Except from losing data locality, energy spent in mem-
ory accesses is another factor urging a better solution. The
increased power and energy consumption and the resulting
thermal issues have become major challenges. Memory, or
DRAM, operations usually take 20%-40% share of total en-
ergy consumption in many applications. DRAM energy has
been reported to account for 22% in UltraSPARC T1 systems

1



Fig. 1: Energy breakdown of kernel summation problem,with
N=1024 in all cases

[3], more than 25% of data centers [4], and around 40%
in a mid-range IBM eServer machine [5]. Figure 1 shows
the energy breakdown of computing kernel summation using
cuBLAS library. Around 10% to 30% of total energy is spent
on DRAM accesses.

To address the performance and energy challenges, we
propose fused kernel summation. Since most of the redundant
memory accesses are coming from GEMM, we fuse steps of
kernel summation into the GEMM structure. Fusion enables
consumer operations to access data directly from registers
and caches right after producer completes, and thus increases
data locality and relieves memory burden. We decompose
the problem into parallel tasks with minimal communication
and synchronization, and assign each task to one GPU thread
block. The GEMM part of each task is fully parallel. When
a thread block completes the GEMM portion, it could go
on to use intermediate value, i.e. the GEMM output, stored
in registers or shared memory to perform kernel evaluation
(Equation 1) without waiting for other thread blocks. The
only data which a thread block stores back to main memory
is a partial sum of the final result. Communication between
thread blocks happens only in the GEMV part when all thread
block outputs are accumulated to get a final result. Instead of
the kernel waiting for all thread blocks outputs to be ready
before aggregating, the reduction operation is done through
each thread block adding its output to the latest reduction result
in an atomic way. In other words, a thread block immediately
retires after it updates the final result with its own its own
output, and only one thread block is allowed to update the final
result at any time. The problem size of these tasks and the size
of thread blocks are selected to strike a balance between higher
device occupancy and less data duplication, which infers less
memory accesses.

In addition to fusion, another contribution of our work is
to optimize the memory access ordering to make good use
of shared memory and cache hierarchy. We maximize the
compute-to-load ratio of data in main memory. Each thread
block accesses main memory only once to fetch kernel input
data, which is get get fully reused in caches and shared mem-
ory before being evicted back to main memory. When loading
inputs from main memory into shared memory, the memory
access ordering and the correlation between individual thread
and fetching data are organized to avoid store bank conflicts,

and the data placement in shared memory is reconstructed to
avoid load bank conflicts.

Our work demonstrates that fused kernel summation pro-
vides up to 1.8X performance speedup in lower dimen-
sions (K < 128) compared to the implementations based
on cuBLAS, even though our CUDA-C implementation of
GEMM routine is between 1.5X to 2.0X slower than the
cuBLAS. At higher dimensions, the performance of GEMM
routine dominates the overall performance of the kernel sum-
mation irrespective of fusion. From the energy prospective,
our fused approach saves more than 80% of the DRAM access
energy in all test configurations, which amounts to around 3%-
33% of the total energy.

The rest of the paper is organized as follows: section II in-
troduces prior works on the kernel summation problem, states
the motivation behind our fused kernel summation and briefly
discusses features of the NVIDIA Maxwell architecture. In
section III we first talk about our GEMM implementation, and
then introduce our fused kernel summation implementations.
Our experimental setup is shown in section IV, followed by
detailed results and analysis in section V. We conclude with a
summary of results and potential avenues for future research
in section VI.

II. BACKGROUND

A. Related Work

The need for fast kernel summation methods first appeared
in computational physics, for example, computing the 3D
Laplace potential (reciprocal distance kernel) and the heat
potential (Gaussian kernel). Kernel summations are also funda-
mental to non-parametric statistics and machine learning tasks
such as density estimation, regression, and classification [6]
[7] [8] [9]. Linear inference methods such as support vector
machines [10] and dimension reduction methods such as prin-
cipal components analysis [8] can be efficiently generalized
to non-linear methods by replacing inner products with kernel
evaluations [11]. Problems in statistics and machine learning
are often characterized by very high dimensional inputs.

There are numerous studies that have proposed scalable al-
gorithms and high-performance implementations of fast kernel
summation schemes such as treecodes [12][13], fast multipole
methods [14][15], particle-mesh methods [16], Ewald sums
[17], etc. These algorithms can scale to billions or trillions of
points for problems in two or three dimensions. However, they
do not scale to higher values of K because they depend linearly
or super-linearly on K. Other algorithms which are efficient
for high dimension K apply GEMM defined in BLAS library
[18].

The SGEMM (Single-precision GEMM) routine provided in
the NVIDIA’s cuBLAS library exhibits high FLOPs (floating-
point operations per second). Architecture related optimiza-
tions play a vital role in GEMM performance and assembly-
coding strategies are often employed for high performance.
A custom implementation tailored towards the NVIDIA latest
GPU architecuture, Maxwell, is available for software devel-
opers. While NVIDIA provide examples of GEMM on GPUs,
they do not specifically mention how cuBLAS is implemented.

