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Abstract— As current main memory technology scaling is
coming close to an end due to its physical limitations, many
emerging memory technologies are coming to the market to
fill the scaling gap. Future memory systems will require a
heterogeneous memory architecture where one technology acts
as a low latency memory whereas the other acts as a high
capacity memory. This will allow the future main memory system
to continue to scale in terms of capacity, yet have similar or
slightly better latency than today’s DRAM technology. Prior work
on data management in heterogeneous memory has optimized
one or a maximum of two components in the computing stack.
However, different components are good at different tasks in
data management, so in the era of heterogeneous memory, it is
inevitable that cooperative multi-component data management
will be adopted in future systems. We propose a heterogeneous
memory layout where two memories are laid out asymmetrically.
The operating system is aware of this layout and places pages with
different locality characteristics in different regions of memory.
Finally, a custom hardware performs the data remapping to
optimize the data placement at finer granularity than what
is visible to the operating system. In the end, we show that
our multi-component cooperative data management scheme can
improve the overall system performance by up to 40%.

I. INTRODUCTION

The DRAM scaling rate has recently slowed down and is
expected to halt as the DRAM technology node gets very
close to the physical limits [1]. Fortunately, memory/processor
vendors and researchers have proactively looked for many
emerging memory technologies. Therefore, future systems will
need multiple types of memories where one will act as high
capacity memory whereas the other will act as low latency
memory. However, since this memory is rather small, the
application memory footprint will not to fit in this memory.
Thus, it is inevitable that a large chunk of data will be present
in high capacity memory and migrated as needed.

Our work leverages memory technology, processor hard-
ware, and Operating System (OS). Prior work [2]–[6] has
optimized only one of the aforementioned components at a
time, and thus, was able to achieve suboptimal performance
improvement. For example, prior hardware optimization [3]
migrated data between two memories at the cache line gran-
ularity (e.g., 64B in x86-64). While this technique incurs low
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overheads, the mapping of data is fixed at design time and
the OS doesn’t optimize the data placement as it is oblivious
to memory heterogeneity. Furthermore, OS data management
approaches [2] are good at optimally placing larger chunks of
data. Yet, since the minimum OS manageable memory size is
quite large (e.g., 4KB in x86-64 and 8KB in SPARC), a lot of
precious low latency memory space is left untouched as many
of these cache lines are not accessed during runtime. Finally,
prior work has assumed symmetric memory layout where
data is laid out identically within one memory technology.
Our asymmetric layout was not needed in today’s homoge-
neous DRAM-only memory system as there is effectively
one memory with the same characteristics. Laying out data
symmetrically when different memory rows have different
access characteristics leads to suboptimal performance and
wastage of precious low latency memory capacity.

Our technique employs a bottom up approach where we
redesign the memory layout so that different memories take
different capacity ratios for different regions of memory. For
example, the low latency to high capacity memory capacity
ratio is 1:3 in some regions, so 1/4 of the data in this memory
region can be placed in low latency memory. What data to
place in what a region is not the decision that the low-level
memory controller has to make, so we leave this work to
the next component in the computing stack. Although our
unconventional layout is not common, it is essential to have
such layout for the next component. Now, the OS comes in
and places data accordingly. The OS is modified so that it is
aware of the asymmetric memory layout as well as different
memory ratios in different regions of the physical address
space. Although the OS places the data well, there is still
room for improvement by hardware. The memory visibility
of the OS is limited to the minimum OS page size, which is
considerably larger than that of hardware. Memory subsystems
in most processors work at the cache line granularity, which
is commonly at 64B. Therefore, the fine-tuning of 64B block
placement within the OS page is done by hardware in our
scheme. Our work outperforms prior schemes where they only
optimized data placement at one component in the computing
stack, which has limited visibility as well as abilities.



II. BACKGROUND

In this section, we briefly discuss challenges associated with
prior data management schemes in each component of the
computing stack. Throughout the paper, we refer to the fast,
capacity constrained memory as Near Memory (NM) and to
the slow, large capacity memory as Far Memory (FM) since
NM is physically located closer to the cores.

A. Challenges in Memory Layout

Heterogeneous memory systems are composed of two or
more discrete memories, yet emerging memory technologies
do not have specialized controllers that are optimized for
the heterogeneous system. They are managed by discrete
controllers where the data is laid out as in today’s memory.
These memories rely on higher levels in the computing stack
to place data. For example, NM can be used as a cache where
the data placement is calculated using the part of the address.
In addition, some software schemes [2] have the OS to place
data in NM. In either scheme, the data layout and the controller
design is the same as in the conventional memory of today’s
computers.

