
Evaluating Benchmark Subsetting Approaches

Joshua J. Yi1, Resit Sendag2, Lieven Eeckhout3, Ajay Joshi4, David J. Lilja5, and Lizy K. John4

1 – Networking and Computing Systems Group
Freescale Semiconductor, Inc.

Austin, TX
joshua.yi@freescale.com

3 - Department of Electronics and Information Systems

Ghent University
Ghent, Belgium

leeckhou@elis.ugent.be

2 - Department of Electrical and Computer Engineering
University of Rhode Island

Kingston, RI
sendag@ele.uri.edu

4 - Department of Electrical and Computer Engineering
University of Texas

Austin, TX
{ajoshi, ljohn}@ece.utexas.edu

5 - Department of Electrical and Computer Engineering

University of Minnesota
Minneapolis, MN

lilja@ece.umn.edu

Abstract

To reduce the simulation time to a tractable amount or due
to compilation (or other related) problems, computer architects
often simulate only a subset of the benchmarks in a benchmark
suite. However, if the architect chooses a subset of
benchmarks that is not representative, the subsequent
simulation results will, at best, be misleading or, at worst, yield
incorrect conclusions. To address this problem, computer
architects have recently proposed several statistically-based
approaches to subset a benchmark suite. While some of these
approaches are well-grounded statistically, what has not yet
been thoroughly evaluated is the: 1) Absolute accuracy, 2)
Relative accuracy across a range of processor and memory
subsystem enhancements, and 3) Representativeness and
coverage of each approach for a range of subset sizes.
Specifically, this paper evaluates statistically-based subsetting
approaches based on principal components analysis (PCA) and
the Plackett and Burman (P&B) design, in addition to
prevailing approaches such as integer vs. floating-point, core
vs. memory-bound, by language, and at random. Our results
show that the two statistically-based approaches, PCA and
P&B, have the best absolute and relative accuracy for CPI and
energy-delay product (EDP), produce subsets that are the most
representative, and choose benchmark and input set pairs that
are most well-distributed across the benchmark space. To
achieve a 5% absolute CPI and EDP error, across a wide range
of configurations, PCA and P&B typically need about 17
benchmark and input set pairs, while the other five approaches
often choose more than 30 benchmark and input set pairs.

1 Introduction

Despite the introduction of reduced-time simulation
techniques such as SimPoint [11], SMARTS [15], and
MinneSPEC [7], and increasingly faster platforms to simulate
or run on, computer architecture researchers frequently only
simulate a subset of the benchmarks in a benchmark suite [1].
Computer architects also subset a group of benchmarks when

selecting benchmarks for a new benchmark suite, which allows
them to capture the most important behavior and
characteristics of the application space with fewer benchmarks
and/or eliminate redundancy. Since the benchmarks in a
benchmark suite ostensibly represent the programs that are
commonly used in a particular application domain, at the very
least, subsetting the suite means that the architect will not use
all of the programs that are representative of the application
space. In the worst case, using a subset of benchmarks can
result in different conclusions than if the architect used the
entire suite. Additionally, when architects use different
approaches to subset a benchmark suite, inevitably, they
evaluate different subsets, which makes it more difficult to
compare the results across papers.

To help computer architects subset benchmark suites more
intelligently, researchers have proposed several approaches,
including: subsetting benchmark suites based on their most
significant characteristics (e.g., principal components analysis
(PCA) [2] or based on their performance bottlenecks using a
Plackett and Burman (P&B) design [16]. Both of these
benchmark subsetting approaches are statistically-based and
can be microarchitecturally independent. Other benchmark
subsetting approaches that are less statistically-rigorous, but
perhaps as effective, include subsetting benchmarks based on
1) The percentage of floating-point instructions (i.e., integer vs.
floating-point benchmarks) in the benchmarks, 2) If the
benchmark is computationally-bound or memory-bound, and
3) Language (e.g., C vs. C++ vs. FORTRAN) or infrastructure
(e.g., Availability of reduced input sets, language-specific
compilers, etc.). Finally, computer architects also frequently
choose benchmarks from a benchmark suite at random. Ideally,
the subset of benchmarks should have good absolute and
relative accuracy, as compared to the entire benchmark suite,
as well as adequately covering the space of the suite’s
characteristics.

