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ABSTRACT
Efficient on-chip resource management is crucial for Chip Multi-
processors (CMP) to achieve high resource utilization and enforce
system-level performance objectives. Existing multiple resource
management schemes either focus on intra-core resources or inter-
core resources, missing the opportunity for exploiting the interac-
tion between these two level resources. Moreover, these resource
management schemes either rely on trial runs or complex on-line
machine learning model to search for the appropriate resource allo-
cation, which makes resource management inefficient and expen-
sive. To address these limitations, this paper presents a predictive
yet cost effective mechanism for multiple resource management in
CMP. It uses a set of hardware-efficient online profilers and an
analytical performance model to predict the application’s perfor-
mance with different intra-core and/or inter-core resource alloca-
tions. Based on the predicted performance, the resource allocator
identifies and enforces near optimum resource partitions for each
epoch without any trial runs. The experimental results show that
the proposed predictive resource management framework could im-
prove the weighted speedup of the CMP system by an average of
11.6% compared with the equal partition scheme, and 9.3% com-
pared with existing reactive resource management scheme.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Performance

Keywords
Microprocessor, Resource management, Program characteristics,
Performance modeling

1. INTRODUCTION
Chip Multiprocessors (CMP) have become mainstream platforms

to improve the system throughput for multi-threaded and multi-
programmed workloads in high-performance computing. However,
their energy efficiency and end-performance is strongly dependent
on management of the ever-increasing on-chip resources. It is well
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Figure 1: Performance comparison for different resource man-
agement policies. Results are based on a quad-core CMP with
per-core 2-way SMT (Detailed configurations in table 3).

known that unrestricted sharing of inter-core resources such as L2
cache and memory bandwidth, can lead to destructive interference
between the running threads [20], resulting in large performance
variation and throughput degradation. Yet, managing inter-core re-
sources alone is not sufficient as modern CMPs, such as Intel Ne-
halem processor [6], support per-core Simultaneous Multi-threading
(SMT). Under such circumstance, the resource sharing in a CMP
is compounded with both inter-core and intra-core resources, and
any resource management scheme without coordinating between
these two types of resources could lead to suboptimal system per-
formance and inability to enforce system performance objectives.

As an example, Figure 1 shows the comparison of the weighted
speedups for different combination of inter-core and intra-core re-
source management schemes in a quad-core 2-way SMT CMP sys-
tem. Inter-core resource here is represented by L2 cache, and intra-
core resources include issue queue (IQ), reorder buffer (ROB), and
physical registers, all partitioned in proportion to each other [9]. As
we can see, although separate management of L2 cache or intra-
core resources improves the performance over the scheme of equal
partition, it still misses a large amount of potential for improving
system performance compared with the one that coordinates the
allocation of L2 cache and intra-core resources. This is because
the application’s demands on different resources are correlated, and
the change of the application’s intra-core resource allocation could
affect the its demands on inter-core resources. For example, the
increase of ROB size may expose more memory level parallelism
(MLP), and consequently increase the number of outstanding load
misses. Since multiple outstanding load misses could hide the la-
tency with each other, the average cache miss penalty is reduced,
hence the requirement of L2 cache size is smaller in order to main-
tain the same performance. Therefore, coordinating between intra-
core and inter-core resources is necessary to achieve high utiliza-
tion and system performance in the CMP+SMT environment.



However, existing management schemes for multiple interact-
ing resources focus on either intra-core resource partitioning for a
single-core SMT processor or inter-core resource allocation for a
chip multiprocessor. Cazorla et al. [8] proposed a resource shar-
ing model to estimate the anticipated resource needs of a thread,
and dynamically allocate shared resources to the thread that uti-
lizes the resource most efficiently. Yet, this method only indi-
rectly improves the performance and is unable to control the end
performance. Choi and Yeung [9] improve the SMT resource par-
tition by using the direct performance feedback to learn the de-
sired resource allocation via hill-climbing. However, this method
requires tentative runs to explore a large amount of trial resource
partitions, fundamentally limiting its potential for performance im-
provement. Moreover, these methods only address intra-core re-
source allocation, and are not suitable for CMP inter-core resource
management. To manage multiple inter-core resources, Bitirgen et
al. [3] proposed an on-line machine learning model to capture the
performance impact of multiple interacting resources. However,
their model requires extensive training/re-training before it can ac-
curately predict the application’s performance, and incurs signif-
icant cost in hardware implementation and validation. Moreover,
the original proposal of their model only addresses inter-core re-
source management, hence yields only suboptimal performance in
the CMP+SMT scenario. Finally, while these existing policies rec-
ognize the importance of providing Quality-of-Service (QoS) on
performance [13] for the co-executing applications, none of them
provide a comprehensive solution to enforce performance objec-
tives on a CMP platform where both inter-core and intra-core re-
sources can vary simultaneously.

To address these limitations, this paper presents a comprehen-
sive yet cost-effective resource management framework that can
coordinate both intra-core and inter-core shared resources mean-
while simultaneously enforce QoS performance objectives. Unlike
the existing resource management schemes, the proposed frame-
work leverages an analytical performance model to predict the per-
formance, and enforces resource allocations without any trial re-
source partitioning or training. By using the application charac-
teristics dynamically collected during the application’s execution,
the performance model can update the performance prediction at
each resource adaptation epoch, allowing the resource allocation
to dynamically adapt to program phase changes. In particular, the
contributions of this paper are as follows:

• We build a comprehensive yet cost-effective dynamic on-line
profiler, and a performance model that utilizes the online pro-
file to accurately predict the performance of the applications
under different allocations of both inter-core and intra-core
resources. We show that with about 22kilobytes of hardware,
the performance model could predict the performance with
an average relative error of 8.1%.

• We propose a framework for multiple resource management
based on this performance model. This framework elimi-
nates the need of trial-runs or training for dynamic resource
allocation, and allows the enforcement of QoS performance
objectives. We compare our approach with a set of resource
management schemes from prior work, and show that on
average, our approach improves the weighted speedup by
11.6% over the equal partition management scheme, and 9.3%
over the reactive hill-climbing method [9].