2



Fig. 2: L2 MPKI of kernel summation problem, with
N=1024 in all cases

The fact that the cuBLAS library is closed-source makes it
infeasible to fuse operations amidst the GEMM in cuBLAS.
Previous works such as [19] [20] [21] discuss GEMM im-
plementations on GPU. Although these implementations are
comparable with old versions of the cuBLAS library (e.g.
cuBLAS 3.5), new features in the latest version of the cuBLAS
library are less understood. To the best of our knowledge,
only GEMM implementation, maxas [22], targets the Maxwell
architecture and beats the cuBLAS implementation. The maxas
code is written in assembly and the order of assembly instruc-
tions are tuned to hide potential latency. Note that NVIDIA
do not release official assembler so a self-designed compiler
is used in maxas. The tool limitation makes it infeasible for
us to use the maxas GEMM structure.

B. Motivation

A simplified kernel summation algorithm is shown in Al-
gorithm 1. Inputs A and B are M-by-K and K-by-N matrices
separately, and W is an N-dimensional weight vector. αi is
a K-dimensional row vector representation and β j is a K-
dimensional column vector representation.

Basic Linear Algebra Subprograms (BLAS) provide a user-
friendly interface to compute GEMM and GEMV. Different
vendors provide their own highly optimized BLAS libraries
for users, including the Intel’s MKL [1] and the NVIDIA’s
cuBLAS [2] library. They are often hand-optimized using
assembly code. These libraries usually achieve over 80% of
the peak performance. Although these are good options, they
still have limitations in our application. First, we observed that
using black-box BLAS libraries leads to performance degra-
dation when the (geometric) dimension K is small (say less
than 64). This is because, to the BLAS library the computation
appears to be memory bound with small K; however, it could
be turned into compute bound after modifying BLAS. Second,
executing GEMM and other steps of kernel summation in a
serial way leads to redundant memory accesses and poor data
locality. Figure 2 illustrates the number of L2 misses per kilo
instructions (MPKI) when applying the cuBLAS library in
kernel summation problem. There is high L2 MPKI number
in dimension K = 32. Since L2 is the last level cache of GPU
memory hierarchy, program performance suffers a lot from
high DRAM access latency and energy is wasted on redundant

Algorithm 1 Basic kernel summation

1: Inputs:
A = [α0,α1, ...,αM−1]

T , M-by-K matrix
B = [β0,β1, ...,βN−1], K-by-N matrix
W = [ω0,ω1, ...,ωN−1]

T , N-by-1 vector
2: Outputs:

V = [ν0,ν1, ...,νN−1]
T , N-by-1 vector

3: vecα ← [‖α0‖2
2,‖α1‖2

2, ...,‖αM−1‖2
2]

T

4: vecβ ← [‖β0‖2
2,‖β1‖2

2, ...,‖βN−1‖2
2]

5: // duplicating vecα N times to form a M-by-N matrix
6: squareA← [vecα,vecα, ...,vecα]

7: // duplicating vecβ M times to form a M-by-N matrix
8: squareB← [vecβ ,vecβ , ...,vecβ ]T

9: // GEMM
10: C← A×B

11: R← squareA+ squareB−2×C

12: for each element in R do
13: K(i, j)← exp{−R(i, j)

2h2 }
14: end for
15: // GEMV
16: V ← K×W

Fig. 3: GPGPU memory hierarchy

DRAM accesses. Redundant intermediate value accesses to
main memory suggest opportunity in performance and energy
optimization.

C. GPGPU Architecture

GPU has traditionally been an accelerator for graphics pro-
cessing, but recently has seen large adoption as a general high-
performance computing device. While GPU provides incredi-
ble speedups for embarrassingly data parallel applications, it
often requires extensive optimization effort to achieve similar
performance improvements as on other programs. Although
many basic buildings blocks exist in library form for porting
applications to the GPU, often a much more powerful solution
is possible by tailoring these basic blocks to the specific
application.

The GPGPU architecture studied in this work is the
NVIDIA Maxwell architecture. It is composed of a set of
compute units, a cooperative thread array (CTA) scheduler, a

3



unified L2 cache, and global memory. Each compute unit, also
called “Streaming Multiprocessor” (SM), contains a number
of arithmetic and logic units, a large register file, a shared
memory, non-coherent caches, and a scheduler for units of
execution. The units of execution are referred to as warps
and each warp is composed of 32 scalar threads. All threads
within a warp are scheduled together, and thus are implicitly
synchronized. Those threads can exchange values using either
shared memory or the shuffle instruction.

A CTA or a thread-block is a group of warps that execute
concurrently on an SM. Threads executing on the same SM
share a shared memory and are explicitly synchronized using
barriers or memory fences. The CTA scheduler only allows a
CTA to execute on an SM once the amount of required shared
memory and registers are available. Having a large number of
CTAs and scheduling warps concurrently on an SM allow the
hardware to hide memory latency. When a warp experiences
a long memory stall due to cache misses, bank conflicts or
un-coalesced accesses, GPGPUs can hide latency by bringing
in other warps to concurrently execute compute instructions.

The memory hierarchy of the Maxwell architecture is shown
in Figure 3. Each SM contains separate shared memory
(SMEM) and unified L1 cache. Memory accesses of all SMs
must go through a shared L2 cache. The shared memory
is a programmer managed cache, which is usually used in
conjunction with barriers, to communicate values between
threads in a CTA. Unlike the NVIDIA Fermi architecture [23],
shared memory becomes an individual unit in the Maxwell
architecture and L1 cache is unified with texture cache [24].
By default, the unified L1 and texture unit of the Maxwell
architecture does not actually cache global loads, except for
gather instructions, texture fetches, and surface writes. How-
ever, a compiler flag can be used to specify that all global
loads must be cached at all levels.