Given all of these approaches, there are several
unanswered questions. First, which approach yields the most

accurate/representative subset of benchmarks, both from the
absolute and relative points-of-view? Not only does measuring
the accuracy of the various subsetting approaches have its own
intrinsic merit, but determining which subsetting approach is
the most accurate could be the first step towards creating a
“standard” subset of benchmarks to facilitate cross-paper
comparison. Second, in addition to their accuracy, how well
does each of these approaches cover the space of
characteristics of the entire benchmark suite? Finally, which of
these approaches yields the most accurate subset of
benchmarks, with the least subsetting, i.e., profiling cost?

To answer these questions, we compare the
aforementioned subsetting approaches across the range of
subset sizes (i.e., number of benchmark and input set pairs in
the subset) and for several different processor configurations.
More specifically, we compare the absolute accuracy of each
subsetting approach against the entire suite for CPI and
energy-delay product (EDP) and evaluate the relative accuracy
of the subsetting approaches for three microarchitectural
enhancements to determine if using subsets can yield accurate
estimates of the speedup. Finally, we quantify the
respresentativeness by measuring how well the benchmarks of
the subset are distributed over the entire space (of
microarchitectural metrics).

The contributions of this paper are as follows:

1. This paper compares the absolute accuracy (CPI
and EDP) of the seven most prevalent or
emerging benchmark subsetting approaches
across a wide range of processor configurations
and benchmark subset sizes.

2. This paper compares the relative accuracy of
these subsetting approaches for three processor
core and memory subsystem enhancements
across a wide range of both processor
configurations and benchmark subset sizes.

3. This paper compares the representativeness and
coverage of each subsetting approach.

4. This paper presents the most accurate subsetting
results for the entire SPEC CPU 2000 benchmark
suite that computer architects can use “out-of-
the-box”.

The remainder of this paper is organized as follows:

Section 2 describes the subsetting approaches and the specific
permutations of each that this paper examined and some
relevant related work. Section 3 describes the simulation
methodology that we followed in this paper, Section 4 presents
the results and our analysis, and, Section 5 discusses the
subsetting cost of the statistically-based approaches. Finally,
Section 6 summarizes.

2 Description of Benchmark Subsetting

Approaches
This section describes the seven benchmark subsetting

approaches that we examined in this paper. The two
statistically-based approaches subset a benchmark suite based

on the: 1) Benchmark’s principal components using PCA and
2) Performance bottlenecks that the benchmark induces using
the P&B design. The next four approaches, which are not
statistically-based, subset a benchmark suite based on: 3) The
percentage of floating-point instructions (i.e., integer vs.
floating-point), 4) If the benchmark is core-bound or memory-
bound, 5) The programming language (e.g., C vs. FORTRAN),
and 6) Randomly selecting the benchmarks. Finally, the
seventh and last subsetting approach subsets a benchmark suite
based on the benchmark’s frequency of use, as reported in [1],
in HPCA, ISCA, and MICRO.

2.1 Statistically-Based Subsetting Approaches
2.1.1 Subsetting by using Principal Components

Analysis
Eeckhout et al. [2, 3, 4] and Phansalkar et al. [9] proposed

using PCA 1 as a statistically-rigorous way of subsetting a
benchmark suite. The first step to use PCA as a subsetting tool
is to profile the benchmarks to determine their key
characteristics. In this paper, we profile the benchmarks for the
same program characteristics that were used in [3], which
include: 1) Instruction mix (Loads, stores, control transfers,
arithmetic operations, integer multiplies and floating-point
operations), 2) ILP assuming an idealized processor, but a
limited (32, 64, 128, and 256) instruction window, 3) Register
characteristics (Average degree of use, average number of
times a register instance is consumed since it was originally
written, and number of instructions between a write to and
read from that register), 4) Working set size (Number of
unique 4KB pages for both instruction and data and 32-byte
blocks that were touched), 5) Data stream strides (Number of
memory addresses between temporally adjacent memory
accesses for the same static load/store instruction and for
different static load/store instructions), and 6) Branch
predictability.