The organization of this paper is as follows. Section 2 gives
the overview of the proposed resource management framework.
Section 3 describes the performance model. Section 4 shows the

Figure 2: The overview of the predictive resource management
framework.

structures of the online profilers. Section 5 presents the resource
partitioning algorithm. Section 6 analyzes the hardware cost of
the implementation. Section 7 describes the experiment methodol-
ogy. Section 8 discusses the results. Section 9 describes the related
works, and section 10 concludes of this paper.

2. OVERVIEW OF THE FRAMEWORK
The proposed framework for multiple resource management con-

sists of three major components: the on-line profilers, the perfor-
mance predictor, and the resource allocator, as shown in Figure 2.
The on-line profiler non-invasively profiles each thread running on
each core, and extracts the inherent characteristics of the thread
for performance prediction. The performance predictor collects the
profiled characteristics of the thread at the end of each resource
allocation epoch, and estimates the thread’s performance for dif-
ferent resource allocations. The resource allocator uses a built-in
search engine to identify the appropriate resource allocations under
the constraint of the given performance targets, and enforces the
resource partition for each thread through a set of partition knobs.

The intra-core partition knobs regulate the allocation of the intra-
core resources, which include IQ, ROB, and physical registers. These
resources are interdependent, and are allocated in proportion to
each other, similar with the way employed in the work by Choi
et al. [9]. On the other hand, the inter-core partition knobs con-
trol the distribution of Last Level Cache (LLC) size and the power
consumption of each core. In this paper, we assume that the CMP
uses L2 cache as LLC and supports per-core Dynamic Voltage and
Frequency Scaling (DVFS). In DVFS, the voltage and frequency
are correlated, hence the power management can be achieved by
controlling the operating frequency of each core meanwhile keep-
ing the total power within the budget. This framework does not
explicitly manage the memory bandwidth. Instead, it uses PAR-BS
memory scheduling policy [19] to ensure the fairness and QoS of
bandwidth usage.

While this framework addresses the resource allocation issues in
the CMP+SMT scenario, it could also be applied in the cases where
each core only supports single thread but can be dynamically recon-
figured. Nevertheless, this paper focuses on the CMP platform with
each core supporting 2-way SMT to demonstrate the effectiveness
of the framework. In the following sections, we explain each com-
ponent of the proposed framework in detail.

3. PERFORMANCE PREDICTOR
Predicting the performance impact of different resource alloca-

tions is the key step to avoid expensive trial runs and enable fast
identification of appropriate resource distributions. Unlike the ma-



chine learning model proposed by Bitirgen et al. [3], our perfor-
mance predictor is based on an analytical model, which does not
require training/retraining and is easy to implement and validate.

3.1 Basic Performance Model
The performance model is based on the previously proposed in-

terval analysis [15][11], which treats the exhibited Instruction-Per-
Cycle (IPC) rate as a sustained ideal execution rate intermittently
disrupted by long time miss events, such as, L2 cache misses and
branch misprediction, etc. With the interval analysis, the total Cycle-
Per-Instruction (CPI) of an application can be treated as the sum of
three CPI components:

CPItotal = CPIexe + CPImem + CPIother (1)

CPIexe represents the steady-state execution rate when the exe-
cution is free from any miss events. It is fundamentally constrained
by the inherent Instruction Level Parallelism (ILP) of the applica-
tion and the issue width of the processor. The ILP of the applica-
tion is typically characterized by the critical dependency chain of
the instructions in the instruction window. Assume an instruction
window size w, and average critical dependency chain length lw.
On an idealized machine with unit execution latency, lw indicates
the average number of cycles required to execute the instructions
in the instruction window, hence the average throughput is w/lw.
For a more realistic machine with non-unit execution latency, this
number should be further divided by the average execution latency
latavg according to Little’s law [15]. Therefore, the average ILP,
αavg , can be obtained by w/(latavg · lw), which also represents
the steady-state execution rate if the instruction issue width is un-
limited. However, for a realistic processor with limited issue width
β, the ideal execution rate would be saturated at either the average
ILP or the issue width, whichever is smaller. As a result, CPIexe

can be obtained by 1/min(αavg, β).
CPImem represents the penalty caused by the load misses in

the last level cache (L2 cache in this paper). It can be calculated
by the multiplication between the number of L2 load misses NL2,
and the average memory access latency latmem, assuming there are
no multiple L2 cache misses outstanding. In practice, in order to
hide the load miss latency, L2 caches are usually non-blocking and
multiple L2 cache load misses could be outstanding. Under this cir-
cumstance, it has been proven that the average load miss latency is
reduced to latmem/movp [15], where movp is the average number
of outstanding load misses. Therefore, CPImem can be calculated
by latmem ·NL2/(movp ·Ninst), where Ninst is the total number
of retired instructions. Note that the term NL2/movp could also be
treated as the number of L2 load misses that are not overlapping
with each other, and hence is referred to as the non-overlapped L2
load misses Nnovp.

CPIother is the CPI component caused by other miss events,
such as instruction cache misses, branch mispredictions, etc. In
this paper, we do not change the resources related with these miss
events. Therefore, this CPI component is approximately constant
for an application with different resource allocations, as long as
the application is in a stable execution phase. This CPI compo-
nent can be obtained by transforming equation (1) to CPIother =
CPItotal−CPIexe−CPImem, where CPItotal can be obtained
from the performance counter, CPIideal and CPImem can be de-
rived from the observed program characteristics. Once CPIother

has been deduced, it can be plugged into the performance model to
estimate the performance of other cores. As a result, we have our
basic performance model as follows:

CPItotal =
1

min(αavg, β)
+

latmem ·Nnovp

Ninst
+ CPIother

With the basic performance model, the performance impact of
different clock frequencies can be captured by converting the CPI
to the delay in terms of absolute execution time. Hence, we have:

Delay =
Ninst

min(αavg, β) · f + tmem ·Nnovp + Cother/f (2)

where f is the operating frequency, tmem represents the absolute
memory access latency, and Cother refers to CPIother · Ninst,
representing the cycles spent on other miss events.

