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Abstract—Cloud computing is gaining popularity due to its
ability to provide infrastructure, platform and software services
to clients on a global scale. Using cloud services, clients reduce
the cost and complexity of buying and managing the underlying
hardware and software layers. Popular services like web search,
data analytics and data mining typically work with big data sets
that do not fit into top level caches. Thus performance efficiency
of last-level caches and the off-chip memory becomes a crucial
determinant of cloud application performance. In this paper we
use CloudSuite as an example and we study how prefetching
schemes affect cloud workloads. We conduct detailed analysis on
address patterns to explore the correlation between prefetching
performance and intrinsic workload characteristics. Our work
focuses particularly on the behavior of memory accesses at the
last-level cache and beyond. We observe that cloud workloads in
general do not have dominant strides. State-of-the-art prefetching
schemes are only able to improve performance for some cloud
applications such as web search. Our analysis shows that cloud
workloads with long temporal reuse patterns often get negatively
impacted by prefetching, especially if their working set is larger
than the cache size.

I. INTRODUCTION

Cloud workloads typically work with significantly larger
data sets as compared to traditional desktop applications and do
not fit into the typical processor’s top level (L1/L2) caches. As
a result, the performance efficiency of last-level caches (LLC)
and the off-chip memory becomes a crucial determinant of big-
data application performance and power [1]], [2]. There have
been several studies on characterizing the micro-architectural
and memory-system performance (cache miss rates, TLB miss
rates, etc.) behavior of big data workloads [1], [2], [3] on mod-
ern computer systems. One observation from previous work is
that simple prefetching schemes are inefficient for cloud work-
loads [1]]. Although simple prefetching schemes are proven to
bring performance improvement to some extent on SPEC-like
workloads [4], [S]], there have been continuous enhancements
in the prefetching field. State-of-the-art prefetching schemes
yield very high performance compared with simple schemes,
and are capable of capturing sophisticated data access patterns.
In this work, we are interested in revealing whether cloud
workloads would benefit from the state-of-the-art prefetching
schemes. We believe that answering this question is of crucial
value to match processor design to the needs of the scale-
out workloads. It also provides prefetcher designers with a
new design perspective by analyzing address patterns in cloud
workloads which are very different from that of traditional
workloads. To the best of our knowledge, this is the first
work that analyzes inherent address patterns in memory access
streams of cloud workloads in detail.

Generally speaking, we use CloudSuite [[1] workloads as

our target workload in this paper and we answer the following
questions by thorough analysis.

1. Do cloud workloads benefit from LLC prefetching
schemes? What kind of coverage and accuracy can be achieved
for the prefetch requests in cloud workloads?

2. What is the reason that prevents certain prefetching
schemes from improving CloudSuite performance?

3. Are prefetching schemes sensitive to cache capacity?

In this paper, we focus particularly on the behavior of
memory accesses at the last-level cache and beyond. We per-
form a detailed analysis of the LLC, LLC prefetcher and oft-
chip DRAM accesses of scale-out applications. To understand
the inherent memory access behavior of scale-out workloads,
this work includes a detailed analysis [6] of the temporal and
spatial locality of modern scale-out workloads. We use data
reuse distance to capture the temporal locality of programs,
and characterize the data memory access patterns in terms of
strides per memory instruction and memory reference stream.
We model an LLC prefetcher with eight different prefetching
schemes, covering a wide range of prefetching work ranging
from pioneering prefetching work to the latest design proposed
in the last two years. We use prefetching accuracy and coverage
to analyze prefetching effectiveness, and evaluate performance
impact by comparing performance speedup and cache miss rate
reduction.

By analyzing the temporal locality of address patterns,
we discovered that there is a correlation among temporal
data reuse distance of workloads, cache capacity, and system
tolerance of useless prefetching. It is observed that workload
performance is more likely to be negatively impacted by
useless prefetching when the workload has the following two
characteristics. One characteristic is that the workload has a
large percentage of long temporal reuse distance in address
patterns; the other characteristic is that the working set of the
workload is larger than cache capacity. We also discovered that
some cloud workloads exhibit both good spatial and temporal
locality, i.e., they have dominant stride patterns which can be
exploited by prefetching and the majority of their data accesses
are with short temporal reuse distances. These workloads gain
significant benefit from prefetching. Previous work shows that
the LLC capacity in modern processors is over-provisioned
for cloud workloads and suggests reducing capacity for power
and performance [1]. However, we observed that prefetching
requires large cache capacity to show its performance benefits,
and there is a correlation between larger cache and better
prefetching performance.