B. Challenges in Hardware Data Management

A hardware component in the computing stack manages
data at either small or large size blocks between two memories
upon a request. The management granularity is smaller than
OS page sizes as hardware is superior at managing data at
small granularity. In hardware management schemes [3], each
data block in NM has a remap table entry, which identifies the
location of a requested block either in NM or FM. Different
schemes [5] use different data management granularities from
a small block (64B) to a large block (2KB) in efforts to
carefully balance the tradeoff between bandwidth usage and
metadata overheads.

POM [5] and CAMEO [3] are two state-of-the-art schemes
that use a large and small block size respectively. POM uses
large blocks (2KB) to minimize the metadata overheads while
limiting the data migration to NM by calculating the benefits
and cost analysis. POM requires a counter for a page to reach
a threshold until the migration occurs. Also, although only a
subset of a 2KB page is desired, it has to fetch the entire 2KB,
which wastes significant bandwidth in low spatial locality
workloads. Unlike POM, CAMEO adopts a small block size.
Since the migration bandwidth consumption is low, it allows
small blocks to swap from FM upon a request. CAMEO
manages data at a small block granularity, so each block must
have an accompanying remap table entry. The high metadata
storage overheads due to having a remap table with each block
is a drawback. Therefore, the metadata is stored within the
same row as data in NM that has a large capacity, not in
dedicated SRAM.

C. Challenges in Software Data Management

An optimization done in the software component is focused
on using the OS to place pages in NM intelligently. Two state-
of-the-art schemes are epoch based [2] and on-demand [7]
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Fig. 1: Spatial Locality of Applications (Access Density)

approaches. In an epoch based scheme, the OS explicitly
manages the NM capacity as a special region of memory.
In this subsection, pages refer to OS pages, which typically
are 4KB in x86-64. The software scheme relies on hot page
detection to achieve performance improvement as there is no
additional hardware to perform sophisticated operations such
as dynamic remapping. The page migration occurs at a large
interval, and the interval is referred to an epoch. At each epoch
boundary, the OS sweeps through the PTEs to select those
pages that are marked, and the bulk page migration occurs
between NM and FM. The OS schemes move pages into
NM and the PTE is updated accordingly. Upon an access, the
physical address translated by TLBs is directly used to access
the data in NM. Unlike hardware data management schemes,
it does not have additional hardware structures like the remap
table as the changes are purely done in the OS domain. The
epoch based scheme is slow to changes in the hot working set.
Furthermore, the working set coverage by NM is fixed during
an epoch as no data migration occurs between NM and FM
except at epoch boundaries. The on-demand scheme frequently
incurs high software related overheads because any access to
a page in large capacity FM involves the OS. These overheads
include a context switch, TLB shootdown, and PTE update in
addition to physical data transfer costs [8].

III. MOTIVATION
In this section, we show how applications access memory

and what the requirements of heterogeneous memory systems
are to optimize performance based on our observations.

A. Spatial Locality

Spatial locality of an application is a good indicator on how
densely accesses are made in a physical address range. If the
locality is high, this means nearby addresses are accessed, and
in this case, a large data management granularity is preferred.
If extra contiguous data is brought into NM, then it is likely
to be used in the future in high locality cases. If the spatial
locality is low, then the extra data brought in is wasteful since
it merely occupies the space in NM and wastes migration
bandwidth. Therefore, it is important to understand spatial
locality characteristics of an application in order to design an
effective memory system.

Figure 1 shows the memory access density of various
popular cloud applications selected from CloudSuite 2.0 [9].
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Fig. 2: Fraction of Accesses Made Up to X Pages (Cumula-
tive)A block in the figure represents a 64B data chunk (cache line
size), and the number of unique blocks accessed within the
8KB data segment is counted. For example, 1 block in the
figure means only one 64B data chunk is touched within an
8KB region. This indicates a low locality page as only 1 block
out of 128 blocks is demanded. An access density is defined
as the degree of 64B blocks touched within the 8K page. The
access density is the highest if all unique 64B blocks within
an 8KB data segment are demanded. On the other hand, if
only one 64B block is demanded within an 8KB page, then
the access density is lowest. The Y-axis is calculated using the
total unique 8K pages accessed during the application runtime,
and the fraction of those unique pages whose access density
falls under each category.