3.2 Interaction of Co-executing Threads
The basic performance model only captures the performance of

a thread when it is executed alone on a core and is free to ac-
cess all available intra-core resources. However, when multiple
threads simultaneously execute on a core, these threads will com-
pete each other for the shared intra-core resources, causing inter-
ference on the performance of each co-executing thread. In prac-
tice, to achieve controllable performance for each thread, the shared
intra-core resources are dynamically partitioned among the threads
[9] except for the issue/dispatch width, which often remains as
shared such that one thread can exploit the full execution band-
width when the other thread is waiting for its miss events to be
served [10]. In such case, the effective issue width of each thread
may be significantly different from the physical issue width, and
the basic performance model needs to be augmented accordingly.

Assuming a processor with 2-way SMT and per-thread retire-
ment capability, the effective execution rate of the thread can be
estimated by analyzing the ILP of the co-executing threads. For
example, if the ILP of thread T0 (referred to as αT0) and the ILP of
thread T1 (referred to as αT1) are both larger than the issue width
β of the processor core, on average each thread can execute at a
rate equal to half of the issue width. If we could further obtain
the fraction of the time that T0 is in long latency miss event, the
effective execution rate of T1 can be derived by considering the ad-
ditional execution bandwidth T1 has during that fraction of time.
Similarly, if αT0 and αT1 are both smaller than β but the sum of
these two is larger than β, on average the effective issue width of
a thread is determined by the occupancy of its ready instructions:
αT0 · β/(αT0 + αT1) for T0 and αT1 · β/(αT0 + αT1) for T1. By
considering the fraction of the time in serving the long latency miss
event, the effective execution rate can be also derived. Table 1 sum-
marizes the calculation of the effective execution rate under differ-
ent scenarios. These values are used as the background steady-state
execution rates of the performance model in the presence of SMT.
Note that these estimations are based on the assumption that IQ
uses the oldest-first policy to dispatch ready instructions.

3.3 Non-overlapped L2 Load Misses
For a given application, the number of non-overlapped L2 Load

Misses (LLM) is affected by two factors: the L2 cache size, which
determines the total number of L2 load misses, and the ROB size,
which controls the amount of exposed MLP. Therefore, when both
ROB size and L2 cache size can be reconfigured, their compounded
effect has to be modeled in order to estimate the number of non-
overlapped LLM.

To do so, we introduce the load histogram to hold the statistics
of the number of loads occurred within a certain ROB size. Specif-
ically, each time when the number of retired instructions equals
the given ROB size, the number of loads observed in those retired
instructions is used as an index to the load histogram, and corre-
sponding entry in the load histogram is incremented by one. With
the load histogram, we are able to model the "window" effect the
ROB has on the non-overlapped LLM. As illustrated in Pseduocode
1, if the calculated number of LLM in an instruction window is less



Table 1: Estimation of Average Execution Rate for 2-Way SMT
Cases: Effective Average Execution Rate NotesThread 0 (T0) Thread 1 (T1)
αT0 < β, αT1 < β,

αT0 αT1αT0 + αT1 < β
αT0 < β, αT1 < β, αT0∗β

αT0+αT1
∗ (1− fT1) + αT0 ∗ fT1

αT1∗β

αT0+αT1
∗ (1− fT0) + αT1 ∗ fT0

αT0: average ILP of thread 0
αT0 + αT1 > β αT1: average ILP of thread 1
αT0 > β, αT1 < β, αT0∗β

αT0+αT1
∗ (1− fT1) + β ∗ fT1

αT1∗β

αT0+αT1
∗ (1− fT0) + αT1 ∗ fT0

β: issue width of the core
αT0 + αT1 < 2β fT0: the fraction of time
αT0 > β, αT1 < β, 2∗β−αT1

2.0 ∗ (1− fT1) + β ∗ fT1
αT1
2.0 ∗ (1− fT0) + αT1 ∗ fT0

that thread 0 is in long
αT0 + αT1 > 2β latency events
αT0 < β, αT1 > β, αT0∗β

αT0+αT1
∗ (1− fT1) + αT0 ∗ fT1

αT1∗β

αT0+αT1
∗ (1− fT0) + β ∗ fT0

fT1: the fraction of time
αT0 + αT1 < 2β that thread 1 is in long
αT0 < β, αT1 > β, αT0

2.0 ∗ (1− fT1) + β ∗ fT1
2∗β−αT0

2.0 ∗ (1− fT0) + β ∗ fT0
latency events

αT0 + αT1 > 2β

αT0 > β, αT1 > β β
2.0 ∗ (1− fT1) + β ∗ fT1

β
2.0 ∗ (1− fT0) + β ∗ fT0

Pseudocode 1 Non-overlapped L2 Load Miss Estimation

#def Nl //maximum number of loads in the ROB size i
#def Nnovp //number of non-overlapped L2 load misses
#def MLPi //average load MLP rate in ROB size i
#def ld_miss_rate //L2 load miss rate
#def ld_histi[Nl] //load histogram for ROB size i

1 for ( j=0; j < Nl; j++ )
2 if (j ∗ ld_miss_rate < 1)
3 temp = ld_histi[j] ∗ j ∗ ld_miss_rate;
4 else
5 if (j ∗ ld_miss_rate/MLPi < 1)
6 temp = ld_histi[j];
7 else
8 temp = ld_histi[j] ∗ j ∗ ld_miss_rate/MLPi;
9 end if

10 end if
11 temp_novp = temp_novp + temp;
12 end for
13 Nnovp = ceiling(temp_novp);

than 1 (line 2), there is no overlapped LLM and MLP is not consid-
ered. Otherwise, this number is divided by MLP. A result less than
1 (line 5) means all L2 load misses are overlapped and the number
of non-overlapped LLM is 1. The total number of non-overlapped
LLM can be obtained by accumulating these values in all cases. By
using a set of load histograms with each dedicated to a certain ROB
size, we are able to estimate the non-overlapped LLM for different
ROB sizes. On the other hand, the L2 load miss rates for differ-
ent L2 cache sizes can be estimated with the stack distance model,
which is explained in section 4.3.

