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Abstract 

It is essential that a subset of benchmark programs used 
to evaluate an architectural enhancement, is well 
distributed within the target workload space rather than 
clustered in specific areas. Past efforts for identifying 
subsets have primarily relied on using microarchitecture-
dependent metrics of program performance, such as cycles 
per instruction and cache miss-rate. The shortcoming of 
this technique is that the results could be biased by the 
idiosyncrasies of the chosen configurations.  

 The objective of this paper is to present a methodology 
to measure similarity of programs based on their inherent 
microarchitecture-independent characteristics which will 
make the results applicable to any microarchitecture. We 
apply our methodology to the SPEC CPU2000 benchmark 
suite and demonstrate that a subset of 8 programs can be 
used to effectively represent the entire suite.  We validate 
the usefulness of this subset by using it to estimate the 
average IPC and L1 data cache miss-rate of the entire 
suite.  The average IPC of 8-way and 16-way issue 
superscalar processor configurations could be estimated 
with 3.9% and 4.4% error respectively.  This methodology 
is applicable not only to find subsets from a benchmark 
suite, but also to identify programs for a benchmark suite 
from a list of potential candidates. 

Studying the four generations of SPEC CPU benchmark 
suites, we find that other than a dramatic increase in the 
dynamic instruction count and increasingly poor temporal 
data locality, the inherent program characteristics have 
more or less remained the same. 
 
1.  Introduction 
 

During the early design space exploration phase of the 
microprocessor design process, a variety of enhancements 
and design options are evaluated by analyzing the 
performance model of the microprocessor.  Simulation time 
is limited, and hence it is often required to use only a subset 
of the benchmark programs to evaluate the enhancements 
and design options.  A poorly chosen set of benchmark 
programs may not accurately depict the true performance of  
the processor design.  On one hand, selecting the wrong set 
of benchmarks could incorrectly estimate the performance 

of a particular enhancement; while on the other hand, 
simulating similar programs will increase simulation time 
without providing additional information.  Therefore, a 
good workload should have programs that are well 
distributed within the target workload space without being 
clustered in specific areas.  Understanding similarity 
between programs can help in selecting benchmark 
programs that are distinct, but are still representative of the 
target workload space.  A typical approach to study 
similarity in programs is to measure program characteristics 
and then use statistical data analysis techniques to group 
programs with similar characteristics.   

Programs can be characterized using implementation 
(machine) dependent metrics such as cycles per instruction 
(CPI), cache miss-rate, and branch prediction accuracy, or 
microarchitecture-independent metrics such as temporal 
locality, and parallelism.  Techniques that have been 
previously proposed primarily concentrate on measuring 
microarchitecture-dependent characteristics of programs [7] 
[17].  This involves measuring program performance 
characteristics such as instruction and data cache miss-rate, 
branch prediction accuracy, CPI, and execution time across 
multiple microarchitecture configurations.  The results 
obtained from these techniques could be biased by the 
idiosyncrasies of a particular microarchitecture if the 
program behavior is not observed across a carefully chosen 
range of microarchitecture configurations.  Moreover, 
conclusions based on performance metrics such as 
execution time could categorize a program with unique 
characteristics as insignificant, only because it shows 
similar trends on the microarchitecture configurations used 
in the study.  For instance, a prior study [7] ranked 
programs in the SPEC CPU 2000 benchmark suite using 
the SPEC peak performance rating.  The program ranks 
were based on their uniqueness i.e. the programs that 
exhibit different speedups on most of the machines were 
given a higher rank as compared to other programs in the 
suite.  In this scheme of ranking programs, gcc ranks very 
low, and seems to be less unique.  However, our results 
show that the inherent characteristics of gcc are 
significantly different from other programs in the 
benchmark suite.  This indicates that analysis based on 
microarchitecture-dependent metrics could undermine the 
importance of a program that is really unique. 
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We believe that by measuring the inherent characteristics 
of a program, it is possible to ensure that the results of such 
experiments will be applicable to any microarchitecture.  In 
this study we classify two programs to be similar if they 
have similar inherent characteristics such as instruction 
locality, data locality, branch predictability, and instruction 
level parallelism (ILP).  In order to remove the correlation 
between the measured metrics, and make it possible to 
visualize the program workspace, we use a multivariate 
statistical data analysis technique called principal 
component analysis (PCA) to reduce the dimensionality of 
the data while retaining most of the information.  We then 
use the K-means clustering algorithm to group programs 
that have similar inherent characteristics.  

Following are the contributions of this paper: 

i. The paper motivates and presents an approach that can 
be used to measure similarity between programs in a 
microarchitecture-independent manner.   

ii. The paper finds a subset of programs from the SPEC 
CPU 2000 benchmark suite.  We demonstrate the 
usefulness of this subset by using it to estimate the 
average IPC of the entire suite for two different 
configurations of a microprocessor, and average L1 
data cache miss-rate of the entire suite for 9 cache 
configurations. 

iii. The paper provides an insight into how characteristics 
of SPEC CPU benchmark suites have evolved since its 
inception in 1989. 

