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Abstract

The astonishing advances in processing speeds and
the phenomenal increase in chip densities have en-
abled the creation of very powerful microprocessors
and computer systems. Future high end computing
systems are expected to have Teraflops of computing
capability and massive amounts of storage. Such com-
puters are expected to be important for discovery in
the fundamental sciences, pharmaceuticals, and sev-
eral other causes for the improvement of mankind.

In this paper, we analyze a workload that is ex-
pected to be instrumental in designing and architecting
future computing systems. The workload is a ground
motion tracker indication (GMTI) application created
by the scientists at the MIT Lincoln Laboratory. The
application is being used to drive the design of several
advanced future computer systems; hence it is impor-
tant to understand the computational, memory access
and parallelism features of this application. In this
paper, we first describe the various components/stages
of this application. Then, we perform detailed analy-
sis of the execution of this application. On the basis
of profiling the execution of the application, both on
actual platforms and with simulations, we show that
the parallelism in the several stages of the applica-
tion is different. The application is seen to contain
a large amount of parallelism that can be exploited
by spatially or temporally parallel computer architec-
tures. Howewver, the non-uniformities in computing
requirements as well as memory access patterns of the
different stages are tmportant considerations in the
design of spatially/temporally parallel architectures to
handle these applications. The execution of the appli-
cation on a superscalar processor and a grid processor
are analyzed.

1 Introduction

Computer architects and designers often wish to
design microprocessors and computer systems that
cater to emerging and future workloads. “What’s

the next killer application?” is a question frequently
asked by computer designers. In a panel presentation
last year on future workloads [1], a panelist held the
notion that future applications are going to be related
to “Life, Death or Games”. ‘Life’ stood for life sci-
ences, pharmaceuticals/drug discovery, biological and
microbiological research, etc. ‘Death’ referred to mili-
tary applications, weapon simulations, crash analysis,
and radar and sonar processing, among others. And
in the panelist’s opinion, interactive and multiplayer
games, games needing natural language recognition
and semantic analysis are going to be dominant fu-
ture workloads as well.

Structured or regular computing seems to be a
feature of the ‘life’ and ‘death’ categories. Appli-
cations in the physical, chemical and biological sci-
ences are typically regular and structured. Perhaps
the ‘games’ category contains some processing similar
to SPECint [2], however part of ‘games’ is also media
processing, which does have a regular component. It
is interesting to note that several of these applications
are more similar to scientific and technical workloads
exemplified by SPECfp benchmarks [2] or STREAM
benchmarks [3] than to popular benchmarks used by
most architects and designers.

In recent years, scientific and technical workloads
have fallen into some disrepute. However, looking at
the prediction from this panelist, they seem to be at
the heart of the processing required in future com-
puting systems. Hence, we decided to look at a work-
load that scientists at MIT Lincoln Laboratory have
created to drive the Polymorphous Computing Archi-
tecture (PCA) initiative [4] of DARPA. It is an Inte-
grated Radar-Tracker (IRT) application [5, 6, 7] that
consists of a Moving Target Indicator (MTI) and a
Kinematic Tracker (KT). The function of the MTTI is
to process the data generated by the radar antenna
and detect moving objects in the controlled space.
The KT component keeps track of the location of the



objects and their trajectories during a period of time.
This workload shows the need of computing that will
not be satisfied by conventional uniprocessors or su-
perscalar processors. Parallel processing systems per-
forming several computations at the same time are
required to satisfy the computational requirements of
these types of workloads.

In this paper we look in detail at the different com-
ponents of the Moving Target Indicator application.
First, we describe the various stages of the applica-
tion. Then we present the computation requirements
of each stage. We analyze the parallelism in the appli-
cation and the issues in exploiting pipelining and par-
allelism. Finally, we analyze the performance of this
application on a superscalar processor and an emerg-
ing grid processor architecture.