The design of shared memory requires that shared memory
is as large as possible and provides bandwidth high enough
to service 32 threads per cycle. In order to provide high
bandwidth, shared memory is laid out as a series of banks
(32 for the Maxwell architecture), where each bank is four
bytes wide. The width of bank is chosen to be the same as the
size of float and RGBA data types, which are frequently used
in graphics applications. Bank conflict occurs when different
words in the same shared memory bank are accessed by
threads in the same warp. NVIDIA makes it known that
good performance from shared memory cannot tolerate bank
conflicts. Programmers are encouraged to use memory access
patterns that do not cause a bank conflict. All threads in a
warp can issue a shared memory load in the same cycle. It
is seen that all 32 banks share the same row select, which
means that in order to avoid bank conflicts, in addition to using
different banks, threads need to access memory within the
same 128-byte region. If there is no bank conflict, 32 requests
turn out to be one shared memory transaction and exploit the
high bandwidth of the shared memory. The register file is also
banked. Register bank conflicts are usually avoided with the
help of compiler, and are only likely to occur when storing
large vectors in registers.

III. IMPLEMENTATION OF FUSED KERNEL SUMMATION

A. GEMM Algorithm Overview

The algorithmic view of our SGEMM is shown in Figure
4. Matrices A and B hold coordinate table of the source point
set and the target point set respectively. For the remainder
of this paper, M denotes the leading dimension of matrix A
and K denotes the leading dimension of matrix B. So the
matrix A is of size M by K, and the matrix B is of size K
by N. We assume that the matrix A is in row major order
and the matrix B is in column major order. As shown in the
figure, all the three matrices are divided into sub-matrices.
Ci, j denotes a submatrixC which has i submatrices to its left
and j submatrices on its top; Ai denotes a submatrixA which
has i submatrices on its top; and Bi denotes a submatrixB
which has i submatrices to its left. A thread block with a
block ID (bx,by) is assigned to compute Cbx,by = Aby×Bbx,
and all thread blocks can be executed concurrently without
race conditions. submatrixA and submatrixB are partitioned
into tiles of size 128 by 8 and 8 by 128 separately. A thread
block performs rank-8 update across the K dimension, i.e.,

submatrixC =
K/8

∑
i=0

tileAi× tileBi

A submatrixC is divided further into 16x16 microtiles.
microtileCi, j denotes an 8 by 8 microtile which has i microtiles
to its left and j microtiles on its top within the range of a
submatrixC. Threads are organized into a 16 by 16 grid to
form a thread block, and the thread with threadID (tx, ty) is
corresponding to the microtileCtx,ty. Therefore the task of a
thread block computing tileA× tileB is decomposed into each
thread computing microtileCtx,ty = microtileAty×microtileBtx

Based on the data access pattern of each thread block, a
submatrixA or a submatrixB will be accessed multiple time
by different thread blocks. Taking a submatrixA of size m by
K as an example, it would be accessed by N/m thread blocks,
which indicates that the entire matrix A is repeatedly loaded
N/m times. Even though the shared L2 cache would serve
data reuse among thread blocks, it depends on the thread block
scheduling policy to ensure that thread blocks accessing the
same range of memory are activated at the same time. Besides,
considering the limited size of L2 and the large matrix size,
average L2 size per thread block is not large enough to reduce
repeated memory accesses. Theoretically speaking, the value
of m, which is the leading dimension of both submatrixA and
submatrixC, should be sufficiently large to to reduce the N/m
reloading times of matrix A. In other words, the partition of
matrix A and matrix B should be relatively coarse grained in
order to reduce reloading times, which directly influences the
size of submatrixC.

Factors like GPU limits, trade-offs between high SM oc-
cupancy and less data locality, inter-influence between ma-
trix size and matrix partition are taken into consideration
when determining the size of submatrixC and decomposing
submatrixC computation to thread level tasks. In the best
scenario of our experiments, a thread block of dimension 16
by 16 computes a submatrixC of 128 by 128, and each thread
computes 8 by 8 elements.

4



Fig. 4: GEMM algorithmic view

The number of physical registers is one of the performance
bottlenecks of our solution. Programmers have the ability to
choose how much shared memory space is consumed using the
CUDA C programming language, but they can not explicitly
control register usage without support from assembly, which
is not yet released by NVIDIA. Our test machine, GTX970,
provides an upper bound of 65536 registers per SM. In other
words, up to 255 registers can be allocated to each thread when
the thread block dimension is 16 by 16. If nothing is limiting
performance, larger number of registers used per thread would
lead to lower SM occupancy. In our solution, each thread takes
64 registers to hold 64 partial sums of microtileC in order to
achieve the best data locality. Each thread performs a rank-
1 update to maximize the computation to load ratio, hence
vector operands from tileA and tileB take another 16 registers.
Including miscellaneous essential demands like thread index
and control flow variables, 96 to 128 registers are consumed
by each thread and this leads to having up to two thread
blocks executed simultaneously in the same SM. Although
the compiler option of “–maxregcount” helps achieve higher
occupancy, register spilling creates huge negative impact on
performance because of additional L1 transactions due to
spilling.