The roadmap of this paper is as follows: In section 2 we 
describe a microarchitecture-independent methodology to 
characterize benchmarks. In section 3 we apply the 
presented methodology to find a subset of programs from 
the SPEC CPU 2000 benchmark suite and validate that 
these programs are indeed representative of the entire 
benchmark suite.  Section 4 uses the presented 
methodology to provide a historical insight into how 
characteristics of SPEC CPU benchmark suites have 
changed over the last decade.  In section 5 we describe the 
related work, and in section 6 summarize the key learning 
and contributions of this study.  

 
2.  Characterization Methodology 

 
This section proposes our methodology to measure 

similarity between benchmark programs: the 
microarchitecture-independent metrics used to characterize 
the benchmarks, the statistical data analysis techniques, the 
benchmarks, and the tools. 

 
2.1  Metrics 

 
  Microarchitecture-independent metrics allow for a 

comparison between programs by understanding the 
inherent characteristics of a program isolated from features 
of particular microarchitectural components.  We provide 
an intuitive reasoning to illustrate how the measured 

metrics can affect the manifested performance.  The metrics 
measured in this study are a subset of all the 
microarchitecture-independent characteristics that can be 
potentially measured, but we believe that our metrics cover 
a wide enough range of the program characteristics to make 
a meaningful comparison between the programs. The actual 
raw data for all the metrics below can be found in 
Appendix A in [33].  We have identified the following 
microarchitecture-independent metrics: 
 
2.1.1 Instruction Mix: Instruction mix of a program 
measures the relative frequency of various operations 
performed by a program.  We measured the percentage of 
computation, data memory accesses (load and store), and 
branch instructions in the dynamic instruction stream of a 
program.  This information can be used to understand the 
control flow of the program and/or to calculate the ratio of 
computation to memory accesses, which gives us an idea of 
whether the program is computation bound or memory 
bound. 
 
2.1.2 Dynamic Basic Block Size: A basic block is a 
section of code with one entry and one exit point. We 
measure the basic block size as the average number of 
instructions between two consecutive branches in the 
dynamic instruction stream of the program.  A larger basic 
block size is useful in exploiting instruction level 
parallelism (ILP). 
 
2.1.3 Branch Direction: Backward branches are typically 
more likely to be taken than forward branches.  This metric 
computes the percentage of forward branches out of the 
total branch instructions in the dynamic instruction stream 
of the program.  Obviously, hundred minus this percentage 
is the percentage of backward branches.   
 
2.1.4 Taken Branches:  This metric is defined as, the ratio 
of taken branches to the total number of branches in the 
dynamic instruction stream of the program. 
 
2.1.5 Forward-taken Branches: We also measure the 
fraction of taken forward branches in the dynamic 
instruction stream of the program. 
 
2.1.6 Dependency Distance: We use a distribution of 
dependency distances as a measure of the inherent ILP in 
the program. Dependency distance is defined as the total 
number of instructions in the dynamic instruction stream 
between the production (write) and the first consumption 
(read) of a register instance [3] [22]. While techniques such 
as value prediction reduce the impact of these dependencies 
on ILP, information on the dependency distance is very 
useful in understanding ILP inherent to a program.  The 
dependency distance is classified into seven categories: 
percentage of total dependencies that have a distance of 1, 
and the percentage of total dependencies that a distance of 
upto 2, 4, 8, 16, 32, and greater than 32. Programs that 
show greater percentage of long dependency distances 



 

2.2.1 Principal Components Analysis. Principal 
components analysis (PCA) [6] is a classic multivariate 
statistical data analysis technique that is used to reduce the 
dimensionality of the data set while retaining most of the 
original information.  It builds on the assumption that many 
variables (in our case, microarchitecture-independent 
program characteristics) are correlated.  PCA computes 
new variables, called principal components, which are 
linear combinations of the original variables, such that all 
the principal components are uncorrelated.  PCA transforms 
p variables X1, X2,...., Xp into p principal components 
Z1,Z2,…,Zp  such that:  

show higher ILP (provided control flow is not a limiting  
factor). 
 
2.1.7 Data Temporal Locality: Several locality metrics 
have been proposed in the past [4] [5] [11] [18] [21] [29], 
however, many of them are computation and memory 
intensive. We picked the average memory reuse distance 
metric from [29] since it is more computationally feasible 
than other metrics. In this metric, locality is quantified by 
computing the average distance (in terms of number of 
memory accesses) between two consecutive accesses to the 
same address, for every unique address in the program. The 
evaluation is performed in four distinct window sizes, 
analogous to cache block sizes. This  metric is calculated 
for window sizes of 16, 64, 256 and 4096 bytes. The choice 
of the window sizes is based on the experiments conducted 
by Lafage et.al. [29].  Their experimental results show that 
the above set of window sizes was sufficient to characterize 
the locality of the data reference stream with respect to a 
wide range of data cache configurations. 
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This transformation has the property Var [Z1] > Var [Z2] 
>…> Var [Zp] which means that  contains the most 
information and Z

1Z
p the least.  Given this property of 

decreasing variance of the principal components, we can 
remove the components with the lower values of variance 
from the analysis.  This reduces the dimensionality of the 
data set while controlling the amount of information that is 
lost.  In other words, we retain q principal components (q 
<< p) that explain at least 75% to 90 % of the total 
information; in this paper q varies between 2 and 4.  By 
examining the most important principal components, which 
are linear combinations of the original program 
characteristics, meaningful interpretations can be given to 
these principal components in terms of the original program 
characteristics.  

