
Is Compiling for Performance == Compiling for Power?

Madhavi Valluri and Lizy John

Laboratory for Computer Architecture

Department of Electrical and Computer Engineering

The University of Texas at Austin

valluri@ece.utexas.edu

ljohn@ece.utexas.edu

Abstract

Energy consumption and power dissipation are in-

creasingly becoming important design constraints in

high performance microprocessors. Compilers tra-

ditionally are not exposed to the energy details

of the processor. However, with the increasing

power/energy problem, it is important to evaluate

how the existing compiler optimizations inuence en-

ergy consumption and power dissipation in the pro-

cessor. In this paper we present a quantitative study

wherein we examine the e�ect of the standard opti-

mizations levels -O1 to -O4 of DEC Alpha's cc com-

piler on power and energy of the processor. We also

evaluate the e�ect of four individual optimizations on

power/energy and attempt to classify them as \low

energy" or \low power" optimizations. In our exper-

iments we �nd that optimizations that improve per-

formance by reducing the number of instructions are

optimized for energy. Such optimizations reduce the

total amount of work done by the program. This is in

contrast to optimizations that improve performance

by increasing the overlap in the program during exe-

cution. The latter kind of optimizations increase the

average power dissipated in the processor.

1 Introduction

Energy consumption and power dissipation are in-

creasingly becoming important design constraints in

high performance microprocessors. Power dissipation

a�ects circuit reliability and packaging costs. Energy

consumption directly e�ects battery life. With the

increasing use of general purpose processors in the

embedded world, designing low energy processors is

important. Gowan et al. [5], discuss the power and

energy trends of three generations of Alpha proces-

sors. Power dissipation increases signi�cantly from

one generation to the next despite the reduced supply

voltages and advanced processor technologies. The

paper shows the power in the Alpha 21264 increasing

almost linearly with frequency, with power reaching

72 Watts at 600MHz. The maximum power dissi-

pated under worst case conditions was found to be

about 95 Watts. These examples clearly indicate that

power dissipation and energy consumption will soon

become important limiting factors in the design of

high performance processors.

Until recently, the two problems were being

dealt with only at the circuit-level. Voltage scal-

ing, low swing buses, conditional clocking etc have

helped alleviate the problems enormously. How-

ever, architectural-level and compiler-level analysis

can help tackle these problems much earlier in the

design cycle. Recently, several architectural and com-

piler techniques have been proposed to reduce power

and energy [3, 6, 7, 8, 9, 10, 11, 12]. In our work we

concentrate on the inuence of compilers on power

dissipation and energy consumption.

Compilers traditionally are not exposed to the

energy details of the processor. Current compiler

optimizations are tuned primarily for performance

and occasionally for code size. With the increasing

power/energy problem, it is important to evaluate

how the existing optimizations inuence energy con-

sumption and power dissipation in the processor. An

interesting question to answer would be - if we com-

pile for performance, are we automatically compil-

ing for low power or low energy? Current compil-

ers already have two axes in the optimizations used

- namely compiling for speed(in general-purpose pro-

cessors) and compiling for code size(in embedded sys-

1



tems), do we need a third axis with optimizations that

compile for power/energy?

To answer the above questions, we present a quan-

titative study wherein we examine the inuence of

a few state-of-the-art compiler optimizations on en-

ergy and power of the complete processor. We study

the e�ect of the standard optimizations levels -O1 to

-O4 of DEC Alpha's cc compiler on power and en-

ergy of the processor. We also evaluate the e�ect of

four individual optimizations on power/energy and

attempt to classify them as \low energy optimiza-

tions" or \low power optimizations" or both. The

optimizations we study are simple basic-block schedul-

ing, loop unrolling, function inlining, and aggres-

sive global scheduling. For our experiments, we use

Wattch [2], an architectural simulator that estimates

CPU energy consumption. Wattch integrates param-

eterizable power models into the Simplescalar [4] pro-

cessor simulator.

In our study we �nd that the set of compiler

optimizations that improve performance by reduc-

ing the number of instructions executed are opti-

mized for both energy and power. This is in con-

trast to optimizations that improve performance by

increasing the existing parallelism in the program.

The latter kind of optimizations increase the average

power dissipated in the processor. We �nd that op-

timizations such as common-subexpression elimina-

tion, copy propagation, loop unrolling are very good

for reducing energy since they reduce the number

of instructions in the program, hence the amount

of total work done is less in programs with these

optimizations. Such optimizations should de�nitely

be included in the compile for power/energy switch.