In our implementation, partial sums of submatrixC are
stored in the thread register file, and tileA and tileB are loaded
into the shared memory sequentially. We use double buffering
to hide shared memory load latency. Double buffering requires
size of tiles to be restricted in such a way that shared memory
can hold at least two pairs of tiles at any moment. When one
pair of (tileAi, tileBi) are used in computation, next pair of
(tileAi+1, tileBi+1) could be loaded into shared memory. In
the Maxwell assembly, each load is marked by an integer.
Explicit synchronization is inserted to guarantee that loading
a pair of tiles completes before being consumed in the next
computation step.

In our solution, up to two thread blocks could be executed
simultaneously in the same SM. Each thread computing more
than 8x8 C elements will reduce the occupancy to one thread
block per SM due to the register count limit. On the contrary,

computing fewer C elements will transfer the bottleneck to
other parts. For example, if 128x128 elements of submatrixC
are computed by one thread block and 4x4 C elements per
thread, it would then require 1024 threads per block. Occu-
pancy is still two thread blocks per SM due to the device limit
of 2048 threads per SM.

B. Shared Memory Data Mapping
The shared memory in GPU serves like a scratch pad.

Programmer is directly responsible for all shared memory
accesses. The shared memory performance is a combined
effect of the number of bank conflicts, the granularity of
access, and the total number of accesses. Larger granularity of
access means less load instructions and higher bus bandwidth
utilization. For example, loading four float values in one
load instruction in the float4 data type rather than four load
instructions in the float type results in fewer load instructions.
One important consideration in using shared memory is to
avoid bank conflicts. When a bank conflict occurs, shared
memory instructions are required to be replayed for certain
threads. There won’t be any shared memory bank conflicts
when all threads in the same warp access the same data,
because shared memory does have some broadcast capabilities.
For instance, if all 32 threads access the same four bytes in a
single bank, all requests can be serviced in a single cycle. The
broadcast capability also extends beyond a single broadcast,
such as the same value requested by eight threads within the
same warp would be served in one broadcast within single
cycle.

When loading tileA and tileB into shared memory, one half
of the thread block (128 threads) loads tileA and the other
half loads tileB. Threads are carefully mapped to elements in
memory to avoid shared memory store bank conflicts. Figure
5 illustrates how to avoid both load and store bank conflicts
when bringing tileB into shared memory. Loading and placing
tileA is similar to tileB, and tileA is also divided similarly
into 16 eight by eight microtiles. The numbers illustrated on
the figure are linear thread index and they tell which thread is
accessing that part of the main memory or writing that bank of
shared memory. A tile in main memory is partitioned into 16
eight by eight microtiles, and each microtile is further divided
into eight eight by one tracks, each of which is accessed by a
different thread. In the shared memory, tileB is stored in a two-
dimensional array data structure in which each row consists
of 32 elements sitting in the 32 banks of shared memory.

Intuitively, each of the all 32 threads within a warp would
load a track from a group of eight neighboring microtiles,
and store the track to one bank of shared memory. However
such track placement would not solve the problem of load
bank conflicts. Since thread with threadId (tx, ty) will touch
microtileAty and microtileBtx during multiplication, a warp
needs to load all 16 microtiles of tileB, and evenly spread them
among 32 banks to get rid of load bank conflicts. Therefore,
the placement of tileB in shared memory need to be re-
arranged to avoid load bank conflicts, and the match between
a thread and a track is not that intuitive.

As shown in the figure, in order to spread 16 microtiles
among 32 banks, an eight by eight microtile in main memory

5



Fig. 5: Data-thread mapping when loading tileB into shared memory

is reconstructed as 32 by two. A warp loads 32 tracks from
main memory by picking two tracks per microtile, and places
them side by side in shared memory. It takes collaboration of
four warps to store one microtile. For example, microtileB0
is divided into four groups of tracks. Thread 0, 1 in warp
0 will store data of group 0 to location (bank 0-1, row 0-
7); and thread 32, 33 belonging to warp 1 will write group
1 tracks into location (bank0-1, row 8-15), and so on. This
guarantees that the 32 threads in the same warp are writing
to 32 different banks in shared memory and no load bank
conflicts would occur. Generally speaking, a thread will touch
track [tx mod 2 + 2× (ty mod blockDim.y

2 )] of microtileBb tx
2 c,

and store the track into bank[tx mod 32], row (8ty to 8ty+7).

