GPGPU Benchmark Suites:
How Well Do They Sample the Performance Spectrum?

Jee Ho Ryoo, Saddam J. Quirem, Michael LeBeane, Reena Panda, Shuang Song and Lizy K. John
The University of Texas at Austin
{jr45842, saddam.quirem, mlebeane, reena.panda, songshuang1990} @utexas.edu, ljohn@ece.utexas.edu

Abstract

Recently, GPGPUs have positioned themselves in the main-
stream processor arena with their potential to perform a mas-
sive number of jobs in parallel. At the same time, many
GPGPU benchmark suites have been proposed to evaluate the
performance of GPGPUs. Both academia and industry have
been introducing new sets of benchmarks each year while some
already published benchmarks have been updated periodically.
However, some benchmark suites contain benchmarks that are
duplicates of each other or use the same underlying algorithm.
This results in an excess of workloads in the same performance
spectrum.

In this paper, we provide a methodology to obtain a set
of new GPGPU benchmarks that are located in the unex-
plored region of the performance spectrum. Our proposal uses
statistical methods to understand the performance spectrum
coverage and uniqueness of existing benchmark suites. Later
we show techniques to identify areas that are not explored
by existing benchmarks by visually showing the performance
spectrum coverage. Finding unique key metrics for future
benchmarks to broaden its performance spectrum coverage
is also explored using hierarchical clustering and ranking by
Hotelling’s T> method. Finally, key metrics are categorized
into GPGPU performance related components to show how
future benchmarks can stress each of the categorized metrics
to distinguish themselves in the performance spectrum. Our
methodology can serve as a performance spectrum oriented
guidebook for designing future GPGPU benchmarks.

1. Introduction

GPU architects and designers need diverse GPGPU bench-
marks in order to guide their designs. As of today, there
are more than 100 GPGPU benchmarks from different suites
available on the web for the public. The number of bench-
marks in each suite vary from a few to more than fifty. Some
suites are geared toward testing one domain of applications
while others attempt to address a large range of applica-
tions [13, 30, 31, 37, 38]. The number of GPGPU bench-
marks have been rising at a fast pace as newer GPGPU
benchmarks are released every year at various research
venues [3,6,9,13,36].

On one hand, this large number of benchmarks can help
researchers stress various components of their proposed future

microarchitectures, covering a large amount of variance in the
performance spectrum [15, 16, 32]. However, many bench-
marks may exhibit similar behaviors from performance per-
spectives [8]. In CPU benchmarking such as SPEC CPU2006,
each time a new suite is released, a committee ensures that
benchmarks show distinct behaviors and that the suite has
a large coverage in performance spectrum [35]. However,
GPGPU benchmarks have not been gone through such a rig-
orous process prior to release. Thus, they are prone to being
duplicates of existing benchmarks in some other suites or very
similar to each other. In this situation, some methodological
guidance can be beneficial to indicate which benchmarks are
redundant and which ones form a unique group of workloads
to evaluate GPGPUs.

This paper uses various statistical methods to evaluate
existing benchmarks in the GPGPU domain. We show
the distribution of existing benchmarks using Principal
Component Analysis to locate them in the performance
spectrum and suggest where future benchmarks can explore.
In order to achieve this, we present methods to identify unique
benchmarks and their key metrics that exercise extreme ends
of the spectrum. Then, we categorize these metrics into
different GPGPU performance related components as this will
illustrate how a new benchmark with metrics in one isolated
GPGPU component can be used to stress an unexplored
performance spectrum region. Using data collected from real
hardware, we investigate which direction new benchmarks
should stress. This paper makes the following contributions:

1. We provide a methodology for future GPGPU benchmarks
to increase the performance spectrum coverage.

2. We perform various statistical analyses to show the suite-
wise coverage on the performance spectrum and identify
key performance coverage areas that are not explored by
existing suites.

3. We use hierarchical clustering and ranking to identify
unique benchmarks that are located at extremes of the
performance spectrum. These benchmarks contain many
distinctive features that can guide the future benchmark
suites to be unique.

4. We analyze a very large set of benchmarks (88 benchmarks
from 5 different benchmark suites) that are widely used
in the GPGPU performance evaluation domain. To our

‘ DRAM ‘ ,”‘
1 [)

| |
L} i

§
L2 CACHE
§

INSTRUCTION CACHE]
[WARPSCHEDULER | [WARPSCHEDULER |
[DISPATCH | [DISPATCH | [DISPATCH] [DISPATCH |
\ REGISTER FILE \

[
i

ANIN3did
Nv/3400
ANIN3did
Nv/3400
3NIN3did
1s/a1
3NIN3did
nds

'

‘ INTERCONNECT L,‘
1

‘ SHARED MEMORY/L1 CACHE ‘
: e o o ; N
\
\
\
Al

GPC GPC TEXTURE CACHE ‘

INTERCONNECT NETWORK ‘

Figure 1: GPU Architecture Overview

knowledge, no prior work has explored such a complete
benchmark space due to lengthy simulation time as well as
infrastructure issues.

The rest of this paper is organized as follows. Section 2
provides the background of GPU microarchitectural and pro-
gramming model. Section 3 provides the overview of our
experimental setup and methodology while we evaluate our
results in Section 4. We perform the component-wise study
in Section 5. Section 6 discusses prior work done in this area,
and we provide the concluding remarks in Section 8.

2. Background

2.1. GPU Architecture and Programming Model

Figure 1 displays an overview of a typical GPU’s microar-
chitecture [24]. The processing cores of the GPU are organized
in Graphics Processing Clusters (GPCs), each of which con-
tains a set of Streaming Multiprocessors (SMs) [12]. All SMs
share a common L2 cache, which is the Last Level Cache
(LLC). The SM contains dual warp-schedulers where a warp,
a group of 32 threads, executes in SIMT fashion [24, 25].
Warp instructions can be dispatched to the core/ALU pipeline,
load/store pipeline, or Special Function Unit (SFU) pipeline
as shown in the right side of Figure 1. The memory subsys-
tem has a unique type of memory known as shared memory.
The name refers the fact that this memory is shared by all
threads in the same Cooperative Thread Array (CTA). The
size of the CTA is a programmer configurable parameter. In
some architectures, the programmer has the capability to sac-
rifice L1 cache capacity in favor of a larger shared memory or
vice-versa. Besides the L1 cache, a texture cache is used for
memory accesses with high spatial locality while a constant
cache is used for memory accesses with high temporal locality.