 
2.1.8 Data Spatial Locality: Spatial locality information 
for data accesses is characterized by the ratio of the 
temporal locality metric for window sizes mentioned above. 
 
2.1.9 Instruction Temporal Locality: The instruction 
temporal locality metric is quantified by computing the 
average distance (in terms of number of instructions) 
between two consecutive accesses to the same static 
instruction, for every unique static instruction in the 
program that is executed at least twice. The instruction 
temporal locality  is calculated for window sizes of 16, 64, 
256, and 4096 bytes.   2.2.2 Cluster Analysis.  We use K-means clustering for our 

analysis [1].  K-means clustering tries to group all cases 
into exactly K clusters.  Obviously, not all values for K fit 
the data set well.  As such, we will explore various values 
of K in order to find the optimal clustering for the given 
data set.  

2.1.10 Instruction Spatial Locality: Spatial locality of the 
instruction stream is characterized by the ratio of the 
instruction temporal locality metric for the window sizes 
mentioned above. 
 
2.2 Statistical Data Analysis  
 2.3 Benchmarks 

Obviously, the amount of data to analyze in this 
experiment is huge.  There are many variables (29 
microarchitecture- independent characteristics) and many 
cases (program-input pairs).  It is humanly impossible to 
simultaneously look at all the data and draw meaningful 
conclusions from them.  Hence, we use multivariate 
statistical data analysis techniques, namely Principal 
Component Analysis (PCA) and Cluster Analysis, to 
compare and discriminate programs based on the measured 
characteristics, and understand the distribution of programs 
in the workload space.  Cluster Analysis is used to group n 
cases in an experiment (benchmark programs) based on the 
measurements of the p principal components.  The goal is 
to cluster programs that have the similar intrinsic program 
characteristics. 

 
The different benchmark programs used in this study and 

their dynamic instruction counts are shown in Table 1. Due 
to the differences in libraries, data type definitions, pointer 
size conventions, and known compilation issues on 64-bit 
machines, we were unable to compile some programs 
(mostly from old suites - SPEC CPU 89 and SPEC CPU 92 
and a few from SPEC 2000).  The instruction counts of 
these programs are therefore missing from Table 1 and 
have a * in the column. The programs from the four SPEC 
CPU benchmark suites were compiled on a Compaq Alpha 
AXP-2116 processor using the Compaq/DEC C, C++, and 
the FORTRAN compiler.  The programs were statically 
built under OSF/1 V5.6 operating system using full 
compiler optimization. Although our results are 
microarchitecture-independent, they may be dependent  on 
the instruction set  architecture (ISA) and the compiler. 

 



 

Table 1: List of SPEC CPU benchmarks 
 

 
Program Input INT/

FP 
Dynamic 

Instruction 
Count 

 
SPEC CPU89 

 
espresso bca.in INT 0.5 billion 
li li-input.lsp INT 7 billion 
eqntott * INT * 
gcc * INT * 
spice2g6 * FP * 
doduc doducin FP 1.03 billion 
fpppp natoms FP 1.17 billion 
matrix300 - FP 1.9 billion 
nasa7 - FP 6.2 billion 
tomcatv - FP 1 billion 
    

 
SPEC CPU92 

 
espresso bca.in INT 0.5 billion 
li li-input.lsp INT 6.8 billion 
eqntott * INT * 
compress in INT 0.1 billion 
sc * INT * 
gcc * INT * 
spice2g6 * FP * 
doduc doducin FP 1.03 billion 
mdljdp2 input.file FP 2.55 billion 
mdljsp2 input.file FP 3.05 billion 
wave5 - FP 3.53 billion 
hydro2d hydro2d.in FP 44 billion 
Swm256 swm256.in FP 10.2 billion 
alvinn In_pats.txt FP 4.69 billion 
ora params FP 4.72 billion 
ear * FP * 
su2cor su2cor.in FP 4.65 billion 
fpppp natoms FP 116 billion 
nasa7 - FP 6.23 billion 
tomcatv - FP 0.9 billion 
    

 
SPEC CPU95 

 
go null.in INT 18.2 billion 

li *.lsp INT 75.6 billion 
m88ksim ctl.in INT 520.4 billion 
compress bigtest.in INT 69.3 billion 
ijpeg penguin.ppm INT 41.4 billion 
gcc expr.i INT 1.1 billion 
perl perl.in INT 16.8 billion 
vortex * INT * 
wave5 wave5.in FP 30 billion 
hydro2d Hydro2d.in FP 44 billion 
swim swim.in FP 30.1 billion 
applu Applu.in FP 43.7 billion 
mgrid Mgrid.in FP 56.4 billion 
turb3d turb3d.in FP 91.9 
su2cor su2cor.in FP 33 billion 
fpppp natmos.in FP 116 billion 
apsi apsi.in FP 28.9 billion 
tomcatv tomcatv.in FP 26.3 billion 
    