C. Kernel Summation Fused with GEMM

We fuse steps of kernel summation into the GEMM frame-
work described above. The pseudo code shown in the Al-
gorithm 2 demonstrates an overview of the fused kernel
summation routine executed by each thread block. There
are seven inputs :subA and subB are 128 by K and K by
128 matrices separately; subA2 and subB2 are 128 by 128
matrices, which are submatrices of the squareA and squareB
computed in the Algorithm 1; subW is part of the weight
vector W ; subV frames the final result V of the kernel
summation problem; and two-dimensional thread block index
(bx,by). The output of each thread block is vector partialV . A
representation of (tx, ty) refers to the two-dimensional thread
index. We follow the same partitioning scheme of matrices
A, B, and C in the previous part. Additionally squareA and
squareB are divided into sub-matrices the same way as C and
the same denotation rule. Both vector W and V are evenly
split into sub-vectors of dimension blockDim.y. The variables
sharedA0,sharedA1,sharedB0,sharedB1 and T are declared
per thread block and their sizes are the same as tileA and
tileB. Matrix T is used to store thread level reduction result
in shared memory. In our implementation code, T explicitly
reuses the shared memory spaces of sharedA0 in order to
limit the amount of shared memory resources required per
thread block and to increase SM occupancy. Denotation X [i, j]
represents the element in the i-th column and j-th row of

matrix X , and Y [k] represents the k-th element of vector Y . The
mapping of thread blocks to the first element of their input
matrices and input vectors are shown below. For example,
when matrix A and B are partitioned into blocks and indexed
in the same way as the one shown in Figure 4, a thread block
whose index is (bx,by) will load the by-th block of matrix
A as its program input subA and bx-th block of matrix B as
subB.

subA = A+128×by

subB = B+128×bx

subA2 = squareA+N×by+128×bx

subB2 = squareB+N×by+128×bx

subW =W +128×by

subV =V +128×by

Line 5-13 in Algorithm 2 are the same GEMM structure
as we described in the previous part. In the function
load-nonblocking(sharedA j,sharedB j, tileAi, tileBi, tx, ty),
each thread in the first half of thread block (i.e. ty≤ blockDim.y

2 )
would load a track from the tileAi into the shared memory
variable sharedA j, and each thread in the other half would
load a track from the tileBi into the shared memory variable
sharedB j. The mapping of threads to tracks and data
placement are already discussed before. At the end of the
GEMM routine, each thread completes updating a microtileC,
and this intermediate product is held in thread registers.
The kernel evaluation according to Equation 1 becomes
embarrassingly parallel. In order to make full use of the
benefit brought by register locality, each thread performs
kernel evaluation in the next step (line 14).

There are three levels of reductions during kernel sum-
mation: intra-thread level, intra-thread-block level, and inter-
thread-block level. Synchronization needs to be carefully taken
care of in the last two levels. During the intra-thread level
summation, each thread performs row reduction on its eight
by eight microtile, and stores the result in shared memory.
The ntra-thread-block level reduction needs to wait until all
threads complete its own reduction work. A thread block level
synchronization function, syncthreads(), is called to ensure

6



Algorithm 2 Fused kernel summation pseudo code for each thread block

1: Inputs:
matrix subA (128 by K), subB (K by 128), subA2 (128 by 128), subB2 (128 by 128),
vector subW (128 by 1), subV (128 by 1 ), blockId (bx,by)

2: Outputs:
vector partialV (128 by 1 )

3: Initialize:
j← 0, i← 0, declare sharedA0, sharedB0, sharedA1 and sharedB1 as arrays in shared memory
temporal matrix T (128 by 8), T = [τ0,τ1, ...,τ127]

T , τ is an 8 by 1 row vector,
γ is T ’s 8-dimensional column vector, γi, j = [T [8i, j],T [8i+1, j], ...,T [8i+7, j]]T

4: parfor each thread with threadId (tx, ty) do
5: load-nonblocking(sharedA j← tileAi,sharedB j← tileBi, tx, ty)

6: syncthreads();
7: for i from 1 to K

8 −1 do // GEMM. subC = subA× subB

8: j← j⊕1 // ⊕ is Exclusive OR operator
9: load-nonblocking(sharedA j,sharedB j, tileAi, tileBi, tx, ty) // Memory access

10: microtileCtx,ty+= microtileAty×microtileBtx // Hide memory access latency with Computation
11: syncthreads()
12: end for
13: microtileCtx,ty+= microtileAty×microtileBtx

14: subC[tx, ty]← exp{− subA2[tx,ty]+subB2[tx,ty]−2×subC[tx,ty]
2h2 } // Gaussian Kernel Evaluation

15: // Summation
16: γtx,ty← microtileCtx,ty× subWtx // Intra-thread level reduction.
17: syncthreads()
18: if ty≤ blockDim.y

2 then
19: tid← ty×blockDim.x+ tx
20: partialV [tid]← rowReduction(τtid) // Intra thread block level reduction
21: atomicAdd(subV [tid], partialV [tid]) // Inter thread block level reduction
22: end if
23: end parfor

function correctness. In our case since there are 16 threads
in the x-dimension of thread block, intra-thread-block level
summation reduces results of every 16 threads in the row
to form a partial result of that thread block. Because there
are 128 rows in subC, only half of the thread block (i.e. 128
threads) is required to perform intra-thread-block reduction,
with each thread responsible for one row. Notice that the
output partialV of each thread block is not the subvector of
final result V . Instead subV is the sum of partialV distributed
across thread blocks with the same by. Data communication
between thread blocks is done through main memory, and
requires waiting for all thread blocks to finish execution. In
order to avoid synchronization latency between thread blocks
and to prevent accessing memory twice to store and reload
partialV , an atomic add operation is chosen to update subV
whenever partialV is ready.

