
ESKIMO - Energy Savings using Semantic Knowledge of
Inconsequential Memory Occupancy for DRAM subsystem

Ciji Isen
ECE Department

University of Texas at Austin

isen@mail.utexas.edu

 Lizy John
ECE Department

University of Texas at Austin

ljohn@ece.utexas.edu

ABSTRACT

Dynamic Random Access Memory (DRAM) is used as the bulk of
the main memory in most computing systems and its energy and
power consumption has become a first-class design consideration
for modern systems. We propose ESKIMO, a scheme where when
the program or operating systems memory manager allocates or
frees up a memory region, this information is used by the
architecture to optimize the working of the DRAM system,
particularly to save energy and power. In this work we attempt to
have the architecture work hand in hand with information about
allocated and freed space provided by the program. We discuss
multiple ways to use this information to reduce the energy and
power consumption of the memory and present results of this
optimization. We evaluate the energy and power benefits of our
technique using a publicly available, hardware-validated, DRAM
simulator, DRAMsim [1]. Our current studies show very
promising results with energy savings on average of 39%.

Categories and Subject Descriptors

B.3.1 [Memory Structures]: Semiconductor Memories – power

and energy savings.

General Terms

Management, Performance, Design, Experimentation.

Keywords

Memory power and energy, cross-boundary or cross-layer
architecture optimizations, allocated and freed memory states,
program semantic aware architecture.

1. INTRODUCTION
Dynamic Random Access Memory (DRAM) is used as the bulk of
the main memory in most computing systems. In both the server
and mobile space, both power and energy has been a first class
design constraint [2, 3]. According to observations made at a
recent International Solid-State Circuits Conference (ISSCC), Sun
Microsystems revealed that the power consumption of DRAM in
the UltraSPARC T1 (“Niagara”) systems running SPECjbb was
approximately 60 watts [30]. This amounts to nearly 22% of the

total system power, in other words almost as much as the
processor cores. Observations like this brought light to the power
and energy consumption of DRAM memory, and made it a first-
class design consideration for modern systems.

With the need to reduce the power/energy consumption of the
DRAM subsystem of modern systems in mind, we discuss some
program semantics aware optimizations to the microarchitecture.
Although there have been optimizations such as cache-locking,
cache-bypass, prefetching etc, most of the modern optimizations
done in the microarchitecture and memory subsystem tend to be
agnostic of the program semantic. We focus our attention on our
knowledge about program behavior and attempt to have the
microarchitecture work with the information provided by the
program. With ESKIMO, we propose to take advantage of the
program’s semantic notion of valid and invalid state for the
memory regions. When a program or operating systems memory
manager allocates or frees up a memory region, this program
semantic information can be used by the architecture to optimize
the working of the memory system.

In order to understand the optimization we discuss later, it is
necessary to understand how the typical memory management
works [4, 5, 6]. We make use of the program semantic
observations resulting from memory management. Most program
languages provide means for dynamic memory allocation
(implicitly or explicitly). Considering its wide use and
understanding, we will use C language constructs and
assumptions for the purpose of examples. One of the commonly
used ways for dynamic allocation in C is the malloc function. Its
function prototype is

void *malloc(size_t size);

which allocates size bytes of memory. If the allocation is
successful, a pointer to the block of memory is returned. If it fails
a null pointer is returned. The pointer returned by malloc is a void
pointer (void *), indicating the lack of any known data type. This
pointer can be cast to the necessary type and assigned to a pointer
variable. The memory allocated via malloc is persistent, i.e. it will
continue to exist until it gets explicitly deallocated by the
programmer (in the code) or the program terminates. The explicit
deallocation (freeing the block of memory) is done with the help
of the function “free”. Its prototype is

void free(void *pointer);

which releases the block of memory pointed to by pointer. The
address, pointer must have been returned previously by memory
allocation functions such as malloc, calloc, or realloc etc. Once
the address is freed any access to this memory location is incorrect
and its behavior is undefined. Hence the programmer will not be
using this location after it is freed and many modern programming

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MICRO’09 December 12–16, 2009, New York, NY, USA.
Copyright © 2009 ACM 978-1-60558-798-1/09/12…$10.00.

languages have mechanisms inbuilt to prevent such erroneous
accesses. Consider this example program:

1. int main(void){

2. const char *p1 = "hello";

3. char *p2;

4. /* point zero */

5. p2 = malloc(strlen(p1) + 1);

6. if (p2 == NULL) {

7. fprintf(stderr, " malloc failed.\n");

8. exit(); }

9. strcpy(p2, p1);

10. /* point one */

11. free(p2);

12. /* point two */

13. return 0; }

The diagrams (Figure 1.) show the situation at point zero (line 4),
point one (line 10) and point two (line 12). At point zero (line 4),
the pointer p2 has no memory allocated to it. After this, at point 1
(line 10), the pointer p2 has memory allocated to it as well data
copied into the allocated space. At point two (line 12) we note
that the pointer variable p2 still contains the address of a byte in
the free store but that there is no longer an allocated block at that
address. It would be a serious error to actually use that address.
Thus, according to program semantics the address pointed to by
p2 is not expected to contain useful data after point two.
Similarly, if the pointer p2 were read before the strcpy function
(line 9) one would get random data and even cause an error. So
before strcpy function writes data to the allocated memory it
contains random data and the program does not read from it
without writing to it first. In both these cases the data present is
invalid hence inconsequential to the program execution.