The rest of the paper is organized as follows. In section I}
we provide a brief background of scale-out workloads and an



introduction of the prefetching schemes that are evaluated in
this paper. In section we introduce our experiment method-
ology and metrics. In section [[V] we describe in detail the key
performance analysis results. Finally, we discuss related work
in section [V] and conclude the paper in section

II. BACKGROUND ON SCALE-OUT WORKLOADS AND
PREFETCHING SCHEMES

In this section, the workloads and prefetching schemes
experimented in this work are described.

A. Scale-out workloads

Data Serving - There has been a significant increase in
the number and diversity of NoSQL database solutions since
recent years. Compared with SQL, NoSQL database provides
a more flexible storage model and stronger scalability to
higher data set sizes/cluster sizes. Several NoSQL data storage
solutions [7], [8], [9] are used as back-ups for large Web
applications such as Google Earth and Facebook Inbox. In
this workload, the 15GB Yahoo! Cloud Service Benchmark
(YCSB) data set is used to evaluate the performance of the
Cassandra 0.7.3 database. The server load is generated using
YCSB 0.1.3 client [[10]], which sends requests with a 95: 5 read
to write request ratio in Zipfian distribution.

MapReduce - MapReduce is the computational model
that is able to handle large-scale analysis, cluster/filter large
amounts of data processes, and spread computation among
a group of machines. These machines first perform a map
function in which data are filtered, and then conduct a re-
duce function in which results from different machines are
aggregated. This workload benchmarks a node of a four-node
Hadoop 0.20.2 cluster. A Bayesian classification algorithm,
which attempts to guess the country tag of each article in a
4.5GB set of Wikipedia pages, runs on it. One map task is
started on one core with 2GB Java heap assigned.

Media Streaming - Thanks to high-bandwidth internet
connectivity, recent years have witnessed an explosion in the
accessibility to media streaming services such as YouTube
and NetFilx, etc. Such streaming services take advantage of
large computing clusters to process and transmit media files in
diverse formats in a high speed. In this workload, the Darwin
Streaming Server 6.0.3 is used. It serves videos of varying
duration (from 1 min (1.6GB) to 10 min (>10 GB)) by using
the Faban driver [11] to simulate the clients. The benchmark
setup uses a low bit-rate video stream to shift stress away from
network I/O.

SAT Solver - Symbolic execution is heavily used in
hardware and software verification. Due to the complexity of
this algorithm, it becomes tractable when the computation is
partitioned into smaller sub-problems and distributed to the
cloud where a large number of SAT solver processes are
hosted. Since modern data center consists of heterogeneous
machines, a worker-queue model with centralized load bal-
ancing is usually applied to re-balance tasks across a dynamic
pool of unequal computer resources. Large scale computation
is adapted to the worker-queue model meanwhile minimizing
communication overhead. Klee SAT Solver is an important
component of the Cloud9 parallel symbolic execution en-
gine [12]]. It is set up as one instance per core. Input traces are

generated by Cloud9 by symbolically executing the command-
line printf utility from the GNU CoreUtils 6.10 using up to four
5-byte and one 10-byte symbolic command-line arguments.

Web Frontend - Web services should be fault-tolerant,
widely-available and be of dynamic scalability. Such require-
ments necessitate web services to be hosted in the cloud. There
are typically three roles within the web service architectures:
a load balancer to distribute independent client requests, a
web server to serve client requests, and middleware to store
the state in the back-end database. We characterize a front
end machine serving Olio, a Web 2.0 web-based social event
calendar. Nginx 1.0.10 - with a built-in PHP 5.3.5 module
and APC 3.1.8 PHP opcode cache - runs on the front-end
machine. A backend dataset (12GB on-disk) is generated using
the Cloudstone benchmark [13l]. The Faban driver [11] is used
to simulate clients as usual.

Web Search - Web search engines get information through
indexing, which is a process associating terabytes of data found
from on-line resources to their domain names and HTML-
based fields. An index serving node (ISN) of the distributed
version of Nutch 1.2/Lucene 3.0.1 is analyzed with content
crawled from the public internet, which has an index size of
2GB and data segment size of 23GB. It mimics real-world
setups by making sure that the search index fits in memory,
eliminating page faults and minimizing disk activity. Clients
are simulated using the Faban driver and are configured to
achieve the maximum search request rate while ensuring that
90% of all search queries complete in less than half a second.

B. Hardware Prefetching Schemes

Modern processors use prefetching to speculatively im-
prove cache efficiency and increase memory level parallelism
(MLP). Prefetching has been proven to be effective in reducing
cache miss rates by predicting block addresses that will be
referenced in the future, and bringing these blocks into the
cache prior to the processor’s demand request [14]], thereby
hiding the access latency. In this section, we briefly introduce
several classic prefetching schemes that have been pioneering
work in this field as well as state-of-the-art schemes, which
were published within the last decade.