IV. EXPERIMENTAL METHODOLOGY

The kernel summation application is run on a desktop sys-
tem equipped with a Corei5-4960K connected to an NVIDIA

GTX970 Maxwell GPU (4GB of GDDR5 video memory) over
a PCIe interconnect. Technical specifications of the GTX970
are listed in Table I, and all numbers are based on the latest
compute capability of 5.2. All the performance metrics and
events in this work are measured with the nvprof [25] profiling
tool provided by NVIDIA. The cuBLAS library used in this
work is version 7.0.

Three different implementation of kernel summation prob-
lem are run and compared, which are denoted Fused, CUDA-
Unfused and cuBLAS-Unfused. Fused is the kernel fusion
implementation we discussed in section III. We also program
two unfused version of solution. One is to pair our own
SGEMM implementation with the kernel evaluation and the
summation routine, denoted by CUDA-Unfused. Another one
is to call SGEMM function provided in the cuBLAS library
followed by the kernel evaluation and the summation routine,
denoted by cuBLAS-Unfused. All runs were repeated multiple
times to ensure the repeatability and consistency of the results.
We test and compare different kernel summation solution with
four groups of parameters. The value of dimension K is set to

7



32, 64, 128, and 256 in each group, and the value of dimension
N is fixed to 1024 in all groups. Within each group, the value
of M dimension increases from 1024 to 524288.

We show the advantage of fused kernel summation from
both performance and energy perspectives. Energy model of
the GPU memory is built based on CACTI [26] and McPAT
[27], and the statistics are collected from the counter value
reported by nvprof. We model the shared memory as an
SRAM with 32 banks, each of which has separate read port
and write port. In each cycle, four-byte read and four-byte
write could be serviced by a bank. We derive energy per
floating point unit access from McPAT. Similar to [28], Intel
Xeon architecture configuration file is used and parameters are
modified according to the Maxwell architecture.

V. RESULTS AND EVALUATION

A. Performance

Figure 6 demonstrates normalized execution time of the
Fused and the CUDA-Unfused kernel summation implemen-
tations with respect to the cuBLAS-Unfused implementation
on primary axis, as well as the speedup of the Fused kernel
summation versus both cuBLAS-Unfused and CUDA-Unfused
on secondary axis. Fused approach beats cuBLAS-Unfused
approach by up to 1.8X speedup when dimension K is not
extremely large, i.e. K < 128. Largest speedup of 1.8X hap-
pens to the group of K = 32. Performance gain comes from
reducing unnecessary main memory accesses. As dimension
K increases the performance degradation due to our inferior
CUDA-C GEMM implementation outweighs the benefits of
fused computation. The speedup against CUDA-Unfused is
a projected speedup which suggests performance benefit of
fusion when a GEMM as good as the one in cuBLAS is
applied in Fused. Fused shows much better performance than
CUDA-Unfused in all problem sizes. Compared to the CUDA-
Unfused implementation, Fused gains a maximum 3.7X per-
formance speedup when K = 32 and around 1.5X speedup
when K = 256. This demonstrates the benefits of fusing
over an unfused implementation. It is noticed that in lower
dimension scenarios, performance benefit of fusion becomes
more obvious as the number of points (M,N value) increases.

Table II demonstrates the ratio of achieved operations to
peak single-precision floating-point operations, which is essen-

TABLE I: Configuration

Number of Multiprocessors 13
Maximum number of threads per block 1024
Warp size 32
Maximum number of resident threads per multi-
processor

2048

Number of 32-bit registers per multiprocessor 64K
Maximum number of 32-bit registers per thread 255
Maximum amount of shared memory per multi-
processor

96KB

Shared Memory Bank Size 4B
Number of shared memory banks 32
Number of warp schedulers 4
L2 size 1.75MB

Fig. 6: Execution time and speedup of the fused kernel
summation in comparison with unfused implementations.

TABLE II: FLOP Efficiency

cuBLAS-Unfused Fused
K=32
M=1024 19.92% 33.14%
M=131072 29.30% 50.86%
M=524288 29.02% 51.05%
K=64
M=1024 31.15% 41.86%
M=131072 45.22% 57.01%
M=524288 36.83% 56.26%
K=128
M=1024 44.32% 49.08%
M=131072 62.15% 60.03%
M=524288 61.76% 50.29%
K=256
M=1024 58.42% 53.75%
M=131072 74.02% 62.9%
M=524288 74.15% 62.05%

tially flop efficiency. Since NVIDIA profiler reports efficiency
value on the granularity of kernel launched, the efficiency
of cuBLAS-Unfused kernel summation is a weighted sum of
the SGEMM kernel and the summation kernel based on their
total cycle count. Higher FLOP efficiency indicates better
performance. When the efficiency of fused kernel summation
is lower than that of cuBLAS approach, the speedup over
cuBLAS drops below 1X.

Since GEMM dominates the performance of kernel sum-
mation, a comparison between the cuBLAS GEMM and our
CUDA-C GEMM would be helpful to better understand the
overall performance. Figure 7 presents the normalized run time
of the two GEMM implementation. As expected, the CUDA-C
GEMM is two times slower than the cuBLAS GEMM. One
of the main reasons causing performance deterioration is the
coarse-grained control of the CUDA-C language on hardware
compared with assembly. For example, it is infeasible to
avoid register file bank conflict when coding in the CUDA-
C programming language and the syncthreads() function is
the primary synchronization method between threads, which is
more expensive than the low level synchronization instructions
available in the Maxwell assembly. Another reason that leads

8



Fig. 7: Execution time comparison of different GEMM
implementations

to inferior performance is that we do not optimize the part of
storing results back to main memory since it is unnecessary
in kernel fusion. Even though we optimize memory access
ordering and rearrange data location in shared memory to
avoid bank conflicts and we apply float4 type of load/store
instructions as many as we can, there are still some unknown
optimization schemes in the cuBLAS library that contributes
better performance.

