
Improving Dynamic Cluster Assignment
for Clustered Trace Cache Processors

Ravi Bhargava and Lizy K. John
Electrical and Computer Engineering Department

The University of Texas at Austin
{ravib,ljohn}@ece.utexas.edu

Abstract

This work examines dynamic cluster assignment for a
clustered trace cache processor (CTCP). Previously pro-
posed cluster assignment techniques run into unique prob-
lems as issue width and cluster count increase. Realistic
design conditions, such as variable data forwarding laten-
cies between clusters and a heavily partitioned instruction
window, increase the degree of difficulty for effective cluster
assignment.

In this work, the trace cache and fill unit are used to per-
form dynamic cluster assignment. The retire-time fill unit
analysis is aided by a dynamic profiling mechanism em-
bedded within the trace cache. This mechanism provides
information about inter-trace data dependencies, an ele-
ment absent in previous retire-time CTCP cluster assign-
ment work. The strategy proposed in this work leads to more
intra-cluster data forwarding and shorter data forwarding
distances. In addition, performing cluster assignment at re-
tire time reduces issue-time complexity and eliminates early
pipeline stages. This increases overall performance for in-
teger programs by 11.5% over our base CTCP architecture.
This speedup is significantly higher than a previously pro-
posed retire-time CTCP assignment strategy. Dynamic clus-
ter assignment is also evaluated for several alternate cluster
designs as well as for media benchmarks.

1. Introduction

A clustered microarchitecture design allows for wide in-
struction execution while reducing the amount of complex-
ity and long-latency communication [4, 5, 6, 8, 12, 20].
The execution resources are partitioned into smaller units.
Within a cluster, communication is fast, but inter-cluster
communication is more costly. Therefore, the key to high
performance on a clustered microarchitecture is assigning
instructions to clusters in a way that limits data communi-

cation between clusters.
During cluster assignment, an instruction is designated

to execute on a particular cluster. This assignment process
can be accomplished statically, dynamically at issue time,
or dynamically at retire time. Static cluster assignment is
traditionally done by a compiler or assembly programmer.
Studies that have compared static and dynamic assignment
conclude that dynamic assignment results in higher perfor-
mance [4, 16].

Dynamic issue-time cluster assignment occurs after in-
structions are fetched and decoded. In recent literature,
the prevailing philosophy is to assign instructions to a
cluster based on data dependencies and workload balance
[4, 12, 16, 20]. The precise methodology varies based on
the underlying architecture and execution cluster character-
istics.

Typical issue-time cluster assignment strategies do not
scale well. Dependency analysis is an inherently serial pro-
cess that must be performed in parallel on all fetched in-
structions. Therefore, increasing the width of the microar-
chitecture further delays and frustrates this dependency
analysis (also noted by Zyuban et al. [20]). Accomplishing
even a simple steering algorithm requires additional stages
early in the instruction pipeline.

In this work, the clustered execution architecture is com-
bined with an instruction trace cache, resulting in a clus-
tered trace cache processor (CTCP). A CTCP achieves a
very wide instruction fetch bandwidth using the trace cache
to fetch past multiple branches in a low-latency and high-
bandwidth manner [14, 15, 18].

The CTCP environment facilitates the use of retire-time
cluster assignment, which addresses many of the problems
associated with issue-time cluster assignment. Cluster as-
signment is accomplished at retire time by physically (but
not logically) reordering instructions within a trace cache
line so that they are issued directly to the desired cluster.
The issue-time dynamic cluster assignment logic and steer-
ing network can therefore be removed entirely, eliminating
critical latency from the front-end of the pipeline.

Friendly et al. present a retire-time cluster assignment
strategy for a CTCP based on intra-trace data dependency
analysis [7]. The trace cache fill unit is capable of per-
forming advanced analysis, since the latency at retire time
is more tolerable and less critical to performance [7, 9]. The
shortcoming of this strategy is a loss of dynamic informa-
tion. Inter-trace dependencies and workload balance infor-
mation are not available at instruction retirement.

In this work, we increase the performance of a wide issue
CTCP using a feedback-directed, retire-time (FDRT) clus-
ter assignment strategy. Extra fields are added to the trace
cache to accumulate inter-trace dependency history. The fill
unit combines this information with intra-trace dependency
analysis to determine cluster assignments.

This novel strategy increases the intra-cluster data for-
warding by 55% while decreasing the average data forward-
ing distance by 40% over our baseline four-cluster, 16-way
CTCP. This leads to an 11.5% improvement in performance
over our base architecture compared to a 3.1% improvement
for Friendly’s method.

In the remainder of this paper, the architecture of our
baseline clustered trace cache processor and cluster assign-
ment schemes are presented. Section 3 contains a charac-
terization of the dynamic instruction stream. Section 4 il-
lustrates our feedback-directed, retire-time (FDRT) cluster
assignment strategy. Section 5 presents an analysis of the
overall performance improvement and additional insights.
A summary concludes the paper.

2. A Clustered Trace Cache Processor

A clustered microarchitecture is designed to reduce the
performance bottlenecks that result from wide-issue com-
plexity [12]. Structures within a cluster are small and data
forwarding delays are reduced as long as communication
takes place within the cluster.

The target microarchitecture in this work is composed
of four, four-way clusters. Four-wide, out-of-order execu-
tion engines have proven manageable in the past and are the
building blocks of previously proposed two-cluster microar-
chitectures. Similarly configured 16-wide CTCP’s have
been studied [7, 20], but not with respect to the performance
of dynamic cluster assignment options.

An example of the instruction and data routing for the
baseline CTCP is shown in Figure 1. Notice that the cluster
assignment for a particular instruction is dependent on its
placement in the instruction buffer. The details of a single
cluster are explored later in Figure 3.

