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ABSTRACT 

Dynamic Random Access Memory (DRAM) is used as the bulk of 
the main memory in most computing systems and its energy and 
power consumption has become a first-class design consideration 
for modern systems. We propose ESKIMO, a scheme where when 
the program or operating systems memory manager allocates or 
frees up a memory region, this information is used by the 
architecture to optimize the working of the DRAM system, 
particularly to save energy and power. In this work we attempt to 
have the architecture work hand in hand with information about 
allocated and freed space provided by the program. We discuss 
multiple ways to use this information to reduce the energy and 
power consumption of the memory and present results of this 
optimization. We evaluate the energy and power benefits of our 
technique using a publicly available, hardware-validated, DRAM 
simulator, DRAMsim [1]. Our current studies show very 
promising results with energy savings on average of 39%.  

Categories and Subject Descriptors 

B.3.1 [Memory Structures]: Semiconductor Memories – power 

and energy savings.  

General Terms 

Management, Performance, Design, Experimentation. 

Keywords 

Memory power and energy, cross-boundary or cross-layer 
architecture optimizations, allocated and freed memory states, 
program semantic aware architecture.  

1. INTRODUCTION 
Dynamic Random Access Memory (DRAM) is used as the bulk of 
the main memory in most computing systems. In both the server 
and mobile space, both power and energy has been a first class 
design constraint [2, 3]. According to observations made at a 
recent International Solid-State Circuits Conference (ISSCC), Sun 
Microsystems revealed that the power consumption of DRAM in 
the UltraSPARC T1 (“Niagara”) systems running SPECjbb was 
approximately 60 watts [30]. This amounts to nearly 22% of the 

total system power, in other words almost as much as the 
processor cores. Observations like this brought light to the power 
and energy consumption of DRAM memory, and made it a first-
class design consideration for modern systems. 

With the need to reduce the power/energy consumption of the 
DRAM subsystem of modern systems in mind, we discuss some 
program semantics aware optimizations to the microarchitecture. 
Although there have been optimizations such as cache-locking, 
cache-bypass, prefetching etc, most of the modern optimizations 
done in the microarchitecture and memory subsystem tend to be 
agnostic of the program semantic. We focus our attention on our 
knowledge about program behavior and attempt to have the 
microarchitecture work with the information provided by the 
program. With ESKIMO, we propose to take advantage of the 
program’s semantic notion of valid and invalid state for the 
memory regions. When a program or operating systems memory 
manager allocates or frees up a memory region, this program 
semantic information can be used by the architecture to optimize 
the working of the memory system.  

In order to understand the optimization we discuss later, it is 
necessary to understand how the typical memory management 
works [4, 5, 6]. We make use of the program semantic 
observations resulting from memory management. Most program 
languages provide means for dynamic memory allocation 
(implicitly or explicitly). Considering its wide use and 
understanding, we will use C language constructs and 
assumptions for the purpose of examples. One of the commonly 
used ways for dynamic allocation in C is the malloc function. Its 
function prototype is 

void *malloc(size_t size); 

which allocates size bytes of memory. If the allocation is 
successful, a pointer to the block of memory is returned. If it fails 
a null pointer is returned. The pointer returned by malloc is a void 
pointer (void *), indicating the lack of any known data type. This 
pointer can be cast to the necessary type and assigned to a pointer 
variable. The memory allocated via malloc is persistent, i.e. it will 
continue to exist until it gets explicitly deallocated by the 
programmer (in the code) or the program terminates. The explicit 
deallocation (freeing the block of memory) is done with the help 
of the function “free”. Its prototype is 

void free(void *pointer); 

which releases the block of memory pointed to by pointer. The 
address, pointer must have been returned previously by memory 
allocation functions such as malloc, calloc, or realloc etc. Once 
the address is freed any access to this memory location is incorrect 
and its behavior is undefined. Hence the programmer will not be 
using this location after it is freed and many modern programming 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
MICRO’09 December 12–16, 2009, New York, NY, USA. 
Copyright © 2009 ACM 978-1-60558-798-1/09/12…$10.00. 

 



languages have mechanisms inbuilt to prevent such erroneous 
accesses. Consider this example program:  

1. int main(void){ 

2.    const char *p1 = "hello"; 

3.    char *p2; 

4.    /* point zero */ 

5.    p2 = malloc(strlen(p1) + 1); 

6.    if (p2 == NULL) { 

7.         fprintf(stderr, " malloc failed.\n"); 

8.        exit(); } 

9.    strcpy(p2, p1); 

10.    /* point one */ 

11.    free(p2); 

12.    /* point two */ 

13.    return 0; } 

The diagrams (Figure 1.) show the situation at point zero (line 4), 
point one (line 10) and point two (line 12). At point zero (line 4), 
the pointer p2 has no memory allocated to it. After this, at point 1 
(line 10), the pointer p2 has memory allocated to it as well data 
copied into the allocated space. At point two (line 12) we note 
that the pointer variable p2 still contains the address of a byte in 
the free store but that there is no longer an allocated block at that 
address. It would be a serious error to actually use that address. 
Thus, according to program semantics the address pointed to by 
p2 is not expected to contain useful data after point two. 
Similarly, if the pointer p2 were read before the strcpy function 
(line 9) one would get random data and even cause an error. So 
before strcpy function writes data to the allocated memory it 
contains random data and the program does not read from it 
without writing to it first. In both these cases the data present is 
invalid hence inconsequential to the program execution.  