 
SPEC CPU2000 

 
gzip input.graphic INT 103.7 billion 
vpr route INT 84.06 billion 
gcc 166.i INT 46.9 billion 
mcf inp.in INT 61.8 billion 
crafty crafty.in INT 191.8 billion 
parser ref INT 546.7 billion 
eon cook INT 80.6 billion 
perlbmk * INT * 
vortex lendian1.raw INT 118.9 billion 
gap * INT * 
bzip2 input.graphic INT 128.7 billion 
twolf ref INT 346.4 billion 
swim swim.in FP 225.8 billion 
wupwise wupwise.in FP 349.6 billion 
mgrid mgrid.in FP 419.1 billion 
mesa mesa.in FP 141.86 billion 
galgel gagel.in FP 409.3 billion 
art c756hel.in FP 45.0 billion 
equake inp.in FP 131.5 billion 
ammp ammp.in FP 326.5 billion 
lucas lucas2.in FP 142.4 billion 
fma3d fma3d.in FP 268.3 billion 
apsi apsi.in FP 347.9 billion 
applu applu.in FP 223.8 billion 
facerec * FP * 
sixtrack * FP * 

 

 2.4 Tools 
 
SCOPE: The workload characteristics were measured 
using a custom-developed analyzer called SCOPE.  
SCOPE was developed by modifying the sim-safe 
functional simulator from the SimpleScalar 3.0 [28] tool 
set.  SCOPE analyzes the dynamic instruction stream and 
generates statistics related to instruction mix, data 
locality, branch predictability, basic-block size, and ILP. 
Essentially, the front-end of sim-safe is interfaced with 
custom made analyzers to obtain various locality and 
parallelism metrics described in section 2.1.   
 

 
 
Statistical data analysis:  We use STATISTICA version 
6.1 for performing PCA.  For K-means clustering we use 
the SimPoint software [30].  However, unlike SimPoint 
we do not use random projection before applying K-
means clustering; instead, we use the transformed PCA 
space as the projected space.   
 
3. Subsetting SPEC CPU2000 benchmark        

suite 
 
Benchmark subsetting involves measuring the  
 



 

characteristics of benchmark programs and grouping 
programs with similar characteristics such as temporal 
locality, spatial locality, and branch predictability.  A 
representative program from each group can then be 
selected for simulation, without losing significant 
information.  In this section we apply the 
microarchitecture-independent technique to measure 
benchmark similarity presented in this paper, to the 
problem of finding a representative subsets of programs 
from the SPEC CPU 2000 benchmark suite.  We 
measured the microarchitecture-independent 
characteristics mentioned in section 2 for the SPEC CPU 
2000 benchmark programs from the SPEC CPU 2000 
benchmark suite.  We measured the microarchitecture-
independent characteristics mentioned in section 2 for the 
SPEC CPU2000 benchmark programs and computed  two 
subsets of programs, the first based on similarity in all the 
important program characteristics described in section 2, 
and the second based on similarity in data locality 
characteristics.  We reduce the dimensionality of the data 
using the PCA technique described earlier in the paper.  
We then use K-means clustering algorithm, provided in 
the SimPoint software, to group programs based on 
similarity in the measured characteristics.  The SimPoint 
software identifies the optimal number of clusters, K, by 
computing the minimal number of clusters for which the 
Bayesian Information Criterion (BIC) is optimal. 
 
Table 2: Clusters based on overall characteristics 

 
 
The BIC is a measure of the goodness of fit of a 
clustering to a data set.  In the following sections we 
describe two experiments to find clusters of programs in 
SPEC CPU 2000 benchmark suite, and validate that they 
are indeed representative of the entire benchmark suite. 
 
3.1 Subsetting using overall program 

characteristics   
 
We measured all the microarchitecture-independent 
program characteristics mentioned in section 2 for SPEC 
CPU 2000 programs.  Using the PCA and K-means 

clustering technique described above, we obtain 8 
clusters as a good fit for the measured data set. Table 2 
shows the 8 clusters and their members. The programs 
marked in bold are closest to the center of their 
respective cluster and are hence chosen to be the 
representatives of that particular group. For clusters with 
just two programs, any program can be chosen as a 
representative.  Citron [2] presented a survey on the use 
of SPEC CPU2000 benchmark programs in papers from 
four recent ISCA conferences.  He observed that some 
programs are more popular than the others among 
computer architecture researchers. The programs in the 
SPEC CPU2000 integer benchmark suite in their 
decreasing order of popularity  
 