2 Radar Tracker Application
2.1 Radar Operation

Radar systems are used in myriad situations. They
are used to identify the different types of soil in a re-
gion, to create a map of the topography of a terrain,
to detect airplanes, etc. The function of the radar
system we study is to detect moving objects in a con-
trolled volume. To detect the objects, the radar unit
activates its transmitter and sends out a short high-
frequency radio pulse. The radar unit then turns off
the transmitter module, activates the receiver and lis-
tens for an echo. The system estimates the distance
of the object based on the time it takes for the echo
to arrive. It can also estimate the speed of the object
based on a shift of the frequency (doppler effect) [8]
and previous kinematic information about the object.

Radars can be further classified depending on the
type of objects they study. Air-based radars are used
to track the movement of air-borne objects, while
ground-based radars track the movement of objects
on the ground. For ground-based radar there are
more potential interferences than in air-based radar,
since the radar pulses echo from the objects being
tracked as well as from the ground and other station-
ary objects. To remove these interferences, the system
needs to consider only those returns (objects) that are
Doppler-shifted.

2.2 Radar Processing Components

The main components of the IRT application stud-
ied for this work are a Ground Moving Target Indica-
tor (GMTI) [9] and a Kinematic Tracker (KT). The
GMTT module is a ground-based MTI. It processes
the echo data from the radar and outputs informa-
tion about the location, speed and trajectory of the
detected targets. The KT gets this information and
keeps track of the detected objects across time (which

ones are new, which ones are old, and how they are
moving). The IRT system is also assisted by the High
Range Resolution (HRR) module. When the GMTI
detects a target, the radar sends a directed waveform
at the target to obtain additional information about
it. This information is processed by the HRR mod-
ule and it is needed by the KT to differentiate targets
when their trajectories cross over. Figure 1 shows the
block diagram for a simple Integrated Radar Tracker
(IRT) system [6].
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Figure 1: Block diagram of the IRT.

2.3 Ground Moving Target Indicator

The GMTTI is a module that can identify returns
corresponding to moving targets from those that cor-
respond to stationary objects (or clutter) [8]. The
most common technique is Doppler speed, and con-
sists in detecting the returns that come with an as-
sociated shift in the wave frequency. Figure 2 shows
the basic modules of the GMTTI application we use in
this work.
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Figure 2: Block diagram of the GMTI. The shaded
boxes represent modules outside the GMTIL.

The input data to the GMTI application is the
data cube generated by the radar sensors. A data cube
is a three-dimensional array of complex numbers with
dimensions channels, range and pulses [9]. Figure 3
shows the data cube and the way it is accessed by each
of the components of the GMTI. The shaded regions
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Figure 3: Data used by each stage of the GMTI.

correspond to elements of the array that are accessed
at once to process that portion of the data cube.

e Time Delay and Equalization (tde)
The TDE stage is applied to each data cube
and it uses a finite impulse response (FIR) fil-
ter [10] on each range vector for each channel
and pulse to compensate for signal differences
between channel sensors.

e Adaptive Beamforming (abf)

The ABF stage is applied to the resulting data
cube. It transforms the filtered data into the
beam-space domain to allow the detection of
target signals coming from a particular set of di-
rections of interest while filtering out spatially-
localized interference (jamming). This is done
by computing the weight matrix (beamform ma-
triz) and applying this matrix over all the PRI
matrices of the input data cube.

e Pulse Compression (pc)
Pulse Compression uses a finite impulse response
(FIR) filter on each pulse and channel to con-
centrate the signal energy of a relatively long
transmitted radar pulse into a shorter pulse re-
sponse.

e Doppler
The doppler filter processes the data so that ra-
dial velocities of the target relative to the plat-
form can be determined. Doppler filtering ac-
complishes this using a FFT applied to pulse
data of each range gate and beam. To smooth
out the ringing effect in the FFT, a temporal
windowing is done prior to FFT using a Cheby-
shev window filter [10]. A further step which
aids the STAP stage in filtering out ground clut-
ter involves taking staggered pulse sample sets.

e Space-Time Adaptive Processing (stap)
The STAP stage is a second beamforming stage
which removes further spatially-localized radar

interference and ground (space and time dis-
tributed) interferences. This is done by com-
puting the STAP filter matrix (weight matrix)
for each doppler bank and applying this matrix
over the whole input data cube.