Hence we can have inconsequential memory accesses, i.e. the 
transfer of data between the caches and the DRAM that has not 
been initialized by the program, or has already been released by 
the program. The hardware transfers data based on demand, 
regardless of memory state.  During a typical program execution 
all structures such as the stack and heap contain inconsequential 
data until they are allocated to some data structures and are 
initialized for sure. Figure 2 illustrates the different states a 
memory location can be in as a result of memory management. An 
unallocated-invalid memory location becomes allocated-invalid 
after allocation. It remains in this state until the memory location 
is written to, causing it to transition to allocated-valid state. From 
this point on that memory location can not be considered to be 
inconsequential. Eventually when the program is done with the 
memory location a free operation causes it to be returned to the 
heap; i.e. the location transition from an allocated-valid state to an 
unallocated-invalid state. 

Research work that has attempted to exploit this information is 
sparse; Lewis et al. [32] being the closest. Although Lewis et al. 
explored using part of this semantic information (information 
relating to allocation and resulting allocated-invalid state) to 
optimize the cache to improve performance we are unaware of any 
work that has employed and analyzed it for optimizing DRAM 
power. In ESKIMO, we focus both on allocated-invalid and 
unallocated-invalid states to reduce power and energy 
consumption of the DRAM (shaded area in Figure 2). We present 
4 techniques in section 3. Although Lewi’s did not extend their 
work to save energy we extend Lewis’s technique for DRAM to 

serve as a competition and call it Lewis++ (marked by dotted line 
in Figure 2).   

 

 

 

Figure 1. Changes to pointer status due to malloc & free [7] 

 

The primary contributions of this paper are: 

1. An insight into the usefulness of memory management 
semantic information from the program towards saving 
power and energy in the microarchitecture.  

2. Employing known DRAM refresh technology to save power 
and energy by leveraging memory allocation/de-allocation 
semantic information. 

3. Memory access optimizations (write-back, write-miss and 
virgin access) to the DRAM subsystem leading to reduction 
in energy consumption, and hence showing the potential of 
a program semantic aware memory controller. 

4. Analysis Lewis et al.’s work on reducing write-miss if 
extended to DRAM, Lewis++. 



 

Figure 2. Inconsequent memory state transitions covered by 

ESKIMO vs. Our extension to Lewis et al. [32] (Lewis++)  

2. ORGANIZATION 
The rest of the paper is organized as follows. Section 3 discusses 
the various optimizations (4 in total) we propose to leverage the 
memory inconsequential state knowledge using ESKIMO. Section 
4 discusses the details of mechanisms necessary to achieve this. 
Section 5 analyzes the allocation and de-allocation behavior of the 
benchmark suite we use. Sections 6 and 7 discuss our experiments 
and evaluation of both our system and the extended version of 
Lewis et al. we implement. We discuss related works in section 8 
and summarize the paper in section 9.  

3. ESKIMO BASED ADAPTATIONS 
 

3.1 Semantics Aware DRAM Refresh  
Due to the dynamic nature of a DRAM cell, periodic refresh 
operations are required for keeping the data stored. Even in 
standby mode, such regular refreshes account for a large energy 
consumption in DRAMs. Some studies have shown that even in 
the lowest power mode, the power needed to keep the DRAM 
contents is about a third of the total power dissipated. Factors 
such as the memory vendor and the design technology affect the 
refresh rate. A refresh interval of 32ms means, a refresh operation 
takes place every 32ms. A refresh operation fundamentally 
involves reading the DRAM cell out and writing back to the same 
cell. Although this refresh operation consumes, power and 
bandwidth, it is inevitable for the sake of data correctness.  

We propose a technique to eliminate unnecessary refreshes by 
leveraging the program semantics information. The regions of 
memory that are marked as free (unallocated-invalid) or freshly 
allocated (allocated-invalid) have no concern related to 
correctness since the data stored is of no consequence to the 
correct execution of the program. Thus, not refreshing the data 
stored in these regions would not be a concern. Hence we propose 
to avoid refreshing the rows that are known to be “Inconsequent” 
from the program semantics. There are several technologies 
proposed in literature [31] as well as patents [35,36] that allow 
selective refresh of DRAM rows. We propose to employ these 
technologies along with knowledge of memory state to save 
power and energy. 