Such an architecture is coupled with heterogeneous lan-
guages such as OpenCL and CUDA [1,25]. The language
creates an abstraction of hardware structures present in the
GPU. The programmer has control over the number of threads
that are launched for a particular kernel by passing the number
of CTAs, known as thread blocks in CUDA and work-groups
in OpenCL. Then, the runtime hardware determines the num-

0.9
o 0.8
[=2]
©0.7
206
Oo5
204
<03
o0
>02
0.1

o N M T WO N 0 O
O 0O O O 0O O O O O
oo oo o o a a a

Cl1

PC10
PC12
PC13
PC14

o
Figure 2: Variance Coverage of PCs

ber of warps in each CTA. The order in which the CTAs
execute is non-deterministic [18]. Besides the fact that they
are able to share the memory, threads within a CTA are able
to synchronize with other threads in the CTA using a barrier
instruction. The GPU will attempt to schedule as many warps
as possible in the same SM. The ratio between number of
warps executing on an SM and the maximum number of warps
which can execute on an SM is known as warp occupancy.
Threads within a warp can diverge from each other resulting in
inactive SIMD lanes. There exists two types of divergence in
GPU SIMD architectures, control-flow divergence and mem-
ory divergence [33]. Control-flow divergence is the result of
a thread within a warp taking a different path than the other
threads in the same warp. Memory divergence is the result
of an uncoalesced memory operation where the memory loca-
tions accessed by the threads in a warp are unaligned and/or
not adjacent.

2.2. Principal Component Analysis

In this section, we explain the Principal Component Anal-
ysis (PCA) technique, which is used throughout the paper to
show the distribution of workloads among different bench-
mark suites in the performance spectrum [11]. PCA converts
i variables X1,X>, ..., X; into j linearly uncorrelated variables
X1, %,...X j» called Principal Components (PCs). Each Princi-
pal Component is a linear combination of the various variables
(characteristics) weighted with a certain coefficient, known as
the loading factor, as shown in Equation 1. It has an interesting
property that the first PC covers the most variance (information
from the original data) while the second PC covers the second
most variance (PC1 contains the most amount of information
about the data). In this work, we have a total of 14 PCs with
the individual and the cumulative variance coverage shown in
Figure 2.

Xi=Y auXe Xo=Y auXpe -)]
k=1 k=1

3. Methodology

The applications were selected from a set of suites which
are widely used for GPGPU performance evaluation. In this

Table 1: GPGPU Workload Sources

Workload Suite Version # of Applications
NVIDIA SDK 6.0 39
Rodinia 3.0 21
Parboil 2.5 9
Mars Initial Version 7
GPGPU-Sim Initial Version 12

Table 2: Experimental Platform Specifications

Name Value
#SM 7
Processor Cores 384
Graphics Clock (MHz) 822
Processor Clock (MHz) 1645
L2 Cache Capacity (KB) 512
DRAM Interface GDDRS5
DRAM Capacity (GB) 1.28
DRAM Bandwidth (GB/s) 128
Peak GFLOPs 1263.4

section, we discuss these GPGPU application suites in terms
of how the various application metrics are collected, how the
benchmarks are selected, and what program characteristics are
selected for workload characterization.

3.1. Workloads

We use 5 benchmark suites listed in Table 1. For com-
pleteness of the analysis, every application in all suites is
included in the analysis regardless of whether one suite has
a similar benchmark to another suite. For example, we run
two versions of the histogram-generating applications from
both the CUDA_SDK and Parboil suite. Our workload suites
include the widely used Rodinia benchmark suite, the Par-
boil benchmark suite, the GPGPU-Sim suite presented at
ISPASS-2009, the Mars MapReduce framework sample ap-
plications, and the sample applications included with the
CUDA_SDK [3,6,7,13,22,36]. The largest number of work-
loads come from the CUDA_SDK sample applications which
cover the graphics (MAND), image-processing (DXTC), finan-
cial (BS), and simulation (NBODY) domains. The Rodinia
and Parboil suites aim for diversity in the benchmarks. The
GPGPU-Sim and NVIDIA_SDK suites are designed for demon-
stration purposes, while at the same time, providing diversity
in their workloads. The Mars sample applications are very
similar to each other in terms of their code and algorithms
because they all depend on a map reduce framework.

A large body of simulation based workload characterization
uses reduced input set sizes or shorter runs due to slower sim-
ulation speed. In our work, all workloads are executed until
completion with representative input sizes. Figure 3 shows the
number of warp instructions in all benchmarks that are used
in our study. The number of warp instruction counts range
from 36,822 in DWTHAAR to 43 billion in CFD. Due to a
large variance in the number of instructions executed, we use

Table 3: Description of Metrics

Metric
REPLAY_OVERHEAD

Description

Average number of replays for each 1K in-
structions executed

Ratio of non-divergent branches to total
branches

Ratio of the average active threads per warp
to the maximum number of threads per warp
supported on a multiprocessor expressed as
percentage (SIMD efficiency)

Compute load/store instructions executed
by non-predicated threads per total instruc-
tions executed

Control-flow instructions executed by non-
predicated threads per total instructions exe-
cuted

Floating point instructions executed per to-
tal instructions executed

Miscellaneous instructions executed per to-
tal instructions executed

Shared load/store instructions executed per
total instructions executed
Double-precision floating-point operations

BRANCH_EFF

WARP_EXEC_EFF

LOAD_STORE_INST

CONTROL_INST

FP_INST
MISC_INST

SHARED_LDST_INST

DP_FLOP_PKI executed by non-predicated threads per 1K
instructions executed
TEX_MPKI Texture cache misses per 1K instructions ex-
ecuted
DRAM_WRPKI Device memory write transactions per 1K

instructions executed

Miss rate at L1 cache

Miss rate at L2 cache for all read requests
from L1 cache

Texture cache miss rate

L1_MISS_RATE
L2_L1_MISS_RATE
TEX_MISS_RATE

a logarithmic scale in Figure 3. Our evaluation was done on
hardware, so the total number of instructions are significantly
higher than the prior work done on a simulator [12]. Longer
execution time with more representative input sizes can accu-
rately depict the performance characteristics of these GPGPU
applications.