After profiling the benchmarks to determine their key
program characteristics, the second step is to use PCA to
compute the principal components, which are linear
combinations of the original variables, such that all principal
components are uncorrelated. PCA builds on the assumption
that many variables – in our case, program characteristics – are
correlated and hence, they measure the same or similar
properties of the benchmark and input pairs. Using PCA to
transform the program characteristics to principal components
has two key advantages over using the original program
characteristics to subset the benchmarks. First, since the
principal components are uncorrelated, using them to subset
the benchmarks produces better clusters, since two correlated
program characteristics that essentially measure the same thing
are not counted twice. Second, using principal components
reduces the dimensionality of the data by determining the most
important program characteristics, which also yields a better
clustering result.

After determining the principal components of the

1 In this paper, we do not compare independent component analysis (ICA) [3]
as, for the same input data, ICA produces the same results as PCA, as shown
in the correction note to [4] available at http://www.elis.ugent.be/~leeckhou/.

benchmarks, the next step is to cluster the benchmarks based
on their Euclidean distances away from each other and to form
the subsets by choosing one benchmark from each cluster. For
more information on how to use PCA to subset benchmark
suites, see [2].

In this paper, to evaluate the efficacy of PCA as a
benchmark subsetting approach, we cluster and subset the
benchmarks based on the 4, 5, 6, 7, and 8 most significant
principal components.

2.1.2 Subsetting by Performance Bottlenecks, using the

Plackett and Burman Design
Yi et al. in [16] proposed using the P&B design to

characterize the performance bottlenecks that a benchmark
induces when running on a processor. The P&B design
specifies a very wide range of processor configurations that the
architect needs to run the benchmarks for. After running the
benchmarks, the architect calculates the magnitude of each
performance bottleneck by using the P&B design matrix and
the results (e.g., execution time, energy-per-instruction, etc.);
the larger the magnitude, the more significant that performance
bottleneck is, and vice-versa. For more information about
using the P&B design and potential applications in computer
architecture, see [16].

After characterizing the performance bottlenecks, Yi et al.
proposed clustering and subsetting the benchmarks based on
their performance bottlenecks [16]. The downside of this
approach, compared to PCA, is that it requires an inordinate
amount of simulation time. In our case, the P&B design
required 88 simulations per-benchmark with a detailed out-of-
order superscalar processor simulator while PCA required only
six instrumented runs, which could be consolidated into a
single, monolithic instrumented run.

In this paper, we characterized the performance
bottlenecks by using processor configurations that were similar
to those specified in [16]. We used foldover [8] to remove the
effects of two-bottleneck interactions from each of the single
bottlenecks. We calculated the magnitude of each performance
bottleneck based on the CPI from each of the 88 processor
configurations. We clustered the benchmarks based on the: 1)
Ranks of each performance bottleneck, 2) Magnitudes of each,
3) Percentage of the total variation accounted for by each
single bottleneck, and 4) Percentage of the total variation
accounted for by each single bottleneck and all interactions.
Finally, we clustered the benchmarks based all (43)
bottlenecks and based on the Top 3, 5, and 7 bottlenecks
across all benchmarks and for each benchmark. For the latter
clusterings (Top 3, 5, and 7), the value of the bottlenecks that
are not in the Top 3, 5, or 7 were set to the lowest possible
value.

2.2 Prevailing Subsetting Approaches

This subsection describes the subsetting approaches that
computer architects frequently use. The following list of
subsetting approaches and specific permutations of each were
based on the papers that we have read over the years and the
subsetting rationale in those papers. For each of the approaches

that we describe in this subsection, to ensure that our results
are not a by-product of the specific benchmark and input sets
pairs, we randomly form thirty subsets for each subset size and
average the results.