Optimizations such as instruction scheduling signi�-

cantly increase power (and may occasionally increase

energy) because they increase the overlap in programs

without reducing the total number of instructions in

the program. However, such optimizations can be

easily modi�ed to take power details into considera-

tion and can be used to increase performance without

increasing average power.

The rest of the paper is organized as follows:

In Section 2, we discuss some previous work that

has been done in the area of compilers and low

power/energy. Section 3 shows a few examples that

motivates the need for our study. We describe the dif-

ferent compiler optimizations evaluated in Section 4.

In Section 5, we describe our experimental framework

and discuss in detail the results obtained. Finally, we

provide concluding remarks and future directions in

Section 6.

2 Related Work

In this section we present some of the previous work

done in understanding the interaction between the

compiler and power/energy of the processor.

The study by Kandemir et al. [7] quantitatively

examines the inuence of di�erent high-level com-

piler optimizations on system energy. However, in

their study, they evaluate only loop-nest optimiza-

tions such as loop fusion, loop �ssion, blocking, tiling,

scalar expansion and unrolling. In our paper, we dis-

cuss both the power dissipated and energy consump-

tion details, while in the paper by [7] they report only

energy details. Their main observation in the paper

is that the optimizations appear to increase the en-

ergy consumed in the core while reducing the energy

consumed in the memory system. Unoptimized codes

consume more energy in the memory system.

There have been a few instruction scheduling tech-

niques proposed which attempt to reduce the power

dissipated in the processor. Su et al. [11] proposed

cold scheduling, wherein, they assign priority to in-

structions based on some pre-determined power cost

and use a generic list scheduler to schedule the in-

structions. The power cost of scheduling an instruc-

tion depends on the instruction it is being scheduled

after. This corresponds to the switching activity on

the control path. Toburen et al. [12] propose another

power-aware scheduler which schedules as many in-

structions as possible in a given cycle until the en-

ergy threshold of that cycle is reached. Once that

precomputed threshold is reached, scheduling pro-

ceeds to the next time-step or cycle. In our work,

by evaluating several state-of-the-art optimizations,

we attempt to identify other optimizations besides

instruction scheduling that can be improved if the

power/energy models of the processor were exposed

to them.

Signi�cant work has been done in reducing energy

consumption in the memory. Most techniques achieve

a reduction in energy through innovative architec-

tural techniques [6, 8, 9, 10]. Some of the works that

include compiler involvement are [10] and [6]. In [6],

the authors suggest the use of an L-cache. An L-

cache is a small cache which is placed between the

I-cache and CPU. The L-cache is very small (holds a

2



few basic blocks), hence consumes less energy. The

compiler is used to select good basic blocks to place

in the L-cache. Another approach to reduce mem-

ory energy is Gray code addressing [10]. This form

of addressing reduces the bit switching activity in

the instruction address path. Bunda et al. [3] and

Asanovic [1] investigated the e�ect of energy-aware

instruction sets. These techniques would involve the

compiler even earlier in the code generation process.

The paper by Bunda et al [3] concentrates on reduc-

ing memory energy, and Asanovic [1] investigates new

instructions to reduce energy in the memory, register

�les and pipeline stages.

3 Motivating Examples

Consider the data dependence graph (DDG) shown

in Figure 1(b). It contains six operations. All oper-

ations except op E have a latency of one cycle, op E

takes two cycles to complete. We will assume there

are in�nite functional units for this example. An in-

struction scheduler that attempts to also optimize

for registers would schedule op E as close to op F

as possible. The resulting schedule can be seen in

Figure 1(b). If we assume that each operation con-

sumes one unit of power, compared to the schedule

in Figure 1(b), the schedule in Figure 1(c), dissipates

less peak power (3 units vs 2 units in Figure 1(b)).

Figure 1(c) is also a valid schedule. By extending

the lifetime of op E by one cycle, we reduce the peak

power dissipated without a�ecting performance. The

design choice of letting op E occupy the register for

one cycle longer than required will prove to be in-

expensive only if there are su�cient number of reg-

isters. Current schedulers do not take power details

into consideration and hence might schedule op E in

cycle 2 even if there are su�cient registers. This ex-

ample shows that two variations of the same code

can have the same performance but di�erent power

requirements.

Another good candidate for reducing energy with-

out increasing power would be function-in-lining.