Inter−Cluster
Data Bypass

C2 C3
CLUSTER 1 CLUSTER 4

Data Memory System

I13I1 I2 I3 I4 I14 I15 I16.
Decoded/Renamed Instruction Trace

Instruction Memory Subsystem (Trace Cache, L1 I−Cache)

Figure 1. Overview of a Clustered Trace Cache Processor
C2 and C3 are clusters identical to Cluster 1 and Cluster 4.

2.1. Shared Components

The front-end of the processor (i.e. fetch and decode) is
shared by all of the cluster resources. Instructions fetched
from the trace cache (or from the instruction cache on a
trace cache miss) are decoded and renamed before finally
being distributed to their respective clusters. The memory
subsystem components, including the store buffer, load
queue, and data cache, are also shared.

Pipeline The pipeline for our baseline microarchitecture
is shown in Figure 2. Three pipeline stages are assigned
for instruction fetch (illustrated as one box). After the
instructions are fetched, there are additional pipeline stages
for decode, rename, issue, dispatch, and execute. Register
file accesses are initiated during the rename stage. Memory
instructions incur extra stages to access the TLB and data
cache. Floating point instructions and complex instructions
(not shown) also endure extra pipeline stages for execution.

D
ec

od
e

FU
 D

is
pa

tc
h

E
xe

cu
te

D
C

 R
et

ur
n

D
C

 A
cc

es
s

D
−

T
L

B

W
ri

te
ba

ck

m
em

St
ee

r
R

S
Is

su
e

R
en

am
e

R
F

A
cc

es
s

Fe
tc

h
x

3

Fi
ll

U
ni

t

Figure 2. The Pipeline of the Baseline CTCP

Trace Cache The trace cache allows multiple basic blocks
to be fetched with just one request [14, 15, 18]. The retir-
ing instruction stream is fed to the fill unit which constructs
the traces that consist of up to three basic blocks. When the
traces are constructed, the intra-trace and intra-block depen-
dencies are analyzed. This allows the fill unit to add bits
to the trace cache line, which accelerates register renaming

and instruction steering [14].

2.2. Cluster Design

The execution resources modeled in this work are heav-
ily partitioned. As shown in Figure 3, each cluster con-
sists of five reservation stations which feed a total of eight
special-purpose functional units. The reservation stations
hold eight instructions and permit out-of-order instruction
selection. The economical size reduces the complexity of
the wake-up and instruction select logic while maintaining
a large overall instruction window size [12].

RSRSRSRSRS

ALUALU BR

INTRA−CLUSTER INSTRUCTION CROSSBAR

DATA BYPASS
INTRA−CLUSTER

DATA RESULT BUS

MEMCPX

To Load & Store Queues

Data Bypass

Inter−Cluster

IN

OUT

Figure 3. Design Details of One Cluster
There are eight special-purpose functional units per cluster: two simple integer
units (ALU), one integer memory unit (MEM), one branch unit (BR), one complex
integer unit (CPX), one basic floating point (FP), one complex FP, one FP memory
(floating point units are not shown). There are five 8-entry reservation stations:
one for the memory operations (integer and FP), one for branches, one for complex
arithmetic, two for the simple operations.

Intra-cluster communication (i.e. forwarding results
from the execution units to the reservation stations within
the same cluster) is done in the same cycle as instruction
dispatch. However, to forward data to a neighboring clus-
ter takes two cycles. Forwarding beyond an adjacent cluster
takes an additional two cycles for each cluster hop. This
latency includes all of the communication and routing over-
head associated with sharing inter-cluster data [13, 20]. The
end clusters (clusters 1 and 4) do not communicate directly.
There are no data bandwidth limitations between clusters in
our work. Parcerisa et al. show that a point-to-point inter-
connect network can be built efficiently and is preferable to
bus-based interconnects [13].

2.3. Cluster Assignment

The challenge to high performance in clustered microar-
chitectures is assigning instructions to the proper cluster.

This includes identifying the proper destination cluster and
then routing the instructions accordingly. With 16 instruc-
tions to analyze and four clusters from which to choose,
picking the best execution resource is not straightforward.

Accurate dependency analysis is a serial process and is
difficult to accomplish in a timely fashion. For example,
approximately half of all result-producing instructions have
data consumed by an instruction in the same cache line [1].
Some of this information can be preprocessed by the fill
unit, but issue-time processing is also required. Properly
analyzing the relationships is critical but costly in terms of
pipeline stages. Any extra pipeline stages at issue time hurt
performance when the pipeline refills after branch mispre-
dictions and instruction cache misses.

Totally flexible routing is also a high-latency process.
Instead, our baseline architecture steers instructions to a
cluster based on the instruction’s physical placement in the
instruction buffer. Instructions are sent in groups of four
to their corresponding cluster where they are routed on a
smaller crossbar to their proper reservation station. This
style of partitioning results in less complexity and fewer
critical pipeline stages, but is restrictive in terms of issue-
time flexibility and steering capabilities.

A large crossbar would permit instruction movement
from any position in the instruction buffer to any of the
clusters. In addition to the latency and complexity draw-
backs, this option mandates providing enough reservation
station write ports to accommodate up to 16 new instruc-
tions per cycle. Therefore, we concentrate on simpler,
low-latency instruction steering options.

Assignment Options For comparison purposes, we look at
the following dynamic cluster assignment options:

• Issue Time: Instructions are distributed to the cluster
where one or more of their data inputs are known to be
generated. Inter-trace and intra-trace dependencies are
visible. In each cycle, a maximum of four instructions
can be assigned to each cluster. In addition to sim-
plifying the hardware, this limit balances the cluster
workloads. The issue-time cluster assignment option is
examined with two different latencies for dependency
analysis, instruction steering, and routing: 1) the ideal
case of zero latency and 2) four cycles of latency.

• Friendly Retire Time: This is the only previously
proposed fill unit cluster assignment policy of which
we are aware. Friendly et al. propose a fill unit reorder-
ing and assignment scheme based on intra-trace depen-
dency analysis [7]. Their scheme assumes a front-end
scheduler restricted to simple slot-based issue, as in
our base model. For each issue slot, each instruction
is checked for an intra-trace input dependency for the
respective cluster. Based on these data dependencies,
instructions are physically reordered within the trace.