Table 3: Clusters based on data locality      
characteristics 
 

Cluster 1 gzip 
Cluster 2 mcf 
Cluster 3 ammp, applu, crafty, art, eon, mgrid, 

parser, twolf, vortex, vpr 
Cluster 4 equake 
Cluster 5 bzip2 
Cluster 6 mesa, gcc 
Cluster 7 fma3d, swim, apsi 
Cluster 8 galgel, lucas 
Cluster 9 wupwise 

 
are: gzip, gcc, parser, vpr, mcf, vortex, twolf, bzip2, 
crafty, perlbmk, gap, and eon.  For the floating-point 
CPU2000 benchmarks, the list in decreasing order of 
popularity is:  art, equake, ammp, mesa, applu, swim, 
lucas, apsi, mgrid, wupwise, galgel, sixtrack, facerec 
and fma3d. The clusters we obtained in Table 2 suggest 
that the most popular programs in the listing provided by 
Citron [2] are not a truly representative subset of the 
benchmark suite (based on their inherent-
characteristics). For example, subsetting SPEC CPU 
2000 integer programs using gzip, gcc, parser, vpr, mcf, 
vortex, twolf and bzip2 will result in three uncovered 
clusters, namely 1, 3 and 7.  We also observe that there 
is a lot of similarity in the characteristics of the popular 
programs listed above.  The popular programs parser, 
twolf and vortex are in the same cluster, Cluster 6 and 
hence do not add more information. Clusters in Table 2 
suggest that using applu, gzip, equake, fma3d, mcf, 
twolf, mesa, and gcc as a representative subset of the 
SPEC CPU 2000 benchmark suite would be a better 
practice. We observe that gcc is in a separate cluster by 
itself, and hence has characteristics that are significantly 
different from other programs in the benchmark suite.  
However, in the ranking scheme used in a prior study 
[7], gcc ranks very low and does not seem to be a very 

Cluster 1 applu, mgrid 

Cluster 2 gzip, bzip2  
Cluster 3 equake, crafty 
Cluster 4 fma3d, ammp, apsi, galgel, swim, vpr, wupwise 

Cluster 5 Mcf 
Cluster 6 twolf , lucas, parser, vortex 
Cluster 7 mesa, art, eon 
Cluster 8 Gcc 



 

unique program.  Their study uses microarchitecture-
dependent metric, SPEC peak performance rating, and 
hence a program, such as gcc, that shows similar 
speedup on most of the machines will be ranked lower.  
This example shows that results based on analysis using 
microarchitecture-independent metrics can identify 
redundancy more effectively. 

 
3.2 Subsetting using data locality characteristics 

 
In this analysis we find a subset of the SPEC CPU2000 

benchmark suite by only considering the 7 characteristics 
of SPEC CPU2000 programs that are closely related to 
the temporal and spatial data locality of a program for 
window sizes of 16, 64, 256, and 4096 bytes, and the 
ratios of each of the data locality metric for window sizes 
of 64, 256, and 4096 bytes, to the data locality metric for 
window size of 16 bytes.  The first four metrics measure 
temporal data locality of the program, whereas the 
remaining three characterize the spatial data locality of 
the program. We use PCA and clustering as mentioned 
above. Table 3 shows the groups of programs that have 
similar data locality characteristics 
 
3.3. Validating benchmark  subsets  
 

It is important to know whether the subsets we created 
are meaningful and are indeed representative of the SPEC 
CPU 2000 benchmark suite. We used the subsets to 
estimate the average IPC and L1 data cache miss-rate of 
the entire benchmark suite.  We then compared our 
results with those obtained by using the entire benchmark 
suite. 
 
3.3.1 Computing IPC. Using the subset based on overall 
program characteristics we calculated the average IPC of 
the entire suite for two different microarchitecture 
configurations with issue widths of 8 and 16.   Figure 1 
shows the average IPC of the entire benchmark suite 
calculated using the program subset, and also using every 
program in the benchmark suite. We obtained the IPC on 
8-way and 16-way issue widths for every program in the 
SPEC CPU2000 benchmarks from Wenisch et. al. [31]. 
The configurations in brief are: 8-way machine (32KB 2 
way L1 I/D cache, 1M 4-way L2, Functional Units 4 I-
ALU, 2 I-MUL/DIV, 2 FP-ALU, 1 FP-MUL/DIV) and 
16-way machine(64 KB 2-way L1 I/D, 2M 8-way L2, 
Functional Units 16 I-ALU, 8 I-MUL/DIV, 8 FP-ALU, 4 
FP-MUL/DIV). The rest of the details about branch 
predictor and different penalties in cycles can be found in 
[31].  From Table 2 we observe that each cluster has a 
different number of programs, and hence the weight 
assigned to each representative program should depend 
on the number of programs that it represents (i.e. the 

number of programs in its cluster). For example, from 
Table 2, the weight for fma3d (cluster 4) is 7. The error 
in average IPC for both configurations is less than 
5%(shown in Figure 1).  If the IPC of the entire suite can 
be estimated with reasonable accuracy using the subsets, 
we feel that it is a good validation for the usefulness of 
the subset. 
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Figure 1: Estimated average IPC of benchmark 
suite using subset versus average IPC of entire 
suite   
  
 
3.3.2 Computing data cache miss-rate.  Figure 2 
shows average L1 data cache miss-rate of the benchmark 
suite estimated using the subset of programs obtained in 
section 3.2 along with the average miss-rate using the 
entire benchmark suite.  
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Figure 2: Average L1 D-cache miss-rate using the 
subset based on locality characteristics, and the 
subset based on overall characteristics 

 
We obtained the miss-rates for 9 different L1 data 

cache configurations from Cantin et. al. [32]. As 
mentioned in the earlier section, the weight for each 
representative program is assigned as the number of 



 

4. Similarity across four generations of SPEC 
CPU benchmark suites 

programs it represents (i.e. the number of programs in its 
cluster).  From these results we can conclude that the 
program subset derived in section 4.2 is indeed 
representative of the data locality characteristics of 
programs in SPEC CPU 2000 benchmark suite.  We also 
used the subset based on overall characteristics (obtained 
in section 3.1) to estimate the average cache miss-rate of 
the entire suite; the results are also shown in Figure 2.  It 
is interesting to note that in 5 of the 9 cases, the clusters 
based on overall characteristics performed better in 
estimating the average miss-rate of the entire suite, than 
the clusters based on locality characteristics. 