Hence we can have inconsequential memory accesses, i.e. the
transfer of data between the caches and the DRAM that has not
been initialized by the program, or has already been released by
the program. The hardware transfers data based on demand,
regardless of memory state. During a typical program execution
all structures such as the stack and heap contain inconsequential
data until they are allocated to some data structures and are
initialized for sure. Figure 2 illustrates the different states a
memory location can be in as a result of memory management. An
unallocated-invalid memory location becomes allocated-invalid
after allocation. It remains in this state until the memory location
is written to, causing it to transition to allocated-valid state. From
this point on that memory location can not be considered to be
inconsequential. Eventually when the program is done with the
memory location a free operation causes it to be returned to the
heap; i.e. the location transition from an allocated-valid state to an
unallocated-invalid state.

Research work that has attempted to exploit this information is
sparse; Lewis et al. [32] being the closest. Although Lewis et al.
explored using part of this semantic information (information
relating to allocation and resulting allocated-invalid state) to
optimize the cache to improve performance we are unaware of any
work that has employed and analyzed it for optimizing DRAM
power. In ESKIMO, we focus both on allocated-invalid and
unallocated-invalid states to reduce power and energy
consumption of the DRAM (shaded area in Figure 2). We present
4 techniques in section 3. Although Lewi’s did not extend their
work to save energy we extend Lewis’s technique for DRAM to

serve as a competition and call it Lewis++ (marked by dotted line
in Figure 2).

Figure 1. Changes to pointer status due to malloc & free [7]

The primary contributions of this paper are:

1. An insight into the usefulness of memory management
semantic information from the program towards saving
power and energy in the microarchitecture.

2. Employing known DRAM refresh technology to save power
and energy by leveraging memory allocation/de-allocation
semantic information.

3. Memory access optimizations (write-back, write-miss and
virgin access) to the DRAM subsystem leading to reduction
in energy consumption, and hence showing the potential of
a program semantic aware memory controller.

4. Analysis Lewis et al.’s work on reducing write-miss if
extended to DRAM, Lewis++.

Figure 2. Inconsequent memory state transitions covered by

ESKIMO vs. Our extension to Lewis et al. [32] (Lewis++)

2. ORGANIZATION
The rest of the paper is organized as follows. Section 3 discusses
the various optimizations (4 in total) we propose to leverage the
memory inconsequential state knowledge using ESKIMO. Section
4 discusses the details of mechanisms necessary to achieve this.
Section 5 analyzes the allocation and de-allocation behavior of the
benchmark suite we use. Sections 6 and 7 discuss our experiments
and evaluation of both our system and the extended version of
Lewis et al. we implement. We discuss related works in section 8
and summarize the paper in section 9.

3. ESKIMO BASED ADAPTATIONS

3.1 Semantics Aware DRAM Refresh
Due to the dynamic nature of a DRAM cell, periodic refresh
operations are required for keeping the data stored. Even in
standby mode, such regular refreshes account for a large energy
consumption in DRAMs. Some studies have shown that even in
the lowest power mode, the power needed to keep the DRAM
contents is about a third of the total power dissipated. Factors
such as the memory vendor and the design technology affect the
refresh rate. A refresh interval of 32ms means, a refresh operation
takes place every 32ms. A refresh operation fundamentally
involves reading the DRAM cell out and writing back to the same
cell. Although this refresh operation consumes, power and
bandwidth, it is inevitable for the sake of data correctness.

We propose a technique to eliminate unnecessary refreshes by
leveraging the program semantics information. The regions of
memory that are marked as free (unallocated-invalid) or freshly
allocated (allocated-invalid) have no concern related to
correctness since the data stored is of no consequence to the
correct execution of the program. Thus, not refreshing the data
stored in these regions would not be a concern. Hence we propose
to avoid refreshing the rows that are known to be “Inconsequent”
from the program semantics. There are several technologies
proposed in literature [31] as well as patents [35,36] that allow
selective refresh of DRAM rows. We propose to employ these
technologies along with knowledge of memory state to save
power and energy.

3.2 Write Back Optimization
The cache hierarchy of a processor may operate on write-through
or a write-back policy. Most modern caches tend to be write-back.
In a write-back cache, writes are not immediately stored into the
memory. Instead, the cache keeps tracks of the locations that have
been written over (marks them as dirty). The data in these
locations is written back to the memory when the data is evicted
from the cache due to a new piece of data. Hence a read miss in a
write-back cache, i.e. replacing a block with another, will often
require two memory accesses to be serviced – one to fetch the
necessary data for the read and one to write the replaced data from
the cache to the store.

Programs typically allocate memory regions to compute and store
data that may persist across different parts of the program in some
what temporal fashion. Data stored in those allocated region
might appear as dirty data but once the temporary use of the
memory region is over (marked by a call to free), the program has
no expectations of the data stored in these memory address. We
call the state as “Inconsequent” state since the data stored in a
location that has been freed is of no consequence to the correct
execution of the program. We propose to use this to our advantage
by storing this information in the cache lines. We would need a
bit in addition to the dirty bit per cache line to mark the cache
line. The implementation of the free function would mark and
address range as free. If a cache line holds data for a location that
has been freed, i.e. will not have any consequence on the
execution of the program, we mark that cache line as
“Inconsequent” via the dedicated bit.

In the context of the program semantic status of valid and
“Inconsequent” cache lines one can perform this write-back more
optimally. For example, some of the cache lines that have been
marked dirty could become free and hence is in an “Inconsequent”
state (i.e. unallocated-invalid in Figure 2). When a read miss
occurs requiring an eviction of this cache line, one can avoid
writing the replaced data to the next level. Hence have just one
access to be serviced in that case as opposed to two as in regular
caches. By doing this we are reducing the number of accesses to
the DRAM resulting in reduction in the number of pre-charge
discharge cycles as well as more opportunity for the DRAM to
enter power saving mode. Hence one can reduce power as well as
save on energy. This optimization is not applicable to all the
cache lines that need a write-back since we can only avoid the
write-backs to cache lines that are “Inconsequent”. The data in
these cache lines are not required by future state of the application
since it was freed by the program. Thus not reflecting the
modified value in the main memory is of no consequence to the
program. Since this assumption is based on the program semantic
and compiled code the system is not introducing any additional
error.