3.2 Write Back Optimization 
The cache hierarchy of a processor may operate on write-through 
or a write-back policy. Most modern caches tend to be write-back. 
In a write-back cache, writes are not immediately stored into the 
memory. Instead, the cache keeps tracks of the locations that have 
been written over (marks them as dirty). The data in these 
locations is written back to the memory when the data is evicted 
from the cache due to a new piece of data. Hence a read miss in a 
write-back cache, i.e. replacing a block with another, will often 
require two memory accesses to be serviced – one to fetch the 
necessary data for the read and one to write the replaced data from 
the cache to the store.  

Programs typically allocate memory regions to compute and store 
data that may persist across different parts of the program in some 
what temporal fashion. Data stored in those allocated region 
might appear as dirty data but once the temporary use of the 
memory region is over (marked by a call to free), the program has 
no expectations of the data stored in these memory address. We 
call the state as “Inconsequent” state since the data stored in a 
location that has been freed is of no consequence to the correct 
execution of the program. We propose to use this to our advantage 
by storing this information in the cache lines. We would need a 
bit in addition to the dirty bit per cache line to mark the cache 
line. The implementation of the free function would mark and 
address range as free. If a cache line holds data for a location that 
has been freed, i.e. will not have any consequence on the 
execution of the program, we mark that cache line as 
“Inconsequent” via the dedicated bit. 

In the context of the program semantic status of valid and 
“Inconsequent” cache lines one can perform this write-back more 
optimally. For example, some of the cache lines that have been 
marked dirty could become free and hence is in an “Inconsequent” 
state (i.e. unallocated-invalid in Figure 2). When a read miss 
occurs requiring an eviction of this cache line, one can avoid 
writing the replaced data to the next level. Hence have just one 
access to be serviced in that case as opposed to two as in regular 
caches. By doing this we are reducing the number of accesses to 
the DRAM resulting in reduction in the number of pre-charge 
discharge cycles as well as more opportunity for the DRAM to 
enter power saving mode. Hence one can reduce power as well as 
save on energy. This optimization is not applicable to all the 
cache lines that need a write-back since we can only avoid the 
write-backs to cache lines that are “Inconsequent”. The data in 
these cache lines are not required by future state of the application 
since it was freed by the program. Thus not reflecting the 
modified value in the main memory is of no consequence to the 
program. Since this assumption is based on the program semantic 
and compiled code the system is not introducing any additional 
error. 

3.3 Write Miss Optimization 
A write miss occurs in a cache when a store attempts to store data 
and none of the cache ways contain the necessary cache line. In a 
cache that is write allocate, such a miss would result in a 
corresponding fetch from memory. The necessary cache line is 
fetched from memory and brought to the cache so that the write to 
the cache can proceed. This is important for correctness, 
particularly for partial writes (writes a fraction of the cache line in 
size). If this data was not brought from the main memory and then 



the data write executed, the data would have to be written to the 
cache line with the rest of the cache line filled up with random 
data. Since this cache line would be marked as dirty after a write 
operation a future eviction to this cache line would result the 
whole cache line(including the random data) to be written back to 
the main memory, resulting in loss of data. For this reason and 
others a write-miss requires a corresponding read to memory.  

The memory management library allocates and frees data for the 
program and these operations on the heap are done on a 
contiguous memory range. A write to a newly allocated memory 
space resulting in a write-miss though, has no useful data to gain 
by fetching the data from memory since the data present in this 
address range is random/”inconsequent”. We propose to avoid 
this “inconsequent” read operation. We propose to achieve this by 
tracking the “inconsequent” address ranges at a per row 
granularity. We use the counter mechanism described in Section 
4.1 and Figure 3. Using this, we can identify memory segments 
that have been freshly allocated were the data currently residing in 
the segment is of no consequence to the program. When a write-
miss occurs, a fetch to the memory is issued. This fetch operation 
can be quickly resolved to be one to an “Inconsequent” memory 
segment. If so, this can be signaled back to the cache allowing it 
to proceed with the partial write to the cache line and intentionally 
disregard the random data occupying the rest of the line, i.e. the 
part of the cache line that was not written to. Hence with a small 
list of memory segments that are “Inconsequent” can help in 
avoiding a read operation to the main memory. By doing this we 
are reducing the number of accesses to the DRAM resulting in 
reduction in the number of pre-charge discharge cycles as well as 
more opportunity for the DRAM to enter power saving mode. 
Hence we can reduce power as well as save on energy. 

3.4 Virgin Segment Optimization 
This optimization is an extension of write-miss optimization. It is 
conceptually the same, but extended to apply to memory segments 
that are allocated by the operating system. When programs start 
up the operating system allocates a set of virtual memory pages 
for its use. Part of this space is populated by code and other data. 
We use the same tracking system discussed in Section 4.1 and 
Figure 3, to track segments allocated by the operating system too. 
Freshly allocated segments contain random data, which is of no 
consequence to the correct execution of the program. These 
segments are conceptually similar to an allocated memory (e.g. by 
malloc) with the only difference that, this space is allocated by the 
operating system and tends to be in much larger granularity. Until 
data is written to these segments, they can be assumed to contain 
random data that is of no consequence. Once data is written to 
these pages this assumption does not hold true.  