3.2. Experimental Setup

The program metrics listed in Table 3 are collected using
with NVIDIA’s CUDA (6.0) profiler, known as nvprof, on an
NVIDIA GTX 560 Ti GPU [23,26]. Table 2 lists detailed spec-
ifications of our underlying hardware platform. The program
metrics are collected from reproducible runs of each applica-
tion. The profiler is capable of retrieving multiple metrics by
replaying GPU kernels.

4. Evaluation

4.1. GPGPU Workload Characteristics

The complexity and diversity of GPGPU workloads con-
tinue to increase as they now are tackling larger problems and
expanding across various fields. In order to analyze perfor-
mance in such workloads, we perform analysis on a compre-
hensive set of program characteristics. Table 3 provides a list
of the performance metrics used in this paper. The total num-
ber of dynamic instructions are used to scale many metrics
in order to eliminate effects caused by a different number of
instructions. For example, the total number of texture cache
misses is divided by 1000 instructions to show the miss rate
per kilo-instruction (TEX_MPKI).

1.00E+11

£ LO0E+10
£ 100E+09

2 1.00E+08
2 1.00E+07
o 1.00E+06
£ 1.00E+05
%5 1.00E+04

g 1.00E+03

£ 1.00E+02

2 1.00E+01
LO0E+00 DUWONFI-XLNOFA XANOWOLOZAREN=NEEEJ0NNAS0NNAANOINOOESNO>JZIIZETL JOXO>N000ZSWIa>000100S00xr0e

S 3 gRgocEy =t TTTEsT TR GTE S E g WU M g
S o
Figure 3: Number of Executed Instructions (Logarithmic Scale)
04; with the largest number of benchmarks. Many benchmarks
06 lie on the right side of the scatterplot. The PC1 axis, where
04 WARP_EXEC_EFF has the highest weight, controls the hor-
02 izontal placement, meaning the benchmark suite has many
-0.2 benchmarks with high SIMD efficiency. Other metrics with
04 high PC1 factor loading are BRANCH_EFF and FP_INST,
06 which are common factors that result in high performance in
-038 GPGPUs. This suite is a good representative of GPGPU ap-
1 TR EE R Plicatigns yvith optimized control ﬂg\.)v Patterns as.they reduce
o ? $| £ £ £ £ 2 o %I ?g g 2 g inefficiencies ca}used by not fully qtthlng the aval}able SIMD
é 9 % % 9‘ &8 g 3 - @I ﬁl @l !an(?s. Also, a high r?umbe.r of floating point operations usually
5, % o BB 2 ;' %' T < 5 3 % indicate a compute intensive workload, and GPGPUs process
% < 9(') i ° 43 ¥ these operations very efficiently. At the same time, this means
5 = 9 g 3 that the suite is missing a set of workloads that are memory
« ? intensive as well as highly control divergent. Figure 5b shows
mPCl OPC2 ®WPC3 mPC4

Figure 4: Factor Loading

The PCA algorithm projects each data point onto the new
axis, the PC. This is done by multiplying each metric by an
appropriately weight, called factor loading. The weighted
metrics are then summed to compute each PC. The weights
can show which metrics have significance in each PC. Figure 4
shows the weight of each metric on first four PCs. For example,
WARP_EXEC_EFF, BRANCH_EFF and FP_INST are the
metrics that affect PC1. Those metrics with the high PC1
factor loading are key metrics that distinguish benchmarks
among each other since PC1 covers the most variance. In
subsequent sections, we will use this background knowledge
to explain various results in detail.

4.2. Performance Spectrum Coverage

We evaluate with the PC scatterplot where each benchmark
is located in the two-dimensional performance spectrum. Fig-
ure 5 visually shows the position of each benchmark and the
suite-wise coverage map in the performance spectrum. We do
not label each data point to avoid cluttering the plot. However,
we will explicitly mention the name of some interesting bench-
marks in subsequent sections. Figure 5a shows the scatterplot
for PC1 and PC2. These two PCs cover approximately 35%
of the variance as previously shown in Figure 2.

The CUDA_SDK suite has the most number of data points

that this suite is distributed in a narrow region on the PC3 axis,
which is dominated by DP_FLOP_PKI and DRAM_WRPKI.
The suite does not have a set of benchmarks that extensively
exercise the DRAM. Figure 5d shows the coverage map of
each suite. It is noticeable that the width of the CUDA_SDK
suite is rather narrow.

Rodinia, on the other hand, covers the left half of PC1 in
Figure 5a, which almost complements the missing area of
the CUDA_SDK. This is a good example of how two differ-
ent suites can yield different results when both suites do not
have a large coverage. For example, if a future architecture
with mores registers were proposed to improves the warp oc-
cupancy, CUDA_SDK would not see much benefit as most
benchmarks already have high warp occupancy. Yet, the Ro-
dinia will see significant benefits as the suite is composed
of many benchmarks with low warp occupancy. In this case,
depending on which suite is used, the outcome can be drasti-
cally different and the decision for future architectures may
change. Rodinia covers a wide spectrum in Figure 5d with
many benchmarks being located at different extreme points
of the coverage envelop. These PC axis show the memory
intensiveness such as cache misses and DRAM accesses, il-
lustrating that this suite has a variety mix of benchmarks that
stress the memory subsystem in different ways.