3.3 Write Miss Optimization
A write miss occurs in a cache when a store attempts to store data
and none of the cache ways contain the necessary cache line. In a
cache that is write allocate, such a miss would result in a
corresponding fetch from memory. The necessary cache line is
fetched from memory and brought to the cache so that the write to
the cache can proceed. This is important for correctness,
particularly for partial writes (writes a fraction of the cache line in
size). If this data was not brought from the main memory and then

the data write executed, the data would have to be written to the
cache line with the rest of the cache line filled up with random
data. Since this cache line would be marked as dirty after a write
operation a future eviction to this cache line would result the
whole cache line(including the random data) to be written back to
the main memory, resulting in loss of data. For this reason and
others a write-miss requires a corresponding read to memory.

The memory management library allocates and frees data for the
program and these operations on the heap are done on a
contiguous memory range. A write to a newly allocated memory
space resulting in a write-miss though, has no useful data to gain
by fetching the data from memory since the data present in this
address range is random/”inconsequent”. We propose to avoid
this “inconsequent” read operation. We propose to achieve this by
tracking the “inconsequent” address ranges at a per row
granularity. We use the counter mechanism described in Section
4.1 and Figure 3. Using this, we can identify memory segments
that have been freshly allocated were the data currently residing in
the segment is of no consequence to the program. When a write-
miss occurs, a fetch to the memory is issued. This fetch operation
can be quickly resolved to be one to an “Inconsequent” memory
segment. If so, this can be signaled back to the cache allowing it
to proceed with the partial write to the cache line and intentionally
disregard the random data occupying the rest of the line, i.e. the
part of the cache line that was not written to. Hence with a small
list of memory segments that are “Inconsequent” can help in
avoiding a read operation to the main memory. By doing this we
are reducing the number of accesses to the DRAM resulting in
reduction in the number of pre-charge discharge cycles as well as
more opportunity for the DRAM to enter power saving mode.
Hence we can reduce power as well as save on energy.

3.4 Virgin Segment Optimization
This optimization is an extension of write-miss optimization. It is
conceptually the same, but extended to apply to memory segments
that are allocated by the operating system. When programs start
up the operating system allocates a set of virtual memory pages
for its use. Part of this space is populated by code and other data.
We use the same tracking system discussed in Section 4.1 and
Figure 3, to track segments allocated by the operating system too.
Freshly allocated segments contain random data, which is of no
consequence to the correct execution of the program. These
segments are conceptually similar to an allocated memory (e.g. by
malloc) with the only difference that, this space is allocated by the
operating system and tends to be in much larger granularity. Until
data is written to these segments, they can be assumed to contain
random data that is of no consequence. Once data is written to
these pages this assumption does not hold true.

As in the previous case, when a write-miss occurs, the fetch that
will be issued can be quickly resolved to be one to an
“Inconsequent” memory segment. If it is one such segment, this
can be signaled back to the cache allowing it to proceed with the
partial write to the cache line and intentionally disregard the
random data occupying the rest of the line(the part of the cache
line that was not written to). Similar to write-miss optimization
this too can reduce the power consumed as well as result in energy
savings.

4. ESKIMO IMPLEMENTATION

4.1 Allocation and De-allocation Tracking
The memory management library allocates and frees data for the
program and these operations on the heap are done on a
contiguous memory range. We propose to track the
“inconsequent” address ranges at a per row granularity. Using
this, we can identify memory rows that have been freshly
allocated where the data currently residing in the page is of no
consequence to the program. We could use a per row set of
counters to track the malloc and free operations but we find
empirically from our analysis that a limited set of counters would
suffice (1k to 2k). We optimize this implementation by using a
thousand counters which have a tag to indicate the row it is
tracking. When the counter reaches full value indicating the whole
row is inconsequential, a single bit flag at a row granularity is set.
This can be stored inside the DRAM (option used for results) or a
separate bit array large enough to contain 1 bit per row. The status
of this is used to determine if the row is inconsequential and also
used control refresh in our selective refresh policy.

Based on the DRAM configuration we assume, we need a counter
that count up to 1k, i.e. 10 bits long. We also try a granularity of
4k (standard linux page size) which would need a 12bit counter
but the results presented are for a 10bit counter. A malloc that is
aware of the potential of semantic information would pass the
address allocated to the system, which in turn can identify the
row, lookup the 10 bit counter corresponding to it and increment
it by the allocated size. Figure 4 is an example illustration. When
the counter value for a row reaches the necessary size (1k or 4k),
the memory segment can be considered to be “Inconsequent” as
long as no writes have happened to it. For correctness, any write
operation (besides inconsequent write-back) to an address inside a
memory segment in the memory will reset the counter and hence
it’s “Inconsequent” status. When a row is found to be
inconsequent, a bit corresponding to that row is set in the bit
array. This frees up the counter to be reused. If a row that has its
bit set in the bit array to indicate its inconsequential state, loses its
inconsequential state due to a write operation or eviction or any
other operation, the bit is reset.

Figure 3. Per Row counter structure – 10 bit counter per row

4.2 Selective DRAM refresh
Due to the dynamic nature of a DRAM cell, periodic refresh
operations are required for keeping the data stored. Even in
standby mode, such regular refreshes account for a large energy
consumption in DRAMs. Some studies have shown that even in

the lowest power mode, the power needed to keep the DRAM
contents is about a third of the total power dissipated. Factors
such as the memory vendor and the design technology affect the
refresh rate. A refresh interval of 32ms means, a refresh operation
takes place every 32ms. A refresh operation fundamentally
involves reading the DRAM cell out and writing back to the same
cell. Although this refresh operation consumes, power and
bandwidth, it is inevitable for the sake of data correctness. There
are several technologies proposed in literature [31] as well as
patents [35,36] that allow selective refresh of DRAM rows. We
propose to use the implementation suggested by Ohsawa et al.
[31]. Figure 4-a illustrates how a flag is added to each row and
how the value is set according to the status of the row, i.e.
depending up on the presence of significant data. Figure 4-b
shows the DRAM cell logic as illustrated by Ohsawa et al.

