

Measuring Program Similarity: Experiments with
SPEC CPU Benchmark Suites

Aashish Phansalkar †, Ajay Joshi †, Lieven Eeckhout ‡, and Lizy K. John †

{aashish, ajoshi, ljohn}@ece.utexas.edu, leeckhou@elis.ugent.be
†University of Texas at Austin ‡Ghent University, Belgium

Abstract

It is essential that a subset of benchmark programs used
to evaluate an architectural enhancement, is well
distributed within the target workload space rather than
clustered in specific areas. Past efforts for identifying
subsets have primarily relied on using microarchitecture-
dependent metrics of program performance, such as cycles
per instruction and cache miss-rate. The shortcoming of
this technique is that the results could be biased by the
idiosyncrasies of the chosen configurations.

 The objective of this paper is to present a methodology
to measure similarity of programs based on their inherent
microarchitecture-independent characteristics which will
make the results applicable to any microarchitecture. We
apply our methodology to the SPEC CPU2000 benchmark
suite and demonstrate that a subset of 8 programs can be
used to effectively represent the entire suite. We validate
the usefulness of this subset by using it to estimate the
average IPC and L1 data cache miss-rate of the entire
suite. The average IPC of 8-way and 16-way issue
superscalar processor configurations could be estimated
with 3.9% and 4.4% error respectively. This methodology
is applicable not only to find subsets from a benchmark
suite, but also to identify programs for a benchmark suite
from a list of potential candidates.

Studying the four generations of SPEC CPU benchmark
suites, we find that other than a dramatic increase in the
dynamic instruction count and increasingly poor temporal
data locality, the inherent program characteristics have
more or less remained the same.

1. Introduction

During the early design space exploration phase of the
microprocessor design process, a variety of enhancements
and design options are evaluated by analyzing the
performance model of the microprocessor. Simulation time
is limited, and hence it is often required to use only a subset
of the benchmark programs to evaluate the enhancements
and design options. A poorly chosen set of benchmark
programs may not accurately depict the true performance of
the processor design. On one hand, selecting the wrong set
of benchmarks could incorrectly estimate the performance

of a particular enhancement; while on the other hand,
simulating similar programs will increase simulation time
without providing additional information. Therefore, a
good workload should have programs that are well
distributed within the target workload space without being
clustered in specific areas. Understanding similarity
between programs can help in selecting benchmark
programs that are distinct, but are still representative of the
target workload space. A typical approach to study
similarity in programs is to measure program characteristics
and then use statistical data analysis techniques to group
programs with similar characteristics.

Programs can be characterized using implementation
(machine) dependent metrics such as cycles per instruction
(CPI), cache miss-rate, and branch prediction accuracy, or
microarchitecture-independent metrics such as temporal
locality, and parallelism. Techniques that have been
previously proposed primarily concentrate on measuring
microarchitecture-dependent characteristics of programs [7]
[17]. This involves measuring program performance
characteristics such as instruction and data cache miss-rate,
branch prediction accuracy, CPI, and execution time across
multiple microarchitecture configurations. The results
obtained from these techniques could be biased by the
idiosyncrasies of a particular microarchitecture if the
program behavior is not observed across a carefully chosen
range of microarchitecture configurations. Moreover,
conclusions based on performance metrics such as
execution time could categorize a program with unique
characteristics as insignificant, only because it shows
similar trends on the microarchitecture configurations used
in the study. For instance, a prior study [7] ranked
programs in the SPEC CPU 2000 benchmark suite using
the SPEC peak performance rating. The program ranks
were based on their uniqueness i.e. the programs that
exhibit different speedups on most of the machines were
given a higher rank as compared to other programs in the
suite. In this scheme of ranking programs, gcc ranks very
low, and seems to be less unique. However, our results
show that the inherent characteristics of gcc are
significantly different from other programs in the
benchmark suite. This indicates that analysis based on
microarchitecture-dependent metrics could undermine the
importance of a program that is really unique.

mailto:ljohn}@ece.utexas.edu
mailto:leeckhou@elis.ugent.be

We believe that by measuring the inherent characteristics
of a program, it is possible to ensure that the results of such
experiments will be applicable to any microarchitecture. In
this study we classify two programs to be similar if they
have similar inherent characteristics such as instruction
locality, data locality, branch predictability, and instruction
level parallelism (ILP). In order to remove the correlation
between the measured metrics, and make it possible to
visualize the program workspace, we use a multivariate
statistical data analysis technique called principal
component analysis (PCA) to reduce the dimensionality of
the data while retaining most of the information. We then
use the K-means clustering algorithm to group programs
that have similar inherent characteristics.

Following are the contributions of this paper:

i. The paper motivates and presents an approach that can
be used to measure similarity between programs in a
microarchitecture-independent manner.

ii. The paper finds a subset of programs from the SPEC
CPU 2000 benchmark suite. We demonstrate the
usefulness of this subset by using it to estimate the
average IPC of the entire suite for two different
configurations of a microprocessor, and average L1
data cache miss-rate of the entire suite for 9 cache
configurations.

iii. The paper provides an insight into how characteristics
of SPEC CPU benchmark suites have evolved since its
inception in 1989.

The roadmap of this paper is as follows: In section 2 we
describe a microarchitecture-independent methodology to
characterize benchmarks. In section 3 we apply the
presented methodology to find a subset of programs from
the SPEC CPU 2000 benchmark suite and validate that
these programs are indeed representative of the entire
benchmark suite. Section 4 uses the presented
methodology to provide a historical insight into how
characteristics of SPEC CPU benchmark suites have
changed over the last decade. In section 5 we describe the
related work, and in section 6 summarize the key learning
and contributions of this study.

2. Characterization Methodology

This section proposes our methodology to measure

similarity between benchmark programs: the
microarchitecture-independent metrics used to characterize
the benchmarks, the statistical data analysis techniques, the
benchmarks, and the tools.