One Block Lookahead (OBL) [15] is one of the earliest
prefetcher designs. As its name suggests, once the prefetching
trigger access happens, OBL prefetches one cache block se-
quentially, i.e., if trigger access is cache block “i”’, then OBL
prefetches cache block (i+1). The trigger access can be either a
cache block access or a miss. The idea of OBL can be extended
to prefetch k blocks ahead, where k is referred as prefetch
degree.

Stride-N [4] is a type of common hardware prefetcher
in today’s microprocessors. Stride-N prefetcher ties the data
access stream to instruction addresses and observes patterns.
It stores the last access address and the last access stride
in a hardware-managed table, and indexes the table with the
load instruction address every time it loads new data. When
a stride pattern is discovered, the stride prefetcher stages the
(last address + N * stride) addresses into cache, where N is
the prefetch degree.

Stream was originally proposed by Jouppi et al. [3]], and
since then there have been multiple schemes extended from



his work. One implementation is to detect spatial locality and
stream direction within each page. Different from the Stride-
N design, stream prefetcher doesn’t require program counter
(PC) information to train the detector. When adequate number
of streaming accesses are detected within a preset memory
range, the stream prefetcher initiates a prefetch request to the
next address following the stream direction.

Spatial Memory Streaming (SMS) [[16] is one of the most
well-known prefetching schemes proposed in the last decade.
During program execution, data accesses exhibit multiple
repetitive patterns that span across large memory regions. SMS
correlates spatial data access patterns with the instructions
and/or data which initiate these patterns, and streams predicted
blocks into the cache ahead of demand accesses. SMS records
the spatial data access pattern within a memory region of
small fixed size, which captures the layout of cache blocks
accessed near one another. These spatial data access patterns
are indexed by combining the program counter (PC) and the
block offset within the memory region that surrounds the cache
block. When another memory region is touched first time and a
matching entry is found through PC+offset indexing, SMS uses
the previously recorded spatial data access pattern to predict
the remaining accesses within the newly encountered spatial
region.

Access Map Pattern Matching (AMPM) prefetching won
the first Data Prefetching Contest (DPC1) [17]. AMPM im-
plements a simultaneous pattern detection scheme of multiple
strides from observed history. AMPM stores the spatial layout
of accessed cache blocks within a memory region in an access
map. The access map is an indexed structure that keeps access
history information for active memory regions. The pattern
matching unit of AMPM is a combinatorial logic for detecting
strides using the history information in the memory access
map and the current access. To achieve high coverage, AMPM
simultaneously looks for all possible strides within the memory
region accessed. k; is confirmed as a stride when x, (z — k;),
(x — 2k;) or (z — (2k; + 1)) have been accessed.

Best Offset (BO) [18] prefetching scheme is the winner
of the second Data Prefetching Contest(DPC2). BO prefetcher
predicts uniform stride access patterns by evaluating a list of
candidate offsets. Each candidate offset is associated with a
score. Score of an offset tells how helpful this offset would
have been in the past. Every time a load request of address X
is observed, all the candidate offsets in the list are evaluated
in serial. Address (X - O’) is looked up in a Recent Requests
(RR) table, which holds base addresses of demand accesses
that generate prefetch. A match in RR table indicates that line
X could have been prefetched with offset O’, and the score
of offset O’ is incremented. The offset with the highest score
is chosen as the best offset. The BO generates prefetch line
address by adding a “best offset” value to the demand access
address.

Variable Length Delta Prefetcher (VLDP) [19] is one of
the state-of-the-art prefetcher designs. Different from prefetch-
ers which predict regular streams with uniform strides, VLDP
distinguishes itself by its ability to predict complex multi-
delta access patterns. For each active physical page, multiple
recent delta access sequences happened to the same page is
maintained in a Delta History Buffer (DHB). The delta access
history information from the DHB is used to look up a Delta

Prediction Table (DPT) which results in the delta prediction.
With the help of DPT, VLDP can correlate previously oc-
curring delta history with a subsequently occurring delta, and
makes history based predictions about future deltas.

Signature Path Prefetching (SPP) [20] is another state-
of-the art lookahead prefetching algorithm. SPP captures a
memory access pattern within a physical page and compresses
previous strides into a 12-bit history signature, i.e., new history
signature is compressed via conducting a series of XOR and
shift operations on current access and old history signature.
The signature is used to index a Pattern Table (PT), which
stores potential next-stride patterns that correspond to specific
history signature. One signature may correspond to multiple
next-stride patterns. To help make prefetch decision from the
multiple next-stride patterns, each pattern is associated with a
counter, whose value is compared to a prefetching threshold.