As in the previous case, when a write-miss occurs, the fetch that 
will be issued can be quickly resolved to be one to an 
“Inconsequent” memory segment. If it is one such segment, this 
can be signaled back to the cache allowing it to proceed with the 
partial write to the cache line and intentionally disregard the 
random data occupying the rest of the line(the part of the cache 
line that was not written to). Similar to write-miss optimization 
this too can reduce the power consumed as well as result in energy 
savings. 

4. ESKIMO IMPLEMENTATION 

4.1 Allocation and De-allocation Tracking 
The memory management library allocates and frees data for the 
program and these operations on the heap are done on a 
contiguous memory range. We propose to track the 
“inconsequent” address ranges at a per row granularity. Using 
this, we can identify memory rows that have been freshly 
allocated where the data currently residing in the page is of no 
consequence to the program. We could use a per row set of 
counters to track the malloc and free operations but we find 
empirically from our analysis that a limited set of counters would 
suffice (1k to 2k). We optimize this implementation by using a 
thousand counters which have a tag to indicate the row it is 
tracking. When the counter reaches full value indicating the whole 
row is inconsequential, a single bit flag at a row granularity is set. 
This can be stored inside the DRAM (option used for results) or a 
separate bit array large enough to contain 1 bit per row. The status 
of this is used to determine if the row is inconsequential and also 
used control refresh in our selective refresh policy. 

Based on the DRAM configuration we assume, we need a counter 
that count up to 1k, i.e. 10 bits long. We also try a granularity of 
4k (standard linux page size) which would need a 12bit counter 
but the results presented are for a 10bit counter. A malloc that is 
aware of the potential of semantic information would pass the 
address allocated to the system, which in turn can identify the 
row, lookup the 10 bit counter corresponding to it and increment 
it by the allocated size. Figure 4 is an example illustration. When 
the counter value for a row reaches the necessary size (1k or 4k), 
the memory segment can be considered to be “Inconsequent” as 
long as no writes have happened to it. For correctness, any write 
operation (besides inconsequent write-back) to an address inside a 
memory segment in the memory will reset the counter and hence 
it’s “Inconsequent” status. When a row is found to be 
inconsequent, a bit corresponding to that row is set in the bit 
array. This frees up the counter to be reused. If a row that has its 
bit set in the bit array to indicate its inconsequential state, loses its 
inconsequential state due to a write operation or eviction or any 
other operation, the bit is reset.   

 

Figure 3. Per Row counter structure – 10 bit counter per row 

4.2 Selective DRAM refresh 
Due to the dynamic nature of a DRAM cell, periodic refresh 
operations are required for keeping the data stored. Even in 
standby mode, such regular refreshes account for a large energy 
consumption in DRAMs. Some studies have shown that even in 



the lowest power mode, the power needed to keep the DRAM 
contents is about a third of the total power dissipated. Factors 
such as the memory vendor and the design technology affect the 
refresh rate. A refresh interval of 32ms means, a refresh operation 
takes place every 32ms. A refresh operation fundamentally 
involves reading the DRAM cell out and writing back to the same 
cell. Although this refresh operation consumes, power and 
bandwidth, it is inevitable for the sake of data correctness. There 
are several technologies proposed in literature [31] as well as 
patents [35,36] that allow selective refresh of DRAM rows. We 
propose to use the implementation suggested by Ohsawa et al. 
[31]. Figure 4-a illustrates how a flag is added to each row and 
how the value is set according to the status of the row, i.e. 
depending up on the presence of significant data. Figure 4-b 
shows the DRAM cell logic as illustrated by Ohsawa et al. 

 

Figure 4-a. Per row flag to store refresh states[31] 

4.3 Adaptation in ISA  
Since any information that is parlayed between the program and 
the microarchitecture is done via the ISA, taking advantage of this 
program semantic information requires the help of the ISA. Most 
modern ISAs do have ISA instruction that could be modeled 
around to convey information about freed or allocated address 
space. For example, the x86 ISA has the INVD (invalidate data 
cache) and WBINVD (write back and invalidate data cache) 
instructions while PowerPC ISA has DCBI (data cache block 
invalidate) and ICBI (instruction cache block invalidate) 
instructions. We propose an extension to the ISA on similar lines 
that conveys information about addresses ranges that are allocated 
or freed. It is obvious from the optimizations discussed before that 
we need a mechanism in the ISA to pass information about 
allocated and freed memory segment. We propose two 
instructions modeled around some of the cache invalidate 
instructions.  