As expected, different applications show different memory
access characteristics. Therefore, fixing the migration granu-
larity to one size statically as in the case of hardware managed
schemes is not ideal as different applications access memory
differently. For example, classification shows that a majority of
pages have only 1 block usage within 8KB. In this workload, it
is wasteful to use any migration granularity larger than 1 block.
On the other hand, nutch shows an opposite behavior where
a majority of pages have all of its blocks demanded. Other
measured benchmarks fall between these two benchmarks.

Furthermore, when a few blocks are accessed within a
page, they are not necessarily contiguous. This means that
there are many blocks between demanded blocks that are not
accessed. Such issues are called fragmentation where there are
unaccessed blocks between demanded blocks. The pages with
fragmentation cannot achieve optimal performance in previ-
ously proposed schemes. Simply varying the data management
granularity cannot solve issues with fragmentation because the
undemanded blocks cannot be filtered out. Although there are
prior hardware works that can filter such undemanded blocks,
the filtering only saves bandwidth. The precious NM capacity
is still reserved for those undemanded blocks and cannot be
used for any other blocks or pages.

SUMMARY: The spatial locality characteristics differ
across applications, and thus, different data management
granularities are preferred. In addition, fragmentation is-
sues must be addressed to achieve the optimal bandwidth
and performance.
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Fig. 3: Fraction of Total Pages Whose Patterns Repeat

B. Temporal Locality

Temporal locality of an application represents how fre-
quently pages are re-accessed. Previously described spatial
locality does not consider the hotness of pages. In other
words, whether a page is accessed once or thousand times is
not accounted in Figure 1. However, heterogeneous memory
systems are composed of memory technologies whose access
latencies are an order of magnitude higher than SRAM latency.
Therefore, naively migrating any page will result in degraded
performance as the data migration costs are high. In such
a scenario, only pages with high temporal locality have to
be involved in data migration between NM and FM. Pages
with low locality are less likely to be accessed when migrated
to NM, so even though it benefits from NM’s lower access
latency, the benefits are not enough to offset the high migration
costs.

Figure 2 shows the temporal locality results of nutch (other
workloads are excluded not to clutter the plot). The x-axis
shows the total number of unique pages accessed during the
application runtime. The y-axis shows the total cumulative
fraction of accesses made. The y-axis is calculated as 1 pages
are sorted based on the number of accesses made to each page
2 a cumulative sum of pages are computed 3 the cumulative

sum of each sorted page is divided by the total number of
accesses. From Figure 2, it is apparent that a small subset
of pages is responsible for a large fraction of total accesses.
Although different applications show different slopes on the
left side of the graph, indisputably all applications have a very
steep slope since small pages are heavily accessed while most
other pages have a very small access counts. Consequently, we
call those pages whose access counts are high as hot pages.
Since not all pages can fit in capacity constrained NM, those
hot pages will provide the most system performance benefits
when placed in NM. Thus, a heterogeneous management
scheme must be able to detect these hot pages.

SUMMARY: The temporal locality characteristics show
that only a subset of pages within the entire memory
footprint needs to be involved in migration as these pages
account for a large fraction of total memory accesses.

IV. IMPLEMENTATION

With insights gained from motivational data in Section III,
we propose a heterogeneous memory management scheme that
spans across multiple components in the computing stack. We
begin from the memory layout design and build up to the OS
component.
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A. Memory Layout

Pages in an application have different access densities as a
different number of 64B blocks within an 8KB are accessed.
The memory layout can take this into account and be cus-
tomized where different logical memory rows have a different
portion of NM. Only demanded blocks need to occupy the
precious capacity in NM. Figure 4 shows the logical layout
of our proposed heterogeneous memory system. In such a
system, each row has a different fraction of NM and FM.
For example, the memory row marked as “Row 0” has the
entire row composed of FM, while “Row X” has a small
fraction of the row given the faster NM capacity. Such rows
may be useful for pages that only a small fraction of them is
demanded by the application. On the other hand, “Row Y” is
entirely made of fast NM, so it is an ideal location for pages
most of whose 64B blocks are demanded. Such unconventional
memory layout allows us to maximize the space usage in the
capacity constrained NM. As we will show in the next section,
we will only allow demanded blocks to occupy the NM space.