GPGPU-Sim only has 12 benchmarks in the suite, yet the
PC1 and PC2 coverage in Figure 5c is rather large. Those

ar " -
® CUDASDK .
+ Rodinia
Parboil
31 A was ° + Iy
+ GPGPU-SIm * . +
. .
+
L + L *
2 . ° . 2 L] °
+ . o + ‘.
1 Tose . 1 * % '
L r .
£ ey o0 Loedee*
+ . +
. A A e o . « .
g or e 0y e * S or ALy
+ % o + . . *el A_}&‘ ® o
L]
. * * . A
-1 + e + P -1 Ao ot g
+ * + o0 ¢ b o ? :
* + . i
* Y e . .
+ + . A .
-2 ® -2 + .
. L] +
+
® CUDASDK
a4 a4 + Rodinia
Parboil
. . A wmars
+ GPGPU-SIm
L L L L L L L L L L L T I
5 -4 -3 -2 -1 [) 1 2 4 -2 [} 2 4 6 8
PC1 Pc3
(a) PC1 and PC2 (b) PC3 and PC4
ar 4 NW ar
® CUDASDK X
Parboil :
A wmars LAVAMD
31+ apapu-sim AFS 3
+ Rodinia
A e 2k
1+ 1k
o =
S o S o
-1 - -1
a4
a DENOISE 2
° ® CUDASDK
a4 a3 + Rodinia
4 Parboil
* e EIGEN A mars
LAVAMD + GPGPU-SIm
i i i i i i i _ i i i i j

-5 -4 -3 -2 -1 0 1 2
PC1

(c) PC1 and PC2 Coverage Area

-4 -2 0 2 4 6 8

(d) PC3 and PC4 Coverage Area

Figure 5: Scatterplot Showing 4 PCs

benchmarks are well spread out in the control flow spectrum
since one benchmark has high SIMD efficiency while an-
other shows low SIMD efficiency. This suite not only covers
a large spectrum in the control flow space, but also in the
memory space as in Figure 5d. L2_L1_MISS_RATE and
L1_MISS_RATE have high weights in the PC4 factor loading,
representing memory intensive workloads. This suite stretches
vertically with a good mix of workloads that show both high
and low cache misses.

Parboil has a small number of benchmarks, yet their per-
formance spectrum lies completely inside the CUDA_SDK’s
spectrum as seen in Figure 5c¢ and Figure 5d. The suite tries
to cover a large area as the coverage spectrum is not narrow
in one particular axis direction. This attempt is shown in Fig-
ure 5a and Figure 5b as all data points are not clustered in one
region, but rather, set apart out from each other. Yet, it does
not exercise any component to the extreme, so the area that
this suite covers in the spectrum is relatively small. With fu-
ture processors that improve such bottlenecks as cache misses,
it is possible that the spectrum coverage will shrink further

since metrics such as L1_MISS_RATE will decrease. How-
ever, it is possible that the existing benchmarks can increase
the coverage area with some improvements. For instance, the
metrics that affect Figure 5a are efficiency metrics such as the
SIMD efficiency. The lack of hardware resources within the
SM usually affects these metrics, so if the program uses more
registers per thread or has more divergent branches, this will
drag a few of the Parboil benchmarks to the lower end of the
spectrum in PC1. Similarly, the input size of the application
can be made larger so that it can generate more memory re-
lated events such as cache misses. This will eventually lead
some benchmarks to extreme points in Figure 5d.

The Mars benchmark suite is designed to use the same map-
reduce framework, so their coverage is expected to be small
as shown in Figure 5. This suite is enclosed completely by
the Rodinia suite. If this suite can cover an area that is not
covered by any other suites, then it can stand out as a very
unique benchmark suite. This suite lies near the border of the
Rodinia coverage envelop, so if it can be stretched little farther
towards one extreme, it can cover its own unique space. In the

case of Figure 5Sc, this will be towards the negative end of the
PC1 axis. This means that if one of the benchmarks contains
slightly lower SIMD efficiency, it can be located outside the
Rodinia envelop.

In Figure 5, many areas are still left to be explored. Es-
pecially, the area with positive PC3 and negative PC4 is one
example. This area corresponds to high floating point in-
structions, high DRAM read accesses, and high texture cache
misses. A new benchmark to explore this area can be proposed
with a high number of floating point instructions. The texture
and L2 misses can be increased by increasing the texture cache
working set size. Therefore, if a new benchmark is written
with these in mind, it can have a large number of read accesses
to the texture cache with a large footprint, which eventually
reaches the DRAM. In addition, the lower PC1 and high PC2
area is another unexplored area, which corresponds to low
SIMD efficiency, high load/store instructions and shared load-
/store instructions. For this area, the future benchmark can be
written with low SIMD efficiency. Yet, the warp instruction
mix in this benchmark can be mainly composed of memory
instructions. Then, it can eventually fill the missing space in
the performance spectrum.

4.3. Similarity/Dissimilarity of Benchmarks

With many data points in the multidimensional PC scat-
terplot, it is difficult to see similarity between benchmarks.
More importantly, if many existing benchmarks are similar
to each other, then future benchmarks should be designed to
be dissimilar to those ones in order to place themselves in
unexplored areas. The dendrogram can help this process by
showing how similar/dissimilar each benchmark is among 88
benchmarks used in this study. A dendrogram is a graphical
representation of the hierarchical clustering method to repre-
sent the similarity among benchmarks. First, all metrics in
Table 3 are drawn in the multidimensional space. Then, the
pairwise distance of all benchmarks is computed and a tree
is constructed based on the distance of each pair as shown
in Figure 6. If a pair of two benchmarks is very similar, it
will have a short distance, and thus, will be linked at the leafs
of the tree (left side of the figure). At the end, a group of
most dissimilar benchmarks are linked at the root of the tree.
Subsetting a large number of benchmarks can easily be done
with the dendrogram. If one wants to determine a subset of
2 benchmarks, then draw a vertical line which has two inter-
sections [21]. In our figure, a dotted line drawn at the linkage
distance value of 12 corresponds to this point. One intersec-
tion corresponds to the Rodinia-LAVAMD benchmark, and the
other intersection corresponds to 87 other benchmarks [27].
This means the Rodinia-LAVAMD is the most unique program,
and the program at the center of the other subset with the 87
programs will be used to represent that subset.