2.1 Metrics

 Microarchitecture-independent metrics allow for a

comparison between programs by understanding the
inherent characteristics of a program isolated from features
of particular microarchitectural components. We provide
an intuitive reasoning to illustrate how the measured

metrics can affect the manifested performance. The metrics
measured in this study are a subset of all the
microarchitecture-independent characteristics that can be
potentially measured, but we believe that our metrics cover
a wide enough range of the program characteristics to make
a meaningful comparison between the programs. The actual
raw data for all the metrics below can be found in
Appendix A in [33]. We have identified the following
microarchitecture-independent metrics:

2.1.1 Instruction Mix: Instruction mix of a program
measures the relative frequency of various operations
performed by a program. We measured the percentage of
computation, data memory accesses (load and store), and
branch instructions in the dynamic instruction stream of a
program. This information can be used to understand the
control flow of the program and/or to calculate the ratio of
computation to memory accesses, which gives us an idea of
whether the program is computation bound or memory
bound.

2.1.2 Dynamic Basic Block Size: A basic block is a
section of code with one entry and one exit point. We
measure the basic block size as the average number of
instructions between two consecutive branches in the
dynamic instruction stream of the program. A larger basic
block size is useful in exploiting instruction level
parallelism (ILP).

2.1.3 Branch Direction: Backward branches are typically
more likely to be taken than forward branches. This metric
computes the percentage of forward branches out of the
total branch instructions in the dynamic instruction stream
of the program. Obviously, hundred minus this percentage
is the percentage of backward branches.

2.1.4 Taken Branches: This metric is defined as, the ratio
of taken branches to the total number of branches in the
dynamic instruction stream of the program.

2.1.5 Forward-taken Branches: We also measure the
fraction of taken forward branches in the dynamic
instruction stream of the program.

2.1.6 Dependency Distance: We use a distribution of
dependency distances as a measure of the inherent ILP in
the program. Dependency distance is defined as the total
number of instructions in the dynamic instruction stream
between the production (write) and the first consumption
(read) of a register instance [3] [22]. While techniques such
as value prediction reduce the impact of these dependencies
on ILP, information on the dependency distance is very
useful in understanding ILP inherent to a program. The
dependency distance is classified into seven categories:
percentage of total dependencies that have a distance of 1,
and the percentage of total dependencies that a distance of
upto 2, 4, 8, 16, 32, and greater than 32. Programs that
show greater percentage of long dependency distances

2.2.1 Principal Components Analysis. Principal
components analysis (PCA) [6] is a classic multivariate
statistical data analysis technique that is used to reduce the
dimensionality of the data set while retaining most of the
original information. It builds on the assumption that many
variables (in our case, microarchitecture-independent
program characteristics) are correlated. PCA computes
new variables, called principal components, which are
linear combinations of the original variables, such that all
the principal components are uncorrelated. PCA transforms
p variables X1, X2,...., Xp into p principal components
Z1,Z2,…,Zp such that:

show higher ILP (provided control flow is not a limiting
factor).

2.1.7 Data Temporal Locality: Several locality metrics
have been proposed in the past [4] [5] [11] [18] [21] [29],
however, many of them are computation and memory
intensive. We picked the average memory reuse distance
metric from [29] since it is more computationally feasible
than other metrics. In this metric, locality is quantified by
computing the average distance (in terms of number of
memory accesses) between two consecutive accesses to the
same address, for every unique address in the program. The
evaluation is performed in four distinct window sizes,
analogous to cache block sizes. This metric is calculated
for window sizes of 16, 64, 256 and 4096 bytes. The choice
of the window sizes is based on the experiments conducted
by Lafage et.al. [29]. Their experimental results show that
the above set of window sizes was sufficient to characterize
the locality of the data reference stream with respect to a
wide range of data cache configurations.

∑ =
=

p

j jiji XaZ
0

This transformation has the property Var [Z1] > Var [Z2]
>…> Var [Zp] which means that contains the most
information and Z

1Z
p the least. Given this property of

decreasing variance of the principal components, we can
remove the components with the lower values of variance
from the analysis. This reduces the dimensionality of the
data set while controlling the amount of information that is
lost. In other words, we retain q principal components (q
<< p) that explain at least 75% to 90 % of the total
information; in this paper q varies between 2 and 4. By
examining the most important principal components, which
are linear combinations of the original program
characteristics, meaningful interpretations can be given to
these principal components in terms of the original program
characteristics.

2.1.8 Data Spatial Locality: Spatial locality information
for data accesses is characterized by the ratio of the
temporal locality metric for window sizes mentioned above.

2.1.9 Instruction Temporal Locality: The instruction
temporal locality metric is quantified by computing the
average distance (in terms of number of instructions)
between two consecutive accesses to the same static
instruction, for every unique static instruction in the
program that is executed at least twice. The instruction
temporal locality is calculated for window sizes of 16, 64,
256, and 4096 bytes. 2.2.2 Cluster Analysis. We use K-means clustering for our

analysis [1]. K-means clustering tries to group all cases
into exactly K clusters. Obviously, not all values for K fit
the data set well. As such, we will explore various values
of K in order to find the optimal clustering for the given
data set.

2.1.10 Instruction Spatial Locality: Spatial locality of the
instruction stream is characterized by the ratio of the
instruction temporal locality metric for the window sizes
mentioned above.

2.2 Statistical Data Analysis
 2.3 Benchmarks

Obviously, the amount of data to analyze in this
experiment is huge. There are many variables (29
microarchitecture- independent characteristics) and many
cases (program-input pairs). It is humanly impossible to
simultaneously look at all the data and draw meaningful
conclusions from them. Hence, we use multivariate
statistical data analysis techniques, namely Principal
Component Analysis (PCA) and Cluster Analysis, to
compare and discriminate programs based on the measured
characteristics, and understand the distribution of programs
in the workload space. Cluster Analysis is used to group n
cases in an experiment (benchmark programs) based on the
measurements of the p principal components. The goal is
to cluster programs that have the similar intrinsic program
characteristics.