Figure 3 shows the accuracy of the estimation technique for pro-
gram libquantum under different ROB and L2 cache sizes. We ob-
serve a close match between the measured and the estimated non-
overlapped L2 load misses when both ROB size and L2 cache size
vary. We also validate this technique using other SPEC CPU2006
programs, and we observe the average error rate of the estimation
is 12.2%. Most of the errors are caused by the artifact that a small
number of L2 load misses leads to a large relative error even though
the absolute difference between the measured and the estimated is
small. However, since a small number of L2 load misses means
a small impact on the overall CPI, the influence of the estimation
error passed down to the estimated CPI is also insignificant.

4. ONLINE PROFILER
The proposed performance model requires a set of program char-

acteristics from which the key parameters for the model can be de-
rived. These characteristics include: a). the critical dependency
chain, for deriving the average ILP; b). the dependent load miss
statistics, for estimating the memory level parallelism under differ-

Figure 3: Comparison of the estimated and measured
non-overlapped L2 load misses for SPECCPU2006 program
libquantum. Data are collected at a 2M instructions interval.

ent ROB sizes; c). the stack distance statistics [18], for estimating
the number of L2 load misses with different L2 cache sizes. In
this section, we present a set of non-invasive and cost-effective on-
line profilers to dynamically extract these characteristics during the
application’s execution.

4.1 Critical Dependency Chain Profiler
The critical dependency chain in this paper refers to the longest

instruction dependency chain in the instruction window. To capture
the length of the critical dependency chain, we propose a token-
passing technique inspired by Fields et al’s work [12]. A token is a
field in each issue queue entry that keeps track of the dependency
chain length, as shown in Figure 4(a). When an instruction enters
the issue queue, its token field is set to zero; when an instruction
leaves the issue queue for execution, its token field is incremented
by one. The incremented token is propagated along with the result
tag of the instruction. When the instruction finishes execution and
its result tag matches the source tag of the waiting instruction in
the issue queue, the propagated token also compares the token of
the waiting instruction. The larger one between these two is stored
in the token field of the waiting instruction. Hence, by the time an
instruction is ready for execution, its token holds the length of the
longest dependency chain for this instruction.

For each thread, the critical dependency chain profiler compares
the token of every issued instruction of that thread, and keeps track
of the maximum observed token, which is further used as an index
to the critical dependency chain histogram. The histogram is con-
trolled by an instruction counter that monitors the number of issued
instructions. When this number reaches the interested ROB size,
the histogram entry indexed with the maximum observed token is



Figure 4: The structure of the online profilers.

incremented by 1. Meanwhile the register that holds the maximum
token is reset to zero. Consequently, the critical dependency chain
histogram holds the information of the longest dependency chain
length for each instruction window. At the end of each epoch, this
histogram is used to calculated the average length of the critical
dependency chains, and then reset to zeros for the next epoch.

In order to obtain the dependency chain length for different ROB
sizes, we need a set of critical dependency chain histograms, with
one histogram dedicated to one specific ROB size. All histograms
share one instruction counter to count the number of issued instruc-
tions. When the number equals one of the interested ROB sizes,
the corresponding histogram is updated, and the counter continues
counting until it equals the largest ROB size. Then, the counter is
reset and starts counting from zero again. In this way, the token
fields designed to profile for the largest ROB size can be reused by
multiple histograms for different ROB sizes.

4.2 MLP Profiler
The MLP profiler is to capture the L2 load miss parallelism for

different ROB sizes. As shown Figure 4(b), this profiler contains a
L2 Load Miss Event Table (LMET), which has a Dependent Load
Miss Counter (DLMC) and a Output Register Bit Vector (ORBV)
in each table entry, similar with the one proposed by Eyerman and
Eeckhout [10]. Each time a load that missed L2 cache is retired, a
new entry in the table is created and the corresponding DLMC is
updated with the number of L2 load misses that this load is depen-
dent on in the current window. Meanwhile, the ORBV is initialized
by setting ’1’ to the bit indexed by the output register ID of this
load, and setting ’0’ to the remaining bits. Each retired instruction
thereafter needs to check its dependency on this long-latency load
by looking up the ORBV bit at the position corresponding to the
input register ID of the retired instruction. A ’1’ in this bit posi-
tion indicates this instruction depends on the previous long-latency
load, and hence the bit indexed by the output register ID of the re-
tired instruction is also set to ’1’; whereas a ’0’ means this instruc-
tion is independent with the previous long-latency loads, and no
further actions is needed. This process continues until the number
of analyzed instructions reaches the largest ROB size of interest, in
this paper, 256, and then the table is reset.

Besides the load miss event table, the profiler also has a MLP
lookup table, which is a Read-Only-Memory (ROM) structure pop-
ulated with pre-computed MLP values. The MLP value is obtained
by dividing the its column index with the row index, and is rep-
resented in a 8-bit fixed-point format with 4 bits for integer and 4

bits for fraction. Each time when the analyzed instruction number
equals an interested ROB size R, the MLP table is looked up by
the largest DLMC in LMET and the Window Load Miss Counter
(WLMC) that holds the number of L2 load misses occurred in the
ROB window. The corresponding MLP value is then added to the
MLP accumulator associated with the interested ROB size R. At
the end of each epoch, the average load MLP rate of ROB size R
can be obtained by dividing the values in the MLP accumulator
with the number of accumulations occurred on this accumulator in
the epoch.

The profiler also has a load histogram for each possible ROB
size. The histogram collects the number of loads occurred in each
ROB window, and is used to estimate the non-overlapped L2 load
misses.