2.2.1 Prevalence of Floating-Point Instructions (Integer

vs. Floating-Point)
One of the most popular approaches that computer

architects use to subset a benchmark suite such as SPEC CPU
is to evaluate the benchmarks that are in the integer or
floating-point subsuites only. Furthermore, for a benchmark
suite such as SPEC CPU 2000, the architect may even subset
the SPECint or SPECfp subsuites. One rationale that architects
frequently give for restricting the subsets to the integer or
floating-point benchmarks only are the memory access
patterns and branch predictabilities of the benchmarks within
each subsuite.

In this paper, for this approach, we randomly select X
benchmark and input set pairs from the subsuite, where X is
the number of benchmark and input set pairs in the subset. The
value of X ranges from 1 to N-1, where N is the maximum
number of benchmark and input set pairs in each subsuite.
(There are 31 and 15 benchmark and input sets pairs for
SPECint 2000 and SPECfp 2000.)

2.2.2 Core-Bound vs. Memory-Bound

Another popular approach is to subset the benchmark suite
based on if the benchmarks are core-bound (compute-bound)
or memory-bound. Obviously, simulating benchmarks that are
core-bound will not distinctively illustrate the efficacy of a
prefetching algorithm, for example. We classified the SPEC
CPU 2000 benchmarks as memory-bound if their L1 D-cache
miss rate was greater than 6% for a 32KB, 2-way L1 D-cache
miss rate (There was a separation of benchmarks around 6%).
We also checked the cache miss rates for several other cache
configurations to ensure that we properly classified the
benchmarks. The benchmark and input set pairs that were
classified as memory-bound are as follows: gzip-program,
gzip-source, swim, mgrid, applu, gcc-166, gcc-integrate,
galgel, art-110, art-470, mcf, equake, ammp, lucas, and twolf;
the other 31 benchmark and input set pairs are core-bound.

To form the subset for each group of benchmark and input
set pairs, benchmark and input set pairs were randomly
selected from each group (core-bound or memory-bound).

2.2.3 Language/Compiler (C vs. FORTRAN)

For various reasons, including simulation infrastructure
and the availability of modern compilers, computer architects
often subset the benchmarks based on the language in which
the benchmark is written. An excellent example of this
approach occurs when computer architects use the PISA ISA
from the SimpleScalar tool suite. Since the only compiler that
compiles benchmarks into PISA binaries is gcc 2.63, the only
benchmarks that SimpleScalar-PISA users can compile and
run are C benchmarks, without using f2c. In SPEC CPU 2000,
this restricts the list of benchmarks to gzip, vpr, gcc, mesa, art,
mcf, crafty, ammp, parser, perl, gap, vortex, bzip2, and twolf.

In this paper, we divide the benchmarks into two groups:
C-based and FORTRAN-based; we group FORTRAN 77 and
FORTRAN 90 benchmarks together. (Although these two
groups exclude eon as a benchmark candidate because it is
written in C++, the omission of a single benchmark should not
significantly alter the results.)

2.2.4 Random

Based on the lack of justification as to why architects
chose specific benchmarks [1, 17], the most popular subsetting
approach is probably random. In this paper, to form the subset
for each group of benchmark and input set pairs, we randomly
select X benchmark and input set pairs for each subset of size
X. In our evaluation, the probability of selecting integer and
floating-point benchmarks in a subset is independent.

2.2.5 High-Frequency

Finally, in addition to the seven approaches that were
previously described in this section, we also add “high-
frequency” to the list of approaches. This “approach” subsets
benchmarks based on their frequency-of-use in papers. The
frequency-of-use for each benchmark was taken from [1],
which tabulated the number of times specific SPEC CPU 2000
benchmarks were used in HPCA, ISCA, and MICRO from
2000 to 2003.