3. CTCP Characteristics

The following characterization serves to highlight the
cluster assignment optimization opportunities. The data is
collected for our base trace cache processor which has a
maximum trace line size of 16 instructions (more architec-
ture details in Table 7).

3.1. Instruction Stream Analysis

Table 1 presents run-time trace cache characteristics for
our benchmarks. The first metric (% TC Instr) is the per-
centage of all retired instructions that were fetched from the
trace cache. Benchmarks with a large percentage of trace
cache instructions benefit more from fill unit optimizations
since instructions from the instruction cache are not opti-
mized for the CTCP. Trace Size is the average number of
instructions per trace line. When the fill unit does the intra-
trace dependency analysis for a trace, this is the available
optimization scope.

Table 1. Trace Cache Characteristics

% TC Instr Trace Size
bzip2 99.31 10.46
eon 72.63 10.21
gzip 91.36 11.79
perlbmk 86.43 10.91
twolf 78.03 10.32
vpr 86.67 11.10
Avg 85.74 10.80

Figure 4 breaks down the sources of the most critical in-
put. The input data that arrives last is defined to be the most
critical. This figure presents the percentage of instructions
that had their most critical input arrive from the register file,
the producer for RS1, and the producer for RS2. On aver-
age, 44% of the instructions obtain their critical input data
from the register file, 31% receive their final data input from
the producer for register RS1, and 25% from the producer
for RS2.

Table 2 further analyzes the critical dependencies seen in
data forwarding. The first column indicates the percentage
of all critical data dependencies that are satisfied by data
forwarding. On average, about 83% of dependencies are
critical. Of those, 28% are inter-trace dependencies.

3.2. Impact of Dependency Latencies

Figure 5 presents the performance impact of eliminating
certain dependency-related latencies. The bars labeled No
Fwd Lat represent our base model with no data forward-
ing latency. If all inter-cluster forwarding could take place
in the same cycle, performance would improve by 41.8%.

0%

20%

40%

60%

80%

100%

bzip2 eon gzip perlbmk twolf vpr

D
yn

am
ic

In
st

ru
ct

io
n

s
W

it
h

In
p

u
ts

From RS2
From RS1
From RF

Figure 4. Source of Most Critical Input Dependency
From RS2: Critical input provided by the producer for input RS2. From RS1:
Critical input provided by the producer for input RS1. From RF: Critical input
provided by the register file.

Table 2. Critical Data Forwarding Dependencies
% of all dep.’s % of critical dep.’s
that are critical that are inter-trace

bzip2 85.63% 29.69%
eon 86.58% 35.40%
gzip 80.94% 24.38%
perlbmk 86.11% 27.76%
twolf 78.58% 23.95%
vpr 82.32% 25.84%
Avg 83.36% 27.84%

Next, only the last forwarded value to an instruction is given
a latency of zero cycles (No Crit Fwd Lat). This improves
performance by 37.2%1. This result means that most of the
improvement provided by eliminating all forwarding laten-
cies is achieved just by eliminating the latency for the last
arriving data input. This observation is exploited in the pro-
posed cluster assignment scheme.

The speedup due to eliminating the register file read la-
tency is presented in Figure 5 (No RF Lat) and has almost no
effect on overall performance. In fact, register file latencies
between zero and 10 cycles have no impact on performance.
This is due to the abundance and critical nature of in-flight
instruction data forwarding seen in a very wide-issue pro-
cessor.

Finally, the speedups due to only removing inter-trace
and intra-trace data forwarding latencies are also presented
in Figure 5 (No Inter-Trace Lat and No Intra-Trace Lat).
Reducing the inter-trace forwarding latency to zero cycles
improves performance by 15.5% while a similar theoretial
improvement for intra-trace forwarding results in a 17.7%
performance gain.

Table 2 shows a large percentage of intra-trace depen-

1For bzip2, the branch predictor accuracy is sensitive to the rate at
which instructions retire and the “better” case with no data forwarding la-
tency actually leads to a 3.5% increase in branch mispredictions and worse
performance.

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

bzip2 eon gzip perlbmk twolf vpr HM

S
p

ee
d

u
p

O
ve

r
B

as
e

No Fwd Lat No Crit Fwd Lat No Intra-Trace Lat No Inter-Trace Lat No RF Lat

Figure 5. Expected Speedup Removing Certain Latencies
The base processor described in Section 5.1 is used, where the default inter-cluster
forwarding latency is two cycles and the default intra-cluster forwarding latency
is zero cycles. Also, note that the y-axis starts at 0.90. However, no speedups fall
below 1.00.

dencies. Despite this, the speedup gained by removing the
inter-trace forwarding latency is similar to that of removing
intra-trace forwarding latency. In the case of bzip2, remov-
ing inter-trace data forwarding latencies is more beneficial
than intra-trace.

These results imply that an inter-trace dependency is
more critical to advancing execution than an intra-trace de-
pendency. One explanation is that the producer of an inter-
trace dependency is by definition in a separate trace and
must issue in a later cycle, which is not the case with intra-
trace dependencies. Also, all inter-trace dependencies are
also inter-basic block dependencies. An input from another
basic block often triggers a chain of computations within a
basic block.

3.3. Resolving Inter-Trace Dependencies

The fill unit can accurately determine intra-trace data de-
pendencies. Since a trace is an atomic unit in the trace
cache, the same intra-trace instruction data dependencies
will exist when the trace is later fetched. However, incorpo-
rating inter-trace dependencies at retire time is essentially a
prediction of issue-time dependencies from unknown pro-
ducers, which may exist thousands or millions of cycles in
the future.