III. EVALUATION METHODOLOGY

In this paper, we perform a detailed analysis of the LLC,
LLC prefetcher and off-chip DRAM accesses of the scale-
out applications. The LLC addresses are captured using the
SIMICS [21]] full-system simulator. We configure a multicore
system with private L1 and L2 caches, and a shared last
level cache (LLC). Detailed system configuration is listed in
Table [l Our infrastructure collects the program counter of
each instruction that triggers the LLC access, as well as the
corresponding physical memory access address, access type
(e.g. Load/Store/Eviction), and the inter-instruction distance
information of the LLC accesses. Six applications from the
CloudSuite and three SPEC CPU2006 benchmarks with most
LLC activity are chosen to illustrate differences between
address patterns in SPEC workloads and Cloudsuite. The rep-
resentative phases of these workloads are captured and are used
to generate LLC access traces with our tracing infrastructure.
Then we perform several levels of off-line analysis of the
collected traces. Table [lIl summarizes the simulation intervals
as well as the number of LLC accesses and LLC misses of each
workload. A group of eight prefetching schemes are selected,
which are representations of both classic and the state-of-the-
art schemes. They are evaluated as LLC prefetchers, as part of
a trace based cycle-level cache simulator. The configurations of
each prefetching schemes are listed in Table We integrate

TABLE I: System Configuration

Processor 16 cores,

L1 cache 64KB, 4-way associative, 64B cacheline, LRU

L2 cache 256KB, 8-way associative, 64B cacheline, LRU,

L3 cache 8MB, 8-way associative, 64B cacheline, LRU, 16 MSHR

Main Memory DDR3_1600K, 4 channels, 1 rank/channel

TABLE II: Workload characteristics

Benchmarks Simulation length LLC accesses ~ LLC misses
Data Serving 4 billion instructions 36,134,150 14,993,597
MapReduce 4 billion instructions 38,119,693 16,644,104
SAT Solver 4 billion instructions 33,271,637 23,254,707
‘Web Frontend 4 billion instructions 10,311,403 2,277,452
Web Search 4 billion instructions 22,613,857 3,830,574
Media Streaming 4 billion instructions 65,596,871 7,303,085
mcf 1 billion instructions 79,490,811 47,682,507
bwaves 1 billion instructions 23,176,132 22,677,841
tonto 1 billion instructions 158,098 35,737




TABLE III: Prefetcher Configuration

Scheme  Configuration Is prefetch degree fixed?  Trigger signal
OBL Yes, 1 On access
Stream Detect 64 streams, stream window of 16 Yes, 2 On access
Stride-3 Track 1024 memory instructions Yes, 3 On access
AMPM 52 memory map entries. 4KB region No On access

BO 42 candidate offsets, 64 RR table entries No On miss
VLDP Track 128 pages, 8 deltas per page. Maintain 4 DPT, 64 entries per table. No On access
SMS Maintain 64 entries per AGT, 256x8 entries perf PHT. 512B region. No rotation. ~ No On new region
SPP Maintain 512x2 entries per SP, 4096x4 entries pref PT No On access

our LLC model with Ramulator [22], an cycle-accurate main
memory model. The Ramulator is used in CPU trace driven
mode. The traces feed into the Ramulator contain both LLC
demand request misses and prefetch requests, as well as the
number of instructions between previous and current memory
accesses.

We use the following metrics to characterize memory
access patterns and assess prefetching performance in this
work.

Reuse distance - Data Reuse distance, also known as
Mattson’s stack distance [23] is a very powerful metric to
capture the temporal locality of programs. It captures the
number of other unique references that appear between one
address and the next use of the same address. Essentially it
captures the number of intervening references between reuse
of an address. If references are put into a stack, it indicates the
depth at which some reused data can be located in the stack.
The percentage of data references that exhibit a specific reuse
distance can be computed. The distribution of such a metric
for a variety of reuse distances provides an excellent picture of
the potential performance of the workload with various cache
sizes. By capturing the stack distance distribution, essentially
we capture the performance of multiple cache sizes in one
simulation using a single very large fully associative cache-
like model. By doing so, the stack distance approach not
only provides performance of caches with different sizes but
indicates the total memory footprint of each workload. For
example, if the workload has a combined instruction and data
footprint smaller than the stack depth, the amount of valid data
in the cache (assuming the cache is invalid at simulation start)
represents the total memory footprint of the workload.