The different benchmark programs used in this study and

their dynamic instruction counts are shown in Table 1. Due
to the differences in libraries, data type definitions, pointer
size conventions, and known compilation issues on 64-bit
machines, we were unable to compile some programs
(mostly from old suites - SPEC CPU 89 and SPEC CPU 92
and a few from SPEC 2000). The instruction counts of
these programs are therefore missing from Table 1 and
have a * in the column. The programs from the four SPEC
CPU benchmark suites were compiled on a Compaq Alpha
AXP-2116 processor using the Compaq/DEC C, C++, and
the FORTRAN compiler. The programs were statically
built under OSF/1 V5.6 operating system using full
compiler optimization. Although our results are
microarchitecture-independent, they may be dependent on
the instruction set architecture (ISA) and the compiler.

Table 1: List of SPEC CPU benchmarks

Program Input INT/

FP
Dynamic

Instruction
Count

SPEC CPU89

espresso bca.in INT 0.5 billion
li li-input.lsp INT 7 billion
eqntott * INT *
gcc * INT *
spice2g6 * FP *
doduc doducin FP 1.03 billion
fpppp natoms FP 1.17 billion
matrix300 - FP 1.9 billion
nasa7 - FP 6.2 billion
tomcatv - FP 1 billion

SPEC CPU92

espresso bca.in INT 0.5 billion
li li-input.lsp INT 6.8 billion
eqntott * INT *
compress in INT 0.1 billion
sc * INT *
gcc * INT *
spice2g6 * FP *
doduc doducin FP 1.03 billion
mdljdp2 input.file FP 2.55 billion
mdljsp2 input.file FP 3.05 billion
wave5 - FP 3.53 billion
hydro2d hydro2d.in FP 44 billion
Swm256 swm256.in FP 10.2 billion
alvinn In_pats.txt FP 4.69 billion
ora params FP 4.72 billion
ear * FP *
su2cor su2cor.in FP 4.65 billion
fpppp natoms FP 116 billion
nasa7 - FP 6.23 billion
tomcatv - FP 0.9 billion

SPEC CPU95

go null.in INT 18.2 billion

li *.lsp INT 75.6 billion
m88ksim ctl.in INT 520.4 billion
compress bigtest.in INT 69.3 billion
ijpeg penguin.ppm INT 41.4 billion
gcc expr.i INT 1.1 billion
perl perl.in INT 16.8 billion
vortex * INT *
wave5 wave5.in FP 30 billion
hydro2d Hydro2d.in FP 44 billion
swim swim.in FP 30.1 billion
applu Applu.in FP 43.7 billion
mgrid Mgrid.in FP 56.4 billion
turb3d turb3d.in FP 91.9
su2cor su2cor.in FP 33 billion
fpppp natmos.in FP 116 billion
apsi apsi.in FP 28.9 billion
tomcatv tomcatv.in FP 26.3 billion

SPEC CPU2000

gzip input.graphic INT 103.7 billion
vpr route INT 84.06 billion
gcc 166.i INT 46.9 billion
mcf inp.in INT 61.8 billion
crafty crafty.in INT 191.8 billion
parser ref INT 546.7 billion
eon cook INT 80.6 billion
perlbmk * INT *
vortex lendian1.raw INT 118.9 billion
gap * INT *
bzip2 input.graphic INT 128.7 billion
twolf ref INT 346.4 billion
swim swim.in FP 225.8 billion
wupwise wupwise.in FP 349.6 billion
mgrid mgrid.in FP 419.1 billion
mesa mesa.in FP 141.86 billion
galgel gagel.in FP 409.3 billion
art c756hel.in FP 45.0 billion
equake inp.in FP 131.5 billion
ammp ammp.in FP 326.5 billion
lucas lucas2.in FP 142.4 billion
fma3d fma3d.in FP 268.3 billion
apsi apsi.in FP 347.9 billion
applu applu.in FP 223.8 billion
facerec * FP *
sixtrack * FP *

 2.4 Tools

SCOPE: The workload characteristics were measured
using a custom-developed analyzer called SCOPE.
SCOPE was developed by modifying the sim-safe
functional simulator from the SimpleScalar 3.0 [28] tool
set. SCOPE analyzes the dynamic instruction stream and
generates statistics related to instruction mix, data
locality, branch predictability, basic-block size, and ILP.
Essentially, the front-end of sim-safe is interfaced with
custom made analyzers to obtain various locality and
parallelism metrics described in section 2.1.

Statistical data analysis: We use STATISTICA version
6.1 for performing PCA. For K-means clustering we use
the SimPoint software [30]. However, unlike SimPoint
we do not use random projection before applying K-
means clustering; instead, we use the transformed PCA
space as the projected space.

3. Subsetting SPEC CPU2000 benchmark

suite

Benchmark subsetting involves measuring the

characteristics of benchmark programs and grouping
programs with similar characteristics such as temporal
locality, spatial locality, and branch predictability. A
representative program from each group can then be
selected for simulation, without losing significant
information. In this section we apply the
microarchitecture-independent technique to measure
benchmark similarity presented in this paper, to the
problem of finding a representative subsets of programs
from the SPEC CPU 2000 benchmark suite. We
measured the microarchitecture-independent
characteristics mentioned in section 2 for the SPEC CPU
2000 benchmark programs from the SPEC CPU 2000
benchmark suite. We measured the microarchitecture-
independent characteristics mentioned in section 2 for the
SPEC CPU2000 benchmark programs and computed two
subsets of programs, the first based on similarity in all the
important program characteristics described in section 2,
and the second based on similarity in data locality
characteristics. We reduce the dimensionality of the data
using the PCA technique described earlier in the paper.
We then use K-means clustering algorithm, provided in
the SimPoint software, to group programs based on
similarity in the measured characteristics. The SimPoint
software identifies the optimal number of clusters, K, by
computing the minimal number of clusters for which the
Bayesian Information Criterion (BIC) is optimal.