Figure 4-a. Per row flag to store refresh states[31]

4.3 Adaptation in ISA
Since any information that is parlayed between the program and
the microarchitecture is done via the ISA, taking advantage of this
program semantic information requires the help of the ISA. Most
modern ISAs do have ISA instruction that could be modeled
around to convey information about freed or allocated address
space. For example, the x86 ISA has the INVD (invalidate data
cache) and WBINVD (write back and invalidate data cache)
instructions while PowerPC ISA has DCBI (data cache block
invalidate) and ICBI (instruction cache block invalidate)
instructions. We propose an extension to the ISA on similar lines
that conveys information about addresses ranges that are allocated
or freed. It is obvious from the optimizations discussed before that
we need a mechanism in the ISA to pass information about
allocated and freed memory segment. We propose two
instructions modeled around some of the cache invalidate
instructions.

Inconsequent on free - INQF addr size: This instruction is meant
to be invoked by the free call and it is aimed at reporting the
address range that has been freed. INQF tells the system that the
address range starting at addr of size size has been freed. The
system can now safely assume this address range to contain
inconsequent data. Alternatively this instruction could take the
form INQF addr where the size of the address range is implicit
rather than explicit.

Inconsequent on malloc - INQM addr size: This instruction is
meant to be invoked by the malloc call and it is aimed at reporting
the address range that has been allocated. INQM tells the system
that the address range starting at addr of size size has been
allocated. The system can now safely assume this address range

currently contains inconsequent data, i.e. until it is changed by
some part of the program. Alternatively this instruction too could
take the form INQM addr where the size of the address range is
implicit rather than explicit.

4.4 Overhead
We now consider the storage overhead for the counter structure.
We need to maintain 1000-2000 counter tag pairs. Each counter
tag pair needs 10 bits for counting and 48 bits (current virtual
address range) i.e. a total of 58 bits. Thus we need approximately
116 KB of storage which amounts to less than 0.01% of the main
memory we model. Previous studies such as that of Ohsawa et al.
[31] have analyzed the cost of implementing the selective refresh
logic in hardware and have found it to be very small. Their
estimate based on silicon modeling attributes less than 5% area
overhead to incorporate all the necessary storage and control
logic.

5. DYNAMIC MEMORY ALLOCATION
We can observe the dynamic memory activity to the heap by
tracking invocations of malloc() and free() routines (along with
other related routines such as realoc()). In Table 1 we summarize
the percentage of procedure calls for allocation and percentage of
space allocated according to different allocation sizes. For
example astar has 21.68% of allocation calls invoked to allocate
memory regions of size smaller than 64 bytes. The total number of
allocation calls for astar is 1117*1000. Similarly 97.1% of the
total 545MB space allocated by hmmer was given to data chunks
of size ranging between 64 bytes and 2k bytes. Similarly in Table
2 we summarize the percentage of procedure calls to free and the
percentage of space freed up according to different allocation
sizes. For example gobmk has 71.94% of calls to free memory
freeing up data of size less than 64 bytes; in total gobmk had 104
calls to free data. The same benchmark has 98.25% of the space
allocated being freed up in chunks of size ranging from 2k to
256k.

Figure 4-b. DRAM cell array - selective refresh [31]

There are some interesting observations we make from this data.
There is a clear difference in the data chunks the allocation calls
target and the data chunks that make up most of the allocation.
For example, gcc has 64.81% of its allocation function calls
targeted at chunks of size less than 64 bytes but only 0.82% of the
total allocated bytes are made up of this chunk size. The chunk
size of 2k-256k range has 93.29% of the memory allocated even
though only 10.27 % of the calls target this range. A similar
observation applies to dynamic de-allocation too. For example,

Table 1: Dynamic memory allocation behavior

Benchmark % of Allocation Calls % of Allocated Bytes

 <64 <2K <256K <16M >=16M Total (1k) <64 <2K <256K <16M >=16M Total(MB)

astar 22 77 2 0 0 1117 1 82 9 8 0 997

bzip2 0 0 46 43 11 <1 0 0 0 4 96 628

dealII 92 8 0 0 0 153873 49 24 5 8 15 10819

gcc 65 25 10 0 0 2920 1 3 93 3 0 6634

gobmk 74 0 26 0 0 119 1 0 80 19 0 123

h264ref 5 89 5 1 0 105 0 4 23 73 0 1026

hmmer 3 97 0 0 0 1000 0 97 0 2 0 545

lbm 0 50 0 0 50 <1 0 0 0 0 100 409

libquantum 29 6 9 40 16 <1 0 0 0 39 61 1486

mcf 0 40 0 40 20 <1 0 0 0 0 100 1676

Milc 0 0 0 62 38 7 0 0 0 35 65 84226

Namd 0 42 57 1 0 1 0 1 28 71 0 45

omnetpp 19 81 0 0 0 267065 3 97 0 0 0 42503

perlbench 18 64 15 3 0 22917 0 0 68 32 0 592549

Povray 96 4 0 0 0 2462 43 21 37 0 0 114

Sjeng 0 20 0 20 60 <1 0 0 0 7 93 172

Soplex 1 2 90 7 0 9 0 0 9 22 68 3186

Sphinx3 66 17 17 0 0 14225 1 21 67 10 0 15398

xalancbmk 67 25 7 0 0 135184 3 44 54 0 0 59352
Table 2: Dynamic memory de-allocation (free) behavior

