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Abstract 

To reduce the simulation time to a tractable amount or due 
to compilation (or other related) problems, computer architects 
often simulate only a subset of the benchmarks in a benchmark 
suite. However, if the architect chooses a subset of 
benchmarks that is not representative, the subsequent 
simulation results will, at best, be misleading or, at worst, yield 
incorrect conclusions. To address this problem, computer 
architects have recently proposed several statistically-based 
approaches to subset a benchmark suite. While some of these 
approaches are well-grounded statistically, what has not yet 
been thoroughly evaluated is the: 1) Absolute accuracy, 2) 
Relative accuracy across a range of processor and memory 
subsystem enhancements, and 3) Representativeness and 
coverage of each approach for a range of subset sizes. 
Specifically, this paper evaluates statistically-based subsetting 
approaches based on principal components analysis (PCA) and 
the Plackett and Burman (P&B) design, in addition to 
prevailing approaches such as integer vs. floating-point, core 
vs. memory-bound, by language, and at random. Our results 
show that the two statistically-based approaches, PCA and 
P&B, have the best absolute and relative accuracy for CPI and 
energy-delay product (EDP), produce subsets that are the most 
representative, and choose benchmark and input set pairs that 
are most well-distributed across the benchmark space. To 
achieve a 5% absolute CPI and EDP error, across a wide range 
of configurations, PCA and P&B typically need about 17 
benchmark and input set pairs, while the other five approaches 
often choose more than 30 benchmark and input set pairs. 
 
1 Introduction 

Despite the introduction of reduced-time simulation 
techniques such as SimPoint [11], SMARTS [15], and 
MinneSPEC [7], and increasingly faster platforms to simulate 
or run on, computer architecture researchers frequently only 
simulate a subset of the benchmarks in a benchmark suite [1]. 
Computer architects also subset a group of benchmarks when 

selecting benchmarks for a new benchmark suite, which allows 
them to capture the most important behavior and 
characteristics of the application space with fewer benchmarks 
and/or eliminate redundancy. Since the benchmarks in a 
benchmark suite ostensibly represent the programs that are 
commonly used in a particular application domain, at the very 
least, subsetting the suite means that the architect will not use 
all of the programs that are representative of the application 
space. In the worst case, using a subset of benchmarks can 
result in different conclusions than if the architect used the 
entire suite. Additionally, when architects use different 
approaches to subset a benchmark suite, inevitably, they 
evaluate different subsets, which makes it more difficult to 
compare the results across papers. 

To help computer architects subset benchmark suites more 
intelligently, researchers have proposed several approaches, 
including: subsetting benchmark suites based on their most 
significant characteristics (e.g., principal components analysis 
(PCA) [2] or based on their performance bottlenecks using a 
Plackett and Burman (P&B) design [16]. Both of these 
benchmark subsetting approaches are statistically-based and 
can be microarchitecturally independent. Other benchmark 
subsetting approaches that are less statistically-rigorous, but 
perhaps as effective, include subsetting benchmarks based on 
1) The percentage of floating-point instructions (i.e., integer vs. 
floating-point benchmarks) in the benchmarks, 2) If the 
benchmark is computationally-bound or memory-bound, and 
3) Language (e.g., C vs. C++ vs. FORTRAN) or infrastructure 
(e.g., Availability of reduced input sets, language-specific 
compilers, etc.). Finally, computer architects also frequently 
choose benchmarks from a benchmark suite at random. Ideally, 
the subset of benchmarks should have good absolute and 
relative accuracy, as compared to the entire benchmark suite, 
as well as adequately covering the space of the suite’s 
characteristics. 

Given all of these approaches, there are several 
unanswered questions. First, which approach yields the most 



accurate/representative subset of benchmarks, both from the 
absolute and relative points-of-view? Not only does measuring 
the accuracy of the various subsetting approaches have its own 
intrinsic merit, but determining which subsetting approach is 
the most accurate could be the first step towards creating a 
“standard” subset of benchmarks to facilitate cross-paper 
comparison. Second, in addition to their accuracy, how well 
does each of these approaches cover the space of 
characteristics of the entire benchmark suite? Finally, which of 
these approaches yields the most accurate subset of 
benchmarks, with the least subsetting, i.e., profiling cost? 

To answer these questions, we compare the 
aforementioned subsetting approaches across the range of 
subset sizes (i.e., number of benchmark and input set pairs in 
the subset) and for several different processor configurations. 
More specifically, we compare the absolute accuracy of each 
subsetting approach against the entire suite for CPI and 
energy-delay product (EDP) and evaluate the relative accuracy 
of the subsetting approaches for three microarchitectural 
enhancements to determine if using subsets can yield accurate 
estimates of the speedup. Finally, we quantify the 
respresentativeness by measuring how well the benchmarks of 
the subset are distributed over the entire space (of 
microarchitectural metrics). 

The contributions of this paper are as follows: 
 

1. This paper compares the absolute accuracy (CPI 
and EDP) of the seven most prevalent or 
emerging benchmark subsetting approaches 
across a wide range of processor configurations 
and benchmark subset sizes.  

2. This paper compares the relative accuracy of 
these subsetting approaches for three processor 
core and memory subsystem enhancements 
across a wide range of both processor 
configurations and benchmark subset sizes. 

3. This paper compares the representativeness and 
coverage of each subsetting approach. 

4. This paper presents the most accurate subsetting 
results for the entire SPEC CPU 2000 benchmark 
suite that computer architects can use “out-of-
the-box”. 

 
The remainder of this paper is organized as follows: 

Section 2 describes the subsetting approaches and the specific 
permutations of each that this paper examined and some 
relevant related work. Section 3 describes the simulation 
methodology that we followed in this paper, Section 4 presents 
the results and our analysis, and, Section 5 discusses the 
subsetting cost of the statistically-based approaches. Finally, 
Section 6 summarizes. 
 