Table 2: Clusters based on overall characteristics

The BIC is a measure of the goodness of fit of a
clustering to a data set. In the following sections we
describe two experiments to find clusters of programs in
SPEC CPU 2000 benchmark suite, and validate that they
are indeed representative of the entire benchmark suite.

3.1 Subsetting using overall program

characteristics

We measured all the microarchitecture-independent
program characteristics mentioned in section 2 for SPEC
CPU 2000 programs. Using the PCA and K-means

clustering technique described above, we obtain 8
clusters as a good fit for the measured data set. Table 2
shows the 8 clusters and their members. The programs
marked in bold are closest to the center of their
respective cluster and are hence chosen to be the
representatives of that particular group. For clusters with
just two programs, any program can be chosen as a
representative. Citron [2] presented a survey on the use
of SPEC CPU2000 benchmark programs in papers from
four recent ISCA conferences. He observed that some
programs are more popular than the others among
computer architecture researchers. The programs in the
SPEC CPU2000 integer benchmark suite in their
decreasing order of popularity

Table 3: Clusters based on data locality
characteristics

Cluster 1 gzip
Cluster 2 mcf
Cluster 3 ammp, applu, crafty, art, eon, mgrid,

parser, twolf, vortex, vpr
Cluster 4 equake
Cluster 5 bzip2
Cluster 6 mesa, gcc
Cluster 7 fma3d, swim, apsi
Cluster 8 galgel, lucas
Cluster 9 wupwise

are: gzip, gcc, parser, vpr, mcf, vortex, twolf, bzip2,
crafty, perlbmk, gap, and eon. For the floating-point
CPU2000 benchmarks, the list in decreasing order of
popularity is: art, equake, ammp, mesa, applu, swim,
lucas, apsi, mgrid, wupwise, galgel, sixtrack, facerec
and fma3d. The clusters we obtained in Table 2 suggest
that the most popular programs in the listing provided by
Citron [2] are not a truly representative subset of the
benchmark suite (based on their inherent-
characteristics). For example, subsetting SPEC CPU
2000 integer programs using gzip, gcc, parser, vpr, mcf,
vortex, twolf and bzip2 will result in three uncovered
clusters, namely 1, 3 and 7. We also observe that there
is a lot of similarity in the characteristics of the popular
programs listed above. The popular programs parser,
twolf and vortex are in the same cluster, Cluster 6 and
hence do not add more information. Clusters in Table 2
suggest that using applu, gzip, equake, fma3d, mcf,
twolf, mesa, and gcc as a representative subset of the
SPEC CPU 2000 benchmark suite would be a better
practice. We observe that gcc is in a separate cluster by
itself, and hence has characteristics that are significantly
different from other programs in the benchmark suite.
However, in the ranking scheme used in a prior study
[7], gcc ranks very low and does not seem to be a very

Cluster 1 applu, mgrid

Cluster 2 gzip, bzip2
Cluster 3 equake, crafty
Cluster 4 fma3d, ammp, apsi, galgel, swim, vpr, wupwise

Cluster 5 Mcf
Cluster 6 twolf , lucas, parser, vortex
Cluster 7 mesa, art, eon
Cluster 8 Gcc

unique program. Their study uses microarchitecture-
dependent metric, SPEC peak performance rating, and
hence a program, such as gcc, that shows similar
speedup on most of the machines will be ranked lower.
This example shows that results based on analysis using
microarchitecture-independent metrics can identify
redundancy more effectively.

3.2 Subsetting using data locality characteristics

In this analysis we find a subset of the SPEC CPU2000

benchmark suite by only considering the 7 characteristics
of SPEC CPU2000 programs that are closely related to
the temporal and spatial data locality of a program for
window sizes of 16, 64, 256, and 4096 bytes, and the
ratios of each of the data locality metric for window sizes
of 64, 256, and 4096 bytes, to the data locality metric for
window size of 16 bytes. The first four metrics measure
temporal data locality of the program, whereas the
remaining three characterize the spatial data locality of
the program. We use PCA and clustering as mentioned
above. Table 3 shows the groups of programs that have
similar data locality characteristics

3.3. Validating benchmark subsets

It is important to know whether the subsets we created
are meaningful and are indeed representative of the SPEC
CPU 2000 benchmark suite. We used the subsets to
estimate the average IPC and L1 data cache miss-rate of
the entire benchmark suite. We then compared our
results with those obtained by using the entire benchmark
suite.

3.3.1 Computing IPC. Using the subset based on overall
program characteristics we calculated the average IPC of
the entire suite for two different microarchitecture
configurations with issue widths of 8 and 16. Figure 1
shows the average IPC of the entire benchmark suite
calculated using the program subset, and also using every
program in the benchmark suite. We obtained the IPC on
8-way and 16-way issue widths for every program in the
SPEC CPU2000 benchmarks from Wenisch et. al. [31].
The configurations in brief are: 8-way machine (32KB 2
way L1 I/D cache, 1M 4-way L2, Functional Units 4 I-
ALU, 2 I-MUL/DIV, 2 FP-ALU, 1 FP-MUL/DIV) and
16-way machine(64 KB 2-way L1 I/D, 2M 8-way L2,
Functional Units 16 I-ALU, 8 I-MUL/DIV, 8 FP-ALU, 4
FP-MUL/DIV). The rest of the details about branch
predictor and different penalties in cycles can be found in
[31]. From Table 2 we observe that each cluster has a
different number of programs, and hence the weight
assigned to each representative program should depend
on the number of programs that it represents (i.e. the

number of programs in its cluster). For example, from
Table 2, the weight for fma3d (cluster 4) is 7. The error
in average IPC for both configurations is less than
5%(shown in Figure 1). If the IPC of the entire suite can
be estimated with reasonable accuracy using the subsets,
we feel that it is a good validation for the usefulness of
the subset.