Benchmark % of Free Calls % of Freed Bytes

 <64 <2K <256K <16M >=16M Total (1k) <64 <2K <256K <16M >=16M Total(MB)

astar 22 77 2 0 0 1117 1 82 9 8 0 997

bzip2 0 0 50 50 0 <1 0 0 1 99 0 25

dealII 92 8 0 0 0 153873 49 24 5 8 15 10819

gcc 65 25 10 0 0 2876 1 2 93 3 0 6521

gobmk 72 0 28 0 0 104 1 0 98 0 0 93

h264ref 5 89 5 1 0 105 0 4 23 73 0 1026

hmmer 3 97 0 0 0 1000 0 98 0 2 0 542

lbm 0 50 0 0 50 <1 0 0 0 0 100 409

libquantum 39 4 9 26 22 <1 0 0 0 6 94 935

mcf 0 40 0 40 20 <1 0 0 0 0 100 1676

milc 0 0 0 62 38 6 0 0 0 35 65 83613

namd 0 42 57 1 0 1 0 1 28 70 0 45

omnetpp 19 81 0 0 0 266999 3 97 0 0 0 42499

perlbench 20 78 3 0 0 18643 0 6 82 12 0 23231

povray 98 2 0 0 0 2427 67 13 20 0 0 73

sjeng 0 100 0 0 0 <1 0 100 0 0 0 <1

soplex 3 3 85 9 0 4 0 0 15 31 54 1160

sphinx3 65 17 17 0 0 14024 1 21 67 10 0 15358

xalancbmk 67 25 7 0 0 135184 3 44 54 0 0 59352

xalancbmk has 66.47% of the de-allocation calls for chunk size of
<64 bytes amounting to only 2.79 % of the total data de-allocated;
while 7.18% of the de-allocation calls to chunk size 2k-256k
amount to 53.51% of the total data freed. We also that some of the
benchmarks do have a significant percentage of data allocated and
freed in chunk sizes less than 64 bytes. For example dealII and
povray have 49 and 42.5% of data allocated while 49 and 66.6%
of data de-allocated less than 64 bytes. When tracking the
allocation and de-allocation behavior in programs we need to be
able to track smaller granularities too for benchmarks like this.
These examples show how diverse the benchmarks are with
respect to the chunk sizes they concentrate on during allocation

and de-allocation. This makes any assumption about the
predominant chunk size difficult. Very interestingly, for some
benchmarks both the allocation and de-allocation patterns follow
very closely. For example astar has 21%, 76% and 1.8% of the
allocation invocation for types <64, <2k and <256k respectively.
The same distribution is observed by astar for de-allocation/free
calls. For astar the observation can be made for the dynamic bytes
allocated and freed.

6. EXPERIMENTAL SETUP
Our experiments use a cache simulator built on top of PIN [9, 10]
and a DRAM simulator, DRAMsim [1] that models both power

and latency. The DRAMsim is a hardware-validated, public-
domain DRAM system simulation code that was developed by
members of the Systems and Computer Architecture Lab (SCAL)
in the Department of Electrical and Computer Engineering at the
University of Maryland. We use the DRAM simulator to model
DRAM power and focus our analysis on results based on this. The
cache simulator assumes a simplistic CPU architecture close to
that of an Intel ATOM processor, an in order processor with a
simplified pipeline and system architecture. The important
assumptions about the memory subsystem are summarized in
Table 3. Our simulator uses x86 binaries of the benchmarks and
can simulate the allocation and de-allocation behavior in C and
C++ benchmarks. We use a subset of SPEC CPU 2006
benchmarks and inputs based on the suggestions of Phansalkar et
al. [11] to evaluate our optimizations. A subset of the benchmark
suite was picked to reduce simulation time as well as avoid
benchmarks which could not be simulated (particularly fortran
code). We simulate 1 billion instructions for each benchmark and
believe it is sufficient to prove the usefulness of our techniques.
We fast forward the initial 500 million instructions to avoid
startup behavior and simulate the next 500 million instructions.
During the fast forward stage we do keep track of all allocation
and de-allocation behavior to ensure correctness.

Table 3: DRAM Module and L2 Cache Configuration

Parameter Value Parameter Value

Type DDR2 Columns 1024

Size 1GB Data Width 72 bits

Rows 16384 Refresh Interval 32ms

Frequency 667(MHz) L2 cache size 1MB

Banks 8 L2 cache way 8way

Ranks 2

Reduction in total power

6%

0%

7%

8%

0%

9%

0% 0% 0% 0% 0% 0%

10%

8%
8%

0% 0%

8%

9%

4%

-2%

0%

2%

4%

6%

8%

10%

12%

as
ta

r

bz
ip
2

de
al
II

gc
c

go
bm

k
h2

64

hm
m

er
lb
m

lib
qu

an
tu

m
m

cf
m

ilc

na
m
d

om
ne

tp
p

pe
rlb

en
ch

po
vr
ay

sj
eng

so
pl
ex

sp
hi
nx

3

xa
la
nc

bm
k

A
VG

%
 r

e
d

u
c
ti

o
n

Figure 5. Savings in Total power due to ESKIMO based DRAM

refresh optimization

7. RESULTS
In this section we will present and discuss the results of ESKIMO.
Although Lewis et. al [32] did not extend their work to save
energy we extend Lewis’s technique to save energy and apply it to

DRAM to serve as a competition. We call this extension Lewis++

and present its results along with ESKIMO when applicable.