2 Description of Benchmark Subsetting 

Approaches 
This section describes the seven benchmark subsetting 

approaches that we examined in this paper. The two 
statistically-based approaches subset a benchmark suite based 

on the: 1) Benchmark’s principal components using PCA and 
2) Performance bottlenecks that the benchmark induces using 
the P&B design. The next four approaches, which are not 
statistically-based, subset a benchmark suite based on: 3) The 
percentage of floating-point instructions (i.e., integer vs. 
floating-point), 4) If the benchmark is core-bound or memory-
bound, 5) The programming language (e.g., C vs. FORTRAN), 
and 6) Randomly selecting the benchmarks. Finally, the 
seventh and last subsetting approach subsets a benchmark suite 
based on the benchmark’s frequency of use, as reported in [1], 
in HPCA, ISCA, and MICRO.  
 
2.1 Statistically-Based Subsetting Approaches 
2.1.1 Subsetting by using Principal Components 

Analysis 
Eeckhout et al. [2, 3, 4] and Phansalkar et al. [9] proposed 

using PCA 1  as a statistically-rigorous way of subsetting a 
benchmark suite. The first step to use PCA as a subsetting tool 
is to profile the benchmarks to determine their key 
characteristics. In this paper, we profile the benchmarks for the 
same program characteristics that were used in [3], which 
include: 1) Instruction mix (Loads, stores, control transfers, 
arithmetic operations, integer multiplies and floating-point 
operations), 2) ILP assuming an idealized processor, but a 
limited (32, 64, 128, and 256) instruction window, 3) Register 
characteristics (Average degree of use, average number of 
times a register instance is consumed since it was originally 
written, and number of instructions between a write to and 
read from that register), 4) Working set size (Number of 
unique 4KB pages for both instruction and data and 32-byte 
blocks that were touched), 5) Data stream strides (Number of 
memory addresses between temporally adjacent memory 
accesses for the same static load/store instruction and for 
different static load/store instructions), and 6) Branch 
predictability. 

After profiling the benchmarks to determine their key 
program characteristics, the second step is to use PCA to 
compute the principal components, which are linear 
combinations of the original variables, such that all principal 
components are uncorrelated. PCA builds on the assumption 
that many variables – in our case, program characteristics – are 
correlated and hence, they measure the same or similar 
properties of the benchmark and input pairs. Using PCA to 
transform the program characteristics to principal components 
has two key advantages over using the original program 
characteristics to subset the benchmarks. First, since the 
principal components are uncorrelated, using them to subset 
the benchmarks produces better clusters, since two correlated 
program characteristics that essentially measure the same thing 
are not counted twice. Second, using principal components 
reduces the dimensionality of the data by determining the most 
important program characteristics, which also yields a better 
clustering result. 

After determining the principal components of the 
                                                
1 In this paper, we do not compare independent component analysis (ICA) [3] 
as, for the same input data, ICA produces the same results as PCA, as shown 
in the correction note to [4] available at http://www.elis.ugent.be/~leeckhou/. 



benchmarks, the next step is to cluster the benchmarks based 
on their Euclidean distances away from each other and to form 
the subsets by choosing one benchmark from each cluster. For 
more information on how to use PCA to subset benchmark 
suites, see [2]. 

In this paper, to evaluate the efficacy of PCA as a 
benchmark subsetting approach, we cluster and subset the 
benchmarks based on the 4, 5, 6, 7, and 8 most significant 
principal components. 
 
2.1.2 Subsetting by Performance Bottlenecks, using the 

Plackett and Burman Design 
Yi et al. in [16] proposed using the P&B design to 

characterize the performance bottlenecks that a benchmark 
induces when running on a processor. The P&B design 
specifies a very wide range of processor configurations that the 
architect needs to run the benchmarks for. After running the 
benchmarks, the architect calculates the magnitude of each 
performance bottleneck by using the P&B design matrix and 
the results (e.g., execution time, energy-per-instruction, etc.); 
the larger the magnitude, the more significant that performance 
bottleneck is, and vice-versa. For more information about 
using the P&B design and potential applications in computer 
architecture, see [16]. 

After characterizing the performance bottlenecks, Yi et al. 
proposed clustering and subsetting the benchmarks based on 
their performance bottlenecks [16]. The downside of this 
approach, compared to PCA, is that it requires an inordinate 
amount of simulation time. In our case, the P&B design 
required 88 simulations per-benchmark with a detailed out-of-
order superscalar processor simulator while PCA required only 
six instrumented runs, which could be consolidated into a 
single, monolithic instrumented run. 

In this paper, we characterized the performance 
bottlenecks by using processor configurations that were similar 
to those specified in [16]. We used foldover [8] to remove the 
effects of two-bottleneck interactions from each of the single 
bottlenecks. We calculated the magnitude of each performance 
bottleneck based on the CPI from each of the 88 processor 
configurations. We clustered the benchmarks based on the: 1) 
Ranks of each performance bottleneck, 2) Magnitudes of each, 
3) Percentage of the total variation accounted for by each 
single bottleneck, and 4) Percentage of the total variation 
accounted for by each single bottleneck and all interactions. 
Finally, we clustered the benchmarks based all (43) 
bottlenecks and based on the Top 3, 5, and 7 bottlenecks 
across all benchmarks and for each benchmark. For the latter 
clusterings (Top 3, 5, and 7), the value of the bottlenecks that 
are not in the Top 3, 5, or 7 were set to the lowest possible 
value. 
 
2.2 Prevailing Subsetting Approaches 

This subsection describes the subsetting approaches that 
computer architects frequently use. The following list of 
subsetting approaches and specific permutations of each were 
based on the papers that we have read over the years and the 
subsetting rationale in those papers. For each of the approaches 

that we describe in this subsection, to ensure that our results 
are not a by-product of the specific benchmark and input sets 
pairs, we randomly form thirty subsets for each subset size and 
average the results. 
 