 
Standard Performance Evaluation Corporation 

(SPEC) CPU benchmark suite which was first released in 
1989 as a collection of 10 computation-intensive 
benchmark programs (average size of 2.5 billion dynamic 
instructions per program), is now in its fourth generation 
and has grown to 26 programs (average size of 230 
billion dynamic instructions per program).  In order to 
keep pace with the architectural enhancements, 
technological advancements, software improvements, and 
emerging workloads, new programs were added, 
programs susceptible to compiler tweaks were retired, 
program run times were increased, and memory activity 
of programs was increased in every generation of the 
benchmark suite.  In this section, we use our collection of 
microarchitecture-independent metrics, described in 

Section 2, to characterize the generic behavior of the 
benchmark programs as the evolved over the last decade.  
The same compiler is used to compile the four suites. The 
data is analyzed using PCA and cluster analysis to 
understand the changes in workload. 

 

3.3.3 Sensitivity to number of clusters.  The number of 
representative programs to be chosen from a benchmark 
suite depends on the level of accuracy desired. 
Theoretically, as we increase the number of 
representative programs, the accuracy should increase i.e. 
the average miss-rate of the suite calculated using the 
subset will be closer to that calculated using the entire 
suite. In this section we show that the average miss-rate 
of the benchmark suite can be calculated with an 
increasing level of accuracy if we partition the programs 
into higher number of clusters i.e. more programs are 
chosen to represent the benchmark suite. The optimum 
number of clusters for subset using data locality 
characteristics is 9 according to the SimPoint algorithm.  
Figure 3 shows the estimated miss-rate of the benchmark 
suite using a subset of 5, 9, and 15 programs that were 
clustered based on the locality characteristics. We 
observe that as we increase the  

 
4.1 Instruction Locality 

 
We perform PCA on the raw data measured for the 

instruction locality metric, which yields two principal 
components explaining 68.4 % and 28.6 % of variance. 
Figure 4 shows the benchmarks in PC space. PC1 
represents instruction temporal locality of benchmarks. 
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Figure 3: Sensitivity of average cache miss-rates to 
number of clusters Figure 4: PCA space built from instruction locality 

characteristics   number of representative programs (clusters), the 
estimated miss-rate using the subset moves closer to the 
true average miss-rate using the entire suite. The number 
of clusters can therefore be chosen depending on the 
desired level of accuracy.  This can be achieved by 
simply specifying the number of representative programs, 
K, in the K-means algorithm. 

Benchmarks with higer value of PC1 show poor temporal 
locality for instruction stream. Benchmarks with higher 
value of PC2 will benefit more from increase in block 
size. Figure 4 shows that all SPEC CPU generations 
overlap. The biggest exception is gcc in SPECint2000 
and SPECint95 (the two dark points on the plot on 
extreme right). gcc in SPECint2000 and SPECint95 suite 



 

exhibits poor instruction temporal locality – as shown by 
the data in (Appendix A [33]). gcc also shows very low 
values for PC2 due to poor spatial locality. Except gcc, 
almost all programs in the 4 different generations of 
SPEC CPU benchmark suite show similar instruction 
locality.  

We observe that although the average dynamic 
instruction count of the benchmark programs has 
increased by a factor of x100, the static count has  
remained more or less constant.  This suggests that the 
dynamic instruction count of the SPEC CPU benchmark 
programs could have simply been scaled – more iterations 
through the same instructions.  This could be a plausible 
reason for the observation that instruction locality of 
programs has more or less remained the same across the 
four generations of benchmark suites. 

 
4.2 Branch characteristics 
 

We perform PCA analysis and retain 2 principal 
components explaining 62% and 19% of the total 
variance, respectively.  Figure 5 plots the various SPEC 
CPU benchmarks in this PCA space.  We observe that the 
integer benchmarks are clustered in an area. We also 
observe that the floating-point benchmarks typically have 
a positive value along the first principal component 
(PC1), whereas the integer benchmarks have negative 
value along PC1.  The reason is that floating-point 
benchmarks typically have fewer branches and thus have 
a larger basic block size; floating-point benchmarks also 
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Figure 5: PCA space built from branch 
characteristics 

 
typically are very well structured, and have a smaller 
percentage of forward branches, and fewer percentage 
forward-taken branches.  In other words, floating-point 
benchmarks tend to spend most of their time in loops.  
The two outliers in the top corner of this graph are 
SPEC2000’s mgrid and applu programs due to their 
extremely large basic block sizes, 273 and 318, 
respectively.  The two outliers on the right are SPEC92 

and SPEC95 swim due to its large percentage taken 
branches and small percentage forward branches.  We 
conclude from this graph that branch characteristics of 
SPEC CPU programs did not significantly change over  
the past 1.5 decades. Indeed all SPEC CPU suites overlap  
 in Figure 5. 
 