Global/Local stride patterns - We characterize the data
memory access patterns of the big-data applications in terms of
strides per memory instruction (local) and memory reference
stream (global). For local strides, we define a stride as the
difference between consecutive effective memory addresses
localized per memory instruction. We then use this information
to estimate the most frequently used stride values per memory
instruction and the number of memory references that it was
used for. For global stride analysis, we define a stride as the
difference between consecutive memory addresses and analyze
the stride-based behavior when seen across the entire global
stream of memory accesses. This approach of characterizing
and portraying the stride access patterns in terms of 64-byte
blocks is similar to the approach adopted by Joshi et al. [24]
for SPEC CPU2000 benchmarks. Both local and global strides
are computed at the granularity of 64-byte cache blocks.

Prefetcher coverage and prefetcher accuracy - These
are the two commonly reported metrics for evaluating a
prefetcher design. A prefetch request becomes useful when the
cache line brought in by the prefetch request is referenced.
Prefetch coverage is the number of useful prefetch requests
over the number of cache misses in non-prefetching situation.
Prefetch coverage represents how many cache misses are
covered through prefetching and it is the metric to show the
effectiveness of a prefetching scheme. Prefetch accuracy is
the number of useful prefetches over the number of total
prefetch requests generated. Due to the speculative nature of
prefetching, a fraction of prefetch requests are not useful but
consume bandwidth and cache space instead. There are two
factors that determine whether or not a prefetch request is use-
ful, timeliness and accuracy. If a prefetcher predicts a wrong
address, then the requested cacheline will never be referenced.
Moreover, even when prefetcher requests the correct data that
will be accessed in the future, timeliness of the request still
makes a difference, i.e., a prefetched line arriving in cache too
early may have been evicted before referenced, or a prefetched
line may still be outstanding in the memory hierarchy when a
demand request to the same line is issued. Prefetch accuracy
is the metric to evaluate the additional overhead on memory
system caused by useless prefetching.

IV. RESULTS AND ANALYSIS
A. Prefetching impact on performance

1) Overall performance: In this work, we evaluate eight
prefetching schemes on six CloudSuite workloads and three
benchmarks from SPEC CPU2006 suite. We show perfor-
mance related metrics in Figure |I| and we illustrate prefetch-
ing accuracy and coverage in Figure [2] From Figure [I] we
observe that prefetching schemes help to reduce LLC miss rate
in five CloudSuite workloads except for MapReduce, but their
performance does not follow the same trend with miss rate. The
reason is that the cache miss rate metric does not take the use-
less prefetch overhead into account, which includes additional
cycles in DRAM accesses and pipeline stalls. Prefetch requests
share resources like MSHR and memory transaction queue
with demand requests. Backend pipeline stalls when running
out of these shared resources and the pipeline stall problem
is exacerbated by useless prefetch requests. For example, the
OBL prefetching scheme reduces cache miss rate by 10% in
both Data Serving and SAT Solver, but causes performance

INote that SPEC speedup ratio may be different from the one given in
the proposal of each prefetching scheme. Because prefetching is applied at
LLC level in this work, whereas it is applied at L1/L2 (non-LLC) level in the
original proposal.
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Fig. 1: Performance Impact: Left axis presents the percentage change in performance and miss rate, and right axis presents
LLC miss reduction and useless prefetches per kilo instruction

degradation of 7% and 5% respectively. Comparing LLC miss
reduction per kilo instruction (PKI) and useless prefetch per
kilo instruction, we can tell that the benefit of prefetching is
outweighed by useless requests placing extra burden on the
main memory.

Among the six CloudSuite workloads, Web Frontend and
Web Search substantially benefit from prefetching, especially
from the OBL, AMPM, VLDP, and SPP schemes. All prefetch-
ing schemes exhibit a minimum accuracy of 60% on Web Fron-
tend, and a minimum accuracy of 70% on Web Search. OBL,
AMPM, VLDP and SPP schemes maintain high accuracy while
generating adequate number of prefetch requests to eliminate
more than 65% of cache misses in the baseline.

An interesting observation is that OBL, the simplest
prefetching scheme, is the most cost-effective prefetcher so-
lution for Web Frontend and Web Search applications when
considering the ratio of performance to design complexity.
OBL achieves the highest performance gain (52%) in Web
Frontend, and improves Web Search performance by 73%,
which ranks third after AMPM and SPP.

AMPM and VLDP show similar prefetch accuracy (around
60%) on Media Streaming, and both schemes reduce the same
amount of LLC misses. However, AMPM increases perfor-
mance by around 12%, whereas VLDP shows detrimental
impact on performance. The reason is that VLDP generates
prefetch requests much more aggressively than AMPM does.
Though percentages are similar, the absolute number of useless

prefetches by VLDP is much higher than the one by AMPM.
In fact, VLDP has three times the number of useless prefetches
per kilo instruction compared with AMPM. Consequently, the
negative impact of the 40% useless prefetches dominates the
overall prefetcher performance.