e Detection

The target detection is performed on the pro-
cessed radar data cube to produce a data struc-
ture which contains the co-ordinates of the de-
tected targets. Target detection is done using
CFAR (Constant False Alarm Report) detection
to determine whether a target is present and
then uses target grouping to eliminate multiple
target reports where only one target is present.
To perform the CFAR detection, the squared
power of each cell in the data cube is computed.
A local noise estimate is then computed for the
cells under test. The power is then normalized
and if it exceeds a noise threshold, the cell is
considered to have a target.

e Estimation
This component estimates the location of the
targets in terms of the azimuth, distance and
radial velocity. It also requests a set of high
range resolution (HRR) measurements for each
of the targets.

2.4 Memory requirements

Figure 3 introduces the notion of a data cube. The
dimensions of the data cube depend on the parame-
ters of the radar system. For our configuration, we
use: 31 pulse repetition intervals, 9 channels, and 2691
range gates. Each element of this data cube is a com-
plex number represented as 2 single-precision floating
point values. Thus the input data cube for the GMTI
is 5.72 MB.

Figure 3 also shows the way in which data is ac-
cessed by each of the stages. The highlighted block
represents the data that is read in a single iteration
of the loop. So for example, the tde stage accesses



all the range elements for a given channel and pulse
before it produces the corresponding output vector.
This information tells us about:

e the order of traversal of the data structures.
This can help us decide how to structure the ar-
rays in memory to improve the spatial locality
exploited by the caches or prefetching engines.

e the level of independence of the stages and how
they can be parallelized. Furthermore, if two
stages share a similar traversal mode (e.g. tde
and abf), they could be fused, which has the
potential of reducing the memory pressure.

3 Analysis of the stages

In the previous section, we described the function-
ality of the GMTT stages. In this section we look at
some characteristics of their execution.

3.1 Base system

We perform our study in the context of the Grid
Processor [11]. Grid is a polymorphic processor being
developed as part of the TRIPS system [12]. Fig-
ure 4 shows a block diagram of a grid processor with
16 computation tiles, all with identical computation,
storage and communication capabilities. Table 1 shows
the configuration of the base grid system used in our
experiments. The GMTI application is compiled us-
ing the Trimaran framework [13], and the resulting
code scheduled for the grid processor using a custom
block scheduler [12].
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Figure 4: Block diagram of the grid processor. The
instruction cache is located on the left side. In-
structions are loaded into the computation tiles
where they execute. Each tile has a 128-entries
instruction buffer. Results move between the tiles
using the on-chip interconnect.
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We also compare these results with those ob-
tained from conventional superscalar processors. We
perform simulations of the GMTI benchmark using

Table 1: Configuration of the grid processor.

Processor | 4 GHz, 4x4, D-morph

Core 128 physical frames

16 tiles, each can execute integer,
and floating point instructions

L1-1 32 KB, 32 B block, 2-way, 2 cycles
L1-D 64 KB, 64 B block, 2-way, 3 cycles
L2 2 MB, 128 B block, 2-way, 13 cycles

Memory 50 ns

MASE [14], a simulation tool set derived from Sim-
plescalar [15]. Superscalar processors with issue widths
ranging from 4 to 16 were used in our experiments.
Table 2 shows the configuration of the base super-
scalar configuration. For these experiments, we com-
pile the GMTTI application using the Alpha compiler
with full optimizations.

Table 2: Configuration of the base superscalar pro-
cessor.

Processor | 4 GHz, 4-way
Core 4 int ALU

1 int mult/div

4 fp ALU

1 fp mult/div

2 memory ports

128 ROB entries

64 LSQ entries
L1-1 64 KB, 32 B block, 2-way, 1 cycle
L1-D 64 KB, 64 B block, 2-way, 1 cycle
L2 2 MB, 128 B block, 2-way, 13 cycles
Memory 50 ns

3.2 Execution profile

Table 3 shows the duration of the GMTI mod-
ule in both base systems. We observe that in the
grid system, the early stages of the GMTTI application
(tde, abf, pc, doppler and stap) account for the major-
ity of the execution time. In the superscalar system,
the filtering stages (tde and pc) take the longest time,
followed by the adaptive stages (abf and stap). We
observe that the grid system is 1.5x times faster than
the superscalar system with similar number of com-
putatio resources (16-way). We also note that the es-
timation stage is 2.1z times faster in the superscalar
system than on the grid system. The reasons for these
differences will become clear as we examine the char-
acteristics of this application.