2.2.1 Prevalence of Floating-Point Instructions (Integer 

vs. Floating-Point) 
One of the most popular approaches that computer 

architects use to subset a benchmark suite such as SPEC CPU 
is to evaluate the benchmarks that are in the integer or 
floating-point subsuites only. Furthermore, for a benchmark 
suite such as SPEC CPU 2000, the architect may even subset 
the SPECint or SPECfp subsuites. One rationale that architects 
frequently give for restricting the subsets to the integer or 
floating-point benchmarks only are the memory access 
patterns and branch predictabilities of the benchmarks within 
each subsuite. 

In this paper, for this approach, we randomly select X 
benchmark and input set pairs from the subsuite, where X is 
the number of benchmark and input set pairs in the subset. The 
value of X ranges from 1 to N-1, where N is the maximum 
number of benchmark and input set pairs in each subsuite. 
(There are 31 and 15 benchmark and input sets pairs for 
SPECint 2000 and SPECfp 2000.) 
 
2.2.2 Core-Bound vs. Memory-Bound 

Another popular approach is to subset the benchmark suite 
based on if the benchmarks are core-bound (compute-bound) 
or memory-bound. Obviously, simulating benchmarks that are 
core-bound will not distinctively illustrate the efficacy of a 
prefetching algorithm, for example. We classified the SPEC 
CPU 2000 benchmarks as memory-bound if their L1 D-cache 
miss rate was greater than 6% for a 32KB, 2-way L1 D-cache 
miss rate (There was a separation of benchmarks around 6%). 
We also checked the cache miss rates for several other cache 
configurations to ensure that we properly classified the 
benchmarks. The benchmark and input set pairs that were 
classified as memory-bound are as follows: gzip-program, 
gzip-source, swim, mgrid, applu, gcc-166, gcc-integrate, 
galgel, art-110, art-470, mcf, equake, ammp, lucas, and twolf; 
the other 31 benchmark and input set pairs are core-bound. 

To form the subset for each group of benchmark and input 
set pairs, benchmark and input set pairs were randomly 
selected from each group (core-bound or memory-bound). 
 
2.2.3 Language/Compiler (C vs. FORTRAN) 

For various reasons, including simulation infrastructure 
and the availability of modern compilers, computer architects 
often subset the benchmarks based on the language in which 
the benchmark is written. An excellent example of this 
approach occurs when computer architects use the PISA ISA 
from the SimpleScalar tool suite. Since the only compiler that 
compiles benchmarks into PISA binaries is gcc 2.63, the only 
benchmarks that SimpleScalar-PISA users can compile and 
run are C benchmarks, without using f2c. In SPEC CPU 2000, 
this restricts the list of benchmarks to gzip, vpr, gcc, mesa, art, 
mcf, crafty, ammp, parser, perl, gap, vortex, bzip2, and twolf. 



In this paper, we divide the benchmarks into two groups: 
C-based and FORTRAN-based; we group FORTRAN 77 and 
FORTRAN 90 benchmarks together. (Although these two 
groups exclude eon as a benchmark candidate because it is 
written in C++, the omission of a single benchmark should not 
significantly alter the results.) 
 
2.2.4 Random 

Based on the lack of justification as to why architects 
chose specific benchmarks [1, 17], the most popular subsetting 
approach is probably random. In this paper, to form the subset 
for each group of benchmark and input set pairs, we randomly 
select X benchmark and input set pairs for each subset of size 
X. In our evaluation, the probability of selecting integer and 
floating-point benchmarks in a subset is independent. 
 
2.2.5 High-Frequency 

Finally, in addition to the seven approaches that were 
previously described in this section, we also add “high-
frequency” to the list of approaches. This “approach” subsets 
benchmarks based on their frequency-of-use in papers. The 
frequency-of-use for each benchmark was taken from [1], 
which tabulated the number of times specific SPEC CPU 2000 
benchmarks were used in HPCA, ISCA, and MICRO from 
2000 to 2003. 

Using this approach, the most popular benchmark, gzip, 
was present in all subsets, while the second most-popular 
benchmark, gcc, was present only in subsets with 2 or more 
benchmarks, etc. Therefore, the maximum number of 
benchmarks in a subset is 26, which is the number of 
benchmarks in the SPEC CPU 2000 benchmark suite. Finally, 
since this listing only tabulates the frequency-of-use by 
benchmark, and not by benchmark and input set pair, we 
created two sets of subsets. The first only uses only input set 
per-benchmark while the second uses all input sets for that 
benchmark. In the former case, the input set that has a CPI that 
is closest to the average CPI of input sets and across all 
processor configurations was chosen to be the input set. Since 
art only has two input sets, we randomly selected one (110). 
For example, in the former case (1 input set), the rushmeier 
input set was selected as eon’s input set for all subsets, while 
in the latter case, all three input sets (cook, kajiya, and 
rushmeier) were included. 
 
2.2.6 Other Subsetting Approaches 

Machine ranking-based subsetting: Vandierendonck and 
De Bosschere [14] presented an experimental evaluation of the 
reliability of four clustering algorithms (k-means, hierarchical, 
forward PCA and backward PCA) to form a representative 
subset of programs from the SPEC CPU2000 benchmark suite. 
They evaluated the subsetting algorithms based on their ability 
to produce a subset of the SPEC benchmarks that ranks 
computer systems in the same way as the full benchmark suite. 
In their follow-on study [13], they also ranked programs in the 
SPEC CPU2000 benchmark suite using the SPEC peak 
performance rating. The program ranks were based on their 
uniqueness, i.e., the programs that exhibit different speedups 

on most of the machines were given a higher ranking as 
compared to other programs in the suite. This criterion of 
subsetting programs is more appropriate for a customer 
comparing computer systems because this approach looks for 
the corner cases in the workload space. In addition, this 
approach may be difficult to use in practice for subsetting 
purposes because it requires that all benchmarks be measured 
on a large set of machines (340 machines in their setup).  For 
these reasons, we do not include this technique in our 
comparison study. 

