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Abstract weights to older observations like Exponential smoothiuiggtiso
We study power and performance characteristics of diftaraf C2ters f?r. trends in th de d«_’ﬁ}a.’ tAutl;)—tRegrc_)P t(r?R) tetChn't?;%
fic predictors for online one-step-ahead predictions. Tda& ig to at 5|gtna |sAtetgrelzqsse ‘.N' '\'/Ise. erxp ol AEN?X oco
identify a predictor with reasonable accuracy and low pavoge.  STUCtUre. Auto-Regression Moving Average (; ) uses a
sumption. Our experiments on a large number of real netw&@TPination of moving average (MA) of previous error terms i
traces indicate that Double Exponential Smoothing and Au d|t:;)ntc;fAuto—&¢gressk|]on (AbR) for mgklr&g predmtl?ngRMélA
Regressive Moving Average are low cost predictors withaaas P2S€d traffic predictors have been studied previously byJjap

able accuracy. 2.2 Artificial Neural Network (ANN) based Predictors
1 Introduction Neural Networks learn the relationship between input ariguiu

Multicore processors are increasingly being used in ndtmgr PY 100King at training examples. ANN consists of functions
applications in order to keep up with the growing amount § lled neurons. These neurons have connections to redeive t
traffic and complexity of applications. FreeScale’s p4080 [lnputs apd they pass the output to other.neurons through more
Intel IXP [5] and Tilera processors [3] are some examples ggnnections. Each connection has a weight associated with i
multicore processors being used in networking applicatio hese weights determine behavior of the ANN. These weights

These packet processing systems are designed and predsiGhe 1€arned during the training phase.
with enough resources to meet with the peak traffic load. BuB Wavelet based Predictors

PetWOTk traffic l\llaries_ Withf time anlg reaches _thehpeak valgfe prediction using wavelets usually involves three steps
or only a small portion of time. Resources in these packglnely wavelet decomposition, signal extension and signal
processing systems can be utilized more efficiently if ther o.ngiruction. Wavelet decomposition divides the signt

traffic can belpredicged faccurate:}f/_ [15, 11]. For examplevef 5’5 nass output calledpproximation and a high pass output
can accurately predict future traffic based on its past behavcgieqDetail. The wavelet decomposition function can be applied
idle or low traffic times can be exploited to force the systaio i

| A i diction is of interi recursively to the approximations to get further levelspgtaxi-
a low-power state. Accurate traffic prediction Is of INteres .y 4tinong and details. At any level the original signal is strthe

many other applications such as congestion control, admiss, ,,oximation at that level plus details at all lower levéks., for
control and network bandwidth allocation. We use a Iargeﬂugﬁeve| 3 decomposition of signal x,= a3 + d3 + d2 + d1. A

ber pf real network traces to study the predictability ofwmk _model (e.g., AR) is fitted on approximation and details whict

: ; . Hxtended by predicting the next values using this modelallin
g;t\ézrcl)(r)iléz g?}lalrnee digtnoer_ss"teglgshs??qriFr;::décetﬁrez bg\é‘z dSt;g%eitchfhe extended approximations and details are combined tiheet
Artificial Neural Networks based predictors [9, 7], and Wate pred|ct|on.s for the original time series.

Transform based predictors [13]. Our results indicate tiat Experimental Methodology

Double Exponential Smoothing (DES) is a low cost predictgfe use real network traces from Caida [6], University of
with reasonable accuracy. DES is a well known predictor fagckland [4] and Bellcore Research [1]. The original traces
financial time series predictions but we are the first oness® @ontain arrival times of every packet. The trace is dividet i
DES for network traffic prediction. Auto-Regressive Movingyo parts. The initial 25% of trace constitutes training aedt
Average predictor also exhibits good prediction perforagan  the remaining is used to test the prediction accuracy. Thailse

2 Traffic Prediction Techniques of the set of traces used in this study are listed in Table 2. We
use Normalized Mean Square Error to compare the performance
of predictors. NMSE = %4 Zfil(Xt — X,)? whereX, is

e actual valueX;, is the predicted value andl/ is number of
edictions.o? is the variance of{; during prediction. In case

a trivial predictor (a predictor which always predicts ang
NMSE=1. If NMSE> 1, this means that the predictor is worse
than the trivial. NMSE=0 in case of a perfect predictor.

2.1 Classic Time Series Predictors

Last Value (LV) predictor uses last observed value as predicti
for the next interval. InWindowed Moving Average (MA) we

use average of pastpast observations as prediction for the neg{
interval.
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Table 1: compute and storage requirements of classic poeslic 4.1 Accuracy of Predictors

We evaluated accuracy of all the prediction techniquesriest
Double Exponential Smoothing (DES) gives exponential lower in Section 2. For each predictor, we present the results sif be



Figure 1: Normalized Mean Square Error of different preafiefor Caida traces. Prediction interval used is 100 rSiliconds

performing configurations of the predictors. In our simialas Although ANN performs well in most situations, the power and
MA(8), AR(8) and ARMA(9,8) predictors performed the besperformance cost associated with it make it suitable only fo
Also, we present the results of 3 layer ANN. The number of nexff-line applications like network design and capacitynpieng.
rons in input layer is 8 and middle layer is 4. Results of welve§I Conclusions

based predictors using 2 level decomposition and db3 aseno ) .
wavelet are presented. We ran experiments on all the trasesWe have provided a performance and power comparison of
scribed in Table 2. Figure 1 shows accuracy of predictorsvon tthree different classes of predictors using real netwoekets.
sample traces from each source in Table 2. For all the padicOur results indicate that network traffic is generally petatle.

the NMSE value is less than 1, which means these traces f#thermore, the choice of predictor is dependent on theacha
generally predictable. For Caida traces DES is a clear winifistics of the network. We found different predictorstahle

in terms of accuracy. For Auckland and Bellcore traces, ARMAT! traces from different sources. Also, in power criticaline

is the best performing predictor. DES and ANN also perforg®plications DES and ARMA show promising accuracy with
comparably. For bellcore 2 trace, all of the predictors qrenf Minimal energy overhead. ANN based predictor performed
exceptionally well. This trace captures only externalfitadind consistently well but has high power and computation owethe
contains long periods of inactivity. So most of the predistex- and thus maybe used in off-line studies.

hibit good behavior for this trace. Itis also interestingitge that 6 Acknowledgements
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