Figure 4 is a logical view of the data layout, yet the actual
implementation is not overly complicated. In our work, we
assume that we have four different proportions of NM and
FM as shown in Figure 4. The logical address 0 starts from
the top and the largest logical address ends in the bottom
region where a page is composed of 100% NM. We assume
that we have three boundary registers that mark the transition
in the regions. Also, each region has a preset comparator
that specifies whether blocks are in NM or FM. Using these
auxiliary hardware, the access to different memory is initiated
as follows: 1 the logical address is compared against the
boundary registers 2 the request is forwarded to appropriate
regions (4 regions available in our example) 3 the offset of
the logical address is compared against auxiliary comparator
4 the request goes to NM if smaller than comparator or

to FM if larger than comparator. Using the above step, only
blocks with smallest offsets will be placed in NM. However,
additional optimization steps will be added in the subsequent
sections. In this paper, we use only four regions to demonstrate
our design as four regions are enough to capture a large num-
ber of spatial access patterns and deliver good performance
based on our experiments.

The physical data memory layout is the same as modern
memories as shown in Figure 5. The top figure shows the
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Fig. 5: Physical Access to FM and NM

addressing when accessing the configuration where 1 block out
of 8KB resides in NM. Note that which region of configuration
to access is determined by the boundary register described
in the previous paragraph. For addresses within the same
region, a comparator is used to check whether the request
is to the block offset 0 or not. If 0, then it accesses NM
(only block 0 resides in NM since region 1 only allows 1
block to reside in NM). When accessing NM, the column
offset is 13 bits from the least significant bit as every 8KB
has only one block in NM row. On the other hand, if the
comparator check fails, then the request accesses FM. The FM
access uses column offset that is 6 bits away from the least
significant bit (64B block offset). However, block 0 must be
excluded, so a address arithmetic is performed in the memory
controller, which is widely used in die-stacked DRAM caching
schemes [3], [4], [10]. The bottom scheme in Figure 5 shows
the access scheme for the configuration where 2 blocks out of
8KB reside in NM. The accessing method is similar, but the
offset bit width is different. Although the asymmetric layout of
our memory layout looks sophisticated in the beginning, it can
be implemented by using a set of registers and comparators.
In addition, a slight modification in the addressing scheme
as similarly done in prior work [3], [4], [10], [11] enables
such novel, yet conventional memory layouts feasible without
changing the actual memory layout design.

B. OS Page Placement

The OS detects whether pages are hot or not using a
predefined dynamic threshold as done in prior work [2].
Some modern processors have counters to detect hot pages. In
these processors, we adopt the approach where a page access
count is monitored. When the count crosses the threshold,
one special bit in the Page Table Entry (PTE) is set. This
bit indicates that a page is hot. The predefined threshold
is dynamically adjusted at each epoch boundary so that the
number of hot pages selected is close to the number of pages
that can be accommodated in memory layout regions which
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have a small fraction or more of NM. After the hot page
selection, the OS must be able to detect the access density
of each page. Since the minimum memory visibility of the
OS is the page size, we need a hardware support to detect
which blocks within a page is accessed. We extend the TLB
structure to include the bit vector where each bit indicates
whether a block in the bit location is accessed or not. Each
block within a page has its own bit. When the page is evicted
from TLB, the number of set bits in the bit vector is summed
up and used to determine the access density. We assume that
we store the access density in PTE.

At the epoch boundary, the OS interrupts the system and
walks down the pages which have the hot page bit set. These
pages are migrated to appropriate regions according to the
access density. For example, if the access density shows that
this page has all of its blocks demanded, then it is placed
in the last region where the entire region is composed of
pure NM. The OS guarantees the page placement where the
memory layout matches the access density. At this point, the
data layout appears as in Figure 6. In this figure, the access
density is matched with the region. The OS can place data only
at the granularity of page size, so only page level placement
is guaranteed. For example, a page with one hot 64B block
is placed correctly in the appropriate region. However, the
desired block is not placed in NM but FM due to its offset,
and the control of the OS placement ends at the page level.
Such placement is not optimal. This leads to the next step in
our design where custom hardware is employed to place hot
64B blocks into desired NM space.