Subsetting based on programming language 
characteristics: Saavedra and Smith [10] measured similarity 
between applications using workload characteristics at a 
program language level. Considering that modern day 
microprocessors are out-of-order and compilers are becoming 
more effective in optimizing programming language constructs, 
it is unlikely that these characteristics will relate well to the 
performance of the program. Therefore, we did not include this 
technique in our evaluation. 
 
2.3 Summary of Subsetting Approaches 

Table 1 summarizes the subsetting approaches that we 
evaluated in this paper. The first column lists the approach 
while the second column lists the maximum subset size, based 
on the type (integer vs. floating-point, core vs. memory, and C 
vs. FORTRAN). The third column lists the permutations of 
each approach and the number of permutations. 
 
3 Simulation Methodology 

To gather the program characteristics for PCA, we 
instrumented the benchmark binaries with ATOM. To gather 
the profiling data for the P&B design simulations and the 
results in Section 4, we used SMARTS [15] with sampling and 
functional warming on, and while simulating 25,000 samples 
initially. The detailed simulation and warm-up lengths per 
sampling unit were 1000 and 2000 instructions, respectively. 
We used a confidence level of 99.7% with +/- 3% confidence 
interval. All SMARTS simulations were run until the sampling 
frequency was greater than the recommended frequency. For 
the results in Section 4.2, we added next-line prefetching as 
described in [6] to the base version of SMARTS. 

Table 2 lists the key parameters for the eight processor 
configurations that we used for the base processor simulations. 
For each issue width, the “aggressiveness” of the processor 
increases from left to right. For this paper, since we wanted to 
use a set of benchmarks that had a wide range of behavior and 
represented a wide range of applications, i.e., general-purpose 
computing, we decided to use the SPEC CPU 2000 benchmark 
suite. We downloaded pre-compiled Alpha binaries from [12]. 
Also, to help architects directly use our subsetting results, we 
evaluated all 26 benchmarks and all benchmark and input set 
pairs (with the exceptions of vpr-place and perlbmk-perfect, as 
they both crash SMARTS). 

In this paper, with the exception of the high-frequency 
subsetting approach, we subset the SPEC CPU 2000 based on 
benchmark and input set pairs, instead of just benchmarks. Our 
rationale for doing so is based on our observation on how 



Table 1. Summary of benchmark subsetting approaches 
 

Approach Max Benchmark + 
Input Sets Per Subset Permutations (Total) 

PCA 45 4, 5, 6, 7, and 8 principal components (5) 
Performance bottleneck 

(P&B) 45 Top 3, 5, 7, and all bottlenecks per-benchmark (12) 
Top 3, 5, 7 and all bottlenecks across-benchmarks (16) 

Integer vs. Floating-point 30 (Integer) 
14 (Floating-Point) 30 randomly created subsets (30) 

Core-bound 
vs. Memory-bound 

30 (Core) 
14 (Memory) 30 randomly created subsets (30) 

Language 32 (C) 
9 (FORTRAN) 30 randomly created subsets (30) 

Random 45 30 randomly created subsets (30) 
High-frequency 45 / 26 All input sets per benchmark / 1 input set (2) 

 
Table 2. Key parameters for eight base processor configurations 

 
Configuration 

Parameter #1 #2 #3 #4 #5 #6 #7 #8 
Decode, issue,  
commit width 4-way 8-way 

Branch predictor,  
BHT entries 

Combined, 
2K 

Combined, 
4K 

Combined, 
4K 

Combined, 
8K 

Combined, 
4K 

Combined, 
8K 

Combined, 
16K 

Combined, 
32K 

ROB/LSQ entries 16/8 32/16 32/16 64/32 64/32 128/64 128/64 256/128 
Int/FP ALUs,  

(mult/div units) 
2/2, 
(1/1) 

4/4, 
(4/4) 

2/2, 
(1/1) 

4/4, 
(4/4) 

6/6, 
(4/4) 

8/8, 
(8/8) 

6/6, 
(4/4) 

8/8, 
(8/8) 

L1 D-cache size,  
assoc, latency (cycles) 

8KB, 
2-way, 1 

16KB, 
4-way, 1 

32KB, 
2-way, 1 

64KB, 
4-way, 1 

16KB, 
4-way, 1 

32 KB, 
4-way, 1 

128 KB, 
2-way, 1 

256 KB, 
4-way, 1 

L2 cache size, 
assoc, latency (cycles) 

128KB, 
4-way, 15 

256KB, 
4-way, 12

256KB, 
4-way, 10

512KB, 
8-way, 7 

1024KB, 
4-way, 25 

2048KB, 
8-way, 20 

1024KB, 
4-way, 15 

2048KB, 
8-way, 12 

Memory latency (cycles): 
First, following 150, 10 100, 5 150, 10 100, 5 300, 20 200, 10 300, 20 200, 10 
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Figure 1. Absolute CPI accuracy of subsetting approaches, configuration #3 
 

computer architects subset benchmark suites. Namely, 
architecture researchers seem to choose a benchmark and then 
choose one input set for that benchmark, thereby choosing a 
specific benchmark and input set pair, as opposed to choosing 

a benchmark and all of its input sets. Therefore, to maximize 
the utility of the results and conclusion that we present in this 
paper, we follow the lead of our colleagues and subset SPEC 
CPU 2000 based on benchmark and input set pairs. Note that, 



0

25

50

75

100

125

150

175

200

225

250

275

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Number of Benchmarks in Each Subset

Pe
rc

en
ta

ge
 E

DP
 E

rr
or

PCA (5PCs)
PB (Interaction across, 05D)
Random
Frequency (All input sets)

 
A. PCA, P&B, Random, and High-frequency 

 

0

25

50

75

100

125

150

175

200

225

250

275

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Number of Benchmarks in Each Subset

Pe
rc

en
ta

ge
 E

D
P 

Er
ro

r

Integer
Floating-Point
Core
Memory
C
FORTRAN

 
B. Int/Float, Core/Memory, and C/FORTRAN

Figure 2. Absolute EDP accuracy of subsetting approaches, configuration #3 
 
in the remainder of this paper, for brevity, we often use the 
term “benchmarks” to represent both benchmarks and input 
sets. 
 