7.1 Semantic Aware Dram refresh
We implemented the refresh optimization based power saving
technique in our simulator and model the power savings for it. We
compare the power of our scheme to that of the baseline and
compute the savings in power. In Figure 5 we present the savings
in total power arising from the semantic aware DRAM refresh. .
Note that, the refresh power of a DRAM is only a part of the
power consumed by the DRAM. Benchmarks such as astar, dealII,
gcc, h264, omnetpp, perl, povray, sphinx3 and xalanc are able
reduce total power by a significant amount. The benchmark to
demonstrate the best power savings is omnetpp, with a 10%
reduction in total power consumed by the DRAM. The savings in
power among the benchmarks with some impact ranges from 6%
to 10%; the others have no impact.

7.2 ESKIMO Write Miss vs. Lewis++ Store

Miss Optimization on Dram

Figure 6-a. Reduction in memory cycles in the DRAM

Figure 6-b. Reduction in energy in the DRAM

Figure 6 shows the comparison between the Lewis++ and
ESKIMO with only write-miss optimization in place. ESKIMO
significantly out performs Lewis++ for energy and memory
cycles. The reduction in memory cycle is directly related to the
amount of write-misses that can be avoided. The work by Lewis et
al. was done on SPEC cpu 2000 benchmarks which made less
aggressive use of memory management. In fact, in SPEC cpu2000
has only one C++ benchmark while most of the benchmarks in
our suite are C++ programs. These programs tend to make more
aggressive and dynamic use of allocation and de-allocation as is
evident from Table 1 and Table 2. Our ability to use counters and
off-load filled up counters as flag bits per row allows us to get far
better reach for our tracking mechanism. Clearly write-miss

optimization results in significant reduction in energy
consumption by the DRAM.

7.3 Virgin Segment Optimizations
Virgin segment optimization typically is caused by OS or library
activity and tends to be much clustered. In Figure 6 we present the
reduction in energy consumed by DRAM we observe due to this
optimization. We observe a reduction of up to 47% for lbm. A few
other benchmarks such as gobmk, h264, hmmer etc have
significant reduction while the others gain very little from this
optimization. On an average we observe an improvement of 9%.
In our studies we found that Lewis++ performs as well as
ESKIIMO in tracking this artifact. Since these allocations arise
from the OS of the library, it is easy to separate them from regular
allocation and de-allocation and hence avoid its polluting effect.
We present only one graph (Figure 7) for this reason and make no
distinction.

7.4 Total Energy Savings
In this section we present data regarding the total energy savings
the DRAM achieves as a result of all four of our proposed
optimizations. Figure 8 has the total energy savings achieved by
ESKIMO and Lewis++. In the extension we also include virgin
segment tracking using their scheme and include its savings
towards their total savings. ESKIMO gets an average savings of
39% in energy while Lewis++ gives us an average of 13%
savings. The savings we obtain varies widely from benchmark to
benchmark. In general, benchmarks which exhibit large clustered
allocation and de-allocation benefits significantly from both the
write-miss and virgin segment optimization. These two
optimizations make up for the bulk of the energy savings we
observe. For lbm, which does exceptionally well, close to 100% of
the 0.5GB of data allocated occur in large chunks of size >= 16M.
This pattern makes it amenable to write-miss as well as virgin
segment tracking provided the tracking system is able to filter off
50% of the allocation calls which result in very little of the data
allocated. Similar pattern can be observed for mcf and to some
extend milc. It is possible that further tuning could improve the
performance of Lewis et al.’s work which would give further

credibility to the usefulness of tracking allocation and de-
allocation patterns to save energy in the DRAM system.

Reduction in total energy

0% 0% 1%

6%

22%
25%

21%

47%

0% 0%
2%

16%

7%

1%

5% 6%
3%

10%

4%

9%

-10%

0%

10%

20%

30%

40%

50%

as
ta

r

bz
ip
2

de
al
II

gc
c

go
bm

k
h2

64

hm
m

er
lb
m

lib
qu

an
tu

m
m

cf
m

ilc

na
m
d

om
ne

tp
p

pe
rlb

en
ch

po
vr
ay

sj
eng

so
pl
ex

sp
hi
nx

3

xa
la
nc

bm
k

A
VG

%
 r

e
d

u
c
ti

o
n

Figure 7. Virgin segment optimization – energy savings

8. RELATED WORK
Prior work in making informed discussions based on the block
status was done both in software and hardware. Some techniques
have tried to identify this at the software level [12,13] while
others have attempted to do the same at the hardware level
[14,15,16,17]. Most of these techniques try to identify blocks that
are not likely to be used in the near future. Software solutions do
this by passing hints about blocks that are thought to be not likely
to be used in the near future to the hardware – based on inferences
from profiling or compiler analysis [12,13]. Hardware solutions
employ predictors to predict those blocks that are not likely to be
used in the near future. The predictor does this based on the data
address [15] or the program counter [14,16,17]. All these
approaches differ significantly from our approach in the fact that
they predict the likelihood of usage and attempt to use that while
our work bases its self on the knowledge from program semantics
about validity of a block from the programs perspective.

Figure 8. Total energy savings from all optimizations

This is different from predicting how likely a block is to be used
in the near future and there by predicting how useful it is to keep a
certain block in the cache.The knowledge based on program
semantics allows us to optimize the DRAM subsystem to avoid
some of the operations without fear of incorrectness; the same can
not be done with predictive techniques. Lewis et al.[32] explored
using program semantic information about allocated space for
caches and at cache block granularity to improve performance;
ours is for DRAM and at DRAM row granularity. Additionally,
energy savings were never explored in Lewis et al.