Function-in-lining is done in cases where the callee

procedure body is small. In these cases, the code

required for the calling sequences outweigh the code

in the procedure body. If this procedure is called

many times, in-lining can save a tremendous number

of instructions. Function-in-lining does not increase

the overlap such as instruction scheduling, hence this

optimization keeps energy low and holds the power

constant. This optimization can be a good candidate

to use in the \compile for power/energy" switch.

These examples show that compilers can be op-

timized to produce code for low power or low en-

ergy, without sacri�cing performance. In this study

we hope to expose the current void in the area of

power/energy-aware compilers and attempt to iden-

tify good candidates for further improvement.

4 Compiler Optimizations

In our study we evaluate the inuence of compiler

optimizations on processor power/energy using the

native C compiler cc on a Dec Alpha 21064 running

the OSF1 operating system. We also used the gcc

compiler to study the e�ect of a few individual op-

timizations. The details of both the compilers and

their di�erent options are presented in the following

subsections.

4.1 Standard Optimization Levels on

cc and gcc

The di�erent levels in the cc compiler, along with the

optimizations performed at each level are described

below.

-O0 No optimizations performed. In this level, the

compiler's goal is to reduce the cost of compilation.

Only variables declared register are allocated in reg-

isters.

-O1 Many local optimizations and global optimiza-

tions are performed. These include recognition and

elimination of common subexpressions, copy propa-

gation, induction variable elimination, code motion,

test replacement, split lifetime analysis, and some

minimal code scheduling.

-O2 This level does inline expansion of static pro-

cedures. Additional global optimizations that im-

prove speed (at the cost of extra code size), such as

integer multiplication and division expansion (using

shifts), loop unrolling, and code replication to elimi-

nate branches are also performed. Loop unrolling and

elimination of branch instructions increase the size of

the basic blocks. This helps the hardware exploit in-

struction level parallelism (ILP) in the program.

-O3 Includes all -O2 optimizations and also does

inline expansion of global procedures performed.

3



A

B

D

F

A

B

D

F

A

B

D

F

E

C

E

C

CE

cycle 1

cycle 2

cycle 3

cycle 4

cycle 1

cycle 2

cycle 3

cycle 4

       Energy = 6

       Energy = 6
(b) Peak Power = 3

(c) Peak Power = 2

(a) Example DDG

Figure 1: Motivating Example

-O4 Software pipelining, an aggressive instruction

scheduling technique used to exploit ILP in loops is

performed using dependency analysis. Vectorization

of some loops on 8-bit and 16-bit data is also done.

This level also invokes a scheduling pass which inserts

NOP instructions to improve the scheduling.

We use the FORTRAN g77 compiler to compile

the SpecFP benchmarks. g77 is a program to call gcc

with options to recognize programs written in For-

tran. The standard optimization levels o�ered by gcc

are listed below:

-O0 No optimizations performed.

-O1 This level is very similar to the -O1 in cc.

Optimizations performed are common subexpression

elimination, combining instruction through substitu-

tion (copy propagation), dead-store elimination, loop

strength reduction and minimal scheduling.

-O2 Nearly all supported optimizations that do not

involve a space-speed tradeo� are performed. Loop

unrolling and function inlining are not done, for ex-

ample. This level also includes an aggressive instruc-

tion scheduling pass.

-O3 This turns on everything that -O2 does, along

with also inlining of procedures.

We note that in both cc and gcc, the optimizations

that increase the ILP in a program are in optimiza-

4



tion levels -O2, -O3 and -O4 (-O4 only in cc). The

di�erent levels include almost the same optimizations

in both the compilers. We use both cc and gcc in

our work. We use cc wherever possible, gcc wherever

speci�c hooks to control individual optimizations are

required.

4.2 Individual Optimizations

We analyze the impact of four di�erent individual op-

timizations provided by gcc. We chose gcc for this be-

cause gcc provides more number of distinct individual

optimizations than cc to chose from. All the individ-

ual optimizations are applied on top of optimizations

performed at -O1. The individual optimizations cho-

sen are:

-fschedule-insns This optimization attempts to re-

order instructions to eliminate execution stalls that

occur due unavailability of required data. This helps

machines that have slow oating point or memory

load instructions by allowing other instructions to be

issued until the result of the load or oating point

instruction is required. The scheduler used is a basic-

block list-scheduler and it is run after local register

allocation has been performed.