4.3 Stack Distance Profiler
To estimate the number of L2 load misses for different cache

sizes, we employ the previously proposed Mattson’s stack distance
histogram at the granularity of cache ways [18][20]. This stack dis-
tance model exploits the inclusion property of Least Recently Used
(LRU) replacement policy, i.e., the content of an N -way cache line
is a subset of the content of any cache line with associativity larger
than N . As an example, figure 5 shows the MSA histogram of pro-
gram xalancbmk on an 8-way associative cache, organized from
MRU position to LRU position. For caches with its associativity
reduced to 6-ways (dash line in the figure), the data with stack dis-
tance larger than 6 could not be hold in the cache, generating cache
misses. Therefore, with the stack distance histogram, we are able
to estimate the cache miss rate for any cache ways less than the
profiled ways and consequently derive the number of L2 misses.

Profiling the stack distance requires an Auxiliary Tag Directory
(ATD) and hit counters for each cache set [20]. The ATD has the
same associativity with L2 cache in the chip and uses LRU replace-
ment; whereas the hit counter counts the number of hits on each
cache way. To reduce the hardware overhead caused by ATD, we
employ the Dynamic Set Sampling (DSS) technique, which essen-
tially uses a few sets (in our case 32 sets) to approximate the entire
cache behavior [20].

4.4 Profiling for Other Parameters
Other parameters in the performance model can be obtained from

the standard performance counters. For example, the performance
counters in Intelr CoreTM architecture [1] are able to provide the
instruction mix and cache hit/miss statistics. With these statistics,



Figure 5: Stack Distance Histogram of SPEC CPU2006 pro-
gram xalancbmk.

the average latency latavg can be derived by weight-averaging the
percentage of each instruction type with the corresponding execu-
tion latency. Note that the load that misses L1 cache but hits in L2
cache is treated as an instruction with long execution latency.

5. ALLOCATION ALGORITHMS
With the online profilers and the performance predictor, the per-

formance of the application under different resource allocations can
be estimated by simply evaluating an equation, which fundamen-
tally eliminates the need of trial runs and significantly improves
the quality and efficiency of multiple resource management.

Pseudocode 2 Coordinated Predictive Hill-Climbing

#def Ntt //total number of threads
#def Nres //the number of resources independently partitioned
#def delta //resource partition granularity
#def Pth //convergence threshold
#def part[0 : Ntt][0 : Nres] //the resource partition array
#def max_id(A, n) //get the index of the largest value in A[0:n]
#def max(A, n) //get the largest value in A[0:n]
#def perf_eval(part)
//estimate the overall performance for resource array part
#def perf(part, i)
//estimate the performance of thread i for resource array part

1 old_part_perf = perf_eval(part);
2 copy part[0 : Ntt][0 : [Nres] to temp_part[0 : Ntt][0 : Nres];
3 while(TRUE)
4 for( i = 0; i < Nres; i++)
5 for( j = 0; j < Ntt; j++ )
6 temp_part[i][j] = part[i][j] + delta;
7 pos_perf [j] = perf(temp_part, j);
8 temp_part[i][j] = part[i][j]− delta;
9 neg_perf [j] = perf(temp_part, j);

10 end for
11 pos_tid[i] = max_id(pos_perf, Ntt);
12 neg_tid[i] = max_id(neg_perf, Ntt);
13 if(max(pos_perf, Ntt) > max(neg_perf, Ntt))
14 part[pos_tid[i]][i] = part[pos_tid[i]][i] + delta;
15 part[neg_tid[i]][i] = part[neg_tid[i]][i]− delta;
16 end if
17 end for
18 new_part_perf = perf_eval(part);
19 if ( abs(new_part_perf − old_part_perf) < Pth) break;
20 else old_part_perf = new_part_perf ;
21 end while

To efficiently manage multiple resources, this paper presents a
predictive and coordinated resource management algorithm that lever-
ages the performance predictor to identify the optimum resource
distribution for the workload. As shown in Pseudocode 2, the pro-
posed algorithm uses hill-climbing to search for the appropriate re-

source distribution, hence the name Coordinated Predictive Hill-
Climbing (CPHC). Specifically, it first uses the performance model
to evaluate the performance of each thread as one of the resources
is incremented or decremented by a certain amount delta (line 5
to line 10). It then moves delta amount of the resource from the
thread that has the lowest performance degradation to the thread
that benefits most from the additional resource, provided that the
overall performance gain is positive (line 13 to line 16). This pro-
cess iterates through different resources, and repeats itself until the
estimated performance reaches the given target or no noticeable
performance gain is attainable (line 19). In this way, this algorithm
explores the resource allocation in the positive-gradient direction,
and hence achieves fast convergence.

In this algorithm, power as a resource is indirectly managed by
controlling the operating frequency of each core in a CMP. Specif-
ically, for a quad-core CMP, the total power consumption can be
written as a1v

2
1f1 + a2v

2
2f2 + a3v

2
3f3 + a4v

2
4f4, where vi and

fi(i = 1..4) are the voltage and frequency of core i respectively,
and ai(i = 1..4) is the product of the activity factor and the ef-
fective capacitance for core i. In a fully-loaded CMP system, the
power is usually consumed as close to the given power budget as
possible to maximize performance, and a1, .., a4 are generally very
close to each other. Therefore, the problem of power management
can be transformed to the problem of allocating frequencies such
that v2

1f1 + v2
2f2 + v2

3f3 + v2
4f4 remains constant. Note that the

frequency and voltage are correlated with each other under DVFS,
and for a given frequency, the corresponding voltage can be found
by looking up a table. Therefore, by controlling the frequencies,
the power can be allocated the same way as other resources.

Besides this proposed algorithm, we also evaluate a set of other
resource allocation algorithms for comparison, which include:

Equal Partition: This algorithm distributes all shared resources
equally among the threads. Specifically, the inter-core resources
are equally partitioned for all active threads in the CMP, and the
intra-core resources are equally partitioned for the threads that are
simultaneously executed in the core. This algorithm is used as the
baseline management scheme in this paper.