The 16-way superscalar system mentioned in the
previous comparison has as many computation units



Table 3: Duration of the GMTI stages in grid and
superscalar processors. The results are presented
in millions of cycles.

grid superscalar
Stage 4x4 | 4-way | 16-way
tde 52.77 | 181.24 | 110.13
abf 54.09 75.97 44.71
pc 40.79 | 147.09 88.29
doppler 19.66 57.63 39.00
stap 54.94 92.06 51.18
detection 7.20 18.75 15.08
estimation 5.20 3.13 2.50
Total 234.67 | 575.86 | 350.88
Total (seconds) | 0.0587 0.144 | 0.0877

as the 4x4 grid system. However, wire delays prevent
designers from building such a wide superscalar sys-
tem [16]. Given the current fabrication technology, a
more realistic approach is then to have a 4-way su-
perscalar. In that case, the grid processor shows a
speedup of 2.45x over the superscalar processor.

We analyze the execution of the GMTI applica-
tion to identify the routines that dominate each of
the stages. Figure 5 shows the relative time spent
in each stage for the grid system. The routines that
constitute the GMTTI application are grouped as:

e I'F'T init: initialization code for the fast Fourier
transform functions.

e FFTand IFFT: the direct and inverse fast Fourier
transform —used often to implement a filter.

o (Compute weight: obtains the coefficients for the
adaptive filters after solving the Wiener-Hopf
equation. This process uses QR-decomposition
and LQ-decomposition of the input matrices.

o Apply weight: performs a matrix multiplication
of the coeflicients and the input data.

o CFAR: the constant false alarm rate algorithm
is used in the detection stage. It computes an
estimate of the noise for each cell in the input
matrix and estimates the probability of a target
being present there.

e (Core: main function for each stage, which calls
the other functions.

e Others: assisting functions (mostly memory man-
agement).

We observe that the execution of the GMTI applica-
tion is mostly dominated by the FFT functions and

matrix multiplication. The profiles of the tde and pc
stages are very similar, the FFT functions dominat-
ing most of their execution time. The abf and stap
stages are similar also, but being dominated by the
matrix multiplication routines. Based on what we
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Figure 5: Fraction of execution time spent in major
routines.

know about these algorithms [17], we expect a large
amount of parallelism in the application. This pro-
file gives us a glimpse to the advantages of having a
large number of computational units for this applica-
tion. As seen in Table 3, the wide superscalar proces-
sor (16-way) shows its largest speedups over the nar-
row superscalar processor (4-way) precisely in these
stages.

3.3 Imstruction Mix

Figure 6 shows the dynamic instructions mix ob-
served in the grid system. The GMTTI application per-
forms computations over floating-point data, which
accounts for 17% of the total instructions. However,
most of the instructions executed correspond to inte-
ger arithmetic instructions. This is due to the use of
complex addressing modes to access the 3-dimensional
data cubes. The number of memory instructions is
higher than the number of floating-point operations
as many of the algorithms create arrays to store in-
termediate results. The early stages of the GMTI
application are characterized for their regular loops.
It is then easy for the compiler to unroll the loops
which reduces the number of dynamic branches in
the program. As seen in Figure 6, branches repre-
sent less than 5% of the total instructions in the first
5 stages. The last 2 stages have higher proportions
of branches. The use of the CFAR algorithm in the
estimation stage and the data dependent calculations
in the detection stage contribute to their higher pro-
portion of branches.
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3.4 Computation requirements

Figure 7 shows the average number of floating
point operations performed in each of the stages. We
can see that almost 66% of them are performed by
the filtering stages (¢de and pc).
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Figure 7: Average number of floating point opera-
tions required by each stage.