-fschedule-insns2 Similar to -fschedule-insns, but

requests an additional pass of instruction scheduling

after register allocation has been done. This pass

does aggressive global scheduling before and after

global register allocation. Postpass scheduling (when

scheduling is done after register allocation) minimizes

the pipeline stalls due to the spill instructions intro-

duced by register allocation.

-�nline-functions Integrates all simple functions

into their callers. The compiler heuristically decides

which functions are simple enough to be worth inte-

grating in this way.

-funroll-loops Perform the optimization of loop un-

rolling. This is done only for loops whose number of

iterations can be determined at compile time or run

time.

5 Experimental Results

In this section we �rst describe the Wattch simula-

tor and our benchmarks. We then present a detailed

analysis of our results.

5.1 Wattch 1.0 and Benchmarks

We use the Wattch 1.0 simulator [2] for our ex-

perimentation. Wattch is an architectural simula-

tor that estimates CPU energy consumption. The

power/energy estimates are based on a suite of pa-

rameterizable power models for various hardware

structures in the processor and on the resource us-

age counts. The power models are interfaced with

Simplescalar [4]. sim-outorder, Simplescalar's out-

of-order issue simulator has been modi�ed to keep

track of which unit is being accessed in each cycle

and record the total energy consumed for an applica-

tion.

Wattch has three di�erent options for clock gat-

ing to disable unused resources in the processor. The

simplest clocking style assumes that the full modeled

power will be consumed if any accesses occur in a

given cycle, and zero otherwise. This is ideal clock

gating. The second possibility assumes that if only

a portion of a unit's port are accessed, the power is

scaled linearly according to the number of ports be-

ing used. In the third clock gating scheme, power

is scaled linearly with port or unit usage, but un-

used units dissipate 10% of their maximum power.

This corresponds to the static power dissipated when

there is no activity in unit. We chose power and en-

ergy results corresponding to the third scheme since

it is the most realistic of all schemes. We used the

default con�guration in sim-outorder for our study,

but changed the RUU (Register Update Unit) from

16 to 32 and LSQ (Load Store Queue) LSQ size from

8 to 16. The functional unit latencies exactly match

the functional units latencies in the Alpha 21064 pro-

cessor. We use the process parameters for a .35um

process at 600MHz.

We chose six di�erent benchmarks for our study

- three SpecInt95 benchmarks, namely compress, go

and li, two SpecFp95 benchmarks su2cor and swim,

and saxpy, a toy benchmark.

5.2 Results

In the following subsections we present a detailed

analysis of the results obtained. We �rst discuss the

inuence of standard optimizations on energy and

power following which we study the e�ects of indi-

vidual optimizations.

5



5.2.1 Inuence of Standard Optimizations on

Energy

Table 5.2.1 shows the results obtained when the

benchmarks are compiled with di�erent standard op-

timizations levels. We present the results of all opti-

mizations relative to the result of optimization level

-O0. For example, when we consider the number of

instructions, the percentage of instructions executed

by a benchmark optimized with option -O2 is given

by:

% of Insts Executed by ProgramO2

=
# of Insts Executed by ProgramO2

# of Insts Executed by ProgramO0
� 100

For example, in Table 5.2.1, we see that compress

when compiled with -O2 executed 17.96% fewer in-

structions than compress when compiled with -O0.

Our results are presented in this form for all bench-

marks and for all optimizations. As mentioned in Sec-

tion 4, we used cc to compile the SpecInt benchmarks

and saxpy and g77 to compile the SpecFP bench-

marks su2cor and swim.

We observe that the number of instructions com-

mitted drops drastically from optimization -O0 to

-O1, and also drops signi�cantly in codes optimized

with -O2 and -O3. There is however a very marginal

increase in the number of instructions in compress.

In codes optimized with -O4 option, the number of

instructions increases due to the extra NOPs code

generated for scheduling.

The reduction in number of instructions directly in-

uences execution time or performance. The perfor-

mance improvement is signi�cant in -O1 when com-

pared to -O0, sometimes as high as 73% (swim). -O2,

-O3 also lead to signi�cant improvement over -O1, for

example, we see an 8% improvement in li with -O2

optimization. In some benchmarks like saxpy the im-

provement is only about 0.6%. Optimizations -02,

-O3 improve performance in compress even though

the number of instructions increases.