Coordinated Reactive Hill-Climbing (CRHC): Like the pro-
posed predictive scheme, this algorithm also attempts to manage
both intra-core and inter-core resources, but without a performance
prediction model. Therefore, it has to rely on trial runs to explore
the gradient direction for resource allocation. Specifically,the al-
gorithm randomly selects two threads (for inter-core resource) or
a pair of co-executing threads (for intra-core resource), tentatively
moves delta amount of resource from one thread to the other, and
runs the workload for one epoch. It then moves the resource in
opposite direction for these two threads, and runs the workload for
another epoch. The resource allocation that gives the higher per-
formance during these two trial runs is enforced in the next epoch.
The process keeps on repeating itself for different resources and
different threads.

Intra-core Reactive Hill-Climbing (Intra-RHC): This algo-
rithm is similar with the one proposed by Choi et al. [9], and it
uses trial runs to search for the appropriate resource allocations.
The resource adaptation only happens on the intra-core level, and
the inter-core resources are equally partition for all threads.

Inter-core Reactive Hill-Climbing (Inter-RHC): This algorithm
is similar with CRHC except that the resource adaptation only hap-
pens on the inter-core level, and the intra-core resources are equally
partition for the co-executing threads in the core.

Oracle: This algorithm assumes the application’s performance
under different resource allocation in the next epoch is known a
priori. It uses these future performance data to enforce the resource



allocation that gives highest performance in the next epoch. While
it is unrealistic in practice, it sets an upper bound of the potential
performance improvement.

6. IMPLEMENTATION COST ANALYSIS
Both the on-line profilers and the resource allocator are imple-

mented in hardware, and they are the major sources of the imple-
mentation cost in the proposed framework. The cost of the pro-
filers depends on the ROB size, the L2 cache size, the number
of SMT threads, as well as the partition granularity. Assuming a
256-entry ROB with 32-entry partition granularity, 160 issue queue
size, 32-bit physical address space, 16MB 32-way shared L2 cache,
and 2-way SMT, the total hardware cost amounts to approximately
22KB, as shown in Table 2. Under this circumstance, the dimen-
sion of MLP lookup table is set to 16-by-16, and the profilers need
8 critical dependency chain histograms and 8 load histograms since
there are 8 possible ROB sizes. Note that the hardware cost may be
further reduced by using a smaller number of histogram counters
based on the observation that the critical dependency chain length
is far smaller than the ROB size. However, even without such op-
timization, the hardware overhead incurred by the online profilers
only amounts to 0.14% of the 16MB L2 cache size. Note also that
these profilers are not in the critical path, and does not affect the
application’s execution.

Table 2: Hardware Cost of the Online Profilers
Profiler Components Costs
Critical token fields 8*256 bits
Dependency multiplexors, comparator (8*2+8)*160bits
Chain Profiler histogram counters 16*256*8*2bits

MLP Profiler

LMET (4+32)*16*2bits
MLP accumulator 16*8*2 bits
WLMC 5*8*2 bits
MLP lookup table 16*16*8 bits
comparators 8*8*2 bits
load histogram 16*256*8*2 bits
valid bits per ATD entry 1 bits
addr. bits per ATD entry 12 bits

Stack Distance total ATD cost (32 (3+1+12)*
Profiler sampled sets, 2 threads) 32*32*2 bits

Hit Counters 16*32*2 bits
Total Cost of Profilers per core 21812 Bytes

On the other hand, the cost of the resource allocator is mainly
caused by converting the profiled histograms to the parameters for
the performance model and searching for the appropriate resource
allocation with the performance model. For example, to obtain
the average critical dependency chain length from the dependency
chain histogram, approximately 300 multiply-add operations are
required. To further quantify the hardware cost, we implemented
the resource allocator in Verilog HDL, and synthesized it into a
netlist. The design employs pipelining so that arithmetic units can
be reused. Overall, it has two adders, two multipliers and one
divider, all in 32-bit fixed-point. The total area of the resource
allocator is estimated to be 0.632 mm2 under 65nm technology.
Each performance estimation requires 20 cycles to complete, and
the search process takes less than 30000 cycles before it converges
(we enforce convergence if the iterations is larger than 20). Since
the resource allocation is made only once every epoch, the latency
can be completely hidden by starting resource exploration proce-
dure several thousands of instructions before the end of the epoch.

7. EXPERIMENT METHODOLOGY

7.1 Simulation Platform
We use Simics [16], extended with the Gems toolset [17], to sim-

ulate a quad-core SPARCv9 CMP system running under OpenSo-

laris operating system. Each core in the CMP is a 4-issue out-
of-order processor and supports 2-way SMT with ICOUNT [23]
instruction fetch policy. The simulated CMP system also contains
a detailed memory subsystem model, which includes an inter-core
last-level cache network and a detailed memory controller. Table 3
lists the configurations of the CMP system in detail. We use Wattch
[4] to estimate the dynamic power of the processor as well as the re-
source allocator, and use Cacti 5 [22] to estimate the leakage power
on caches and other SRAM structures in the core. We use Orion
[24] to estimate the power on the interconnection network of last
level caches. These estimated power data are used in evaluating the
efficiency of the system.

Table 3: Configurations of the CMP system
Parameter Configurations

Core

Max. Clock Frequency 4GHz
Fetch/Issue/Commit 4/4/4
Ld/St Units 2/2
I-ALU 4(fused multiply/add for I-ALU)
FP Units/FP Multipliers 4/2
ROB size/Issue Queue 256/160
Load/Store Queue Size 64/64
Branch Predictor YAGS, 16 PHT bits, 10 Tag bits
Physical Register Number 380

Cache

L1 I-Cache/D-Cache 32KB, 2-way, 64B, LRU, 1 cycle
L2 Cache size 16MB shared
L2 Cache parameter 32-way, 64B, LRU, 12 cycle
L2 MSHR Entry 32
Coherence Protocol Directory-based MOESI

Memory

Size/Model 4GB/DDR2-800
Controller PAR-BS policy [19]
Organization 8 banks per rank, 2 ranks per DIMM

The ROB in the core is partitioned at the granularity of 32 entries.
Other intra-core resources such as issue queue size and physical
register number are partitioned in proportion to the ROB size. Each
thread is guaranteed to have at least 32 entries of ROB size. The
L2 cache size is partitioned at the granularity of cache ways, with
each thread allocated with at least one cache way. The CMP system
supports per-core DVFS, with the frequency of each core ranging
from 2GHz to 4GHz at the step of 0.1GHz. We assume that the
CMP system reaches the power budget when it is fully loaded and
each core is running at 3GHz.