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

8-way 16-way
Issue width

A
ve

ra
ge

 IP
C

Average IPC using subset Average IPC using entire suite

4.4 %

3.9 %

Figure 1: Estimated average IPC of benchmark
suite using subset versus average IPC of entire
suite

3.3.2 Computing data cache miss-rate. Figure 2
shows average L1 data cache miss-rate of the benchmark
suite estimated using the subset of programs obtained in
section 3.2 along with the average miss-rate using the
entire benchmark suite.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

8k- DM 8k- 4way 8k- FA 64k- DM 64k- 4way 64k- FA 512k- DM 512k-
4way

512k- FA

Cache Configurations

Av
er

ag
e

ca
ch

e
m

is
s

ra
te

using data locality based clusters using overall metrics based clusters using all programs

Figure 2: Average L1 D-cache miss-rate using the
subset based on locality characteristics, and the
subset based on overall characteristics

We obtained the miss-rates for 9 different L1 data

cache configurations from Cantin et. al. [32]. As
mentioned in the earlier section, the weight for each
representative program is assigned as the number of

4. Similarity across four generations of SPEC
CPU benchmark suites

programs it represents (i.e. the number of programs in its
cluster). From these results we can conclude that the
program subset derived in section 4.2 is indeed
representative of the data locality characteristics of
programs in SPEC CPU 2000 benchmark suite. We also
used the subset based on overall characteristics (obtained
in section 3.1) to estimate the average cache miss-rate of
the entire suite; the results are also shown in Figure 2. It
is interesting to note that in 5 of the 9 cases, the clusters
based on overall characteristics performed better in
estimating the average miss-rate of the entire suite, than
the clusters based on locality characteristics.

Standard Performance Evaluation Corporation

(SPEC) CPU benchmark suite which was first released in
1989 as a collection of 10 computation-intensive
benchmark programs (average size of 2.5 billion dynamic
instructions per program), is now in its fourth generation
and has grown to 26 programs (average size of 230
billion dynamic instructions per program). In order to
keep pace with the architectural enhancements,
technological advancements, software improvements, and
emerging workloads, new programs were added,
programs susceptible to compiler tweaks were retired,
program run times were increased, and memory activity
of programs was increased in every generation of the
benchmark suite. In this section, we use our collection of
microarchitecture-independent metrics, described in

Section 2, to characterize the generic behavior of the
benchmark programs as the evolved over the last decade.
The same compiler is used to compile the four suites. The
data is analyzed using PCA and cluster analysis to
understand the changes in workload.

3.3.3 Sensitivity to number of clusters. The number of
representative programs to be chosen from a benchmark
suite depends on the level of accuracy desired.
Theoretically, as we increase the number of
representative programs, the accuracy should increase i.e.
the average miss-rate of the suite calculated using the
subset will be closer to that calculated using the entire
suite. In this section we show that the average miss-rate
of the benchmark suite can be calculated with an
increasing level of accuracy if we partition the programs
into higher number of clusters i.e. more programs are
chosen to represent the benchmark suite. The optimum
number of clusters for subset using data locality
characteristics is 9 according to the SimPoint algorithm.
Figure 3 shows the estimated miss-rate of the benchmark
suite using a subset of 5, 9, and 15 programs that were
clustered based on the locality characteristics. We
observe that as we increase the

4.1 Instruction Locality

We perform PCA on the raw data measured for the

instruction locality metric, which yields two principal
components explaining 68.4 % and 28.6 % of variance.
Figure 4 shows the benchmarks in PC space. PC1
represents instruction temporal locality of benchmarks.

-5

-4

-2

-1

1

-3 -2 -1 0 1 2 3 4 5PC1

PC
2

SPECint89 SPECint92 SPECint95 SPECint2000
SPECfp89 SPECfp92 SPECfp95 SPECfp2000

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

8k- DM 8k- 4way 8k- FA 64k- DM 64k-
4way

64k- FA 512k- DM 512k-
4way

512k- FA

Cache Configuration

Av
er

ag
e c

ac
he

 m
iss

-ra
te

5 clust ers 9 clust er 15 clust ers individual

Figure 3: Sensitivity of average cache miss-rates to
number of clusters Figure 4: PCA space built from instruction locality

characteristics number of representative programs (clusters), the
estimated miss-rate using the subset moves closer to the
true average miss-rate using the entire suite. The number
of clusters can therefore be chosen depending on the
desired level of accuracy. This can be achieved by
simply specifying the number of representative programs,
K, in the K-means algorithm.

Benchmarks with higer value of PC1 show poor temporal
locality for instruction stream. Benchmarks with higher
value of PC2 will benefit more from increase in block
size. Figure 4 shows that all SPEC CPU generations
overlap. The biggest exception is gcc in SPECint2000
and SPECint95 (the two dark points on the plot on
extreme right). gcc in SPECint2000 and SPECint95 suite

exhibits poor instruction temporal locality – as shown by
the data in (Appendix A [33]). gcc also shows very low
values for PC2 due to poor spatial locality. Except gcc,
almost all programs in the 4 different generations of
SPEC CPU benchmark suite show similar instruction
locality.

We observe that although the average dynamic
instruction count of the benchmark programs has
increased by a factor of x100, the static count has
remained more or less constant. This suggests that the
dynamic instruction count of the SPEC CPU benchmark
programs could have simply been scaled – more iterations
through the same instructions. This could be a plausible
reason for the observation that instruction locality of
programs has more or less remained the same across the
four generations of benchmark suites.