This problem presents an opportunity for an execution
history-based mechanism to predict the source clusters or
producers for instructions with inter-trace dependencies.
Table 3 examines how often an instruction’s forwarded data
comes from the same producer instruction. For each static
instruction, the program counter of the last producer is
tracked for each source register (RS1 and RS2). The sec-
ond and third columns of the table show that an instruction’s
data forwarding producer is the same for RS1 97.1% of the

time and the same for RS2 94.5% of the time.

Table 3. Frequency of Repeated Forwarding Producers

All Critical Inter-trace
Input RS1 Input RS2 Input RS1 Input RS2

bzip2 97.44% 97.66% 89.30% 91.17%
eon 93.83% 89.84% 85.79% 73.34%
gzip 98.14% 99.02% 92.93% 96.04%
perlbmk 97.78% 93.79% 90.83% 79.27%
twolf 96.69% 90.78% 87.09% 76.40%
vpr 98.53% 96.06% 95.64% 91.67%
Average 97.07% 94.52% 90.26% 84.65%

The last two columns isolate the critical producers of
only inter-trace consumers. These percentages are expect-
edly lower, but producers are still repeated for 90.3% of the
critical inter-trace RS1 inputs and for 84.7% of the critical
inter-trace RS2 inputs. Therefore, a basic prediction mech-
anism could work with a high degree of success.

4. Retire-Time Cluster Assignment

This section presents the background, motivation, and
details for our feedback-directed, retire-time (FDRT) clus-
ter assignment scheme. The proposed cluster assignment
enhancements take advantage of the dynamic optimization
opportunities of a long-latency fill unit. The FDRT strat-
egy improves retire-time cluster assignment by assigning
instructions to a cluster based on both intra-trace and inter-
trace dependencies. In addition, the critical instruction in-
put is considered.

The fill unit is available at instruction retirement to an-
alyze the instruction dependencies. Instructions are phys-
ically reordered to match the desired cluster assignments.
Since there are no issue-time decisions or routing, the in-
structions must be physically placed within the trace so that
they issue directly to the desired execution cluster when the
trace is later fetched from the trace cache.

The physical reordering does not affect the logical order-
ing of the instructions. Instructions retire in the same order
regardless of their physical position in the trace cache line.
The logical order is marked in the trace cache line by the fill
unit. Though this adds some complexity, techniques such as
precomputing register renaming information and predecod-
ing help to mitigate complexity issues [7]. The important
result is that physical reordering reduces inter-cluster com-
munications while maintaining low-latency, complexity-
effective issue logic.

Previously, a fill unit latency of up to 10 cycles
was shown to have negligible effects on overall perfor-
mance [14]. In our environment, simulations have shown
that a latency of 1000 cycles does not significantly impact
FDRT performance [2].

4.1. Chaining Instructions

One goal of FDRT assignment is to speculatively assign
dependent inter-trace instructions to the same cluster. This
not only requires identifying the dependent pairs but also
identifying the cluster to which they should be assigned. To
accomplish this, designated producers of inter-trace depen-
dencies are provided with a suggested destination cluster.
Later on, the fill unit will attempt to accommodate this sug-
gestion. These instructions pass this cluster value to their
inter-trace consumers and those consumers pass it to their
inter-trace consumers and so on. In this manner, key pro-
ducers and their subsequent inter-trace consumers can be
routed to the same cluster.

This chaining forces intra-cluster data forwarding be-
tween inter-trace dependencies, and in the process a cluster
chain of instructions with inter-trace dependencies is cre-
ated. The first instruction of the cluster chain is called a
leader. The subsequent links of the chain are referred to as
followers.

Physically reordering instructions at retire time based on
inter-trace data dependency history can cause more inter-
cluster data forwarding than it eliminates. The same trace
of instructions can be reordered in a different manner each
time the trace is constructed. Producers may shift from one
cluster to another, never allowing consumers to accurately
gauge the cluster from which their input data will be pro-
duced.

To eliminate this effect, when an instruction is assigned
to a cluster chain as a leader or a follower, its suggested ex-
ecution cluster never changes. The idea is to permanently
pin a leader to one cluster and not permit the leader or its
followers to change their chain cluster. The criteria for se-
lecting inter-trace dependency cluster chain leaders and fol-
lowers are presented in Table 4.

Table 4. Leader and Follower Criteria

Conditions to become a cluster chain leader:
1. Cannot already be a leader or a follower
2. Forward data to inter-trace consumer(s)

Conditions to become a cluster chain follower:
1. Not already a leader or follower
2. Producer is a leader or follower
3. Producer is from different trace
4. Producer provides last input data

The key aspect to these guidelines is that only inter-
trace dependencies are considered. Placing instructions
with intra-trace dependencies on the same cluster is easier
and accurate. Therefore, instructions with intra-trace de-
pendences do not require cluster chaining support to estab-
lish dependencies.

4.2. Dynamic Instruction Feedback

The trace cache framework provides a unique instruc-
tion feedback loop. Instructions are fetched from the trace
cache, executed, and then compiled into new traces. This in-
struction feedback enables run-time, instruction-level pro-
filing. By associating a few bits with each instruction in the
trace cache2, a dynamic execution history is built for each
instruction. This execution data remains associated with the
instruction as it travels through the pipeline. This method of
run-time execution profiling is very effective as long as the
trace lines are not frequently evicted from the trace cache.
Zyuban et al. suggest placing static cluster assignments in
the trace cache, but do not provide details, results, or analy-
sis [20].

In our enhanced clustered trace cache processor microar-
chitecture, run-time per-instruction information is used to
provide inter-trace dependency information to the fill unit.
There are two fields added to the trace cache storage:

• Chain Cluster: This field holds the chain cluster num-
ber. Producers forward this two-bit cluster number
along with its result to consumers.

• Leader/Follower Value: This two-bit field indicates
whether the instruction is a leader, a follower, or nei-
ther.