4 Results and Analysis of Prevailing and 

Emerging Benchmark Subsetting Approaches 
The following three subsections present the benchmark 

subsetting results and our analysis from the perspectives of 
absolute accuracy, relative accuracy, and 
representativeness/coverage. 
 
4.1 Absolute Accuracy 

Good absolute accuracy is important for processor 
designers who want to run a small representative subset of the 
benchmarks for performance estimation (e.g., estimating the 
SPEC score) and for HDL verification. For others, good 
absolute accuracy is important for profiling, workload 
characterization, and performance estimation. 
 
4.1.1 Absolute Accuracy of CPI Results and Analysis 

Figure 1 presents the absolute accuracy of the various 
subsetting approaches for CPI for configuration #3. (The 
results for the other 7 configurations were extremely similar.) 
Figure 1A presents the absolute accuracy results for the PCA, 
P&B, random, and high-frequency subsetting approaches, 
while Figure 1B presents the results for the other approaches 
(Integer vs. floating-point, core-bound vs. memory-bound, and 
C vs. FORTRAN). 

The x-axis in Figure 1 shows the number of benchmark 
and input set pairs in each subset while the y-axis shows the 
percentage CPI error for each subset size, as compared to the 
full SPEC CPU 2000 benchmark suite. Since there are a total 
of 46 benchmark and input set pairs, the maximum number of 
benchmark and input set pairs that can be in a subset is 45, 
which is the maximum x-value. 

Figure 1A shows several “plateaus” in the percentage CPI 
error for the high-frequency (“frequency”) subsetting approach. 
Since [1] only lists the benchmarks in order of frequency, i.e., 
does not list the frequency of the specific benchmark and input 

set pairs, for the “all input set” permutation of the high-
frequency approach, to represent all input sets, we assign the 
same percentage CPI error to all input sets for that benchmark. 
For example, gzip, which is the most frequently used 
benchmark, has five input sets. To represent each of its five 
input sets, we set the percentage CPI error for each input set to 
be 63.7%, which is the overall percentage CPI error for gzip. 

The results in Figure 1 show that PCA (with 7 principal 
components) and P&B (Top 5 bottlenecks by percentage of the 
total variation in the CPI) are clearly the most accurate – and 
consistently so – subsetting approaches. In particular, the 
percentage CPI error is consistently less than 5% for subset 
sizes larger than 17. In contrast, using any of the other five 
approaches to subset SPEC CPU 2000 results in subsets that: 
1) Are not representative of the entire benchmark suite (i.e., 
have high percentage CPI error) or 2) Have inconsistent 
accuracy for larger subset sizes. An example of the former is 
the random approach where the percentage CPI error is still 
greater than 15% when half (23) of the benchmark and input 
sets are in the subset. An example of the latter is the memory-
bound subsetting approach since its percentage CPI error 
alternately increases and decreases with increasing subset size. 
These two results illustrate the efficacy of the statistically-
based subsetting approaches. 

From the point-of-view of simulation time vs. accuracy, 
where the simulation time is proportional to the number of 
benchmark and input set pairs in the subset, PCA, P&B, and 
high-frequency are the only three approaches where the 
percentage CPI error is less than 5% for consecutive subset 
sizes. (The percentage CPI error never dips below 5% for 
consecutive subset sizes for the other four subsetting 
approaches.) To achieve this level of absolute accuracy, PCA 
and P&B require 17 benchmark and input set pairs only, or, 
approximately one-third of the entire benchmark suite. By 
contrast, the high-frequency approach requires 39 benchmark 
and input set pairs, or, approximately 80% of the entire suite. 
 
4.1.2 Absolute Accuracy of EDP Results and Analysis 

In addition to CPI, EDP is another important metric that 



measures the processor’s efficiency. The formula to compute 
the EDP is: EDP = CPI * EPI (where EPI is the average energy 
consumed while executing one instruction). Figures 2A and 2B 
are the corresponding figures to Figures 1A and 1B for EDP 
accuracy, again for processor configuration #3. The results for 
the other configurations were, again, extremely similar. 

The conclusions from Figure 2 are exactly the same as 
those from Figure 1. Namely, PCA and P&B are the most 
accurate subsetting approaches while the other approaches are 
generally very inaccurate. This conclusion is not particularly 
surprising given the CPI results that were presented in Figures 
1A and 1B. 
 

4.1.3 Comparison of Subsets for Principal Component 
Analysis, Plackett and Burman, and High-Frequency 
Table 3 shows benchmark and input set pairs that the PCA, 

P&B, and high-frequency subsetting approaches select for 
subset sizes of 10, 15, 20, and 25. Note that the high-frequency 
approach is the de facto approach in computer architecture 
research. By comparing the performance metrics of each PCA 
or PB subsets vs. the performance metrics of the high-
frequency subset, we can determine why the high-frequency 
subsetting approach has lower absolute accuracy. 

The results of this analysis shows that, for all four subset 
sizes, the high-frequency subsets are less accurate than the two 
statistically-based approaches because they include benchmark 

 
Table 3. Comparison of the subsets for PCA, P&B, and High-frequency subsets for 10, 15, 20, and 25 
benchmark and input sets. Weights are shown only for the pairs that are in each subset. 
 