4.2 Branch characteristics

We perform PCA analysis and retain 2 principal
components explaining 62% and 19% of the total
variance, respectively. Figure 5 plots the various SPEC
CPU benchmarks in this PCA space. We observe that the
integer benchmarks are clustered in an area. We also
observe that the floating-point benchmarks typically have
a positive value along the first principal component
(PC1), whereas the integer benchmarks have negative
value along PC1. The reason is that floating-point
benchmarks typically have fewer branches and thus have
a larger basic block size; floating-point benchmarks also

-3

-2

-1

0

1

2

3

4

-2 -1 0 1 2 3
 PC1

 P
C

2

 SPECint89 SPECint92 SPECint95 SPECint2000
 SPECfp89 SPECfp92 SPECfp95 SPECfp2000

Figure 5: PCA space built from branch
characteristics

typically are very well structured, and have a smaller
percentage of forward branches, and fewer percentage
forward-taken branches. In other words, floating-point
benchmarks tend to spend most of their time in loops.
The two outliers in the top corner of this graph are
SPEC2000’s mgrid and applu programs due to their
extremely large basic block sizes, 273 and 318,
respectively. The two outliers on the right are SPEC92

and SPEC95 swim due to its large percentage taken
branches and small percentage forward branches. We
conclude from this graph that branch characteristics of
SPEC CPU programs did not significantly change over
the past 1.5 decades. Indeed all SPEC CPU suites overlap
 in Figure 5.

4.3 Instruction-level parallelism

In order to study the instruction-level parallelism

(ILP) of the SPEC CPU suites we used the dependency
metrics as well as the basic block size. Both metrics are
closely related to the intrinsic ILP available in an
application. Long dependency distances and large basic
block sizes generally imply a high ILP. Basic block and
dependency related limitations can be overcome by
branch prediction and value prediction respectively. The
first two principal components explain 96% of the total
variance. The PCA space is plotted in Figure 6. We
observe that the integer benchmarks typically have a high
value along PC1, which indicates that these benchmarks
have more short dependencies. The floating-point
benchmarks typically have larger dependency distances.
We observe no real trend in this graph. The intrinsic ILP
did not change over the past 1.5 decades - except for the
fact that several floating-point SPEC89 and SPEC92
benchmarks (and no SPEC CPU95 or SPEC CPU2000
benchmarks) exhibit relatively short dependencies
compared to other floating-point benchmarks; these
overlap with integer benchmarks in -0.1 <PC1 <0.6

-2

-1

0

1

2

3

4

5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
 PC1

 P
C2

 SPECint89 SPECint92 SPECint95 SPECint2000
 SPECfp89 SPECfp92 SPECfp95 SPECfp2000

 Figure 6: PCA space built from ILP characteristics

4.4 Data Locality

For studying the temporal and spatial locality behavior
of the data stream we used the locality metrics as
proposed by Lafage et. al. [29] for four different window
sizes: 16, 64, 256, and 4096. Recall that the metrics by
themselves quantify temporal locality whereas the ratios
between them is a measure for spatial locality. We

perform PCA analyses of raw data. Figure 7 shows a plot
of the benchmarks in this PCA space.

 We concluded that several SPEC CPU2000 and
CPU95 benchmark programs: bzip2, gzip, mcf, vortex,
vpr, gcc, crafty, applu, mgrid, wupwise, and apsi from
CPU2000, and gcc, turbo3d, applu, and mgrid from
CPU95 exhibit a temporal locality that is significantly
worse than the other benchmarks. Concerning spatial
locality, most of these benchmarks exhibit a spatial
locality that is relatively higher than that of the remaining
benchmarks, i.e. increasing window sizes improves
performance of these programs more than they do for the
other benchmarks. Obviously, we expected temporal
locality of the data stream to get worse for newer
generations of SPEC CPU given one of the objectives of
SPEC, which is to increase the working set size along the
data stream for subsequent SPEC CPU suite generations.
In Figure 7 the first principal component basically
measures temporal locality, i.e. a more positive value
along PC1 indicates poorer temporal locality. The second
principal component basically measures spatial locality.
Benchmarks with a high value along PC2 will thus
benefit more from an increased line size. This graph
shows that for these benchmarks all SPEC CPU
generations overlap. This indicates that although SPEC’s
objective is to worsen the data stream locality behavior of
subsequent CPU suites, several benchmarks in recent
suites exhibit a locality behavior that is similar to older
versions of SPEC CPU. Moreover, some CPU95 and
CPU2000 benchmarks show a temporal locality behavior
that is better than most CPU89 and CPU92 benchmarks.

-5

-4

-2

-1

1

-2 -1 0 1 2 3 4PC1

PC
2

SPECint89 SPECint92 SPECint95 SPECint2000
SPECfp89 SPECfp92 SPECfp95 SPECfp2000

Figure 7: PCA space built from data locality
characteristics

4.5 Overall Characteristics

In order to understand (dis) similarity across SPEC
CPU benchmark suites we perform a cluster analysis in
the PCA space as described in section 3. Clustering all 60
benchmarks yields 12 optimum clusters, which are shown
in Table 4. The benchmarks in bold are the
representatives for that cluster. For, clusters with 2
benchmarks either one can be picked as a representative

since both are equidistant from the center of the cluster.
A detailed analysis of Table 4 gives us several interesting
insights. First, out of all the benchmarks gcc (2000) and
gcc (95) are together in a separate cluster. We observe
that instruction locality for gcc is worse than any other
program in all 4 generations of SPEC CPU suite; due to
which gcc programs from SPEC CPU 95 and 2000 suites
reside in their own separate cluster. Due to its peculiar
data locality characteristics, mcf (2000) resides in a
separate cluster (cluster 2), and bzip2(2000), gzip(2000)
form one cluster (cluster 12). SPEC CPU2000 programs
exist in 10 out of 12 clusters, as opposed to SPEC CPU95
in 7 clusters, SPEC CPU92 in 6 clusters, and SPEC
CPU89 in 5 clusters. This shows that SPEC CPU 2000
benchmarks are more diverse than their ancestors.

Table 4: Optimum number of clusters for four
generations of SPEC CPU benchmark programs
using overall program characteristics.