4.3. Cluster Assignment Strategy

The fill unit must weigh intra-trace information along
with the inter-trace feedback from the trace cache instruc-
tion histories. Table 5 summarizes our proposed cluster as-
signment policies. The inputs to the strategy are: 1) the
presence of a critical intra-trace dependency, 2) the cluster
chain status, and 3) the presence of intra-trace consumers.
The fill unit starts with the oldest instruction and progresses
in logical order to the youngest instruction.

Shown as Option A in Table 5, the fill unit attempts to
place instructions that have only an intra-trace dependency
on the same cluster as its producer. If four instructions have
already been assigned to this cluster, there is an attempt to
assign the instruction to the neighbor of the chain cluster.
For an instruction with just an inter-trace chain dependency
(Option B), the fill unit attempts to place the instruction on
the chain cluster (which is found in the Chain Cluster trace
profile field) or a cluster that neighbors the chain cluster.

An instruction can have both an intra-trace dependency
and a chain inter-trace dependency (Option C) if the criti-
cal input changes or an instruction is built into a new trace.
When an instruction has both a chain cluster and an intra-
trace producer, the chain cluster takes precedence (although

2Cacti 2.0 [17] shows that an additional byte per instruction in a trace
cache line does not change the fetch latency of the trace cache.

Table 5. FDRT Cluster Assignment Strategy
Dependency type Option A Option B Option C Option D Option E

if... if... if... if... if...
1. Has intra-trace producer: yes no yes no no
2. Is inter-trace chain member: no yes yes no no
3. Has intra-trace consumer: - - - yes no

then... then... then... then... then...
Resulting Cluster 1. producer 1. chain 1. chain 1. middle 1. skip

Assignment Priority: 2. neighbor 2. neighbor 2. producer 2. skip
3. skip 3. skip 3. neighbor

4. skip

our simulations show that it does not matter which gets
precedence). If there are no instruction slots available for
this cluster, the intra-trace producer’s cluster is the next tar-
get. Finally, neighbors of the chain cluster are tried.

If an instruction has no dynamically forwarded input data
but does have an intra-trace output dependency (Option D),
it is assigned to a middle cluster, reducing potential for-
warding distances.

Instructions are skipped if they have no critical or de-
tectable producers or consumers (Option E), or if they can-
not be assigned to a cluster near their producer (lowest
priority assignment for Options A-D). These instructions
are later assigned to the remaining slots using Friendly’s
method.

5. Performance Evaluation

5.1. Simulation Methodology

The clustered trace cache processor is evaluated using in-
teger benchmarks from the SPEC CPU2000 suite [19]. The
benchmarks and their respective inputs are presented in Ta-
ble 6. The MinneSPEC reduced input set [10] is used when
available. Otherwise, the SPEC test input is used.

Table 6. SPEC CINT2000 Benchmarks

Benchmark Input Src Inputs
bzip2 MinneSPEC lgred.source 1
eon SPEC test chair.control.kajiya chair.camera

chair.surfaces ppm
gzip MinneSPEC smred.log 1
perlbmk MinneSPEC mdred.makerand.pl
twolf MinneSPEC mdred
vpr MinneSPEC mdred.net small.arch.in -nodisp

-place only -init t 5 -exit t 0.005
-alpha t 0.9412 -inner num 2

The benchmark executables are precompiled Alpha bi-
naries available with the SimpleScalar 3.0 simulator [3].
The target architecture for the compiler is a four-way Alpha
21264, which in many ways is convenient for a clustered ar-
chitecture with four-wide clusters. All benchmarks are run
for 100 million instructions.

Six SPEC CPU2000 benchmarks are selected for in-
depth analysis and presentation. They are chosen based on
their sensitivity to data forwarding latency to underscore the
potential of CTCP cluster assignment optimizations. The
benchmarks that show the most performance improvement
potential when using a zero-cycle inter-cluster latency are
chosen. Performance comparison for the entire integer suite
along with 14 MediaBench programs are presented in Sec-
tion 5.6.

To perform the simulations, a detailed, cycle-accurate
microprocessor simulator is interfaced to the functional
simulator from the SimpleScalar 3.0 simulator suite (sim-
fast) [3]. The architectural parameters for the simulated
base microarchitecture are shown in Table 7.

Table 7. Baseline Architecture Configuration

Data memory
L1 Data Cache: 4-way, 32KB, 2-cycle access
L2 Unified cache: 4-way, 1MB, +8 cycles
Non-blocking: 16 MSHRs and 4 ports
D-TLB: 128-entry, 4-way, 1-cyc hit, 30-cyc miss
Store buffer: 32-entry w/load forwarding
Load queue: 32-entry, no speculative disambiguation
Main Memory: Infinite, +65 cycles

Fetch Engine
Trace cache: 2-way, 1K-entry, 3-cycle access
L1 Instr cache: 4-way, 4KB, 2-cycle access
Branch Predictor: 16k-entry gshare/bimodal hybrid
BTB: 512 entries, 4-way

Execution Cluster

· Functional unit # Exec. lat. Issue lat.
Simple Integer 2 1 cycle 1 cycle
Simple FP 2 3 1
Memory 1 1 1
Int. Mul/Div 1 3/20 1/19
FP Mul/Div/Sqrt 1 3/12/24 1/12/24
Int Branch 1 1 1
FP Branch 1 1 1
· Inter-Cluster Forwarding Latency: 2 cycles per hop
· Register File Latency: 2 cycles
· 5 Reservation stations
· 8 entries per reservation station
· 2 write ports per reservation station

· 128-entry ROB · Fetch width: 16
· Decode width: 16 · Issue width: 16
· Execute width: 16 · Retire width: 16

5.2. Performance Analysis

Figure 6 presents the execution time speedups normal-
ized to our base architecture for different dynamic cluster
assignment strategies. Friendly’s method improves perfor-
mance by 3.1%3. The proposed feedback-directed, retire-
time (FDRT) cluster assignment strategy provides an 11.5%
improvement. This improvement in performance is due to
enhancements in both the intra-trace and inter-trace aspects
of cluster assignment.