In Figure 6, we see that all of the Mars benchmarks are
found to be similar, suggesting that a single map-reduce ap-
plication is sufficient when used in benchmarking. A similar

Rodinia-JPEG
CUDA_SDK-SHOKE
CUDA_SDK-HSOPT

ParboilSTENCIL
CUDA_SDK-FWT
CUDA_SDK-SQRNG
CUDA_SDK-SCAN
CUDA_SDK-VECADD

GPGPU-Sim-LPS
CUDA_SDK-MSORT
Rodiniz-PATH
CUDA_SDK-BOXFLTR
Rodinia HSORT
CUDA_SDK-MARCUBES
CUDA_SDK-SOBEL
GPGPU-Sim-WP
Rodiniz-BP
Rodinia- NN
Rodiniz-GAUSS
RodinizHSPOT
Rodinia-SRAD
Parboil-SAD
Rodinia-B+TREE
Parbail-SPHV
CUDA_SDK-PART
CUDA_SDK-VIDDEC
CUDA_SOK-CONVFFT
CUDA_SDK-FLUIDS
CUDA_SDKMC
GPGPU-Sim-5TO

Rodinia-CFD

Parboil-CUTCP
GPGPU-Sim-CUTCP

CUDA_SDK-EIGEN
CUDA_SOK-BICUFLT
CUDA_SDK-CONVTEX
CUDA_SDK-DENOISE
CUDA_SDK-BILATFL
CUDA_SDK-VOLFLTR

CUDA_SDK-BS

CUDA SDK-RECGAUSS
CUDA_SDK-PROCGL

GPGPU-Sim-LIB

ParboilHRIQ
CUDA_SDK-QRNG

Mars-MMUL2

Rodiniz-SC
CUDA_SDK-RED
CUDA_SDK-SP
CUDA_SDK-DCTBXS
Parboil-SGEMM
GPGPU-Sim-DG
Parboil-LBM
CUDA_SDK-MAND
CUDA_SDK-DKTC
CUDA_SOK-OCEAN
RodiniaLEUKO

Ww

GPGPU-Sim-RAY
CUDA_SDK-NBODY
GPGPU-Sim-AES
CUDA_SDK-STEREQ
CUDA_SDK-BINOPT
CUDA_SDK-CONVSEP
CUDA_SD-MMUL
CUDA_SDK-FOTD3D
Rodinia-LUD

Rodinia-BFS
Mars KNEANS?
Nars:PVR
Mars-5§
MarsWC

ParboilHIST2

ParboilHRIG
CUDA_SDK-DWTHAAR
Rodinia-PF
Wars:PVC
Wars-STRM
GPGPU-Sim-BFS2
Rodiniz-HWALL
Rodinia-KMEANS
Rodiniz-MUM
GPGPU-Sim-UM2
Rodiniz-MYO

o
I ey
CUDA_SDKCHIST
GPGPU-Sim-NQU
Rodinia-NW
GPGPU-Sim-NEURAL

Rodinia-LAVAMD ‘ ‘ ‘ ‘ ‘

)y S Sy S S Sy A |

Linkage Distance

Figure 6: Dendrogram

Table 4: Uniqueness Rank of Benchmarks

Benchmark Rank Benchmark Rank
Rodinia-LAVAMD 1 Rodinia-MUM 9
Rodinia-MYO 2 GPGPU-Sim-NQU 10
GPGPU-Sim-NEURAL 3 GPGPU-Sim-WP 11
Rodinia-NW 4 Mars-STRM 12
Rodinia-HWALL 5 GPGPU-Sim-AES 13
GPGPU-Sim-MUM2 6 GPGPU-Sim-STO 14
Rodinia-KMEANS 7 CUDA_SDK-MAND 15
GPGPU-Sim-BFS2 8 Parboil-LBM 16

result is shown with the image processing benchmarks of
the CUDA_SDK suite, specifically BICUFLT, BILATFL, DE-
NOISE, and CONVTEX. Besides those benchmarks found in
the same domain, some were found to be similar due to the
usage of a common algorithm, namely scalar-produce(SP) and
reduction(RED). Parallel reduction is a major phase of scalar-
product calculation.The results indicate that future bench-
marks need to have workloads that are distinct from image
processing or map-reduce to be unique in the performance
spectrum. Also, future benchmarks should avoid using exist-
ing benchmarks’ algorithms to eliminate redundancy.

A general goal in benchmarking is to increase the perfor-
mance spectrum coverage. A good benchmark suite will have
a large number of benchmarks that are connected at the root
of the tree. The dendrogram in Figure 6 can indicate that
more types of benchmarks such as Rodinia-LAVAMD and
GPGPUSim-MUM?2 are needed. Not surprisingly, those are
benchmarks that are located in their unique spaces in the PC
scatterplot presented in Section 4.2. Therefore, an effective
visual representation of the dendrogram can drive where new
benchmark efforts should go in the performance spectrum.

4.4. Ranking Benchmarks

A new benchmark should target a unique space in the per-
formance spectrum in order not to overlap with existing bench-
marks or suites. The dendrogram can be effective in showing
a few unique benchmarks, but with such a large number of
benchmarks, it is hard to illustrate how unique one benchmark
is relative to another. Especially in our study with 88 bench-
marks, choosing unique benchmarks just by looking at the
dendrogram can be difficult. Hotelling’s T?> method [17] can
help identifying unique programs. It is a statistical method
to find the most extreme data point in multivariate distribu-
tion. The benchmark that is farthest away from the center
of the distribution is marked as the most unique benchmark
in this study. Ranking benchmarks based on Hotelling’s T2
helps us select unique benchmarks when the subsetting the
dendrogram results in that one subset contains too many bench-
marks. Table 4 lists the top 16 unique benchmarks. The top
two benchmarks agree with the dendrogram as they had the
largest linkage distance from other benchmarks. We found
that the top 36 benchmarks cover 90% of the total variance in
the performance spectrum.

In Figure 5, we saw that the Rodinia suite had many bench-
marks that are located at extreme PC values. The table aligns

(a) Rodinia-LAVAMD

(b) GPGPU-Sim-NEURAL

mBIT_CONV_INST
OFP64_INST

OLOAD_STORE_INST mCONTROL_INST BFP32_INST
B INTEGER_INST ®INTER_THREAD_INST OMISC_INST

Figure 7: Instruction Mix of 2 Most Dissimilar Programs

with the prior finding since the 5 Rodinia benchmarks made
it in the top 8 list. Although the ranking itself does not show
which end of the extremes the benchmark exists, the method-
ology we have developed throughout the paper, including the
PC scatterplot, can clearly show where high ranking bench-
marks exist in the scatterplot. The top 5 Rodinia benchmarks
are located at the edges of the coverage envelop in Figure 5c.
In addition, the GPGPU-Sim suite also has 7 benchmarks in
the top 16 list. Although the Parboil and Mars suite have a
relatively small number of benchmarks, a few benchmarks
such as Parboil-LBM and Mars-STRM are included in the top
16 list as they are located near the edge of the envelop.