Table 4: Workloads and Their Characteristics
Workload Mix Symbol Category

povray, calculix, sjeng, hmmer pcshpwdt

ILP

perlbench, wrf, dealII, tonto
gcc, povray, astar, calculix gpacghbdgobmk, hmmer, bzip2, dealII
astar, bzip2, gobmk, povray abgpspdgsjeng, perlbench, dealII, gamess
namd, gcc, gromacs, perlbench nggphtssh264ref, tonto, sphinx3, sjeng

mcf,omnetpp,bwaves,lbm moblpngx

MIX

povray, namd, gcc, xalancbmk
dealII, sjeng, libquantum, omnetpp dslopspmpovray, soplex, perlbench, milc
libquantum, cactusADM, xalancbmk lcxcwmsocalculix,wrf,mcf, soplex, omnetpp
leslie3d,tonto,sphinx3, omnetpp ltsohlazhmmer, libquanutm, astar, zeusmp

soplex, xalancbmk, milc, lbm sxmlmczl

MEM

mcf, cactusADM, zeusmp, leslie3d
leslie3d,soplex, zeusmp, bwaves lszbwcxlwrf, cactusADM, xalancbmk, lbm
lbm, milc, xalancbmk, leslie3d lmxlzwmszeusmp, wrf, mcf, soplex
milc, xalancbmk, mcf, cactusADM mxmcslbwsoplex, leslie3d, bwaves, wrf

7.2 Workloads
The workload of the experiment is composed of the programs

from SPEC CPU2006 benchmark suite [2], with each compiled
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Figure 6: Performance Model Accuracy. (a)The ROB size varies from 32 to 256 at the step of 32. (b)The L2 cache size varies from
512KB to 4MB at the step of 512KB. (c) Frequency varies from 2GHz to 4GHz at the step of 0.1GHz. (d) 500 random configurations
when all three resources vary simultaneously.

to SPARC ISA. We construct 12 heterogeneous multiprogrammed
workloads, each containing 8 programs, as shown in Table 4. These
workloads are grouped into three categories: CPU-intensive (high-
ILP), memory-intensive, and the mixture of both. Each workload
will be running on the aforementioned CMP systems. For each run,
we fast-forward the workload for 4 billion instructions to reach its
steady state execution, and then use the next 100 million instruc-
tions to warmup the cache subsystem. We then simulate the full
system for 200M instructions to evaluate the performance of vari-
ous resource allocation policies.

7.3 Metrics
The metric we use to evaluate the system performance is the

weighted speedup, which is defined as
P

i IPCshared
i /IPCalone

i

[21]. To measure the efficiency of the system, we use the met-
ric mips3/W , which is inverse to energy-delay-square (ED2) and
has been accepted as the efficiency metric for high-performance
systems [5].

8. EVALUATION

8.1 Model Accuracy
The accuracy of the performance model could largely impact the

effectiveness of the proposed resource management framework. To
evaluate the model accuracy, we run every SPEC CPU2006 pro-
gram on a simulated processor for an interval of 2 million instruc-
tions, and use the performance model to estimate the program’s
CPI on processors with different resource configurations. Mean-
while, we also simulate the program on those processors for the
same interval and compare the observed CPI values with the es-
timated ones. Figure 6(a)-(c) show the accuracy when only one
resource changes. As we can see, the relative error between the es-
timated CPI and the observed one follows normal distribution. The
average errors (using absolute values) are 8.7% for different ROB
sizes, 5.3% for different L2 cache sizes, and 6.7% for different fre-
quencies, indicating the performance model tracks well with the
observed performance when only one resource varies its configu-
ration. Figure 6(d) further shows the relative estimation error for
500 random configurations when all three resources vary simulta-
neously. The average CPI estimation error in this scenario is 8.1%,
and the largest one is 26.7%. We also observe that this relative
error follows normal distribution.

8.2 Epoch Size Sensitivity
The epoch size determines the frequency of resource adaptation

during the execution of the workload, and can indirectly influence

the overall performance of our resource management framework.
Figure 7 shows the performance trend of three workloads as the
epoch size increases from 0.5 million to 5 million instructions. We
observe that as the epoch size increases, the weighted speedup first
increases, then reaches a plateau, and then gradually decreases.
This is because with a relatively small epoch size, the on-line pro-
filers may not be fully warmed up to capture the corresponding
program characteristics, which could affect the accuracy of the per-
formance predictor, and in turn pulls down the performance of the
resource management. This is particularly true for the stack dis-
tance profiler since this profiler employs set sampling technique,
which provides a good accuracy only when it has be exercised with
sufficient amount of L2 accesses. On the other hand, a large epoch
size would miss the opportunity for adapting resource distribution
to some finer grain program phases, which also degrades the end
performance. In this work, we find that 2 million instruction is
a reasonable epoch size that balances the accuracy of the perfor-
mance predictor and the responsiveness of the resource allocation.

Figure 7: Performance impact of epoch size.

Note that such choice of epoch size is based on the assumption
that different voltage and frequency pairs can be enforced instanta-
neously. In practice, this is not true because it may take the voltage
regulator hundreds of micro-seconds to stabilize voltage. Under
such circumstance, the epoch size need to incorporate this addi-
tional time for voltage regulation.