The two retire-time instruction reordering strategies are
also compared to issue-time instruction steering in Figure 6.
In one case, instruction steering and routing is modeled
with no latency (labeled as No-lat Issue-time) and in the
other case, four cycles are modeled (Issue-time). The re-
sults show that latency-free issue-time steering is the best
overall option studied, with a 17.2% improvement over the
base. This is the best performance method for all bench-
marks except bzip2, where the FDRT strategy for cluster
assignment is preferable. When applying a four-cycle la-
tency, issue-time steering is only preferable for half of the
benchmarks, and the average performance improvement is
comparable to FDRT cluster assignment. Section 5.6 illus-
trates a more distinct advantage for FDRT assignment over
issue-time for a wider array of benchmarks.

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

bzip2 eon gzip perlbmk twolf vpr HM

S
p

ee
d

u
p

O
ve

r
B

as
e

No-lat Issue-time Issue-time FDRT Friendly

Figure 6. Speedup Due to Cluster Assignment Strategy
Note that the y-axis starts at 0.95. However, no bar is below 1.00.

The core reasons that FDRT assignment provides a per-
formance boost over the Friendly and baseline assignment
methods are an increase in intra-cluster forwarding and a
reduction in average data forwarding distance. Table 8a
presents the changes in intra-cluster forwarding. On av-
erage, both CTCP retire-time cluster assignment schemes
increase the amount of same-cluster forwarding to above
50%, with FDRT assignment doing better on average.

The inter-cluster distance is the aspect of cluster assign-
ment that has the biggest impact on performance (Table 8b).

3All speedup averages are computed using the harmonic mean.

For every benchmark, the retire-time instruction reordering
schemes are able to improve upon the average forwarding
distance. In addition, the FDRT scheme always provides
shorter overall data forwarding distances than the Friendly
method. This is a result of funneling producers with no in-
put dependencies to the middle clusters and placing con-
sumers as close as possible to their producers.

Table 8. Data Forwarding For Critical Inputs
a. Percentage of Intra-Cluster Forwarding

Base Friendly FDRT
bzip2 39.79% 60.84% 79.54%
eon 33.73% 52.83% 51.35%
gzip 32.94% 53.91% 58.25%
perlbmk 44.95% 58.36% 62.01%
twolf 47.83% 56.91% 58.92%
vpr 38.67% 58.70% 59.58%
Average 39.65% 56.93% 61.61%

b. Average Data Forwarding Distance
Base Friendly FDRT

bzip2 0.83 0.58 0.24
eon 0.96 0.73 0.70
gzip 0.94 0.77 0.56
perlbmk 0.78 0.62 0.49
twolf 0.73 0.66 0.56
vpr 0.92 0.70 0.57
Average 0.86 0.67 0.52

The critical input is the data input that arrives last. If there is only one input for
the instruction, then it is the critical input. Distance is the number of clusters
traversed by forwarded data.

For the program eon, the Friendly strategy provides a
higher intra-cluster forwarding percentage than FDRT with-
out resulting in higher performance. The primary reason
is that FDRT reduces the average data forwarding distance
even with the presence of extra inter-cluster forwarding.

5.3. Improvements Over Prior Method

The FDRT method of instruction reordering and clus-
ter assignment has several advantages over Friendly’s pre-
viously proposed CTCP instruction reordering strategy. The
most obvious improvement is the inclusion of inter-trace in-
formation gathered in the trace cache instruction profiles.
The importance of accounting for these dependencies is il-
lustrated in Figure 5.

Additionally, the variable data forwarding latencies be-
tween clusters are taken into account by the FDRT instruc-
tion reordering. The inter-cluster forwarding latency is vari-
able based on the distance between the communicating clus-
ters. Therefore, the FDRT strategy funnels instructions to
the middle clusters. This reduces the amount of forward-
ing that must span two and three clusters. If the Friendly
instruction placement is modified such that it assigns a ma-
jority of the instructions to the middle clusters, the average
performance improvement increases to 4.7% [2].

Finally, Friendly’s strategy examines each instruction
slot and looks for a suitable instruction while the FDRT

method looks at each instruction and finds a suitable slot.
This subtle difference accounts for some performance im-
provement as well. Additional analysis [2] shows that iso-
lating the intra-trace heuristics from the FDRT strategy re-
sults in a 5.7% improvement by itself, compared to the
3.1% for Friendly’s method. The remaining performance
improvement generated by FDRT assignment comes from
incorporating inter-trace dependency information.

5.4. FDRT Assignment Analysis

Figure 7 is a breakdown of instructions based on their
FDRT assignment strategy option from Table 5. On aver-
age, 37% of instructions have only a critical intra-trace de-
pendency, while 18% of the instructions have just an inter-
trace chain dependency. Only 9% of the instructions have
both a chain inter-trace dependency and a critical intra-trace
dependency. These three categories of instructions (64%
of all instructions) all have identifiable producers and are
placed on a cluster near their producers.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bzip2 eon gzip perlbmk twolf vpr Average

A just intra-trace
B just chain
C chain & intra
D just consumer
E none

skipped

Figure 7. FDRT Critical Input Distribution
The letters A-E correspond to the lettered options in Table 5.

Approximately 11% of the instructions had no input de-
pendencies but did have an intra-trace consumer. These pro-
ducer instructions are assigned to a middle cluster where
their consumers will be placed on the same cluster later.
Only a very small percentage (less than 1%) of instructions
with identified input dependencies are initially skipped be-
cause there is no neighbor cluster for assignment. Finally,
a large percentage of instructions (around 24%) are deter-
mined to not have a critical intra-trace dependency, chain
inter-trace dependency, or intra-trace consumer. Most of
these instructions do have data dependencies, but they did
not require data forwarding or did not meet the chain crite-
ria.