Cluster 1 gcc(95), gcc(2000)
Cluster 2 mcf(2000)
Cluster 3 turbo3d (95), applu (95), apsi(95), swim(2000),

mgrid(95), wupwise(2000)
Cluster 4 hydro2d(95), hydro2d(92), wave5(92), su2cor(92),

succor(95), apsi(95), tomcatv(89), tomcatv(92),
crafty(2000), art(2000), equake(2000), mdljdp2(92)

Cluster 5 perl(95), li (89), li(95), compress(92), tomcatv(95),
matrix300(89)

Cluster 6 nasa7(92), nasa(89), swim(95), swim(92),
galgel(2000), wave5(95), alvinn(92)

Cluster 7 applu(2000), mgrid(2000)
Cluster 8 doduc(92), doduc(89), ora(92)
Cluster 9 mdljsp2(92), lucas(2000)

Cluster 10 parser(2000), twolf(2000), espresso(89),
espresso(92), compress(95), go(95), ijpeg(95),
vortex(2000)

Cluster 11 fppp(95), fpppp(92), eon(2000), vpr(2000),
fpppp(89), fma3d(2000), mesa(2000), ammp(2000)

Cluster 12 bzip2(2000), gzip(2000)

5. Related Work

The majority of ongoing work in studying

benchmark characteristics involves measuring
microarchitecture-dependent metrics e.g. cycles per
instruction, cache miss rate, branch prediction accuracy
etc., on various microarchitecture configurations that
offer a different mixture of bottlenecks [12][15][16][17].
The variation in these metrics is then used to infer the

generic program behavior. These inferred program
characteristics may be biased by the idiosyncrasies of a
particular configuration, and therefore may not be
generally applicable. In this paper we measure program
similarity based on the cause (microarchitecture
independent characteristics) rather than the effect
(microarchitecture dependent characteristics).

Past attempts to understand benchmark redundancy
used microarchitecture-dependent metrics such as
execution time or SPEC peak performance rating.
Vandierendonck et. al. [7] analyzed the SPEC CPU2000
benchmark suite peak results on 340 different machines
representing eight architectures, and used PCA to identify
the redundancy in the benchmark suite. Dujmovic and
Dujmovic [9] developed a quantitative approach to
evaluate benchmark suites. They used the execution time
of a program on several machines and used this to
calculate metrics that measure the size, completeness, and
redundancy of the benchmark space. The shortcoming of
these two approaches is that the inferences are based on
the measured performance metrics due the interaction of
program and machine behaviour, and not due to the
generic characteristics of the benchmarks. Ranking
programs based on microarchitecture-dependent metrics
can be misleading for future designs because a
benchmark might have looked redundant in the analysis
merely because all existing architectures did equally well
(or worse) on them, and not because that benchmark was
not unique. The relatively lower rank of gcc in [7] and its
better position in this work (Tables 2 and 3) is an
example of such differences that become apparent only
with microarchitecture-independent studies.

There has been some research on microarchitecture-
independent locality and ILP metrics. For example,
locality models researched in the past include working set
models, least recently used stack models, independent
reference models, temporal density functions, spatial
density functions, memory reuse distance, locality space
etc. [4][5][11][18][21][29]. Generic measures of
parallelism were used by Noonburg et. al. [3] and Dubey
et. al. [22] based on a profile of dependency distances in a
program. Microarchitecture-independent metrics such as,
true computations versus address computations, and
overhead memory accesses versus true memory accesses
have been proposed by several researchers [8][19].

6. Conclusion

In this paper we presented a methodology to measure

similarity of programs based on their inherent
microarchitecture-independent characteristics. We apply
this technique to identify a small subset of nine programs
in the SPEC CPU 2000 benchmark suite that are
representative of the data locality exhibited by the suites,

and a subset of eight programs that are representative of
the overall characteristics (instruction locality, data
locality, branch predictability, and ILP) of the programs
in the entire suite. We validated this technique by
demonstrating that the average L1 data cache miss-rate
and IPC of the entire suite could be estimated with a
reasonable accuracy by just simulating the subset of
programs. These results are applicable generally to any
microarchitecture.

We also applied the microarchitecture-independent
program characterization methodology to understand how
the characteristics of the SPEC CPU programs have
evolved since the inception of SPEC. We characterized
29 different microarchitecture-independent features of 60
SPEC CPU programs from SPEC89 to SPEC2000 suites.
We find that no single characteristic has changed as
dramatically as the dynamic instruction count. Our
analysis shows that the branch and ILP characteristics
have not changed much over the last decade, but the
temporal data locality of programs has become
increasingly poor. Our results indicate that although the
diversity of newer generations of SPEC CPU benchmarks
has increased, there still exists a lot of similarity
between programs in the SPEC CPU2000 benchmark
suite.

The methodology presented in this paper could be
used to select representative programs for the
characteristics of interest, should the cost of simulating
the entire suite be prohibitively high. This technique
could also be used during the benchmark design process
to select only a fixed number of benchmark programs
from a group of candidates.

7. Acknowledgement

This research is supported in part by NSF grants
0113105, 0429806, IBM and Intel corporations. Lieven
Eeckhout is a Postdoctoral Fellow of the Fund for
Scientific Research -- Flanders (Belgium) (F.W.O
Vlaanderen).

8. References

[1] A. Jain and R. Dubes, Algorithms for Clustering Data,
Prentice Hall, 1988.

[2] D. Citron, “MisSPECulation: Partial and Misleading
Use of SPEC CPU2000 in Computer Architecture
Conferences”, Proc. of International Symposium on
Computer Architecture, pp. 52-61, 2003.

[3] D. Noonburg and J. Shen, “A Framework for Statistical
Modeling of Superscalar Processor Performance”, Proc.
of International Symposium on High Performance
Computer Architecture, 1997, pp. 298-309.

[4] E. Sorenson and J.Flanagan, “Cache Characterization
Surfaces and Prediction of Workload Miss Rates”, Proc.

of International Workshop on Workload
Characterization, pp. 129-139, Dec 2001.