Inconsequent on free - INQF addr size: This instruction is meant 
to be invoked by the free call and it is aimed at reporting the 
address range that has been freed. INQF tells the system that the 
address range starting at addr of size size has been freed. The 
system can now safely assume this address range to contain 
inconsequent data. Alternatively this instruction could take the 
form INQF addr where the size of the address range is implicit 
rather than explicit.  

Inconsequent on malloc - INQM addr size: This instruction is 
meant to be invoked by the malloc call and it is aimed at reporting 
the address range that has been allocated. INQM tells the system 
that the address range starting at addr of size size has been 
allocated. The system can now safely assume this address range 

currently contains inconsequent data, i.e. until it is changed by 
some part of the program. Alternatively this instruction too could 
take the form INQM addr where the size of the address range is 
implicit rather than explicit. 

4.4 Overhead 
We now consider the storage overhead for the counter structure. 
We need to maintain 1000-2000 counter tag pairs. Each counter 
tag pair needs 10 bits for counting and 48 bits (current virtual 
address range) i.e. a total of 58 bits. Thus we need approximately 
116 KB of storage which amounts to less than 0.01% of the main 
memory we model. Previous studies such as that of Ohsawa et al. 
[31] have analyzed the cost of implementing the selective refresh 
logic in hardware and have found it to be very small. Their 
estimate based on silicon modeling attributes less than 5% area 
overhead to incorporate all the necessary storage and control 
logic. 

5. DYNAMIC MEMORY ALLOCATION 
We can observe the dynamic memory activity to the heap by 
tracking invocations of malloc() and free() routines (along with 
other related routines such as realoc()).  In Table 1 we summarize 
the percentage of procedure calls for allocation and percentage of 
space allocated according to different allocation sizes. For 
example astar has 21.68% of allocation calls invoked to allocate 
memory regions of size smaller than 64 bytes. The total number of 
allocation calls for astar is 1117*1000. Similarly 97.1% of the 
total 545MB space allocated by hmmer was given to data chunks 
of size ranging between 64 bytes and 2k bytes. Similarly in Table 
2 we summarize the percentage of procedure calls to free and the 
percentage of space freed up according to different allocation 
sizes. For example gobmk has 71.94% of calls to free memory 
freeing up data of size less than 64 bytes; in total gobmk had 104 
calls to free data. The same benchmark has 98.25% of the space 
allocated being freed up in chunks of size ranging from 2k to 
256k. 

Figure 4-b. DRAM cell array - selective refresh [31] 

There are some interesting observations we make from this data. 
There is a clear difference in the data chunks the allocation calls 
target and the data chunks that make up most of the allocation. 
For example, gcc has 64.81% of its allocation function calls 
targeted at chunks of size less than 64 bytes but only 0.82% of the 
total allocated bytes are made up of this chunk size. The chunk 
size of 2k-256k range has 93.29% of the memory allocated even 
though only 10.27 % of the calls target this range. A similar 
observation applies to dynamic de-allocation too. For example,  



Table 1: Dynamic memory allocation behavior 

Benchmark % of Allocation Calls % of Allocated Bytes 

  <64 <2K <256K <16M >=16M Total (1k)  <64 <2K <256K <16M >=16M Total(MB)

astar 22 77 2 0 0 1117 1 82 9 8 0 997 

bzip2 0 0 46 43 11 <1 0 0 0 4 96 628 

dealII 92 8 0 0 0 153873 49 24 5 8 15 10819 

gcc 65 25 10 0 0 2920 1 3 93 3 0 6634 

gobmk 74 0 26 0 0 119 1 0 80 19 0 123 

h264ref 5 89 5 1 0 105 0 4 23 73 0 1026 

hmmer 3 97 0 0 0 1000 0 97 0 2 0 545 

lbm 0 50 0 0 50 <1 0 0 0 0 100 409 

libquantum 29 6 9 40 16 <1 0 0 0 39 61 1486 

mcf 0 40 0 40 20 <1 0 0 0 0 100 1676 

Milc 0 0 0 62 38 7 0 0 0 35 65 84226 

Namd 0 42 57 1 0 1 0 1 28 71 0 45 

omnetpp 19 81 0 0 0 267065 3 97 0 0 0 42503 

perlbench 18 64 15 3 0 22917 0 0 68 32 0 592549 

Povray 96 4 0 0 0 2462 43 21 37 0 0 114 

Sjeng 0 20 0 20 60 <1 0 0 0 7 93 172 

Soplex 1 2 90 7 0 9 0 0 9 22 68 3186 

Sphinx3 66 17 17 0 0 14225 1 21 67 10 0 15398 

xalancbmk 67 25 7 0 0 135184 3 44 54 0 0 59352  
Table 2: Dynamic memory de-allocation (free) behavior 