SAT Solver is generally more insensitive to prefetching
than other CloudSuite applications, as its performance varia-
tion is always within 5% even when OBL and VLDP generate
a large number of useless prefetch requests. Data Serving
experiences either performance degradation or negligible per-
formance variation with prefetching.

MapReduce is more sensitive to useless prefetches com-
pared with other CloudSuite workloads. As shown in Figure
[Tl MapReduce suffers from increasing cache misses with
prefetching, while other workloads have a higher tolerance.
Cache thrashing happens when aggressive prefetching schemes
such as OBL and VLDP bring in cachelines which are not
to be used in near future and evict out cachelines which
will be re-accessed. Therefore, the cache pollution caused by
prefetching schemes results in increasing LLC miss rate and
thus performance degradation.

2) Address pattern - spatial locality: Spatial locality is
an important characteristic of memory access patterns that is
exploited heavily by prefetchers. In this section, we present
our analysis of the spatial locality in LLC access streams of
the CloudSuite workloads. We plot a cumulative distribution
of the most frequently used stride values and the percentage of
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Fig. 2: Coverage and Accuracy Analysis: Left axis presents prefetching accuracy and coverage, and right axis presents number
of prefetch requests in millions

total memory references that they make. Figure 3b] shows the
local stride distribution of the CloudSuite and SPEC workloads
at a granularity of a 64-byte block, binned into categories 0,
1, 2, etc and no dominant stride categories. Figure [3a] shows
the global stride distribution of the CloudSuite and SPEC
workloads at a granularity of a 64-byte block, binned into
categories 0, 1, 2, etc and no dominant stride categories.

We can observe that most of the big-data workloads do
not have good spatial locality at either global or per-memory
instruction granularity. In terms of global locality, the most
common global stride is 1, but it occurs rather infrequently
(less than 15% of the time). Similarly, the local stride char-
acterization shows that the Web Search and Data Serving
workloads have a local stride of 1 for approximately 10% of
the memory references, while other workloads do not possess
any significant dominant local stride patterns. This behavior
is expected as most cloud applications either work on data
structures that have irregular memory layouts or act on random
queries. On the other hand, bwaves and tonto benchmarks
(both from the SPEC CPU2006 suite) have very dominant
local and global stride patterns. As a result, they are very
suitable candidates for prefetching solutions. Prior research has
found similar strong stride-based correlations in other SPEC
CPU2006 suite workloads as well as TPC-H benchmarks [23]],
1261, 127).

From Figure 3b] we are able to draw a conclusion that
prefetching schemes relying on detecting stride patterns of
each instruction will not be effective for CloudSuite workloads.
Although Stride-3 has the second best prediction accuracy
among all evaluated prefetching schemes, it fails to exploit

data locality within each memory instruction and it gener-
ates relatively small number of prefetch requests. Therefore
Stride-3 has lower coverage and brings negligible performance
speedup. Stride-3 is only able to keep track of small local
strides (e.g. less than 32), which accounts for less than 15% of
local strides in CloudSuite. This small percentage determines
the upper bound of performance improvement that Stride-3
prefetcher could achieve in an oracle situation, i.e., assuming
data accesses with stride less than 32 are all missed in the
baseline and Stride-3 prefetcher makes timely prefetching
without polluting the cache. Hence the nature of the workloads
exposes the insufficiency of Stride-3.

3) Address pattern - temporal locality: In order to under-
stand why CloudSuite applications have different sensitivity
to prefetching, we perform a study of the temporal locality
of LLC access patterns in the CloudSuite. Processor caches,
including the LLC are designed to exploit the temporal reuse
of individual memory elements to minimize the number of
accesses to the off-chip DRAM memory. Temporal locality of
a program dictates how the miss rate of a processors cache will
change as its capacity is varied. Often the miss rate does not
decrease linearly as the size of a cache is increased, but stays at
a certain level and then makes a sudden jump to a lower level
when the capacity becomes large enough to hold the next im-
portant data structure. This temporal locality characterization
information is represented on the reuse distance graphs for the
big-data workloads and SPEC CPU 2006 applications in Figure
The x-axis shows the reuse distance (from 0 to 256000,
note that each x-axis point refers to a reuse distance value
between itself and its previous point) and the y-axis represents
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the percentage of LLC accesses that have a corresponding
reuse distance. Correlating the reuse distance values with an
approximate cache size configuration yields that the percentage
of references that have a reuse distance of say, less than 512,
8000 and 32000 will fit into a last-level cache of size 32 KB,
512 KB and 8 MB respectively.