C. Hardware Block Remapping

After the OS page placement, blocks within a page are still
in their original offset location. Since our memory layout is
static with NM space located near the smallest offset (e.g.,
offset 0), if hot blocks are located in high offset locations,
the memory requests will still be serviced from undesirable
FM space. In order to place hot blocks into NM space, block
granularity remap is implemented. Our remap structure is
similar to the one presented in prior work [3], [5] where each
block has its own remap entry. We are assuming a 64B block
size and 8KB page size, so each page would have 128 blocks.
7 bits per block will be required as a tag and they are stored
in the same NM row as the data. This would eliminate the
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Fig. 7: Data Layout After Hardware Remap

need for expensive SRAM overheads as well as performance
overheads of accessing a separate NM row to read each remap
entry. Upon an access, the block is swapped into NM space of
a page if not already placed there. If the NM space is enough
to hold more than 1 block (e.g., 64 out of 128 blocks can fit
in NM space), then the block is placed in a empty slot if there
is one or the block replaces the oldest block in NM space.
This is done in a round robin fashion and an additional 6-bit
counter (in the case of 64 blocks in NM per page) is used per
page to keep track of the oldest block.

With the remapping scheme, when a request comes, it first
needs to know whether the block is in NM or in FM. In order
to reduce one extra access to NM requesting the remapping
entry to tell the location of the block, a block location predictor
is used. The predictor has 256 entries that are indexed using
the least 8 bits of XOR(PC, Mem Addr Offset). This method
exploits the PC history and memory access patterns to increase
the predictor accuracy. The predictor outputs a 7-bit location
(a block location within an 8KB page), which is a speculated
block location within the page. If correctly speculated, then
the remap table lookup overhead is completely eliminated.
Otherwise, the remap table lookup and the block fetching
are serialized as in the case without a predictor. Therefore,
misspeculation does not add any latency penalty. The predictor
entry is updated once the remap entry is resolved. This
predictor accuracy is over 80% on average across workloads
used in this paper. The predictor is implemented per core and
our 16-core architecture requires total 3KB storage overhead,
which is negligible on a modern server class processor.

When all the hot blocks are heavily accessed, they are likely
to be remapped into the NM space of a page. The results are
shown in Figure 7 where hot blocks are demanded heavily, and
thus, get migrated to the NM space of a page. As shown in the
figure, all hot blocks are located in the NM space, and the NM
capacity is not wasted by fetching undesirable blocks or being
held empty due to filtering as in prior work. Note that there
can be cases where the number of hot blocks is slightly larger
than the number of blocks that NM space can hold in a page.
For example, 3 blocks are hot and only 2 blocks can reside in
the NM space. In this case, there might be slight interference
due to blocks competing for the NM space. This problem
can be solved by offering more configurations where more
combinations of NM to FM ratios in a page can be offered.



Processor Values
Number of Cores (Freq) 16 (3.0GHz)
Width 4 wide out-of-order
Caches Values
L1 I-Cache (private) 32 KB, 2 way, 4 cycles
L1 D-Cache (private) 32 KB, 2 way, 4 cycles
L2 Cache (shared) 8 MB, 16 way, 11 cycles
HBM Values
Bus Frequency 500 MHz (DDR 1 GHz)
Bus Width 128 bits
Channels 8
Ranks 4 Rank per Channel
Banks 2 Banks per Rank
Row Buffer Size 2KB (open-page policy)
tCAS-tRCD-tRP-tRAS 7-7-7-28 (memory cycles)
PCM Values
Bus Frequency 400 MHz (DDR 0.8 GHz)
Bus Width 64 bits
Channels 4
Ranks 1 Rank per Channel
Banks 4 Banks per Rank
Read Latency 36 ns
Write Latency 90 ns

TABLE I: Experimental Parameters

In this paper, we tolerate such interferences as our work is
focused on showing the cross-component scheme that can
optimize the data placement in the context of heterogeneous
memories. We leave further fine tuning and optimization to
future work.