Unique benchmarks can help future benchmark designers
with important architectural components. They can offer in-
sights into the source of underlying features that make them
unique. Here, we will dive into the three most unique bench-
marks, LAVAMD, MYO, and NEURAL. LAVAMD is unique
among the Rodinia suite as it is the only benchmark repre-
senting the N-Body dwarf [2,27]. This benchmark features a
high branch and warp execution efficiency as well as efficient
shared memory access patterns. Figure 7a explains another
unusual characteristic of Rodinia-LAVAMD as it has a high
number of miscellaneous instructions, which include barrier
instructions. Also, the problem size is partitioned to fit in
constant memory, so the computation is done only within each
thread block, achieving high SIMD efficiency. However, even
though MYO is a floating-point benchmark just like LAVAMD,
it features very low memory efficiency. Each instance of this
workload is assigned to a thread, so this workload does not
orchestrate memory accesses to take advantage of caches such
as constant memory. Therefore, this benchmark incurs signifi-
cantly more cache misses than others. NEURAL operates on
floating-point data, but over half of its instructions are integer
operations which are used for address calculation as shown in
Figure 7b. Although this benchmark has a high cache miss
rate, it shows a low cache misses per kilo-instruction because
a large portion of memory loads are hits from the constant
memory. From our example using LAVAMD, MYO, and NEU-
RAL, we can illustrate which algorithm or programming style

® CUDASDK

+ Rodinia
Parboil
Mars

2 * GPGPU-Sim|

KMEANS
+

4 e
HWAL

+ NEURAL

I
-5 -4 -3 -2 -1 o 1
PC1

(a) PC1 and PC2 Coverage Area

Figure 8: Divergence PC Scatterplot

to use in order to design new benchmarks that are unique and
do not overlap with existing ones.

5. Component-Wise Analysis

Until now, we have used all metrics that are either com-
putation or memory related. Working with all at the same
time to understand the performance spectrum can be difficult
as the GPGPU architecture is sophisticated. In this section,
we perform a component-wise analysis to show where future
benchmark efforts should go to target major components of
the GPGPU architecture.

5.1. Control Divergence

We perform the spectrum coverage analysis with only con-
trol divergent metrics as they are key GPU performance
factors. Our initial analysis in Section 2.2 showed that
BRANCH_EFF and WARP_EXEC_EFF affect PC1 signif-
icantly, so we conduct the performance spectrum coverage
study with BRANCH_EFF, WARP_EXEC_EFF, and CON-
TROL_INST metrics. PC1 and PC2 are shown in Figure 8. It
shows an interesting result where CUDA_SDK does not cover
the second largest area in the scatterplot anymore. Especially,
in our study where each suite has a different number of bench-
marks, it is advantageous for CUDA_SDK as it potentially has
more data points to cover a large area. Yet, Figure 8 shows
that this suite with 39 benchmarks, covers a similar area as
the Parboil suite, which only has 9 benchmarks. PC1 and PC2
covers 84% of the variance in our control divergent study, so
they are considered significant in our statistical space. Most
benchmarks written for heterogeneous systems aim for SIMD
efficiency. However, some benchmarks such as NEURAL has
lower SIMD efficiency due to a high amount of divergent pred-
ication. Furthermore, other benchmarks such as NQU also
have lower SIMD efficiency, but as a result of high branch
divergence. Many benchmark suites are clustered in the up-
per right region corresponding to the area with high SIMD
efficiency. With the characteristics of those benchmarks at

® CUDA SDK
+ Rodinia
Parboil
2 A Mars
+ GPGPU-Sim| :‘lw
STRM A
i +-
STEREO
.
ok
o
(4]
e
a4
4
*
4
.
VOLFLTR
-3 -2 -1 o 1 2 3
PC1
(a) PC1 and PC2 Coverage Area
s
® CUDA SDK
+ Rodinia
Parboil + MUM
4 A Mars +
* GPGPU-Sim

PC4
T

2

=3 -2 -1 o 1 2 3 4

(b) PC3 and PC4 Coverage Area

Figure 9: Memory PC Scatterplot

the performance spectrum extremes, the missing space corre-
sponds to extremely low SIMD efficiency. This can lead to
a suggestion that future benchmarks with a large number of
map reduce operations can fill the space since these operations
usually have many unused SIMD lanes.

5.2. Memory

The GPGPU memory subsystem is one of core areas with
performance bottlenecks as well as performance improvement
potentials. Uncoalesced memory accesses or codes not written
to take advantage of caches affect performance significantly.
There is a high demand of research interests in this area, and
we show which benchmark suites exercise the memory sub-
system in various ways. Figure 9 shows the area coverage
plot of different suites. Interestingly, most benchmarks cover
a large area in both the PC1 and PC2 space. PCl is largely
dominated by memory related instructions whereas PC2 is
dominated by cache misses. However, some benchmark suites
span more of the spectrum in PC3 and PC4. In Figure 9b, the
Rodinia and GPGPU-Sim suite cover a large area. The first
4 PCs cover 74% of the variance in the memory subsystem
performance space. Although the Mars suite covers a rela-

tively small area, it exercise areas that are not covered by any
other benchmark, placing itself in a unique position. It can be
inferred that most benchmarks have a similar distribution of
memory related instructions and cache misses, which explains
why all benchmark suites are well spread out in Figure 9a.
However, the texture cache miss behaviors diverge from each
other as some benchmarks do not exercise the texture cache
heavily. As a result, some benchmarks start to dominate the
area coverage in the PC3 and PC4 space.

Uniqueness in memory performance behaviors among the
benchmarks stems from the instruction mix. While applica-
tions such as MMUL?2 represent the bulk of the workloads
where around 15% of instructions are load/store instructions,
applications such as STEREO are composed of 40% load/-
store instructions, increasing the impact of cache misses. If
the percentage of load/store instructions is low, the impact of
cache misses is relatively low (MPKI of the L1, L2, and tex-
ture caches will be low). Image filtering benchmarks such as
VOLFLTR are unique in memory access behavior because they
contain very few load/store applications. In this benchmark,
each thread only needs to reference an input image once and
continuously performs computation with this image. There-
fore, future benchmarks can be formed with either extremely
high and low memory instruction mix as they will be able
to exercise both ends of the untouched memory performance
spectrum. Even existing benchmark suites can have different
input sizes that stress the memory subsystem towards both
extremes to increase the area coverage in the performance
spectrum.