4.3 Instruction-level parallelism 

 
In order to study the instruction-level parallelism 

(ILP) of the SPEC CPU suites we used the dependency 
metrics as well as the basic block size.  Both metrics are 
closely related to the intrinsic ILP available in an 
application.  Long dependency distances and large basic 
block sizes generally imply a high ILP. Basic block and 
dependency related limitations can be overcome by 
branch prediction and value prediction respectively. The 
first two principal components explain 96% of the total 
variance.  The PCA space is plotted in Figure 6. We 
observe that the integer benchmarks typically have a high 
value along PC1, which indicates that these benchmarks 
have more short dependencies. The floating-point 
benchmarks typically have larger dependency distances.  
We observe no real trend in this graph.  The intrinsic ILP 
did not change over the past 1.5 decades - except for the 
fact that several floating-point SPEC89 and SPEC92 
benchmarks (and no SPEC CPU95 or SPEC CPU2000 
benchmarks) exhibit relatively short dependencies 
compared to other floating-point benchmarks; these 
overlap with integer benchmarks in -0.1 <PC1 <0.6 
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 Figure 6: PCA space built from ILP characteristics 
 
4.4 Data Locality 
 

For studying the temporal and spatial locality behavior 
of the data stream we used the locality metrics as 
proposed by Lafage et. al. [29] for four different window 
sizes: 16, 64, 256, and 4096.  Recall that the metrics by 
themselves quantify temporal locality whereas the ratios 
between them is a measure for spatial locality. We 



 

perform PCA analyses of raw data. Figure 7 shows a plot 
of the benchmarks in this PCA space.  

 We concluded that several SPEC CPU2000 and 
CPU95 benchmark programs: bzip2, gzip, mcf, vortex, 
vpr, gcc, crafty, applu, mgrid, wupwise, and apsi from 
CPU2000, and gcc, turbo3d, applu, and mgrid from 
CPU95 exhibit a temporal locality that is significantly 
worse than the other benchmarks. Concerning spatial 
locality, most of these benchmarks exhibit a spatial 
locality that is relatively higher than that of the remaining 
benchmarks, i.e. increasing window sizes improves 
performance of these programs more than they do for the 
other benchmarks. Obviously, we expected temporal 
locality of the data stream to get worse for newer 
generations of SPEC CPU given one of the objectives of 
SPEC, which is to increase the working set size along the 
data stream for subsequent SPEC CPU suite generations. 
In Figure 7 the first principal component basically 
measures temporal locality, i.e. a more positive value 
along PC1 indicates poorer temporal locality.  The second 
principal component basically measures spatial locality.  
Benchmarks with a high value along PC2 will thus 
benefit more from an increased line size. This graph 
shows that for these benchmarks all SPEC CPU 
generations overlap. This indicates that although SPEC’s 
objective is to worsen the data stream locality behavior of 
subsequent CPU suites, several benchmarks in recent 
suites exhibit a locality behavior that is similar to older 
versions of SPEC CPU.  Moreover, some CPU95 and 
CPU2000 benchmarks show a temporal locality behavior 
that is better than most CPU89 and CPU92 benchmarks. 
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Figure 7: PCA space built from data locality 
characteristics 
 
4.5 Overall Characteristics 
 

In order to understand (dis) similarity across SPEC 
CPU benchmark suites we perform a cluster analysis in 
the PCA space as described in section 3. Clustering all 60 
benchmarks yields 12 optimum clusters, which are shown 
in Table 4. The benchmarks in bold are the 
representatives for that cluster. For, clusters with 2 
benchmarks either one can be picked as a representative 

since both are equidistant from the center of the cluster.  
A detailed analysis of Table 4 gives us several interesting 
insights.  First, out of all the benchmarks gcc (2000) and 
gcc (95) are together in a separate cluster. We observe 
that instruction locality for gcc is worse than any other 
program in all 4 generations of SPEC CPU suite; due to 
which gcc programs from SPEC CPU 95 and 2000 suites 
reside in their own separate cluster.  Due to its peculiar 
data locality characteristics, mcf (2000) resides in a 
separate cluster (cluster 2), and bzip2(2000), gzip(2000) 
form one cluster (cluster 12). SPEC CPU2000 programs 
exist in 10 out of 12 clusters, as opposed to SPEC CPU95 
in 7 clusters, SPEC CPU92 in 6 clusters, and SPEC 
CPU89 in 5 clusters. This shows that SPEC CPU 2000 
benchmarks are more diverse than their ancestors.  
 

 
Table 4: Optimum number of clusters for four 
generations of SPEC CPU benchmark programs 
using overall program characteristics.  
 