The energy consumed by the code is again directly

proportional to the number of instructions. Here we

see that even though -02, -O3 improve performance

in compress, the energy consumed is higher. This is

because of the higher number of instructions. Hence,

the amount of work done is more. In all the bench-

marks, we see that the energy decreases when the

number of instructions decrease. Hence, if we are

compiling for energy, we should chose optimizations

such as common sub-expression elimination, induc-

tion variable elimination and unrolling that reduce

the number of instructions executed. Optimizations

such as the ones in -O4 (inserting NOPs to improve

scheduling), may improve performance, but can also

increase the number of instructions, leading to higher

energy requirements. The energy increase is seen to

be up to 4% (in compress).

5.2.2 Inuence of Standard Optimizations on

Power

To study the inuence of compiler optimizations on

power, we again refer to Table 5.2.1. We see that

though the number of instructions and the number

of cycles taken reduces in higher optimization levels,

the number of instructions do not reduce enough to

keep the instructions per cycle (IPC) constant. IPC

reduces in -O1 codes but increases in -O2, -O3 and

-O4 codes. IPC in -O0 is low because of the poor

quality of code produced. Since optimizations such as

common subexpression elimination improve code by

reducing instructions rather than increasing available

parallelism, IPC does not increase in -O1 codes. Most

optimizations that increase IPC such as instruction

scheduling, loop unrolling etc are included in -O2,

-O3 and -O4 levels. Power dissipated is the amount

of work done in one cycle. This is directly propor-

tional to the IPC. Hence, we see that optimizations

that increase IPC, increase the power dissipated. In-

struction scheduling and other -O2, -O3 optimiza-

tions are good for performance improvement but are

bad when instantaneous power is the main concern.

5.2.3 Inuence of Individual Optimizations

on Energy and Power

We refer to Tables 2 to 7 for experiments on

how the di�erent individual optimizations a�ect

power/energy. We show the results for each bench-

mark separately. The tables show the performance,

power and energy of each of the optimizations rela-

tive to performance, power and energy of code with

-O0 (similar to Table 5.2.1). Since the individual op-

timizations are applied over the -O1 option, in our

discussions, we always compare results of the opti-

mizations with results of -O1. We �rst discuss the

e�ects of the instruction scheduling options.