Based on the reuse distance distribution, we categorize the
nine workloads in Figure]into three types. The Web Frontend,
Web Search, Media Streaming and tonto benchmarks fall into
the first category, where majority of reuse distances are less
than 8K. Dominant working set size of applications in the
first category fits within a 2-4MB LLC. This implies that
these applications have high tolerance to cache pollution from
prefetching, when used with an SMB LLC.

The Data Serving, MapReduce and mcf benchmarks fall
into the second category, where more than half of the reuse
distances fall between 8K and 256K. Although more than 80%
of working set fits within an 8MB LLC, cache pollution can
have a detrimental impact on performance. Prefetching causes
additional cache block evictions compared with no prefetching.
Under non-MRU replacement policy, the chance of a cache
block with longer reuse distance to become the victim block
is higher than a cache block with shorter reuse distance. That
is to say, when LLC capacity is just enough to hold a block
with a long reuse distance in the cache until it gets reused,
prefetching prevents the cache block reuse by replacing it with

a prefetched line. Number of cache misses increases when that
prefetch request is useless. From Figure [T] we can observe that
prefetching causes more cache misses (negative cache miss
reduction) and performance degradation for MapReduce.

The SAT Solver and bwaves benchmarks fall into the third
category, where at least half of data accesses have reuse dis-
tance larger than 256K. Applications belonging to this category
have instruction and data working sets significantly larger
which do not fit even in a 16MB LLC. The performance impact
of prefetching on SAT Solver and bwaves are completely
different. Prefetching schemes can still capture address pattern
of bwaves and significantly improve performance. The reuse
distance in bwaves is actually infinite, indicating that there are
few LLC access reuse in bwaves, and there is little negative
impact on cache misses from useless prefetching.

4) Sufficient bandwidth: Figure [5|shows the off-chip mem-
ory requests (divided into read, write and eviction traffic)
and the off-chip bandwidth consumption of the cloud ap-
plications as a fraction of the available per-core off-chip
bandwidth. Scale-out workloads experience non-negligible off-
chip miss rates, however, the MLP of the applications is low
due to the complex data structure dependencies, leading to
low aggregate off-chip bandwidth utilization even when all
cores have outstanding off-chip memory accesses. Among the
scale-out workloads we examined, Media Streaming is the
only application that uses up to 15% of the available off-
chip bandwidth. Due to the fact that there is little memory
level parallelism in cloud workloads, bandwidth is not the
major concern when designing prefetching scheme for cloud
applications.

B. Prefetching sensitivity of LLC capacity

In this section, we study whether larger cache capacity
could help prefetching schemes in reducing cache misses
and whether prefetching combined with larger cache could
improve CloudSuite performance. We select LLC cache size
of 8M, 16M, and 32M, and show the normalized performance
in Figure [] The performance we demonstrate is normalized
to the baseline with the corresponding LLC capacity, i.e.,
performance with prefetching in a 32M case is normalized
to performance without prefetching in the same 32M case.

On one hand, a prefetcher which makes correct address
prediction but sends out prefetch requests too early can benefit
from a larger cache. Timeliness is an important factor that
influences the performance of a prefetching scheme, but it
is difficult to ensure every correct prefetch request arrives
in cache in a timely fashion. First of all, it is because data
access latency is not fixed. L1 prefetching requests may be
serviced by the L2 cache when there is a hit, or may reach
main memory in the worst case. Even two DRAM-served
prefetch requests may take different number of cycles. For
example, one main memory request may have a row buffer
hit while the other one with a row buffer conflict needs to
wait for extra cycles. Moreover, it requires a lot of front-end
information to better predict when the instruction that accesses
the prefetched line will be issued, and prefetchers usually do
not have such information. Therefore, when a prefetched cache
line that is to be accessed hundreds of cycles later fills in
the cache, a large cache may hold this prefetched line until
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it is accessed. On the contrary, a smaller cache may have
kicked the line out earlier due to capacity limit. For example,
SMS requires larger cache capacity to show the prefetching
benefit on CloudSuite workloads. As capacity increases from
8M to 32M, SMS is able to bring an additional 20%, 29% and
28% performance improvement for Web Frontend, MapReduce
and Media Streaming respectively. Performance gain comes
from an increase in useful prefetch requests. Since the training
and prediction processes are irrelevant to cache capacity,
the increase in useful prefetch requests is due to fact that
prefetched blocks stay longer in a larger cache as compared to
a smaller cache. Therefore, the chance that a prefetched block
is accessed before getting evicted goes up. For an inefficient

prefetchers, e.g. a prefetchers with lower accuracy, larger cache
size helps to avoid performance degradation by mitigating
the performance degradation and preventing useless prefetched
lines from evicting useful blocks.