5.5. Pinning Leaders to a Cluster

This section examines the effects of permanently pinning
chain leaders to a cluster. Recall that without this pinning,
both chain leaders and followers could become part of any
chain including their own. This could result in constantly
changing chain cluster assignments where chain members
are essentially chasing a moving target. We call this effect
cluster migration.

Instruction cluster migration is quantified in Table 9 for
the presented version of FDRT (Pinning) and for a version
that does not pin chains to a cluster (No Pinning). On aver-
age, without pinning the chain to a cluster, 5.80% of all dy-
namically encountered instructions are physically reordered
such that their assigned cluster is different from their pre-
vious dynamic invocation. The largest percentage is 8.9%
for twolf. However, once the leaders are pinned, the over-
all percentage of instructions experiencing cluster migration
is reduced to an average of 4.25%. More importantly, the
percentage of chain instructions that migrate is reduced by
41%.

Table 9. Instruction Cluster Migration
All Instr. All Instr. All Instr. Chain Instr.
Pinning No Pinning Reduction Reduction

bzip2 0.35% 0.98% 63.86% 62.73%
eon 5.94% 8.27% 28.20% 52.97%
gzip 5.97% 8.26% 27.68% 30.65%
perlbmk 3.77% 3.59% -4.98% 19.30%
twolf 5.08% 8.92% 42.99% 56.29%
vpr 4.36% 4.77% 8.48% 23.94%
Average 4.25% 5.80% 27.71% 40.98%

Another interesting observation from this table is the in-
crease in cluster migration for perlbmk while pinning the
chains. In this case, the migration is reduced for chain in-
structions, which is the intended effect. However, for this
benchmark, the scheduling of the non-chain instructions
proves to be less stable when pinning the chain leaders.

The purpose of pinning the instructions is to reduce in-
structions from oscillating between clusters and to increase
the amount of intra-cluster forwarding for critical data de-
pendencies. The change in intra-cluster forwarding can be
seen in Table 10. Overall, pinning instructions increases
the amount of same-cluster critical data forwarding for four
out of six benchmarks and by a small percentage overall
(60.51% to 58.57%). Only bzip2 sees a significant change
in intra-cluster data forwarding with pinning.

5.6. Strategy Robustness

Figure 8 presents the speedup for our main cluster as-
signment strategies with different cluster properties. The
first modification is to use a mesh network, where clus-

Table 10. Intra-Cluster Critical Data Forwarding During
Cluster Migration

With Pinning No Pinning
bzip2 77.48% 66.69%
eon 49.72% 50.88%
gzip 56.03% 55.03%
perlbmk 65.32% 65.36%
twolf 57.51% 57.13%
vpr 57.01% 56.34%
Average 60.51% 58.57%

ters 1 and 4 communicate directly. This network eliminates
three-cluster communication and is advocated by Parcerisa
et al. [13]. The second modification is to eliminate one cy-
cle of data forwarding latency. The third modification is to
cut the execution resources in half (instruction cache, data
cache, branch predictor, and TLB remain the same size).
The issue-time latency is reduced to two cycles since there
are now only eight instructions to analyze, steer, and route.

0.98

1.00

1.02

1.04

1.06

1.08

1.10

FDRT Friendly Issue-
Time

FDRT Friendly Issue-
TIme

FDRT Friendly Iss-time
Lat2

S
p

ee
d

u
p

O
ve

r
R

es
p

ec
ti

ve
C

o
n

fi
g

u
ra

ti
o

n

Mesh Network One Cycle Forward Lat Eight-wide, Two-clust

Figure 8. Speedups For Other Cluster Configurations
The speedups for each group is relative to their respective base model. Note that
the y-axis begins at 0.98 and not 1.00.

The presented cluster architecture variations lead to a
reduction in the absolute speedup numbers for all strate-
gies compared to the original architecture. However, the
proposed strategy still provides superior performance over
the cluster assignment alternatives without any type of
architecture-specific fine-tuning of FDRT assignment. The
relative strength of the FDRT strategy over issue-time as-
signment increases in all cases compared to performance
seen for the base architecture. However, the advantage over
the Friendly method is not as significant.

The issue-time performance in the mesh network does
relatively well because the average forwarding distance is
reduced and the processor setup is now more similar to the
assignment strategy’s intended architecture. On the other
hand, a smaller forwarding latency (with no mesh) does not
allow the issue-time strategy to overcome its latency draw-
backs, resulting in an overall performance drop.

Figure 9 presents the average speedup for all 12 SPEC
CPU2000 integer benchmarks as well as for 14 Media-
Bench benchmarks [11] that are used in previous four-
cluster work [13]. For both benchmark suites, FDRT cluster
assignment provides over twice as much performance im-
provement as the Friendly method. In addition, retire-time
assignment is still shown to be preferable to realistic issue-
time instruction steering.

1.00

1.02

1.04

1.06

1.08

1.10

14 MediaBench All SPECint2000

S
p

ee
d

u
p

O
ve

r
B

as
e

No-lat Issue-time Issue-time FDRT Friendly

Figure 9. Dynamic Cluster Assignment Speedups for
SPECint2000 and MediaBench Benchmark Suites

All benchmarks are run for 100M instructions or until completion. Default inputs
are used for MediaBench. MinneSPEC and test inputs are used for SPECint2000.

Not all SPEC programs are presented throughout this pa-
per because some see only modest improvement regardless
of the dependency-based scheduling scheme. These pro-
grams are often limited by some other aspect of program
execution, such as memory or branch prediction. The issue-
time assignment presents more problems for programs with
a high percentage of branch mispredictions and instruction
cache misses because of the extra latency at issue time.
However, FDRT assignment does not slow down any of
these programs. The average speedup considering all SPEC
CPU2000 integer benchmarks is still a healthy 7.1% while
issue-time improvement is 3.8%.