Benchmark % of Free Calls % of Freed Bytes 

  <64 <2K <256K <16M >=16M Total (1k) <64 <2K <256K <16M >=16M Total(MB) 

astar 22 77 2 0 0 1117 1 82 9 8 0 997 

bzip2 0 0 50 50 0 <1 0 0 1 99 0 25 

dealII 92 8 0 0 0 153873 49 24 5 8 15 10819 

gcc 65 25 10 0 0 2876 1 2 93 3 0 6521 

gobmk 72 0 28 0 0 104 1 0 98 0 0 93 

h264ref 5 89 5 1 0 105 0 4 23 73 0 1026 

hmmer 3 97 0 0 0 1000 0 98 0 2 0 542 

lbm 0 50 0 0 50 <1 0 0 0 0 100 409 

libquantum 39 4 9 26 22 <1 0 0 0 6 94 935 

mcf 0 40 0 40 20 <1 0 0 0 0 100 1676 

milc 0 0 0 62 38 6 0 0 0 35 65 83613 

namd 0 42 57 1 0 1 0 1 28 70 0 45 

omnetpp 19 81 0 0 0 266999 3 97 0 0 0 42499 

perlbench 20 78 3 0 0 18643 0 6 82 12 0 23231 

povray 98 2 0 0 0 2427 67 13 20 0 0 73 

sjeng 0 100 0 0 0 <1 0 100 0 0 0 <1 

soplex 3 3 85 9 0 4 0 0 15 31 54 1160 

sphinx3 65 17 17 0 0 14024 1 21 67 10 0 15358 

xalancbmk 67 25 7 0 0 135184 3 44 54 0 0 59352  
 

xalancbmk  has 66.47% of the de-allocation calls for chunk size of 
<64 bytes amounting to only 2.79 % of the total data de-allocated; 
while 7.18% of the de-allocation calls to chunk size 2k-256k  
amount to 53.51% of the total data freed. We also that some of the 
benchmarks do have a significant percentage of data allocated and 
freed in chunk sizes less than 64 bytes. For example dealII and 
povray have 49 and 42.5% of data allocated while 49 and 66.6% 
of data de-allocated less than 64 bytes. When tracking the 
allocation and de-allocation behavior in programs we need to be 
able to track smaller granularities too for benchmarks like this. 
These examples show how diverse the benchmarks are with 
respect to the chunk sizes they concentrate on during allocation 

and de-allocation. This makes any assumption about the 
predominant chunk size difficult. Very interestingly, for some 
benchmarks both the allocation and de-allocation patterns follow 
very closely. For example astar has 21%, 76% and 1.8% of the 
allocation invocation for types <64, <2k and <256k respectively. 
The same distribution is observed by astar for de-allocation/free 
calls. For astar the observation can be made for the dynamic bytes 
allocated and freed. 

6. EXPERIMENTAL SETUP 
Our experiments use a cache simulator built on top of PIN [9, 10] 
and a DRAM simulator, DRAMsim [1] that models both power 



and latency. The DRAMsim is a hardware-validated, public-
domain DRAM system simulation code that was developed by 
members of the Systems and Computer Architecture Lab (SCAL) 
in the Department of Electrical and Computer Engineering at the 
University of Maryland. We use the DRAM simulator to model 
DRAM power and focus our analysis on results based on this. The 
cache simulator assumes a simplistic CPU architecture close to 
that of an Intel ATOM processor, an in order processor with a 
simplified pipeline and system architecture. The important 
assumptions about the memory subsystem are summarized in 
Table 3. Our simulator uses x86 binaries of the benchmarks and 
can simulate the allocation and de-allocation behavior in C and 
C++ benchmarks. We use a subset of SPEC CPU 2006 
benchmarks and inputs based on the suggestions of Phansalkar et 
al. [11] to evaluate our optimizations. A subset of the benchmark 
suite was picked to reduce simulation time as well as avoid 
benchmarks which could not be simulated (particularly fortran 
code). We simulate 1 billion instructions for each benchmark and 
believe it is sufficient to prove the usefulness of our techniques. 
We fast forward the initial 500 million instructions to avoid 
startup behavior and simulate the next 500 million instructions. 
During the fast forward stage we do keep track of all allocation 
and de-allocation behavior to ensure correctness. 

Table 3: DRAM Module and L2 Cache Configuration 

Parameter Value Parameter Value 

Type DDR2 Columns 1024 

Size 1GB Data Width 72 bits  

Rows 16384 Refresh Interval 32ms 

Frequency 667(MHz)  L2 cache size 1MB 

Banks 8 L2 cache way 8way 

Ranks 2    
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Figure 5. Savings in Total power due to ESKIMO based DRAM 

refresh optimization 

7. RESULTS 
In this section we will present and discuss the results of ESKIMO. 
Although Lewis et. al [32] did not extend their work to save 
energy we extend Lewis’s technique to save energy and apply it to 

DRAM to serve as a competition. We call this extension Lewis++ 

and present its results along with ESKIMO when applicable.   