Cluster 1 gcc(95), gcc(2000) 
Cluster 2 mcf(2000) 
Cluster 3 turbo3d (95), applu (95), apsi(95), swim(2000), 

mgrid(95), wupwise(2000) 
Cluster 4 hydro2d(95), hydro2d(92), wave5(92), su2cor(92), 

succor(95), apsi(95), tomcatv(89), tomcatv(92), 
crafty(2000), art(2000), equake(2000), mdljdp2(92) 

Cluster 5 perl(95), li (89), li(95), compress(92), tomcatv(95), 
matrix300(89) 

Cluster 6 nasa7(92), nasa(89), swim(95), swim(92), 
galgel(2000), wave5(95), alvinn(92) 

Cluster 7 applu(2000), mgrid(2000) 
Cluster 8 doduc(92), doduc(89), ora(92) 
Cluster 9 mdljsp2(92), lucas(2000) 

Cluster 10 parser(2000), twolf(2000), espresso(89), 
espresso(92), compress(95), go(95), ijpeg(95), 
vortex(2000) 

Cluster 11 fppp(95), fpppp(92), eon(2000), vpr(2000), 
fpppp(89), fma3d(2000), mesa(2000), ammp(2000) 

Cluster 12 bzip2(2000), gzip(2000) 

 

5. Related Work 
 
The majority of ongoing work in studying 

benchmark characteristics involves measuring 
microarchitecture-dependent metrics e.g. cycles per 
instruction, cache miss rate, branch prediction accuracy 
etc., on various microarchitecture configurations that 
offer a different mixture of bottlenecks [12][15][16][17]. 
The variation in these metrics is then used to infer the 



 

generic program behavior.  These inferred program 
characteristics may be biased by the idiosyncrasies of a 
particular configuration, and therefore may not be 
generally applicable. In this paper we measure program 
similarity based on the cause (microarchitecture 
independent characteristics) rather than the effect 
(microarchitecture dependent characteristics). 

Past attempts to understand benchmark redundancy 
used microarchitecture-dependent metrics such as 
execution time or SPEC peak performance rating. 
Vandierendonck et. al. [7] analyzed the SPEC CPU2000 
benchmark suite peak results on 340 different machines 
representing eight architectures, and used PCA to identify 
the redundancy in the benchmark suite.  Dujmovic and 
Dujmovic [9] developed a quantitative approach to 
evaluate benchmark suites.  They used the execution time 
of a program on several machines and used this to 
calculate metrics that measure the size, completeness, and 
redundancy of the benchmark space. The shortcoming of 
these two approaches is that the inferences are based on 
the measured performance metrics due the interaction of 
program and machine behaviour, and not due to the 
generic characteristics of the benchmarks. Ranking 
programs based on microarchitecture-dependent metrics 
can be misleading for future designs because a 
benchmark might have looked redundant in the analysis 
merely because all existing architectures did equally well 
(or worse) on them, and not because that benchmark was 
not unique.  The relatively lower rank of gcc in [7] and its 
better position in this work (Tables 2 and 3) is an 
example of such differences that become apparent only 
with microarchitecture-independent studies. 

There has been some research on microarchitecture-
independent locality and ILP metrics. For example, 
locality models researched in the past include working set 
models, least recently used stack models, independent 
reference models, temporal density functions, spatial 
density functions, memory reuse distance, locality space 
etc. [4][5][11][18][21][29].  Generic measures of 
parallelism were used by Noonburg et. al. [3] and Dubey 
et. al. [22] based on a profile of dependency distances in a 
program.  Microarchitecture-independent metrics such as, 
true computations versus address computations, and 
overhead memory accesses versus true memory accesses 
have been proposed by several researchers [8][19].  
 
6.  Conclusion  

 
In this paper we presented a methodology to measure 

similarity of programs based on their inherent 
microarchitecture-independent characteristics.  We apply 
this technique to identify a small subset of nine programs 
in the SPEC CPU 2000 benchmark suite that are 
representative of the data locality exhibited by the suites, 

and a subset of eight programs that are representative of 
the overall characteristics (instruction locality, data 
locality, branch predictability, and ILP) of the programs 
in the entire suite.  We validated this technique by 
demonstrating that the average L1 data cache miss-rate 
and IPC of the entire suite could be estimated with a 
reasonable accuracy by just simulating the subset of 
programs.  These results are applicable generally to any 
microarchitecture.   

We also applied the microarchitecture-independent 
program characterization methodology to understand how 
the characteristics of the SPEC CPU programs have 
evolved since the inception of SPEC.  We characterized 
29 different microarchitecture-independent features of 60 
SPEC CPU programs from SPEC89 to SPEC2000 suites.  
We find that no single characteristic has changed as 
dramatically as the dynamic instruction count.   Our 
analysis shows that the branch and ILP characteristics 
have not changed much over the last decade, but the 
temporal data locality of programs has become 
increasingly poor.  Our results indicate that although the 
diversity of newer generations of SPEC CPU benchmarks 
has increased, there still exists a lot of   similarity 
between programs in the SPEC CPU2000 benchmark 
suite. 

The methodology presented in this paper could be 
used to select representative programs for the 
characteristics of interest, should the cost of simulating 
the entire suite be prohibitively high.  This technique 
could also be used during the benchmark design process 
to select only a fixed number of benchmark programs 
from a group of candidates.    
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