The most interesting result for the MediaBench pro-
grams is that FDRT scheduling (8.2% improvement) per-
forms better than latency-free issue-time scheduling (4.2%).
In this case, the latency-free issue-time heuristic results in
better performance for nine progams, but is worse than
FDRT for the other five programs. This includes slowing
down three of the programs compared to the base, which
does not happen with FDRT scheduling. Additional char-
acterization and analysis for MediaBench and the complete
SPEC integer suite are available [2].

6. Summary

In this work, we present a retire-time cluster assignment
scheme for clustered trace cache processors. Utilizing a
trace cache, instruction-level feedback is used to capture
inter-trace dependency information. The fill unit combines

this previously unavailable information with intra-trace de-
pendency information to assign instructions to clusters.

For six selected SPEC CPU2000 integer benchmarks,
the proposed feedback-directed, retire-time (FDRT) clus-
ter assignment strategy reduces the inter-cluster data for-
warding from 60% to 38% while also reducing the average
cluster forwarding distance by 40%. When incorporating
inter-trace dependency feedback into the retire-time cluster
assignment process, an 11.5% performance improvement
over the base architecture is possible. The performance im-
provement is significantly higher than the 3.1% improve-
ment seen using a previously proposed CTCP cluster as-
signment scheme (up to 4.7% improvement with a minor
adjustment).

For a wider range of programs (all SPEC CPU2000 in-
teger and MediaBench), FDRT cluster assignment leads to
a 7.1% and 8.2% performance improvement, respectively.
This is significantly higher than issue-time cluster assign-
ment (3.8% and 1.7%) or Friendly’s retire-time strategy
(1.9% and 3.7%).

FDRT cluster assignment is also studied for other cluster
configurations. Without modifications, the proposed strat-
egy maintains a clear advantage over issue-time options as
well as the previous CTCP retire-time option for cluster ar-
chitectures with mesh interconnects, one-cycle forward la-
tencies, and two four-wide clusters. This demonstrates the
robustness and potential usefulness of feedback-directed,
retire-time cluster assignment.

7. Acknowledgments

The authors would like to thank the anonymous review-
ers for their suggestions and insight which greatly improved
this paper. This research is partially supported by the Na-
tional Science Foundation under grant number 0113105,
and by AMD, Intel, IBM, Tivoli and Microsoft Corpora-
tions.

References

[1] R. Bhargava and L. K. John. Latency and energy aware value
prediction for high-frequency processors. In 16th Interna-
tional Conference on Supercomputing, pages 45–56, June
2002.

[2] R. Bhargava and L. K. John. Cluster assignment strategies
for a clustered trace cache processor. Technical Report TR-
030331-01, The University of Texas at Austin, Laboratory
For Computer Architecture, Mar 2003.

[3] D. Burger, T. Austin, and S. Bennett. Evaluating future mi-
croprocessors: The simplescalar tool set. Technical report,
University of Wisconsin, Madison, WI, 1997.

[4] R. Canal, J.-M. Pacerisa, and A. Gonzalez. A cost-effective
clustered architecture. In International Conference on Par-

allel Architectures and Compilation Techniques, pages 160–
168, Oct 1999.

[5] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic. The
multicluster architecture: Reducing cycle time through par-
titioning. In 30th International Symposium on Microarchi-
tecture, pages 149–159, Dec. 1997.

[6] M. Franklin. The Multiscalar Architecture. PhD thesis,
Univ. of Wisconsin-Madison, 1993.

[7] D. H. Friendly, S. J. Patel, and Y. N. Patt. Putting the fill
unit to work: Dynamic optimizations for trace cache proces-
sors. In 31st International Symposium on Microarchitecture,
pages 173–181, Dallas, TX, November 1998.

[8] L. Gwennap. Digital 21264 sets new standard. Micropro-
cessor Report, 10(14), Oct 1996.

[9] Q. Jacobson and J. E. Smith. Instruction pre-processing in
trace processors. In International Symposium of High Per-
formance Computer Architecture, Jan 1999.

[10] A. KleinOsowski and D. Lilja. MinneSPEC: A new SPEC
benchmark workload for simulation-based computer archi-
tecture research. Computer Architecture Letters, 1, June
2002.

[11] C. Lee, M. Potkonjak, and W. Mangione-Smith. Media-
bench: A tool for evaluating and synthesizing multimedia
and communications systems. IEEE Micro, vol. 30, no. 1,
pp. 330-335, Dec. 1997.

[12] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-
effective superscalar processors. In 24th International Sym-
posium on Computer Architecture, pages 206–218, June
1997.

[13] J.-M. Parcerisa, J. Sahuquilla, A. Gonzalez, and J. Du-
ato. Efficient interconnects for clustered microarchitectures.
In International Conference on Parallel Architectures and
Compilation Techniques, pages 291–300, Sep. 2002.

[14] S. J. Patel, D. H. Friendly, and Y. N. Patt. Critical issues
regarding the trace catch fetch mechanism. Technical report,
University of Michigan, 1997.

[15] A. Peleg and U. Weiser. Dynamic flow instruction cache
memory organized around trace segments independent of
virtual address line. U.S. Patent Number 5,381,533, 1994.

[16] A. G. R. Canal, J-M. Parcerisa. Dynamic cluster assignment
mechanisms. In 6th International Symposium on High Per-
formance Computer Architecture, pages 132–142, Jan 2000.

[17] G. Reinman and N. Jouppi. An integrated cache timing and
power model, 1999. COMPAQ Western Research Lab.

[18] E. Rotenberg, S. Bennett, and J. E. Smith. Trace cache: a
low latency approach to high bandwidth instruction fetch-
ing. In 29th International Symposium on Microarchitecture,
pages 24–34, Dec. 1996.

[19] Standard Performance Evaluation Corporation. SPEC
CPU2000 Benchmarks. http://www.spec.org/osg/cpu2000/.

[20] V. V. Zyuban and P. M. Kogge. Inherently lower-power high-
performance superscalar architectures. IEEE Transactions
on Computers, 50(3):268–285, Mar 2001.