On the other hand, workloads with long address reuse
distance and working set just fitting in cache (i.e. the second
category discussed in temporal locality subsection) are more
likely to gain benefit from increasing cache capacity. Taking
MapReduce as an example, none of the prefetching schemes
is able to improve its performance in the 8M case, while SMS
and AMPM improve performance by 26% and 37% in the
32M case respectively. From Figure f] we could tell that a
16MB LLC can hold 95% of working set size, and around 60%
has reuse distance longer than 8K. It indicates that a useless
prefetch request has a high probability to cause additional
cache misses, because the prefetch request may evict a LRU
block which becomes LRU due to the long reuse distance but
is to be accessed in the future, and there is a large portion
of cache blocks with long reuse distances in Map Reduce.
Whereas when cache capacity goes up, the chance that any
cache blocks gets evicted decreases, and MapReduce has a
higher tolerance for useless prefetch requests.

C. Additional micro-architectural insights

When evaluating prefetching schemes, we observe a sce-
nario when two prefetchers generate the same amount of
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prefetch request and achieve similar prefetch accuracy, but gain
dramatically different performance improvement. An obvious
example is VLDP and SPP when running bwaves. These two
schemes have the same accuracy, same coverage, same number
of prefetch requests, but show four times difference in perfor-
mance. The reason is that SPP has a large number of DRAM
row buffer hits compared with VLDP. DRAM row buffer
locality is an important metric that affects the overall latency of
DRAM memory accesses. Any requests that cause row buffer
conflicts are very expensive because several additional memory
cycles get consumed for precharging, reading out and closing
a row per memory access. We examine the effects of two
different address mapping schemes on row buffer locality of
the scale-out applications (see Figure [7). It can be observed
that Addr-Map2 provides more than 21% improvement in row
buffer hit rate as compared to Addr-Mapl. We suspect that
as the scale-out workloads have limited MLP, spreading the
accesses over more channels does not yield any better benefits.
Rather improving the spatial locality within individual DRAM
rows helps the scale-out applications more. This is in contrast
with the behavior of SPEC CPU2006 applications which have
more inherent MLP and thus benefit more from Addr-Mapl.

V. RELATED WORK

Ferdman et al. [I]] evaluated six scale-out workloads and
identified several causes of microarchitectural performance in-
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efficiencies in big-data workload performance. They observed
that the execution-time breakdown of scale-out workloads
is dominated by stalls in both application code and operat-
ing system. Unlike traditional desktop workloads, scale-out
workloads suffer from high instruction-cache miss rates. They
also observed that most of the stalls in scale-out workloads
arise due to long-latency memory accesses. Zheng et al. [2]]
inferred that stalls due to kernel instruction execution greatly
influence the front end efficiency. However, data analysis
workloads have higher IPC than scale-out workloads, and
also suffer from notable from end stalls but L2 and L3
caches are effective for them. Deep dive analysis [28] of a



data analysis workload on a modern-day hardware system
reveals that big data analysis workload is bounded by memory
latency. Lee et al. [29] performed study on the benefits and
limitations of hardware and software prefetching using SPEC
CPU2006. Their work focused on the comparison between
hardware and software prefetching, discussed when one type
of prefetching works better than the other, and suggested
cooperative hardware/software prefetching. However, none of
these micro-architectural studies covers detailed experiments
on prefetching for cloud workloads or thorough analysis of
memory access behavior and its patterns.

VI. CONCLUSION

With the emergence and growing relevance of several
cloud application domains, analyzing and understanding the
inherent patterns in the memory access streams of emerging
applications is essential to design efficient memory hierarchies
to optimize application performance. While several previous
studies have performed micro-architectural level studies and
concluded that cloud workloads form a distinct workload class
from desktop workloads, there is little work in characterizing
memory access patterns and studying how prefetching schemes
may affect cloud applications.

In this paper, we evaluated a variety of prefetching schemes
as the last-level cache prefetcher and conducted a detailed
analysis of temporal and spatial locality behavior of modern
scale-out workloads. The data reuse distance/stack distance
is used to analyze the working sets and temporal locality.
We characterized spatial locality of data memory access pat-
terns in terms of both strides per memory instruction and
memory reference stream. We discovered that more than half
of cloud workloads gain performance benefit from modern
prefetching schemes, due to their high accuracy and coverage.
Our analysis showed that there are two factors, temporal
reuse distance distribution and working set size, inherent in
cloud workloads that determine whether prefetching results
in positive or negative performance impact. We also found
that in general, larger cache capacity could help prefetching
schemes in reducing cache misses because large caches are
less detrimentally affected by useless prefetches. Prefetching in
conjunction with a large cache could improve cloud workload
performance.
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