The application of this knowledge has some similarity to existing
uses of block lifetime prediction and a few others which are
unique to block semantics invalidity. Some of the uses that have
also been sighted in prior work related to block lifetime prediction
are perfecting [17,15,17], replacement [16], bypassing
[18,19,20,21,22], coherence protocol optimizations [23,24,25]
and to a limited extend power reduction [26,14,27]. Works by Lai
et al [17], Hu et al [15], Ferdman and Falsafi [17] use the
predictions of the block lifetime to trigger pre-fetches; Lai et al
[17], Hu et al [15], pre-fetched into the L1 data cache while
Ferdman and Falsafi did the same from off-chip to on-chip
memory. Kharbutli and Solihin [16] used the knowledge of block
lifetime to improve the LRU algorithm by replacing dead blocks
first and also bypassing the cache. Cache coherence protocols
have also been tuned to take advantage of block lifetime
prediction to maintain or avoid status updates. Wood proposed a
reduction in cache coherence protocol overhead by invalidation
some of the shared cache blocks early [23]. Lai and Falsafi [24]
employed a predictor based on program counter to predict last-
touch and decide when blocks should be invalidated. PC-traces
are used to identify last stores to a cache block in Somogyi et al’s
work [25]. Power saving techniques employ different hardware
techniques to save power by turning off (Kaxiras et al[26]) or
gating/putting to sleep (drowsy caches [27]) that are predicted to
be not useful in the near future (i.e. based on block lifetime
prediction). Venkatesan et al. in [28] introduced a retention-aware
placement algorithm which tries to reduce the refresh operations
by experimentally identifying that, different rows require different
refresh times. Mrinmoy et al [29] suggested a technique to
identify rows that have been refreshed by a memory access and
avoid refreshing those rows when possible. Murakami [31]
presents the benefits of selective DRAM refreshing using OS or
compiler, however they do not describe how exactly this is done.
Theirs essentially is a limit study evaluating the benefits of
capturing all condition where refresh can be avoided. In our paper
we are describing and evaluating mechanisms to achieve part of
the benefits. Jouppi [33] investigated a cache policy, ‘write-
validate”, which does word-level sub-blocking [34]. In this policy
data for the write is not fetched but rather written directly to the
cache line with the valid bits turned off for all but the data being
written. This could potentially eliminate all write-misses; but the
implementation overhead of this scheme is significant. Wulf and
McKee proposed having a “first write” instruction to bypass cache
stall due to write-miss. The PowerPC has an instruction dcbz

geared towards this end. Our work uses two instructions whose
application goes beyond write misses and helps us track several
different artifacts and reap benefits from them.

ESKIMO relies on semantic information available from the
program allowing for the system to act with out fear about
correctness. In this paper we study the impact of these

optimizations on power and energy consumption. ESKIMO in
many ways can work in a complementary fashion with most of the
previous power saving techniques. It could also be applied to
other areas were block lifetime prediction has been put to use to
but the converse is not true since it requires accurate information.
We do not study such where block lifetime prediction have been
used for in this paper since we focus primarily on power and
energy.

9. SUMMARY
In the current world where power is a first class design constraint
for system architects (both in the server and mobile space), the
consumption of power by the memory subsystem is of particular
importance. Observations about the memory power being
comparable to that of the core power, points to need to focus our
attention on the energy consumed by the memory subsystem. In
our paper we propose some enhancements to the
microarchitecture and memory subsystem. ESKIMO works by
taking advantage of some information one can exploit by virtue of
the program semantics. We propose adjustments to the ISA in the
form of two instructions in order to pass information about
addresses and size that are allocated or freed from the program to
the architecture. With the help of these two instructions, we
propose mechanisms to reduce the power consumption as well as
energy. ESKIMO reduces the amount of energy consumed by
refresh cycles and the amount of write-backs and reads caused by
write-misses by being cognizant about the inconsequent nature of
a memory address range. These techniques reduce the pressure on
the memory and the amount of charging and discharging of lines
required there by reducing the power and energy consumed by the
memory subsystem. We evaluate the energy and power benefits of
our technique using a publicly available, hardware-validated,
DRAM simulator. We also extend Lewis et al.’s work for DRAM
and compare it to your scheme. For the benchmarks we simulated,
the savings in energy consumption of the benchmarks range from
12% to 86% with an average of 39%.

10. ACKNOWLEDGMENTS
The authors are supported in part by NSF grant 0702694 and an
IBM Faculty award. Ciji Isen is also supported by an IBM PhD
Fellowship. Any opinions, findings and conclusions expressed in
this paper are those of the authors and do not necessarily reflect
the views of the National Science Foundation (NSF) or other
research sponsors.

11. REFERENCES
[1] David Wang, Brinda Ganesh, Nuengwong Tuaycharoen,
Kathleen Baynes, Aamer Jaleel, Bruce Jacob, DRAMsim: a
memory system simulator, ACM SIGARCH Computer
Architecture News, v.33 n.4, November 2005

[2] T. Mudge. “Power: A first class design constraint,”
Computer, vol. 34, no. 4, April 2001, pp. 52-57.

[3] Barroso, L., The Price of Performance, ACM Queue,
Volume 3, Number 7, September 2005.

[4] A. S. Tanenbaum, Modern Operating Systems, 1st ed.
Englewood Cliffs, NJ: Prentice-Hall, Feb. 1992.

[5] Bruce Eckel. Thinking in C++: Introduction to Standard
C++, volume 1. Prentice Hall, 2000.

[6] Bruce Eckel. Thinking in C++: Practical Programming,
volume 2. Prentice Hall, 2003.