Principal Components Analysis Plackett and Burman High-frequency 
Benchmark Input Set 10 15 20 25 10 15 20 25 10 15 20 25 

graphic    0.067   0.087      
log             

program    0.044  0.130 0.109  0.100 0.067 0.050 0.040 
random      0.065  0.065     

gzip 

source  0.133 0.111     0.043     
wupwise        0.043 0.022    0.040 

swim  0.022 0.022 0.022 0.022    0.022   0.050 0.040 
mgrid    0.022 0.022 0.087 0.065      0.040 
applu    0.022 0.022  0.043 0.043 0.022   0.050 0.040 
vpr route  0.022 0.022 0.022   0.022 0.022 0.100 0.067 0.050 0.040 

166    0.044         
200             
expr 0.111 0.111 0.111 0.067 0.152        

integrate      0.130 0.043 0.043 0.100 0.067 0.050 0.040 
gcc 

scilab       0.065 0.065     
mesa      0.239      0.050 0.040 
galgel   0.022 0.022 0.022 0.065 0.065 0.043 0.022    0.040 

110 0.044 0.044 0.044 0.044  0.065 0.065   0.067 0.050 0.040 art 470     0.087   0.043     
mcf  0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.100 0.067 0.050 0.040 

equake  0.067 0.022 0.022 0.022 0.043 0.022 0.022 0.022  0.067 0.050 0.040 
crafty     0.022     0.100 0.067 0.050 0.040 

facerec    0.089 0.067    0.022    0.040 
ammp    0.022 0.022  0.022 0.022 0.022  0.067 0.050 0.040 
lucas   0.022 0.022 0.022  0.022 0.022 0.022   0.050 0.040 
fma3d   0.111     0.043 0.043     
parser        0.022 0.022 0.100 0.067 0.050 0.040 

sixtrack  0.178 0.067 0.022 0.022 0.022 0.022 0.022 0.022    0.040 
cook             

kajiya    0.022   0.109 0.087     eon 
rushmeier 0.089 0.067 0.067 0.044      0.067 0.050 0.040 
diffmail      0.196       

makerand   0.022 0.022  0.043 0.043 0.043     
splitmail 535             
splitmail 704   0.111 0.111    0.087 0.100 0.067 0.050 0.040 
splitmail 850     0.196        

perlbmk 

splitmail 957 0.156 0.156           
gap           0.067 0.050 0.040 

1 0.067 0.067 0.067 0.067     0.100 0.067 0.050 0.040 
2       0.087 0.109     vortex 
3             

graphic     0.087 0.087 0.065 0.065 0.100 0.067 0.050 0.040 
program  0.111 0.133 0.111         bzip2 
source 0.244            

twolf    0.022 0.022    0.022 0.100 0.067 0.050 0.040 
apsi     0.022    0.022   0.050 0.040 



0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Number of Benchmarks in Each Subset

Pe
rc

en
ta

ge
 S

pe
ed

up
 E

rr
or

PCA (5PCs)
PB (No interaction per, 03D)
Random
Frequency (All input sets)

 
A. PCA, P&B, Random, and High-frequency 

 

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Number of Benchmarks in Each Subset

Pe
rc

en
ta

ge
 S

pe
ed

up
 E

rr
or

Integer
Floating-Point
Core
Memory
C
FORTRAN

 
B. Int/Float, Core/Memory, and C/FORTRAN 

 
Figure 3. Relative CPI accuracy of subsetting approaches for a larger ROB/LSQ, configuration #1 
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Figure 4. Relative CPI accuracy of subsetting approaches for next-line prefetching, configuration #1 
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Figure 5. Relative CPI accuracy of subsetting approaches for larger and more associative caches, 

configuration #1 
 
and input sets pairs with lower L1 D-cache and L2 hit rates. 
Furthermore, for some subset sizes, the branch prediction 

accuracy is also lower. For example, for configuration #1, the 
L1 D-cache hit rate for the entire suite is 91.1%, but the high-



frequency L1 D-Cache hit rates are 89.7%, 88.2%, 88.3% and 
88.9% for subset sizes of 10, 15, 20, and 25, respectively. For 
the same configuration, the overall L2 hit rate is 80.3%, but L1 
D-cache hit rates for the high-frequency subsets are 77.5%, 
74.7%, 75.2%, and 75.9%, respectively. By contrast, the 
average L1 D-cache and L2 cache hit rates for PCA and P&B 
subsets are much closer to the overall hit rates. Consequently, 
and unsurprisingly, the average CPI for the high-frequency 
subsets is significantly higher than their PCA and P&B 
counterparts. 

In particular, the high-frequency subsets contain 
benchmark and input set pairs that have relatively low L1 D-
cache hit rates such as: gzip-program (87.8%), swim (82.7%), 
art-110 (59.8%), and twolf (88.9%). On the other hand, the 
benchmark and input sets pairs that lower the L2 cache hit 
rates of the high-frequency subsets include: gcc-integrate 
(77.4%), swim (65.3%), vpr-route (67.9%), art-110 (32.8%), 
bzip2-graphic (59.9%), and twolf (76.6%). 

Finally, since the PCA and P&B subsets in Table 3 have 
the best absolute accuracy, it is important to note that 
computer architects can use those subsets “out-of-the-box” for 
their own simulations. 
 
4.2 Relative Accuracy 

As described in the previous section, good absolute 
accuracy from a subsetting approach is important to processor 
designers and for researchers doing profiling and workload 
characterization research. However, for the computer 
architects that are researching new processor enhancements, 
relative accuracy, e.g., speedup, decreased cache miss rates, 
power consumption reduction, etc., is more important. 

To quantify the relative accuracy of each the benchmark 
subsetting approaches, we quantified the speedup due to the 
following microarchitectural “enhancements”: 1) A four-fold 
larger reorder buffer and load-store queue, 2) Next-line 
prefetching as described in [6], and 3) A L1 D-cache, L1 I-
cache, and L2 cache with four times the capacity of the 
original cache and with 8-way associativity, without the 
corresponding increase in cache access latency. 