The -fschedule-instr optimization does simple basic

block list-scheduling and -fschedule-instr2 does ag-

gressive global scheduling. We expect both options

6



Table 1: E�ects of Standard Optimization on Power/Energy

Benchmark opt level Energy Exec Time Insts Avg Power IPC

O0 100.00 100.00 100.00 100.00 100.00

O1 74.48 81.55 81.52 91.33 99.96

compress O2 75.13 81.44 82.04 92.25 100.73

O3 75.13 81.44 82.04 92.25 100.73

O4 79.01 82.77 86.11 95.45 104.03

O0 100.00 100.00 100.00 100.00 100.00

O1 66.20 64.13 68.94 103.23 107.50

go O2 62.62 61.31 63.01 102.14 102.78

O3 62.62 61.31 63.01 102.14 102.78

O4 63.67 62.19 63.75 102.38 102.51

O0 100.00 100.00 100.00 100.00 100.00

O1 81.32 83.66 83.18 97.20 99.42

li O2 79.60 75.97 82.97 104.78 109.21

O3 79.60 75.97 82.97 104.78 109.21

O4 85.71 77.89 90.96 110.05 116.78

O0 100.00 100.00 100.00 100.00 100.00

O1 97.38 100.24 92.49 97.15 92.27

saxpy O2 97.69 99.38 92.49 98.30 93.07

O3 97.69 99.38 92.49 98.30 93.07

O4 98.31 99.27 92.84 99.02 93.51

O0 100.00 100.00 100.00 100.00 100.00

O1 42.09 51.04 33.21 82.46 65.06

su2cor O2 40.99 47.52 33.10 86.28 69.67

O3 40.99 46.37 33.10 87.65 71.38

O0 100.00 100.00 100.00 100.00 100.00

O1 30.10 36.64 20.01 82.15 54.63

swim O2 28.93 34.01 19.05 85.06 56.01

O3 28.93 34.01 19.05 85.06 56.01

Table 2: Individual Optimizations on Compress

opt level Energy Exec Time Insts Power IPC

O0 100.0 100.0 100.0 100.0 100.0

O1 67.66 74.68 60.46 90.60 80.95

inline-func 67.69 74.68 60.46 90.63 80.95

sched-instr2 68.82 74.94 63.21 91.82 84.35

sched-instr 66.66 73.47 59.83 90.72 81.43

unroll-loops 66.84 74.19 59.90 90.09 80.74

Table 3: Individual Optimizations on li

opt level Energy Exec Time Insts Power IPC

O0 100.00 100.00 100.00 100.00 100.00

O1 70.91 74.67 66.18 94.96 88.63

inline-func 71.02 73.14 68.00 97.11 92.97

sched-instr2 69.56 66.65 68.33 104.36 102.52

sched-instr 69.56 66.65 68.33 104.36 102.52

unroll-loops 66.05 59.91 68.19 110.24 113.81

to increase the IPC and hence the power. We can

see from the tables that IPC goes up in most bench-

marks, in some benchmarks up to 4.6% (in su2cor).

The power increase is up to 3.9% . In li, the power

increases by as much as 10%. The aggressive sched-

uler (prepass scheduler) increases register pressure

7



Table 4: Individual Optimizations on saxpy

opt level Energy Exec Time Insts Power IPC

O0 100.00 100.00 100.00 100.00 100.00

O1 96.78 98.56 96.21 98.19 97.61

inline-func 96.78 98.56 96.21 98.19 97.61

sched-instr2 97.07 97.14 96.27 99.93 99.11

sched-instr 96.79 98.52 96.15 98.24 97.60

unroll-loops 96.87 98.72 95.97 98.13 97.21

Table 5: Individual Optimizations on su2cor

opt level Energy Exec Time Insts Power IPC

O0 100.00 100.00 100.00 100.00 100.00

O1 42.09 51.04 33.21 82.47 65.07

inline-func 42.06 51.01 33.21 82.46 65.11

sched-instr2 42.49 50.36 34.02 84.38 67.55

sched-instr 40.90 47.79 33.30 85.58 69.67

unroll-loops 40.17 48.35 31.17 83.08 64.46

Table 6: Individual Optimizations on swim

opt level Energy Exec Time Insts Power IPC

O0 100.00 100.00 100.00 100.00 100.00

O1 30.06 36.64 20.02 82.02 54.64

inline-func 30.06 36.64 20.02 82.02 54.64

sched-instr2 30.91 36.39 20.53 84.92 56.41

sched-instr 29.83 35.11 20.32 84.95 57.86

unroll-loops 29.29 35.38 18.19 82.80 51.43

Table 7: Individual Optimizations on go

opt level Energy Exec Time Insts Power IPC

O0 100.00 100.00 100.00 100.00 100.00

O1 40.97 42.75 42.65 95.83 99.77

inline-func 40.92 42.78 42.58 95.64 99.54

sched-instr2 43.07 44.01 45.25 97.87 102.82

sched-instr 43.52 44.89 46.52 96.96 103.63

unroll-loops 39.38 41.95 39.30 93.88 93.69

and hence causes signi�cant number of spills, thereby

increasing the total number of instructions executed

and the total energy. The increase in number of in-

structions and energy are up to 3.52% and 2.14% re-

spectively. This optimization needs to be improved

upon if power and energy are a concern. We would see

a greater impact of these optimizations if the target

processor was an in-order machine, wherein the com-

piler if fully responsible for exposing the parallelism.

In an out-of-order issue machine, the hardware can

�nd the parallelism even if the compiler does not do

any reordering. The reason why we see some im-

provement in performance (and increase in IPC) is

because the hardware is limited by the instruction

window size, the global scheduler which has the full

program as its scope helps the hardware see more

instructions than it otherwise would have.

We next discuss the impact of unrolling. Unrolling

appears to be a good optimization to use for energy

because the number of instructions reduce signi�-

cantly. We are able to reduce the number of instruc-

8



tions by 3.35% in go, the energy falls by 1%. We see

that in the some benchmarks the energy falls by 5%

(li). However, reducing the energy does not necessar-

ily reduce power. For instance, in li, the power goes

up by 10%. Unrolling increases the size of the basic

block, hence allows the hardware increase the over-

lap of instructions. This leads to an increase in the

number of simultaneous operations being executed.

It may be noted that the IPC in li increases by 25%.

However, this observation is not consistent among all

the benchmarks, in many benchmarks, there is no

increase in IPC. This is because the target architec-

ture has a good branch predictor, it does unrolling

in hardware, hence reducing the impact of software

unrolling. We are currently investigating how the un-

rolling optimization a�ects power if we turned o� the

branch prediction hardware. We expect to see a sig-

ni�cant increase in IPC and power in the codes after

unrolling has been applied.