V. EXPERIMENTAL SETUP

We used a Simics-based Flexus simulator [12] to simulate
our scheme. Our configuration modeled a 16-core processor
similar to SPARC T5 processor. For memory timing model,
we used a modified version NVMain simulator [13]. Timing
and configuration parameters of heterogeneous memories are
listed in Table I. We assumed that NM to FM capacity ratio
is 1:3 to emulate future systems where NM is a fraction
of the FM capacity. As an example of fast and capacity-
constrained memory, we use HBM generation 2 technology
for NM in our evaluation and derived timing parameters
from publicly available sources [14]. For slow memory that
has large capacity, PCM technology is used as an example
of FM memory in our evaluation with latency parameters
derived from prior work and public sources [15]. We used the
workload images from the Cloudsuite authors that are tuned,
in steady state, and ready to be run on Flexus. Each workload
was run for 1 billion instructions to warm up caches and
memory systems in the beginning of the steady state phase.
Then, additional 4 billion instructions were run to measure
performance. The pages are randomly placed across NM and
FM address space, and once they are placed, they are placed
in the same location until the end of execution unless a page
fault occurs. NM First is a slightly improved scheme which
always brings new pages into NM. When NM is full, new
pages are brought into FM instead. The NM First scheme
never moves a page to FM unless a page fault evicts the
page from NM. We compared our scheme against other state-
of-the-art designs: Alloy Cache, CAMEO, Part of Memory
(POM). We ran a representative collection of 6 benchmarks
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from CloudSuite 2.0 [9] on Flexus. All the workloads are run
on Sparc architecture and tuned to steady state before any
observation or measurement is performed.

VI. RESULTS

A. Performance Evaluation

In this subsection, we present the evaluation results in Fig-
ure 8. The performance is presented as relative performance to
prior state-of-the-art scheme, CAMEO. The Random scheme
performs the worst (longest in execution time) in general
because it does not leverage the presence of NM which has
higher bandwidth and lower latency instead treating NM and
FM with no difference. NM First is slightly better since it takes
characteristics of NM into account. Hot pages change over
time, however, sticking pages which are initially hot in NM
loses performance as over a few epochs pages in NM are no
longer hot. Meanwhile, most recent hot pages are placed into
FM because NM is full. CAMEO is better than the two naive
schemes because it keeps the most recent hot blocks in NM.
Nonetheless, CAMEO does not necessarily obtain good per-
formance as it uses a direct-mapped organization to reduce the
access latency. Therefore, CAMEO is inherently susceptible to
conflict misses, and thus, achieves approximately 30% lower
overall performance than our scheme in case of cassandra as
the hit rate is significantly lower (more discussions in the
next subsection). POM performs better in cases as it does not
immediately swap a block between NM and FM upon access.
Instead, POM keeps a counter for each slot in NM and swaps
the block only when a threshold is met. As a result, POM
eliminates thrashing issues in CAMEO, and thus achieves a
higher hit rate in some workloads such as cassandra. Yet,
since POM’s migration granularity is 2KB, it is vulnerable to
fragmentation issues. For example, the access characteristics
of classification workload shows 23% of memory requests
access one 64B block within 2KB memory page. However,
due to POM’s design constraint, the whole 2KB page has to
be moved into NM. This wastes both bandwidth and capacity
of NM. This results in suboptimal performance, and this is
clear in classification workload. CAMEO performs better than
POM since it does not waste any BW and capacity due to
such design constraint. Finally, Puzzle Memory outperforms
all the other schemes evaluated since it captures hot pages
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Fig. 9: NM Hit ratio (NM accesses/Total accesses)

and reduces migration overhead at the same time. All newly
allocated pages are first placed in NM region as newly
allocated pages are most likely to be hot pages in the next
several epochs. When a page is no longer hot, the associating
counter will detect that the page is cold at the end of the epoch.
The page will be moved to pure FM region such that NM
always has room for new pages. This phase gets the benefits
of both First Touch and POM schemes. Furthermore, pages
will be migrated to regions whose the ratio of NM and FM
capacity approximately matches that of hot and cold blocks
within a page. This effectively eliminates the drawbacks of
POM and CAMEO where their design constraint fixed the
migration size although different workloads show different
spatial locality characteristics. Puzzle Memory has NM regions
that are designed to work like CAMEO for low spatial locality
workloads and those regions that are for high spatial locality
workloads just like POM. Cloud9 is an excellent example
where the workload has a good mix of accesses that show
low and high spatial locality. The performance results of
CAMEO and POM both perform poorly since either scheme
only benefits one set of memory regions. In other words,
POM largely benefits high spatial locality memory regions,
and CAMEO does benefit low spatial locality regions due
to their strict migration granularity constraint. This is where
Puzzle Memory shines where it is ready to benefit both regions
as the memory organization inherently assumes that no single
migration granularity fits all workloads.