B. Influence on Memory

Analyzing the performance of Fused kernel summation
involves discussing the trade-offs between its lower GEMM
performance and reduction in the number of memory accesses.
The primary effect of the proposed code optimizations is
the reduction in memory transactions. Figure 8 compares the
number of L2 and DRAM transactions in both Fused and
CUDA-Unfused normalized with respect to cuBLAS-Unfused.
In Figure 8a, the number of L2 transactions in the Fused
approach is less than 50% of the cuBLAS-Unfused approach
in most cases, except for two configurations “M=N=1024,
K=128” and “M=N=1024, K=256”. In higher K-dimensional
scenarios CUDA-C version of SGEMM has more L2 trans-
actions compared with the SGEMM in cuBLAS library. In
configurations where product of MN is small and K value
is large, the benefit of saving L2 transactions through kernel
fusion is offset by additional L2 transactions in SGEMM. As
shown in 8b, the number of DRAM transactions in Fused is
less than 10% of cuBLAS-Unfused in all problem sizes.

C. Energy

In addition to performance benefit, fused kernel summation
brings considerable energy savings thanks to reduction in main
memory accesses. Table III summarizes energy savings of the
Fused approach compared to the cuBLAS-Unfused. Within in
a group of same dimension K, there is a trend of saving more
energy when the value of dimension M increases, which is
because the number of redundant memory reads and writes are
O(MN) in kernel summation problem. The amount of energy
savings obtained from fusion is greatly affected by the K value.
Up to 33% of cuBLAS-Unfused energy is saved when K = 32,
and energy savings decreases as value K increases, around 8%
is saved when K = 256.

TABLE III: Energy Savings of Fused compared to
cuBLAS-Unfused

M=1024 M=131072 M=524288
K=32 31.3% 32.5% 32.5%
K=64 18.7% 23.6% 23.4%
K=128 10.2% 14.8% 13.1%
K=256 3.5% 8.5% 7.2%

Figure 9 compares energy consumption of three different
solutions, and illustrates energy breakdown into computation,
shared memory, L2, and DRAM parts. Compared to the
DRAM access energy in the cuBLAS-Unfused approach, the
Fused approach saves more than 80% which amounts to 8%
to 24% of total energy. The largest energy saving which is
up to 33% happens to the group of K = 32. Out of 33%,
DRAM access reduction contributes 26% , and the remaining
7% comes from reduction in the number of executed instruc-
tions. This is consistent with the performance speedup. When
the Fused approach performance is better than the cuBLAS-
Unfused approach, we get additional energy savings. In high
dimension scenarios, the energy benefit from fusion is less.
One reason is because DRAM access savings will balance
extra energy consumption from more shared memory accesses.
Another reason is because more than 80% of energy is spent
on floating point computing operations such as fused multiply
add.

VI. CONCLUSION

This paper presents a fused approach of implementing
kernel summation on the state of the art GPU. Various software
optimizations to improve performance and energy efficiency
are implemented into the kernel summation code. Fusing series
of steps in the kernel summation leads to improvement in

(a) L2 Transaction

(b) DRAM Transaction

Fig. 8: L2, DRAM transaction number normalized to
cuBLAS-Unfused.

9



Fig. 9: Energy consumption breakdown into Compute,
Shared memory, L2, and DRAM

locality and reduction of memory accesses. In addition to
fusion, steps of kernel summation are optimized to increase
locality by adjusting the blocking and panel sizes, and by
tailoring the working set to fit in the fast on-chip memory.
A major challenge in this work was the implementation of an
SGEMM comparable to the cuBLAS SGEMM. Fusion is seen
to improve overall performance of kernel summation up to
1.8X. We show that in lower dimensions our approach achieves
higher performance compared with the approach using the
cuBLAS library. Performance loss in high dimensions is due to
our less efficient SGEMM. If an SGEMM as good as cuBLAS
is applied, fused implementation is able to achieve up to 3.7X
performance improvement. From the energy perspective, fused
kernel summation shows 3% to 33% of total energy saving
across various experimented dimensions. This is because elim-
inating redundant memory accesses via fusion results in less
memory access energy. Overall our fused kernel summation is
faster than the approach of calling cuBLAS library in lower
dimensions. We also show that fused approach always brings
energy saving benefits. This paper demonstrates optimizations
at the CUDA-C level while further improvements can possibly
be obtained by optimizing the code at assembly level. Steps
similar to those implemented in this paper can be applied to
other algorithms.

VII. ACKNOWLEDGEMENTS

This work has been supported by NSF grant CCF-1337393.
Any opinions, findings, and conclusions or recommendations
expressed herein are those of the authors and do not neces-
sarily reflect the views of the NSF. We would also like to
thank the anonymous reviewers for their helpful suggestions
to improve the paper.