6. Related Work

Kerr et al. have performed earlier work on characterizing
the PTX kernels of the benchmarks using Ocelot dynamic com-
piler [20] Parboil and CUDA_SDK [10]. They later charac-
terized heterogeneous workloads using a wider set of metrics,
including both static and dynamic instruction counts [19]. Yet,
their work is focused on finding the program characteristic sim-
ilarities between the GPU and CPU processors. Goswami et al.
performed the workload characterization of selected GPGPU
workloads using GPGPU-Sim on different hardware configu-
rations [3, 12]. However, many benchmarks including those
using the texture cache cannot be executed on the simulator,
thereby leaving an entire class of workloads out of the analy-
sis. Input sizes are also limited so that the simulations would
complete within a reasonable time frame. Che et al. have
also utilized PCA analysis to characterize their GPGPU work-
loads when constructing the Rodinia suite itself, but their work
was limited on Parsec, SPLASH-2 and their own benchmark
suite [4, 6,39]. Unlike our methodology where we use various
statistics techniques for guidance purpose, they use PCA only
for validation. Phansalkar et al. performed the PCA analysis
work for the SPEC CPU2000 and CPU2006 benchmark suites
to detect redundant benchmarks [28,29,34]. They utilized a
mixture of microarchitecture-independent characteristics (i.e.,

instruction mix) as well as microarchitecture-dependent ones
(i.e., cache misses per kilo-instruction) with the results from
5 different machines and 4 different ISAs. Their work was
focused on the CPU domain, yet used similar statistical ap-
proaches as our study. Heirman et. al performed a bottleneck
analysis on the multi-threaded SPLASH-2, PARSEC and Ro-
dinia benchmark suites using cycle stacks, which show the
breakdown of execution cycles [4, 14,39]. Che and Skadron
performed experiments on correlating and predicting the per-
formance of GPGPU benchmarks using a hardware profiler [8].
In their study, key performance metrics such as warp occu-
pancy and computation-to-memory access ratio were used in
order to correlate selected benchmarks. Unlike our work, they
used statistics to predict performance using correlation met-
rics. Carrington et al. performed HPC application workload
characterization using the entire benchmark suites as synthetic
metrics [5].

7. Acknowledgement

This work has been supported and partially funded by SRC
under Task ID 2504 and National Science Foundation under
grant numbers 1337393 and 1117895. Any opinions, findings,
conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of
the National Science Foundation or other sponsors.

8. Conclusion

In this study, we have developed a methodology that ana-
lyzes existing benchmark suites to understand what they cover
in the performance spectrum and to provide guidance for fu-
ture benchmarks. We have used statistical methods such as
PCA and Hotelling’s T? to identify unexplored areas in the
performance spectrum and unique benchmarks among five
popular public-domain GPGPU benchmark suites. When
building a new benchmark suite or improving the existing
benchmark suite, this paper provides a formalized approach
for performance architects to identify areas to focus on for
future benchmarking purposes. They can use the performance
spectrum coverage map to find unexplored areas and investi-
gate the sources of uniqueness in benchmarks that are located
at the edges of this map using the Hotelling’s T2 and the
dendrogram. In the end, our study has found that 16 of 88
benchmarks from five widely used suites cover 90% of the
variance, which indicate that they overlap each other in many
areas in the spectrum, leaving some areas to be explored. Our
methodology can guide future benchmarks towards these un-
explored areas, which can ultimately create benchmarks with
much larger coverage map in performance spectrum.

References

[1] AMD, “OpenCL Programming Guide,” 2013. http://www.amd.com

[2] K. Asanovic et al., “A view of the parallel computing landscape,”
Commun. ACM, vol. 52, no. 10, pp. 56-67, Oct. 2009.

[3] A.Bakhoda, G. Yuan, W. Fung, H. Wong, and T. Aamodt, “Analyzing
CUDA workloads using a detailed GPU simulator,” in Performance

http://www.amd.com

[4]

[5]

[6]

(7]

[8]
[9]

[10]

(1]
[12]

[13]

[14]

[15]

[16]

[17]
(18]

[19]

[20]

[21]

(22]
[23]
[24]

(25]
[26]

Analysis of Systems and Software, 2009. ISPASS 2009. IEEE Interna-
tional Symposium on, April 2009, pp. 163-174.

C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: Characterization and architectural implications,” in Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques (PACT). New York, NY, USA: ACM, 2008,
pp. 72-81.

L. C. Carrington, M. Laurenzano, A. Snavely, R. L. Campbell, and L. P.
Davis, “How well can simple metrics represent the performance of
HPC applications?” in Proceedings of the 2005 ACM/IEEE Conference
on Supercomputing (SC). Washington, DC, USA: IEEE Computer
Society, 2005, pp. 48—.

S. Che et al., “Rodinia: A benchmark suite for heterogeneous comput-
ing,” in Workload Characterization, 2009. IISWC 2009. IEEE Interna-
tional Symposium on, Oct 2009, pp. 44-54.

S. Che, J. Sheaffer, M. Boyer, L. Szafaryn, L. Wang, and K. Skadron,
“A characterization of the Rodinia benchmark suite with compari-
son to contemporary CMP workloads,” in Workload Characterization
(IISWC), 2010 IEEE International Symposium on, Dec 2010, pp. 1-11.

S. Che and K. Skadron, “Benchfriend: Correlating the performance of
GPU benchmarks,” IJHPCA, vol. 28, no. 2, pp. 238-250, 2014.

A. Danalis et al., “The Scalable Heterogeneous Computing (SHOC)
benchmark suite,” in Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units. ACM, 2010,
pp. 63-74.

G. F. Diamos, A. R. Kerr, S. Yalamanchili, and N. Clark, “Ocelot: A
dynamic optimization framework for bulk-synchronous applications
in heterogeneous systems,” in Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Techniques
(PACT). New York, NY, USA: ACM, 2010, pp. 353-364.

G. H. Dunteman, Principal Ccomponents Analysis. Sage, 1989,
no. 69.

N. Goswami, R. Shankar, M. Joshi, and T. Li, “Exploring GPGPU
workloads: Characterization methodology, analysis and microarchitec-
ture evaluation implications,” in Proceedings of the IEEE International
Symposium on Workload Characterization (IISWC’10). Washington,
DC, USA: IEEE Computer Society, 2010, pp. 1-10.