[5] E. Sorenson and J.Flanagan, “Evaluating Synthetic
Trace Models Using Locality Surfaces”, Proceedings of
the Workshop on Workload Characterization, pp. 23-33,
November 2002.

[6] G. Dunteman, Principal Component Analysis, Sage
Publications, 1989.

[7] H. Vandierendonck, K. Bosschere, “Many Benchmarks
Stress the Same Bottlenecks”, Proc. of the Workshop on
Computer Architecture Evaluation using Commerical
Workloads (CAECW-7), pp. 57-71, 2004.

[8] Hammerstrom, Davdison, “Information content of CPU
memory referencing behavior”, Proc. of International
Symposium on Computer Architecture, pp. 184-192,
1977.

[9] J. Dujmovic and I. Dujmovic, “Evolution and
Evaluation of SPEC benchmarks”, ACM SIGMETRICS
Performance Evaluation Review, vol. 26, no. 3, pp. 2-9,
1998.

[10] J. Henning, “SPEC CPU2000: Measuring CPU
Performance in the New Millenium”, IEEE Computer,
July 2000.

[11] J. Spirn and P. Denning, “Experiments with Program
Locality”, The Fall Joint Conference, pp. 611-621,
1972.

[12] J.Yi, D. Lilja, and D.Hawkins, "A Statistically Rigorous
Approach for Improving Simulation Methodology",
Proc. of Intl Conf on High-Perf Comp Arch, ,2003.

[13] K. Dixit, “Overview of the SPEC benchmarks”, The
Benchmark Handbook, Ch. 9,Morgan Kaufmann
Publishers, 1998.

[14] K. Skadron, M. Martonosi, D.August, M.Hill, D.Lilja,
and V.Pai. "Challenges in Computer Architecture
Evaluation." IEEE Computer, Aug. 2003.

[15] L. Barroso, K. Ghorachorloo, and E. Bugnion, “Memory
System Characterization of Commercial Workloads”,
Proc. of the International Symposium on Computer
Architecture, pp. 3-14, 1998.

[16] L. Eeckhout, H. Vandierendonck, and K. De Bosschere,
“Designing computer architecture research workloads”,
IEEE Computer, 36(2), pp. 65-71, Feb 2003.

[17] L. Eeckhout, H. Vandierendonck, and K. De Bosschere,
“Quantifying the impact of input data sets on program
behavior and its applications”, Journal of Instruction
Level Parallelism, vol 5, pp. 1-33, 2003.

[18] L. John, P. Vasudevan and J. Sabarinathan, "Workload
Characterization: Motivation, Goals and methodology",
In L. K. John and A. M. G. Maynard (Eds), Workload
Characterization: Methodology and Case Studies

[19] L. John, V. Reddy, P. Hulina, and L. Coraor, “Program
Balance and its impact on High Performance RISC
Architecture”, Proc. of the International Symposium on
High Perf Comp Arch, pp.370-379, Jan 1995.

[20] N. Mirghafori, M. Jacoby, and D. Patterson, “Truth in
SPEC Benchmarks”, Computer Architecture News vol.
23,no. 5, pp. 34-42, Dec 1995.

[21] P. Denning, “The Working Set Model for Program
Behavior”, Communications of the ACM, vol 2, no. 5,
pp. 323-333, 1968.

[22] P. Dubey, G. Adams, and M. Flynn, “Instruction
Window Size Trade-Offs and Characterization of
Program Parallelism”, IEEE Transactions on
Computers, vol. 43, no. 4, pp. 431-442, 1994.

[23] R. Giladi and N. Ahituv, “ SPEC as a Performance
Evaluation Measure”, IEEE Computer, pp. 33-42, Aug
1995.

[24] R. Saveedra and A. Smith, “Analysis of benchmark
characteristics and benchmark performance prediction”,
Proc. of ACM Transactions on Computer Systems, vol.
14, no.4, pp. 344-384, 1996.

[25] R. Weicker, “An Overview of Common Benchmarks”,
IEEE Computer, pp. 65-75, Dec 1990.

[26] S. Mukherjee, S. Adve, T. Austin, J. Emer, and P.
Magnusson, “Performance Simulation Tools” , IEEE
Computer, Feb 2002.

[27] Standard Performance Evaluation Corporation,
http://www.spec.org/benchmarks.html.

[28] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An
Infrastructure for Computer System Modeling”, IEEE
Computer, pp. 59-67, Feb 2002.

[29] T. Lafage and A. Seznec, “Choosing Representative
Slices of Program Execution for Microarchitecture
Simulations: A Preliminary Application to the Data
Stream”, Workshop on Workload Characterization
(WWC-2000), Sept 2000.

[30] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically Characterizing Large Scale Program
Behavior”, Proc. of International Conference on
Architecture Support for Programming Languages and
Operating Systems, pp. 45-57, 2002.

[31] T. Wenisch, R. Wunderlich, B. Falsafi, and J. Hoe,
“Applying SMARTS to SPEC CPU2000”, CALCM
Technical Report 2003-1, Carnegie Mellon University,
June 2003.

[32] J. Cantin, and M. Hill, “Cache Performance for SPEC
CPU 2000 Benchmarks”
http://www.cs.wisc.edu/multifacet/misc/spec2000
cache-data/

[33] A. Phansalkar, A. Joshi, L. Eeckhout, L. John
“Measuring Program Similarity”, Lab for Computer
Architecture Technical Report 2005, TR-050127-01,
University of Texas at Austin.

http://www.computer.org/computer/

	2.1.9 Instruction Temporal Locality: The instruction temporal locality metric is quantified by computing the average distance (in terms of number of instructions) between two consecutive accesses to the same static instruction, for every unique static
	Related Work
	Acknowledgement
	References
	A. Jain and R. Dubes, Algorithms for Clustering Data, Prentice Hall, 1988.
	T. Sherwood, E. Perelman, G. Hamerly, and B. Cald