REFERENCES

[1] M. Intel, “Intel math kernel library,” 2007.
[2] C. Nvidia, “Cublas library,” NVIDIA Corporation, Santa Clara, Califor-

nia, vol. 15, p. 27, 2008.
[3] C. Isen and L. John, “Eskimo-energy savings using semantic knowledge

of inconsequential memory occupancy for dram subsystem,” in Microar-
chitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM International
Symposium on, pp. 337–346, IEEE, 2009.

[4] K. T. Malladi, B. C. Lee, F. A. Nothaft, C. Kozyrakis, K. Periyathambi,
and M. Horowitz, “Towards energy-proportional datacenter memory
with mobile dram,” in ACM SIGARCH Computer Architecture News,
vol. 40, pp. 37–48, IEEE Computer Society, 2012.

[5] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and
T. W. Keller, “Energy management for commercial servers,” Computer,
vol. 36, no. 12, pp. 39–48, 2003.

[6] A. G. Gray and A. W. Moore, “N-body’problems in statistical learning,”
in NIPS, vol. 4, pp. 521–527, Citeseer, 2000.

[7] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine
learning,” The annals of statistics, pp. 1171–1220, 2008.

[8] S. Mika, B. Schölkopf, A. J. Smola, K.-R. Müller, M. Scholz, and
G. Rätsch, “Kernel pca and de-noising in feature spaces.,” in NIPS,
vol. 4, p. 7, Citeseer, 1998.

[9] B. Schölkopf and A. J. Smola, Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press, 2002.

[10] J. A. Suykens and J. Vandewalle, “Least squares support vector machine
classifiers,” Neural processing letters, vol. 9, no. 3, pp. 293–300, 1999.

[11] Y. Anzai, Pattern Recognition & Machine Learning. Elsevier, 2012.
[12] W. B. March, B. Xiao, C. D. Yu, and G. Biros, “An algebraic parallel

treecode in arbitrary dimensions,” in Parallel and Distributed Processing
Symposium (IPDPS), 2015 IEEE International, pp. 571–580, IEEE,
2015.

[13] J. Bédorf, E. Gaburov, and S. P. Zwart, “A sparse octree gravitational
n-body code that runs entirely on the gpu processor,” Journal of
Computational Physics, vol. 231, no. 7, pp. 2825–2839, 2012.

[14] H. Cheng, L. Greengard, and V. Rokhlin, “A fast adaptive multipole algo-
rithm in three dimensions,” Journal of computational physics, vol. 155,
no. 2, pp. 468–498, 1999.

[15] I. Lashuk, A. Chandramowlishwaran, H. Langston, T.-A. Nguyen,
R. Sampath, A. Shringarpure, R. Vuduc, L. Ying, D. Zorin, and G. Biros,
“A massively parallel adaptive fast multipole method on heterogeneous
architectures,” Communications of the ACM, vol. 55, no. 5, pp. 101–109,
2012.

[16] I. F. Sbalzarini, J. H. Walther, M. Bergdorf, S. E. Hieber, E. M.
Kotsalis, and P. Koumoutsakos, “Ppm–a highly efficient parallel particle–
mesh library for the simulation of continuum systems,” Journal of
Computational Physics, vol. 215, no. 2, pp. 566–588, 2006.

[17] T. Darden, D. York, and L. Pedersen, “Particle mesh ewald: An n log
(n) method for ewald sums in large systems,” The Journal of chemical
physics, vol. 98, no. 12, pp. 10089–10092, 1993.

[18] D. Y. Chenhan, J. Huang, W. Austin, B. Xiao, and G. Biros, “Perfor-
mance optimization for the k nearest-neighbor kernel on x86 architec-
tures,” 2015.

[19] N. Nakasato, “A fast gemm implementation on the cypress gpu,” ACM
SIGMETRICS Performance Evaluation Review, vol. 38, no. 4, pp. 50–
55, 2011.

[20] R. Nath, S. Tomov, and J. Dongarra, “An improved magma gemm
for fermi graphics processing units,” International Journal of High
Performance Computing Applications, vol. 24, no. 4, pp. 511–515, 2010.

[21] G. Tan, L. Li, S. Triechle, E. Phillips, Y. Bao, and N. Sun, “Fast
implementation of dgemm on fermi gpu,” in Proceedings of 2011
International Conference for High Performance Computing, Networking,
Storage and Analysis, p. 35, ACM, 2011.

[22] “Maxas.” https://github.com/NervanaSystems/maxas.
[23] “Fermi compute architecture whitepaper.” http://www.nvidia.com/

content/pdf/fermi white papers/nvidia fermi compute architecture
whitepaper.pdf.

[24] “Tuning cuda applications for maxwell.” http://docs.nvidia.com/cuda/
maxwell-tuning-guide/#axzz3op9EeX3M.

[25] “Profiler user’s guide.” http://docs.NVIDIA.com/cuda/profiler-users-
guide/#axzz3oNg3mHRn.

[26] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated cache timing,
power, and area model,” tech. rep., Technical Report 2001/2, Compaq
Computer Corporation, 2001.

[27] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “Mcpat: an integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 469–480, ACM, 2009.

[28] J. Lim, N. B. Lakshminarayana, H. Kim, W. Song, S. Yalamanchili, and
W. Sung, “Power modeling for gpu architectures using mcpat,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 19, no. 3, p. 26, 2014.

10