Our next optimization is inlining of function calls.

Inlining as explained in the motivation section will

reduce the number of instructions and hence energy.

However, in our benchmarks, only go and su2cor a

very marginal decrease in energy. In our future work,

we will be investigating further with a better set of

benchmarks more suited for this optimization.

6 Conclusions

In this paper we evaluated the impact of using the

di�erent levels of optimizations in the cc compiler on

system power and energy. We also evaluated the ef-

fect of a few individual optimizations. We found the

that energy consumption reduces when the optimiza-

tions reduce the number of instructions executed by

the program, i.e., when the amount of work done is

less. The standard optimization level -O1 reduces

the number of instructions drastically as compared

to -O0 because it invokes optimizations such as com-

mon subexpression elimination, an optimization used

to eliminate redundant computations in the program.

The drop is not as that signi�cant in -O2, -O3 and

-O4 optimizations. The energy also drops in the same

proportion.

We found power dissipation to be directly propor-

tional to the average IPC of program. -O2, -O3 and

-O4 levels have signi�cantly higher IPC and hence

higher average power. The optimization levels -O2,

-O3 and -O4 include optimizations such as instruc-

tion scheduling, which are typically used to increase

the parallelism in the code.

Out of the four individual optimizations we evalu-

ated, we found unrolling to be a good optimization

for energy reduction but it increases power dissipa-

tion. Function inlining is good for both energy re-

duction and reducing power dissipation. Instruction

scheduling was found to be a bad optimization to use

when power is a concern. Simple schedulers did not

a�ect the energy consumption, but aggressive sched-

ulers i.e., schedulers that increased register pressure

and introduced spills, increased the energy consump-

tion as well. For our future work, we would like to

evaluate more individual optimizations and improve

the ones that we �nd are currently unoptimized for

power or energy.

References

[1] K. Asanovic. Energy-exposed instruction set ar-

chitectures. Work In Progress Session, Sixth

International Symposium on High Performance

Computer Architecture, Jan 2000.

[2] D. Brooks, V. Tiwari, and M. Martonosi.

Wattch: A framework for architectural-level

power analysis and optimizations. In 27th Inter-

national Symposium on Computer Architecture,

Jun 2000.

[3] J. Bunda, W. C. Athas, and D. Fussell. Evalu-

ating power implication of cmos microprocessor

design decisions. In 1994 International Work-

shop on Low Power Design, April 1994.

[4] D. Burger and T. M. Austin. Evaluating fu-

ture microprocessors: The simplescalar tool set.

Technical report, Dep. of Comp. Sci., Univ. of

Wisconsin, Madison, 1997.

[5] M. K. Gowan, L. L. Biro, and D. B. Jackson.

Power considerations in the design of the alpha

21264 microprocessor. In Design Automation

Conference, pages 726{731, 1998.

[6] N. B. I. Hajj, C. Polychronopoulos, and G. Sta-

moulis. Architectural and compiler support for

energy reduction in the memory hierarchy of

high performance microprocessors. In ISLPED

98, pages 70{75, July 1998.

9



[7] M. Kandemir, N. Vijaykrishnan, M. J. Irwin,

and W. Ye. Inuence of compiler optimizations

on system power. In Design Automation Con-

ference, July 2000.

[8] J. Kin, M. Gupta, and W. H. Mangione-Smith.

The �lter cache: An energy e�cient memory

structure. In 30th International Symposium on

Microarchitecture, pages 184{193, Dec 1997.

[9] S. Manne, A. Klauser, and D. Grunwald.

Pipeline gating: Speculation control for energy

reduction. In 25th International Symposium on

Computer Architecture, pages 1{10, Jun 1998.

[10] C.-L. Su and A. M. Despain. Cache designs for

energy e�ciency. In 28th Annual Hawaii Inter-

national Conference on System Sciences, pages

306{315, 1995.

[11] C. L. Su, C. Y. Tsui, and A. M. Despain. Low

power architecture design and compilation tech-

niques for high-performance processors. In IEEE

COMPCON, Feb. 1994.

[12] M. C. Toburen, T. M. Conte, and M. Reilly. In-

struction scheduling for low power dissipation in

high performance microprocessors. In Power-

Driven Microarchitecture Workshop In Conjunc-

tion With ISCA 1998, Jun 1998.

10