[7] http://enel.ucalgary.ca/People/Norman/engg333_fall1996/sta
t_dyn/

[8] Micron. Various Methods of DRAM Refresh.
http://download.micron.com/pdf/technotes/DT30.pdf

[9] Chi-Keung Luk , Robert Cohn , Robert Muth , Harish Patil ,
Artur Klauser , Geoff Lowney , Steven Wallace, Vijay Janapa
Reddi , Kim Hazelwood, Pin: building customized program
analysis tools with dynamic instrumentation, Proceedings of the
2005 ACM SIGPLAN conference on Programming language
design and implementation, June 12-15, 2005, Chicago, IL, USA

[10] Pin Website: http://www.pintool.org/

[11] A. Phansalkar, A. Joshi, and L. K. John, “Analysis of
redundancy and application balance in the SPEC CPU2006
benchmark suite,” in ISCA ’07:Proceedings of the 34th Annual
international symposium on Computer architecture. New York,
NY, USA: ACM Press, 2007, pp. 412–423.

[12] J. Sartor, S. Venkiteswaran, K. S. McKinley, and Z. Wang.
Cooperative caching with keep-me and evict-me. In The 9th IEEE
Annual Workshop on the Interaction between Compilers and
Computer Architectures, 2005.

[13] Z. Wang, K. S. McKinley, A. L. Rosenberg, and C. C.
Weems. Using the compiler to improve cache replacement
decisions. In Proceedings of International Conference on Parallel
Architectures and Compilation Techniques, 2002.

[14] J. Abella, A. Gonz`alez, X. Vera, and M. F. P. O’Boyle.
IATAC: a smart predictor to turn-off L2 cache lines. ACM
Transactions on Architecture and Code Optimization (TACO),
2(1):55–77, March 2005.

[15] Z. Hu, S. Kaxiras, and M. Martonosi. Timekeeping in the
memory system: Predicting and optimizing memory behavior. In
Proceedings of the 29th International Symposium on Computer
Architecture, 2002.

[16] M. Kharbutli and Y. Solihin. Counter-based cache
replacement and bypassing algorithms. IEEE Transactions on
Computers, 2008.

[17] A.-C. Lai, C. Fide, and B. Falsafi. Dead-block prediction &
dead block correlating prefetchers. In Proceedings of the 28th
Annual International Symposium on Computer Architecture,
pages 144–154, 2001.

[18] A. Gonz´alez, C. Aliagas, and M. Valero. A data cache with
multiple caching strategies tuned to different types of locality. In
Proceedings of the 9th International Conference on
Supercomputing, 1995.

[19] J. Jalminger and P. P. Stenstr¨om. A novel approach to cache
block reuse prediction. In Proceedings of the 2003 International
Conference on Parallel Processing, 2003.

[20] T. L. Johnson, D. A. Connors, M. C. Merten, and W. W.
Hwu. Run-time cache bypassing. IEEE Transactions on
Computers, 1999.

[21] J. A. Rivers, E. S. Tam, G. S. Tyson, E. S. Davidson, and M.
Farrens. Utilizing resue information in data cache management. In
Proceedings of the 12th International Conference on
Supercomputing, 1998.

[22] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun. A
modified approach to data cache management. In Proceedings of
the 28th Annual International Symposium on Microarchitecture,
1995.

[23] A. R. Lebeck and D. A. Wood. Dynamic self-invalidation:
Reducing coherence overhead in shared-memory multiprocessors.
In Proceedings of the 22nd Annual International Symposium on
Computer Architecture, pages 48–59, 1995.

[24] A.-C. Lai and B. Falsafi. Selective, accurate, and timely self-
invalidation using last-touch prediction. In Proceedings of the
27th Annual International Symposium on Computer Architecture,
pages 139–148, 2000.

[25] S. Somogyi, T. F. Wenisch, N. Hardavellas, J. Kim, A.
Ailamaki, and B. Falsafi. Memory coherence activity prediction in
commercial workloads. In 3rd Workshop on Memory
Performance Issues, 2004.

[26] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay:
Exploiting generational behavior to reduce cache leakage power.
In Proceedings of the 28th Annual International Symposium on
Computer Architecture, 2001.

[27] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge.
Drowsy caches: simple techniques for reducing leakage power. In
Proceedings of the 29th Annual International Symposium on
Computer Architecture, 2002.

[28] R. Venkatesan, S.Herr, and E. Rotenberg. Retention-Aware
Placement in DRAM (RAPID):Software Methods for Quasi-Non-
Volatile DRAM. In Proceedings of the Twelfth Annual
Symposium on High Performance Computer Architecture, pages
155.165, Nov. 2006.

[29] Mrinmoy Ghosh , Hsien-Hsin S. Lee, Smart Refresh: An
Enhanced Memory Controller Design for Reducing Energy in
Conventional and 3D Die-Stacked DRAMs, Proceedings of the
40th Annual IEEE/ACM International Symposium on
Microarchitecture, p.134-145, 2007

[30] Laudon, J., UltraSPARC T1: Architecture and
PhysicalDesign of a 32-threaded General Purpose CPU,
Proceedings of the ISSCC Multi-Core Architectures, Designs, and
Implementation Challenges Forum, 2006.

[31] Ohsawa, T.; Kai, K.; Murakami, K., Optimizing the DRAM
refresh count for merged DRAM/logic LSIs. Proceedings. 1998
International Symposium on Low Power Electronics and Design,
vol., no., pp. 82-87, 10-12 Aug 1998

[32] Lewis, J.A.; Black, B.; Lipasti, M.H., Avoiding initialization
misses to the heap, Proceedings. 29th Annual International
Symposium on Computer Architecture, vol., no., pp.183-194,
2002

[33] Jouppi, N.P., Cache Write Policies And Performance,
Proceedings of the 20th Annual International Symposium on
Computer Architecture, vol., no., pp.191-201, 16-19 May 1993

[34] Cragon, H.G. “Memory Systems and Pipelined Processors”.
Jones and Bartlett Publishers, Inc., Sudbury, ME, 1996.

[35] US Patent 6542958 - Software control of DRAM refresh to
reduce power consumption in a data processing system

[36] US Patent 6094705 - Method and system for selective
DRAM refresh to reduce power consumption