To calculate the relative accuracy, we computed the 
speedup for each enhancement for all possible subsets. More 
specifically, we compute the CPI speedup for the benchmark 
and input pairs for that subset. Then to determine the relative 
accuracy, we compare calculate the speedup error, i.e., the 
difference in speedups when subsetting is not used and when 
subsetting is used. The percentage difference between those 
speedups is the speedup error, and our measure of relative 
accuracy. In other words, we calculate the relative error as 
follows: 

 
Relative error = (Speedupwith_Subsetting – Speedupwithout_Subsetting) / 

Speedupwithout_Subsetting * 100 
 

Figures 3, 4, and 5 show the relative accuracy for each of the 
three enhancements for configuration #1. For this 
configuration, the average (mean) speedup across all 46 
benchmarks and input set pairs is 25.7% for the ROB/LSQ 

enhancement, 7.5% for next-line prefetching, and 56.5% for 
the larger and more highly-associative caches.  

The results in Figures 3, 4, and 5 are generally similar to 
the results in Figures 1 and 2. Namely, PCA and P&B are the 
most accurate subsetting approaches and the remaining five 
approaches are less accurate. However, the key difference 
between these results and those in Figures 1 and 2 is that the 
relative error is much lower than the absolute error. For 
example, the results in Figures 3, 4, and 5 show that the 
relative error is less than 20% for most approaches and for 
most subset sizes. On the other hand, the reverse is true for 
absolute accuracy. With the exception of P&B and PCA, the 
absolute accuracy of the remaining five approaches is greater 
than 20% for most subset sizes. The key conclusion from these 
results is that most subsetting approaches are accurate enough 
to be used for comparative analysis, e.g., speedup, for a much 
wider range of subset sizes. 

The reason that the relative error is significantly lower 
than the absolute error is because there is less variation in the 
CPI between different architectures, i.e., base configuration vs. 
enhancement, for a subset with the same benchmark and input 
set pairs – which is the case for relative accuracy – than in the 
CPI variability for the same architecture for different 
benchmark and input set pairs – which is the case for absolute 
accuracy. This is the same reason that allows computer 
architects to use matched-pair comparisons [5] to reduce 
simulation time. 

Finally, the results for the other configurations and for 
EDP were very similar. 
 
4.3 Subset Representativeness and Coverage 

In the previous two subsections, we analyzed the absolute 
and relative accuracy of the subsetting approaches in terms of 
their CPI and EDP accuracy. However, the results in those two 
subsections do not measure the representativeness of the 
subsetting approaches across a wide range of metrics nor do 
they examine how well the benchmark and input set pairs of 
each subset are distributed across the entire space of metrics 
that the benchmark suite covers. Ideally, the benchmark and 
input set pairs in a subset have good absolute CPI and EDP 
accuracy while simultaneously covering the entire space of 
metrics, as opposed to being clustered around the average CPI, 
EDP, and value of each metric.  

To quantify the representativeness and coverage of each 
subsetting approach, we: 

 
1. Vectorize the performance metrics and power metrics 

for each benchmark and input set pair. The 
performance metrics include: IPC; branch prediction 
accuracy; L1 D-cache, L1 I-cache, and L2 cache hit 
rates; and the D-TLB and I-TLB hit rates, while the 
power metrics include the power for the rename logic, 
branch predictor, reorder buffer, load-store queue, 
register file, L1 D-cache, L1 I-cache, L2 cache, 
functional units, result bus, and clock network. 

2. Normalize the performance metrics to the maximum 
possible value of each (the maximum IPC was set to 



the issue width for each processor configuration) and 
scaled to 100, while the power metrics normalized to 
their percentage of the total power consumption. 

3. Compute the Euclidean distance between each 
benchmark input set not in the subset to each 
benchmark and input set pair in the subset. 

4. Assign the minimum Euclidean distance as the 
distance for the benchmark and input set pair not in 
the subset. 

5. Sum the Euclidean distances for all benchmark and 
input set pairs not in the subset and assign that 
number as the total minimum Euclidean distance for 
that subset size. 

 
Intuitively, the total minimum Euclidean distance for each 

subset represents how well the benchmark and input set pairs 
in the subset are spread throughout the entire space of 
benchmark pairs. A smaller total minimum Euclidean distance 
means that benchmark and input set pairs that are not in the 
subset are very close to a benchmark and input set pair that is 
in subset. Then, from the viewpoint of representativeness, the 

benchmark and input set pairs not in the subset are accurately 
represented by a benchmark and input set pair in the subset, 
and from the viewpoint of coverage, the benchmark and input 
set pairs in the subset effectively cover the benchmark suite. 

To understand the correlation between total minimum 
Euclidean distance and the difference between two vectors of 
performance metrics, consider the following example. Suppose 
that the Euclidean distance between two vectors is due solely 
to a single metric, e.g., the L1 D-Cache hit rate, and that the 
minimum difference in that metric for a benchmark and input 
set pair not in the subset to a benchmark and input set pair in 
the subset is the same for all benchmark and input set pairs not 
in the subset. Assuming that there are 11 benchmark and input 
set pairs in the subset, i.e., there are 35 benchmark and input 
set pairs not in the subset, and that the minimum difference 
between the L1 D-cache hit rates is 3%, since the L1 D-cache 
hit rate is the only metric that differs, the minimum Euclidean 
distance for any benchmark and input set pair not in the subset 
to any benchmark and input set pair in the subset is 3 (square 
root of 32), while the total minimum Euclidean distance for all 
benchmark and input set pairs not in the subset is 105 (3*35). 
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Figure 6. Euclidean distance of performance metrics, configuration #5 
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Figure 7. Euclidean distance of power metrics, configuration #5 



If the difference between metrics is 5% and if there are only 6 
benchmark and input set pairs in the subset (i.e., 40 benchmark 
and input set pairs not in the subset), then the total minimum 
Euclidean distance is 200 (5*40). Finally, for a subset size of 
31, if one metric differs by a minimum 3% and another by a 
minimum 4%, the minimum Euclidean distance is 5 (square 
root of 32 + 42) and the total minimum Euclidean distance is 75 
(5*15). 