7.1 Semantic Aware Dram refresh 
We implemented the refresh optimization based power saving 
technique in our simulator and model the power savings for it. We 
compare the power of our scheme to that of the baseline and 
compute the savings in power. In Figure 5 we present the savings 
in total power arising from the semantic aware DRAM refresh. . 
Note that, the refresh power of a DRAM is only a part of the 
power consumed by the DRAM. Benchmarks such as astar, dealII, 
gcc, h264, omnetpp, perl, povray, sphinx3 and xalanc are able 
reduce total power by a significant amount. The benchmark to 
demonstrate the best power savings is omnetpp, with a 10% 
reduction in total power consumed by the DRAM. The savings in 
power among the benchmarks with some impact ranges from 6% 
to 10%; the others have no impact. 

7.2 ESKIMO Write Miss vs. Lewis++ Store 

Miss Optimization on Dram 

 

Figure 6-a. Reduction in memory cycles in the DRAM  

 

Figure 6-b. Reduction in energy in the DRAM 

Figure 6 shows the comparison between the Lewis++ and 
ESKIMO with only write-miss optimization in place. ESKIMO 
significantly out performs Lewis++ for energy and memory 
cycles. The reduction in memory cycle is directly related to the 
amount of write-misses that can be avoided. The work by Lewis et 
al. was done on SPEC cpu 2000 benchmarks which made less 
aggressive use of memory management. In fact, in SPEC cpu2000 
has only one C++ benchmark while most of the benchmarks in 
our suite are C++ programs. These programs tend to make more 
aggressive and dynamic use of allocation and de-allocation as is 
evident from Table 1 and Table 2. Our ability to use counters and 
off-load filled up counters as flag bits per row allows us to get far 
better reach for our tracking mechanism. Clearly write-miss 



optimization results in significant reduction in energy 
consumption by the DRAM. 

7.3 Virgin Segment Optimizations 
Virgin segment optimization typically is caused by OS or library 
activity and tends to be much clustered. In Figure 6 we present the 
reduction in energy consumed by DRAM we observe due to this 
optimization. We observe a reduction of up to 47% for lbm. A few 
other benchmarks such as gobmk, h264, hmmer etc have 
significant reduction while the others gain very little from this 
optimization. On an average we observe an improvement of 9%. 
In our studies we found that Lewis++ performs as well as 
ESKIIMO in tracking this artifact. Since these allocations arise 
from the OS of the library, it is easy to separate them from regular 
allocation and de-allocation and hence avoid its polluting effect. 
We present only one graph (Figure 7) for this reason and make no 
distinction. 

7.4 Total Energy Savings 
In this section we present data regarding the total energy savings 
the DRAM achieves as a result of all four of our proposed 
optimizations. Figure 8 has the total energy savings achieved by 
ESKIMO and Lewis++. In the extension we also include virgin 
segment tracking using their scheme and include its savings 
towards their total savings. ESKIMO gets an average savings of 
39% in energy while Lewis++ gives us an average of 13% 
savings. The savings we obtain varies widely from benchmark to 
benchmark. In general, benchmarks which exhibit large clustered 
allocation and de-allocation benefits significantly from both the 
write-miss and virgin segment optimization. These two 
optimizations make up for the bulk of the energy savings we 
observe. For lbm, which does exceptionally well, close to 100% of 
the 0.5GB of data allocated occur in large chunks of size >= 16M. 
This pattern makes it amenable to write-miss as well as virgin 
segment tracking provided the tracking system is able to filter off 
50% of the allocation calls which result in very little of the data 
allocated. Similar pattern can be observed for mcf and to some 
extend milc. It is possible that further tuning could improve the 
performance of Lewis et al.’s work which would give further 

credibility to the usefulness of tracking allocation and de-
allocation patterns to save energy in the DRAM system.  
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Figure 7. Virgin segment optimization – energy savings 

8. RELATED WORK 
Prior work in making informed discussions based on the block 
status was done both in software and hardware. Some techniques 
have tried to identify this at the software level [12,13] while 
others have attempted to do the same at the hardware level 
[14,15,16,17].  Most of these techniques try to identify blocks that 
are not likely to be used in the near future. Software solutions do 
this by passing hints about blocks that are thought to be not likely 
to be used in the near future to the hardware – based on inferences 
from profiling or compiler analysis [12,13]. Hardware solutions 
employ predictors to predict those blocks that are not likely to be 
used in the near future. The predictor does this based on the data 
address [15] or the program counter [14,16,17]. All these 
approaches differ significantly from our approach in the fact that 
they predict the likelihood of usage and attempt to use that while 
our work bases its self on the knowledge from program semantics 
about validity of a block from the programs perspective. 