8.3 Performance & Efficiency
Figure 8(a) shows the comparison of the weighted speedups be-

tween different resource allocation policies. As expected, equal
partition policy usually yields lowest weighted speedup among all



(a) Improvement in Weighted Speedup (b) Efficiency Improvement

Figure 8: Performance and efficiency comparison for different resource management policies.

the policies investigated in this paper. Inter-RHC and Intra-RHC
improves the performance over equal partition policy as it dynami-
cally adapts allocations for either inter-core or intra-core resources.
CRHC further improves the weighted speedup, as it attempts to ad-
just the resource allocation on both inter-core and intra-core level.
However, for some workloads, these reactive allocation policies
may leads to inferior performance compared with equal partition.
This is because they rely on the trial runs to search for the appropri-
ate resource allocation, which means workloads may spend some
trial runs in an inappropriate resource allocation. That also explains
why these dynamic policies only have a small improvement over
the equal partition policy. Our proposed predictive hill-climbing
scheme avoids trial runs, and achieves an average of 11.6% over
the baseline scheme and 9.3% over the CRHC scheme. In gen-
eral, CPHC yields higher speedup in the workloads that belong to
the MIX category because in such workloads, the resource require-
ments of the programs are more diversified, resulting in higher po-
tential for resource management. Compared with the oracle scheme,
the CPHC has approximately 3% less speedup. This is attributed
to: (a) the imperfection of the performance model;(b) the lack of
future knowledge of program phase behavior; (c) hill-climbing be-
ing trapped in local optima.

Figure 8(b) further shows the efficiency improvements for dif-
ferent resource allocation policies. We observe that CPHC has an
average efficiency improvement of 57.4% over the baseline, and
36.5% over CRHC.

8.4 QoS Enforcement
The QoS target is defined as the target IPC relative to the alone-

execution IPC, expressed in the form of percentages [13][7]. The
proposed resource management framework can convert this QoS
target into resource usage requirements [13], thereby enforce QoS
for an application by regulating the amount of allocated resources.
The quality of such QoS enforcement is demonstrated in Figure 9,
where for each workload, only one program is enforced with the
QoS targets and the remaining programs do not have QoS objec-
tives. The resource allocator attempts to satisfy the QoS target for
that program and maximize the overall performance for the remain-
ing programs. As we can see, the relative IPCs of the programs
keep a good track of the QoS targets. For some programs, such as
povray, gcc, and astar, the relative IPC at the 20% QoS target is
significantly off the target. This is because even with the minimum
allocation on each resource, the relative performance of these pro-
grams are still much larger than 20%. Hence, such QoS target is
ill-suited for these programs. Overall, we observe that the proposed
framework could enforce QoS within 6.1% for 80% target, 6.7%

for 60% target, and 5.9% for 40% target. Hence, this framework is
suitable for the enforcement of elastic QoS objectives [13].

Figure 9: QoS targets enforcement.

9. RELATED WORK
Dynamic Resource Partition for SMT Threads: Cazorla et al.

[8] proposed a DCRA mechanism to dynamically allocate shared
resources to each thread in an SMT processor. Their method uses
a resource sharing model to estimate the thread’s anticipated re-
source needs, and allocate resources to the thread that utilizes the
resource most efficiently. Like other SMT resource sharing policies
[23], this method improves the SMT performance only indirectly,
not only potentially missing opportunities for further performance
improvement but also unable to control the end performance. Choi
and Yeung [9] improves the SMT resource distribution by directly
using the performance feedback to partition the resources for a spe-
cific performance goal. Their method requires a number of trial re-
source partitions before it learns the appropriate resource distribu-
tion, fundamentally limiting its potential for performance improve-
ment. In contrast, our work uses an analytical model to predict the
performance, hence eliminating the need of trial partitions. In addi-
tion, our work coordinates both intra-core and inter-core resources,
whereas previous SMT resource partition techniques only consider
the intra-core resources.

CMP Shared Resource Partition: Qureshi and Patt [20] pro-
pose to partition the last level cache to prevent negative interference
between threads and maximize the utilization of the cache capac-
ity. However, this utility based cache partitioning scheme is only
applicable to cache, and can not manage the partition of multiple



resources. Isci et al. [14] propose to manage global power by es-
timating the performance impact of per-core DVFS with an analyt-
ical model. Again, their proposal is only applicable to managing
power alone. Bitirgen et al. [3] proposed a technique based on on-
line machine learning to manage multiple CMP resources. How-
ever, the on-line machine learning model requires extensive train-
ing and retraining before it can accurately predict the application’s
performance. Moreover, it incurs significant hardware cost and is
hard to implement and validate. On the contrary, our scheme uses
cost-effective online profilers and an analytical model to predict the
performance. It does not require any training and could manage the
partition of multiple inter-core and intra-core resources.

Resource Partition for QoS: Guo et al. [13] propose a mech-
anism to support QoS in CMP by controlling the L2 cache allo-
cation. Cazorla et al. [7] leverages OS-processor interaction to
achieve QoS in SMT processors. These works address QoS prob-
lem separately at either inter-core or intra-core level. In contrast,
our framework provides QoS support by coordinating both inter-
core and intra-core resources.

10. CONCLUSIONS
This paper presents a showcase study of using an on-line analyt-

ical model to manage multiple interacting resources for throughput
and QoS. In this paper, we find that for a Chip Multiprocessors
(CMP) supporting per-core Simultaneous Multithreading (SMT),
both intra-core and inter-core resources need to be managed simul-
taneously in order to achieve high resource utilization and deliver
controllable performance. We thereby present a predictive resource
management framework that coordinates both inter-core and intra-
core resources. This framework uses a set of hardware-efficient on-
line profilers and an analytical performance model to predict the ap-
plication’s performance with different intra-core and/or inter-core
resource allocations. Based on the predicted performance, the re-
source allocator identifies and enforces near optimum resource par-
titions for each epoch without any trial runs. Our study shows that
the proposed framework improves weighted speedup by an average
of 11.6% compared with equal partition scheme, and 9.3% com-
pared with the learning-based resource manager. We also show this
framework enforces QoS targets within 6.7%. We believe that this
predictive resource management framework offers a promising way
to coordinate both inter-core and intra-core resources in CMPs.
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