B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang, “Mars:
A MapReduce framework on graphics processors,” in Proceedings
of the 17th International Conference on Parallel Architectures and
Compilation Techniques (PACT). New York, NY, USA: ACM, 2008,
pp- 260-269.

W. Heirman, T. E. Carlson, S. Che, K. Skadron, and L. Eeckhout,
“Using cycle stacks to understand scaling bottlenecks in multi-threaded
workloads,” in Proceedings of the 2011 IEEE International Symposium
on Workload Characterization (IISWC). Washington, DC, USA: IEEE
Computer Society, 2011, pp. 38—49.

S. Hong and H. Kim, “An analytical model for a GPU architecture
with memory-level and thread-level parallelism awareness,” SIGARCH
Comput. Archit. News, vol. 37, no. 3, pp. 152-163, Jun. 2009.

S. Hong and H. Kim, “An integrated GPU power and performance
model,” SIGARCH Comput. Archit. News, vol. 38, no. 3, pp. 280-289,
Jun. 2010.

H. Hotelling, The generalization of Student’s ratio. ~ Springer, 1992.
H. Jooybar, W. W. Fung, M. O’Connor, J. Devietti, and T. M. Aamodt,
“GPUDet: A deterministic GPU architecture,” SIGPLAN Not., vol. 48,
no. 4, pp. 1-12, Mar. 2013.

A. Kerr, G. Diamos, and S. Yalamanchili, “Modeling GPU-CPU work-
loads and systems,” in Proceedings of the 3rd Workshop on General-
Purpose Computation on Graphics Processing Units (GPGPU’10.

A. Kerr, G. Diamos, and S. Yalamanchili, “A characterization and anal-
ysis of PTX kernels,” in Proceedings of the 2009 IEEE International
Symposium on Workload Characterization (IISWC). Washington, DC,
USA: IEEE Computer Society, 2009, pp. 3—12.

A. Likas, N. Vlassis, and J. J. Verbeek, “The global K-means clustering
algorithm,” Pattern Recognition, vol. 36, no. 2, pp. 451 — 461, 2003,
biometrics.

NVIDIA, “CUDA Code Samples.” http://www.nvidia.com

NVIDIA, “GeForce GTX 560 Ti.” http://www.geforce.com

NVIDIA, “NVDIA’s Next Generation CUDA Compute Architecture:
Fermi,” 2009. http://www.nvidia.com

NVIDIA, “NVIDIA CUDA C Programming Guide,” 2014. http:
/Iwww.nvidia.com

NVIDIA, “Profiler User’s Guide,” 2014. http://www.nvidia.com

10

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]
[36]

[37]

[38]

[39]

D. A. Oliveira, C. B. Lunardi, L. L. Pilla, P. Rech, P. O. Navaux,
and L. Carro, “Radiation sensitivity of high performance computing
applications on kepler-based GPGPUS,” in Dependable Systems and
Networks (DSN), 2014 44th Annual IEEE/IFIP International Confer-
ence on, June 2014, pp. 732-737.

A. Phansalkar, A. Joshi, L. Eeckhout, and L. John, “Measuring pro-
gram similarity: Experiments with SPEC CPU benchmark suites,” in
Performance Analysis of Systems and Software, 2005. ISPASS 2005.
IEEE International Symposium on, March 2005, pp. 10-20.

A. Phansalkar, A. Joshi, and L. K. John, “Analysis of redundancy
and application balance in the SPEC CPU2006 benchmark suite,”
SIGARCH Comput. Archit. News, vol. 35, no. 2, pp. 412-423, Jun.
2007.

E. Phillips and M. Fatica, “Implementing the Himeno benchmark with
CUDA on GPU clusters,” in Parallel Distributed Processing (IPDPS),
2010 IEEE International Symposium on, April 2010, pp. 1-10.

X. Ren, Y. Tang, G. Wang, T. Tang, and X. Fang, “Optimization and
implementation of LBM benchmark on multithreaded GPU,” in Data
Storage and Data Engineering (DSDE), 2010 International Conference
on, Feb 2010, pp. 116-122.

S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and
W.-m. W. Hwu, “Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA,” in Proceedings of
the 13th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP). New York, NY, USA: ACM, 2008,
pp. 73-82.

J. Sartori and R. Kumar, “Branch and data herding: Reducing control
and memory divergence for error-tolerant GPU applications,” in Pro-
ceedings of the 21st International Conference on Parallel Architectures
and Compilation Techniques (PACT). New York, NY, USA: ACM,
2012, pp. 427-428.

SPEC, “SPEC CPU2000 and CPU2006.” http://www.spec.org
Standard Performance Evaluation Corporation, “SPEC CPU2006,”
2006. http://www.spec.org/cpu2006.

J. A. Stratton et al., “Parboil: A revised benchmark suite for scientific
and commercial throughput computing,” Center for Reliable and High-
Performance Computing, 2012.

R. Taylor and X. Li, “A micro-benchmark suite for AMD GPUs,” in
Parallel Processing Workshops (ICPPW), 2010 39th International
Conference on, Sept 2010, pp. 387-396.

G. Wang, T. Tang, X. Fang, and X. Ren, “Program optimization of
array-intensive SPEC2k benchmarks on multithreaded GPU using
CUDA and Brook+,” in Parallel and Distributed Systems (ICPADS),
2009 15th International Conference on, Dec 2009, pp. 292-299.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: Characterization and methodological considera-
tions,” in Proceedings of the 22nd Annual International Symposium on
Computer Architecture (ISCA). New York, NY, USA: ACM, 1995,
pp. 24-36.

http://www.nvidia.com
http://www.geforce.com
http://www.nvidia.com
http://www.nvidia.com
http://www.nvidia.com
http://www.nvidia.com
http://www.spec.org
http://www.spec.org/cpu2006.

	Introduction
	Background
	GPU Architecture and Programming Model
	Principal Component Analysis

	Methodology
	Workloads
	Experimental Setup

	Evaluation
	GPGPU Workload Characteristics
	Performance Spectrum Coverage
	Similarity/Dissimilarity of Benchmarks
	Ranking Benchmarks

	Component-Wise Analysis
	Control Divergence
	Memory

	Related Work
	Acknowledgement
	Conclusion