 

Figure 8. Total energy savings from all optimizations 



This is different from predicting how likely a block is to be used 
in the near future and there by predicting how useful it is to keep a 
certain block in the cache.The knowledge based on program 
semantics allows us to optimize the DRAM subsystem to avoid 
some of the operations without fear of incorrectness; the same can 
not be done with predictive techniques. Lewis et al.[32] explored 
using program semantic information about allocated space for 
caches and at cache block granularity to improve performance; 
ours is for DRAM and at DRAM row granularity. Additionally, 
energy savings were never explored in Lewis et al. 

The application of this knowledge has some similarity to existing 
uses of block lifetime prediction and a few others which are 
unique to block semantics invalidity. Some of the uses that have 
also been sighted in prior work related to block lifetime prediction 
are perfecting [17,15,17], replacement [16], bypassing 
[18,19,20,21,22], coherence protocol optimizations [23,24,25] 
and to a limited extend power reduction [26,14,27]. Works by Lai 
et al [17], Hu et al [15], Ferdman and Falsafi [17] use the 
predictions of the block lifetime to trigger pre-fetches; Lai et al 
[17], Hu et al [15], pre-fetched into the L1 data cache while 
Ferdman and Falsafi did the same from off-chip to on-chip 
memory.  Kharbutli and Solihin [16] used the knowledge of block 
lifetime to improve the LRU algorithm by replacing dead blocks 
first and also bypassing the cache. Cache coherence protocols 
have also been tuned to take advantage of block lifetime 
prediction to maintain or avoid status updates. Wood proposed a 
reduction in cache coherence protocol overhead by invalidation 
some of the shared cache blocks early [23]. Lai and Falsafi [24] 
employed a predictor based on program counter to predict last-
touch and decide when blocks should be invalidated. PC-traces 
are used to identify last stores to a cache block in Somogyi et al’s 
work [25]. Power saving techniques employ different hardware 
techniques to save power by turning off (Kaxiras et al[26]) or 
gating/putting to sleep (drowsy caches [27]) that are predicted to 
be not useful in the near future (i.e. based on block lifetime 
prediction). Venkatesan et al. in [28] introduced a retention-aware 
placement algorithm which tries to reduce the refresh operations 
by experimentally identifying that, different rows require different 
refresh times. Mrinmoy et al [29] suggested a technique to 
identify rows that have been refreshed by a memory access and 
avoid refreshing those rows when possible. Murakami [31] 
presents the benefits of selective DRAM refreshing using OS or 
compiler, however they do not describe how exactly this is done. 
Theirs essentially is a limit study evaluating the benefits of 
capturing all condition where refresh can be avoided. In our paper 
we are describing and evaluating mechanisms to achieve part of 
the benefits. Jouppi [33] investigated a cache policy, ‘write-
validate”, which does word-level sub-blocking [34]. In this policy 
data for the write is not fetched but rather written directly to the 
cache line with the valid bits turned off for all but the data being 
written. This could potentially eliminate all write-misses; but the 
implementation overhead of this scheme is significant. Wulf and 
McKee proposed having a “first write” instruction to bypass cache 
stall due to write-miss. The PowerPC has an instruction dcbz 

geared towards this end. Our work uses two instructions whose 
application goes beyond write misses and helps us track several 
different artifacts and reap benefits from them.  

ESKIMO relies on semantic information available from the 
program allowing for the system to act with out fear about 
correctness. In this paper we study the impact of these 

optimizations on power and energy consumption. ESKIMO in 
many ways can work in a complementary fashion with most of the 
previous power saving techniques. It could also be applied to 
other areas were block lifetime prediction has been put to use to 
but the converse is not true since it requires accurate information. 
We do not study such where block lifetime prediction have been 
used for in this paper since we focus primarily on power and 
energy. 

9. SUMMARY 
In the current world where power is a first class design constraint 
for system architects (both in the server and mobile space), the 
consumption of power by the memory subsystem is of particular 
importance. Observations about the memory power being 
comparable to that of the core power, points to need to focus our 
attention on the energy consumed by the memory subsystem. In 
our paper we propose some enhancements to the 
microarchitecture and memory subsystem. ESKIMO works by 
taking advantage of some information one can exploit by virtue of 
the program semantics. We propose adjustments to the ISA in the 
form of two instructions in order to pass information about 
addresses and size that are allocated or freed from the program to 
the architecture. With the help of these two instructions, we 
propose mechanisms to reduce the power consumption as well as 
energy. ESKIMO reduces the amount of energy consumed by 
refresh cycles and the amount of write-backs and reads caused by 
write-misses by being cognizant about the inconsequent nature of 
a memory address range. These techniques reduce the pressure on 
the memory and the amount of charging and discharging of lines 
required there by reducing the power and energy consumed by the 
memory subsystem. We evaluate the energy and power benefits of 
our technique using a publicly available, hardware-validated, 
DRAM simulator. We also extend Lewis et al.’s work for DRAM 
and compare it to your scheme. For the benchmarks we simulated, 
the savings in energy consumption of the benchmarks range from 
12% to 86% with an average of 39%.  
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