B. NM Hit Ratio

Conceptually, an ideal scheme will leverage temporal and
spatial locality of data and direct most accesses to NM as
well as reduce the migration costs to the least. NM hit ratio is
a good indicator on whether a scheme captures and leverages
locality of workloads. As our NM to FM ratio is 1:3, randomly
placing pages in the whole memory gets roughly one fourth
of accesses to hit in NM. This matches the hit ratio of the
Random scheme as can be seen in Figure 9. The hit ratio
of NM First is higher because any available space in NM
is always guaranteed to be used before FM is filled. CAMEO
does not always have higher hit ratio than the Random scheme,
as thrashing would cause hit ratio in NM to be very low for
workloads like nutch, and this reported low hit ratio is also
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Fig. 10: Performance of using NM as cache (Alloy Cache)
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confirmed in literature [4], [10]. POM has very high hit ratio
because it leverages spatial locality by swapping larger blocks
into NM. Our scheme, in general, has the highest hit ratio of
all due to the flexibility of our scheme which makes it better
able to adapt to multiple patterns of accesses of workloads.
Besides comparison between schemes, it is also interesting
to look at hit ratio across workloads. We can see workloads
that have good locality such as classification and cloud9 are
easy to capture in NM resulting in high hit ratios. The trend
is consistent across different schemes. The thrashing effect is
especially high in nutch. The footprint of nutch is also the
smallest. A lot of data reuse occurs in this workload and this
irregular access pattern causes CAMEO to perform worse.
This is the only workload for which POM has a higher hit
ratio than our scheme because of better spatial locality in 2KB
blocks.

C. Using NM as Cache VS as Added Capacity

We performed a study on performance improvement of
using NM as additional capacity over using NM as a cache.
The most naive scheme to utilize NM is to treat it as a level
of cache between LLC and FM, e.g. Alloy Cache. The typical
capacity ratio of NM to FM is 1:3 or even higher. Therefore,
not adding capacity of NM into the memory space is a signif-
icant lost. In such case, the total capacity of memory space is
much smaller and the system is subject to a critical number
more page faults. Figure 10 shows a comparison between using
NM as cache or as part of whole memory. All execution
time is normalized to the performance of Alloy Cache. We
see a significant amount of reduction in runtime when NM
is used as added capacity and performance is improved by
3.2X (CAMEO), and 4.2X (our scheme). In nutch, since the
footprint of nutch is smaller than 2GB, the working set is
completely memory resident. CAMEO essentially regresses to
Alloy Cache so no difference is observed. The 4.2X non-linear
improvement with 1:3 NM-to-FM capacity ratio reemphasizes
the importance of not wasting NM capacity by using it as a
part of memory rather than a cache.



VII. RELATED WORK

A plethora of work has been proposed to efficiently use
heterogeneous memory technologies. A large number of pro-
posals [4], [11], [16]–[18] have focused on using these mem-
ories as another level of cache. Yet, managing large metadata
overhead of such multi-gigabyte caches is difficult, thus such
work focused on reducing the metadata or storing the metadata
in die-stacked DRAM for scalability. These proposals use NM
as hardware caches, and thus, do not take advantage of the NM
capacity as visible memory space. Yet, the NM capacity is
scaling and is expected to become a non-negligible amount
of the main memory, and thus, more recent work [3], [5]
has focused on using this capacity as a part of OS visible
space. However, many of these schemes derived caching
techniques from existing SRAM caching techniques and they
are susceptible to problems that exist in SRAM caches such
as thrashing. Purely software solutions without additional
hardware support [2] have been proposed, yet the lack of
fine granularity (e.g., 64B data migration) limits these schemes
from achieving full potential since the minimum visible OS
granularity is the OS page size, which is 4KB in case of x86
architecture. Multifractional memory architectures can also be
realized using memory architectures such as VaWiRAM [19]

VIII. CONCLUSION

In this paper, we have presented a novel heterogeneous data
management scheme, Puzzle Memory, that allows multifrac-
tional splitting of memory regions into fast and slow regions.
Our innovative memory data layout is customized to allow
multiple subblock swapping within the same page between FM
and NM. At the same time, the OS periodically reorganizes
pages to a location that best meets the spatial locality of each
page. The cross-component efforts have resulted in an average
performance improvement of 40% over the prior scheme by
placing as much useful data as possible into the NM and
minimizing the waste of capacity constrained NM.
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