Figures 6 and 7 show the total minimum Euclidean 
distance for performance and power metrics, respectively, for 
configuration #5. The results in these two figures show that 
PCA and P&B consistently have the smallest total minimum 
Euclidean distances of all subsetting approaches. The 
difference in the Euclidean distances of the PCA or P&B 
approaches to the other approaches is typically over 100 for 
the performance metrics and over 15 for the power metrics for 
all subset sizes. There are two reasons why there is a smaller 
difference in the total minimum Euclidean distances for the 
power metrics as compared to the performance metrics. First, 
since the power metrics are a percentage of the total power, the 
maximum value for any single power metric is significantly 
less than 100, which is the maximum value for a performance 
metric. As a result, a smaller maximum means that there are 
smaller differences in the values of the various power metrics, 
which results in a smaller Euclidean distance. Second, due to 
static power consumption, there is less variability in the power 
results to begin with. 

The conclusion from this subsection is that the PCA and 
P&B based subsetting approaches produce benchmark subsets 
that are significantly more representative than the subsets from 
the other five subsetting approaches. In addition, PCA and 
P&B are more effective at covering the entire space of the 
benchmark suite as compared to the other five subsetting 
approaches. This further explains and reinforces the 
conclusions reached in the previous subsections. 
 
5 Discussion of Accuracy vs. Profiling Cost 

The results in the previous section showed that the two 
statistically-based subsetting approaches, PCA and P&B, had 
the highest absolute and relative CPI and EDP accuracy, 
produced the most representative subsets, and most effectively 
covered the benchmark space. However, if the profiling data 
needed to generate these subsets is prohibitively high or 
sufficiently intrusive and/or if the time needed to process the 
profiling data and generate the subsets is too onerous, then 
computer architects may avoid using these techniques and opt 
for less complex, albeit less accurate, subsetting approaches. 
On the other hand, the time needed to generate subsets using 
any of the other five approaches is trivial. In the remainder of 
this section, we discuss the profiling cost, and the time/effort 
needed to generate the subsets. 

The profiling cost for P&B is significant. Since the input 
parameters, i.e., bottlenecks, need to be low and high values 
that are outside their normal range of values, the processor 
configurations that the P&B design uses represent 
configurations at the corners of the design space, whose 
performance can only be measured via simulation. The 

simulation time needed to gather the P&B profiling results is 
proportional to the number of input parameters – which in this 
case required several months – and the time to process the 
input parameters is only a few seconds. 

Collecting the program characteristics for the PCA 
approach requires a specialized functional simulator or 
instrumentation to be run each benchmark and input pair. 
Since instrumentation using binary instrumentation tools such 
as ATOM or PIN is faster than detailed processor simulation, 
collecting the program characteristics for the PCA method is 
faster than collecting the data set for P&B – the data set for 
PCA can be gathered in a single instrumentation run whereas 
P&B requires multiple detailed processor simulation runs. 
After capturing the program characteristics, computing the 
principal components is done in the order of seconds. 

 
6 Summary 

For several reasons, including minimizing the simulation 
time or due to limitations in the simulation/measurement 
infrastructure, computer architects often use only a subset of 
the benchmarks in a benchmark suite. Despite the fact that the 
virtually all computer architects – based on the results in 
published papers – subset benchmark suites such as SPEC, the 
accuracy and characteristics of the most popular and/or 
proposed approaches is unknown. Using a subset that is not 
representative of the entire benchmark suite can, in the worst 
case, result in misleading conclusions. 

To address this problem, in this paper, we evaluate the 
accuracy and representativeness/coverage for the most 
promising and popular benchmark subsetting approaches. In 
particular, we evaluate the following seven approaches: 1) 
Principal components analysis (PCA), 2) Performance 
bottlenecks using a Plackett and Burman (P&B) design, 3) 
Integer vs. floating-point, 4) Core-bound vs. memory-bound, 
5) Language, 6) Random, and 7) By frequency of use, in terms 
of their absolute CPI and energy-delay product (EDP) 
accuracy, relative accuracy for three processor enhancements, 
and representativeness/coverage for 46 benchmark and input 
set pairs of the SPEC CPU 2000 benchmark suite. For the 
latter five approaches, we evaluate 30 random combinations 
for each subset size. For all approaches, we evaluate the entire 
range of possible subset sizes. 

Our results show that the two statistically-based 
approaches, PCA and P&B, have the best absolute CPI and 
EDP accuracy. In particular, their CPI and EDP error drops 
below 5% for around 20 benchmark and input set pairs. In 
contrast, the CPI and EDP error for the other five subsetting 
approaches either never drops below 5% or only drops below 
5% around 35 benchmark and input set pairs. 

To help computer architects use representative subsets, we 
give the subsets for PCA and P&B, which are the most 
accurate and representative subsets, for several subsets sizes.  

For the relative accuracy, we compare the speedup for 
each subset against the speedup for the entire suite for the 
following enhancements: 1) A larger reorder buffer and load-
store queue, 2) Next-line prefetching, and 3) Larger L1 and L2 
caches. The conclusions for relative accuracy are the same as 



the conclusions for absolute accuracy, namely, that PCA and 
P&B are the most accurate approaches. However, for all 
approaches and for corresponding subset sizes, the relative 
error is lower than the absolute error due to smaller variations 
in the CPI across architectures than across different subsets. 

The representative/coverage analysis measures how even 
distributed the benchmarks of the subset are distributed across 
the entire space of benchmarks for several performance and 
power metrics. The conclusion from this analysis is the same 
as the conclusion from the absolute and relative accuracy 
analysis in that PCA and P&B are the most accurate subsetting 
approaches. 

Finally, although PCA and P&B are the most accurate 
subsetting approaches, the key difference between the two is in 
their profiling cost. PCA uses microarchitectural independent 
metrics that can be gathered using binary instrumentation, e.g., 
ATOM, while P&B relies on a simulator and needs to the 
results of several dozen simulation runs to gather the necessary 
profiling information. Therefore, given this result, PCA is the 
subsetting approach that has the best combination of accuracy 
versus profiling cost. 
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