Given the real-time nature of the GMTI applica-
tion, the entire data cube needs to be processed by the
seven stages in a certain amount of time. This time is
known as the coherent processing interval. The stages
perform a total of 295 million floating point opera-
tions per interval. The coherent processing interval
depends on the configuration parameters of the radar
system. Our experiments use an interval of 8.5 ms,
hence requiring 35 GFLOPS.

3.5 Memory behavior

Figure 8 classifies the memory accesses performed
by the GMTI stages in the Grid system. It shows

that most of the accesses are handled by the L1 data
cache, except for the abf and stap stages. This be-
havior is explained by the access patterns described
in Figure 3. We observe that stages tde and pc ac-
cess a single vector of size range. In our configuration
this vector has 2691 elements, and occupies 21 KB in
memory, so it is small enough to fit in the L1 data
cache. Stages abf and stap iterate through the data
cube in 2 dimensions at a time, they access more data,
and hence depend more on the L2 cache. The data
cube used in the stap stage is larger, so it results in a
substantial amount of memory accesses.
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Figure 8: Cache hits/misses per instruction.

3.6 Parallelism

The results shown until now focus on the base Grid
configuration. Here, we explore the way in which the
stages make use of the available parallelism in the ma-
chine. Figure 9 shows the performance of the different
GMTI stages as we increase the machine level paral-
lelism in the base superscalar processor. The com-
putation resources — including number of functional
units, number of reorder buffer entries and load/store
queue entries — have been scaled accordingly.

As mentioned earlier, stages tde and pc benefit
more from the available parallelism. But even for
those stages, the benefit of an increased width in the
superscalar configurations decreases after 8. This is
due to the difficulty in finding independent instruc-
tions with a reduced instruction window.

The Grid processor tries to prevent this problem.
For example, the base grid processor used in our ex-
periments has 128 physical frames, which allow it to
have 2048 on-flight instructions, compared to the 192
possible in the superscalar case (128 entries in the re-
order buffer and 64 in the reservation stations). Fig-
ure 10 shows the performance for different Grid sys-
tems in terms of their instructions-per-cycle (IPC). In
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height, based on the diagram shown in Figure 4.
The sizes of the register file and caches are main-
tained constant.

general, the application benefits from the parallelism
offered by the hardware. The exception is the 8x4
configuration, which has the same number of func-
tional units as the 4x8 configuration, but a signifi-
cantly lower IPC. These results are due to the longer
path from the functional units to the data cache (see
Figure 4).

Another problem observed in our experiments is
that the abf stage shows a better IPC with the 4x8
configuration than with the 8x8 configuration. This
problem is due to the scheduler and has been reported
by Sankaralingam et al. [12]. But we observe that the
grid system scales well for this application. The early
stages of the GMTT application see a noticeable per-
formance improvement when going from the 4x4 grid
configuration to the 8x8 grid. They are able to ex-
ploit the parallelism of the system more effectively,

and we see speedups of up to 2.2z (in the stap stage).
The last two stages (detection and estimation) have
less data parallelism and depend more on control flow
and, so they do not appear to benefit from the in-
creased number of functional units.

4 Conclusions

Computer architects and designers are constantly
trying to understand the behavior of emerging and fu-
ture computer workloads. This paper studies the exe-
cution of the ground radar motion indication (GMTT)
workload on two different types of processor archi-
tectures. The workload contains several processing
stages very rich in matrix multiplications and fast
Fourier transforms, very typical of workloads in the
physical, chemical and biological sciences. The GMTI
application has huge computation demands and can
be considered to be typical of future high performance
computing applications.

We studied the execution of this application on an
ILP (superscalar) processor and an emerging grid pro-
cessor architecture. The application is seen to contain
a large amount of parallelism that can be exploited
by spatially or temporally parallel computer architec-
tures. However, the non-uniformities in computing
requirements, as well as memory access patterns of
the different stages, are important considerations in
the design of spatially/temporally parallel architec-
tures to handle these applications. The regularity of
this class of applications is encouraging while parallel
architectures are designed for these workloads, but the
variations in requirements of different stages become
a challenge in pipelining the stages.
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