Using this approach, the most popular benchmark, gzip,
was present in all subsets, while the second most-popular
benchmark, gcc, was present only in subsets with 2 or more
benchmarks, etc. Therefore, the maximum number of
benchmarks in a subset is 26, which is the number of
benchmarks in the SPEC CPU 2000 benchmark suite. Finally,
since this listing only tabulates the frequency-of-use by
benchmark, and not by benchmark and input set pair, we
created two sets of subsets. The first only uses only input set
per-benchmark while the second uses all input sets for that
benchmark. In the former case, the input set that has a CPI that
is closest to the average CPI of input sets and across all
processor configurations was chosen to be the input set. Since
art only has two input sets, we randomly selected one (110).
For example, in the former case (1 input set), the rushmeier
input set was selected as eon’s input set for all subsets, while
in the latter case, all three input sets (cook, kajiya, and
rushmeier) were included.

2.2.6 Other Subsetting Approaches

Machine ranking-based subsetting: Vandierendonck and
De Bosschere [14] presented an experimental evaluation of the
reliability of four clustering algorithms (k-means, hierarchical,
forward PCA and backward PCA) to form a representative
subset of programs from the SPEC CPU2000 benchmark suite.
They evaluated the subsetting algorithms based on their ability
to produce a subset of the SPEC benchmarks that ranks
computer systems in the same way as the full benchmark suite.
In their follow-on study [13], they also ranked programs in the
SPEC CPU2000 benchmark suite using the SPEC peak
performance rating. The program ranks were based on their
uniqueness, i.e., the programs that exhibit different speedups

on most of the machines were given a higher ranking as
compared to other programs in the suite. This criterion of
subsetting programs is more appropriate for a customer
comparing computer systems because this approach looks for
the corner cases in the workload space. In addition, this
approach may be difficult to use in practice for subsetting
purposes because it requires that all benchmarks be measured
on a large set of machines (340 machines in their setup). For
these reasons, we do not include this technique in our
comparison study.

Subsetting based on programming language
characteristics: Saavedra and Smith [10] measured similarity
between applications using workload characteristics at a
program language level. Considering that modern day
microprocessors are out-of-order and compilers are becoming
more effective in optimizing programming language constructs,
it is unlikely that these characteristics will relate well to the
performance of the program. Therefore, we did not include this
technique in our evaluation.

2.3 Summary of Subsetting Approaches

Table 1 summarizes the subsetting approaches that we
evaluated in this paper. The first column lists the approach
while the second column lists the maximum subset size, based
on the type (integer vs. floating-point, core vs. memory, and C
vs. FORTRAN). The third column lists the permutations of
each approach and the number of permutations.

3 Simulation Methodology

To gather the program characteristics for PCA, we
instrumented the benchmark binaries with ATOM. To gather
the profiling data for the P&B design simulations and the
results in Section 4, we used SMARTS [15] with sampling and
functional warming on, and while simulating 25,000 samples
initially. The detailed simulation and warm-up lengths per
sampling unit were 1000 and 2000 instructions, respectively.
We used a confidence level of 99.7% with +/- 3% confidence
interval. All SMARTS simulations were run until the sampling
frequency was greater than the recommended frequency. For
the results in Section 4.2, we added next-line prefetching as
described in [6] to the base version of SMARTS.

Table 2 lists the key parameters for the eight processor
configurations that we used for the base processor simulations.
For each issue width, the “aggressiveness” of the processor
increases from left to right. For this paper, since we wanted to
use a set of benchmarks that had a wide range of behavior and
represented a wide range of applications, i.e., general-purpose
computing, we decided to use the SPEC CPU 2000 benchmark
suite. We downloaded pre-compiled Alpha binaries from [12].
Also, to help architects directly use our subsetting results, we
evaluated all 26 benchmarks and all benchmark and input set
pairs (with the exceptions of vpr-place and perlbmk-perfect, as
they both crash SMARTS).

In this paper, with the exception of the high-frequency
subsetting approach, we subset the SPEC CPU 2000 based on
benchmark and input set pairs, instead of just benchmarks. Our
rationale for doing so is based on our observation on how

Table 1. Summary of benchmark subsetting approaches

Approach Max Benchmark +
Input Sets Per Subset Permutations (Total)

PCA 45 4, 5, 6, 7, and 8 principal components (5)
Performance bottleneck

(P&B) 45 Top 3, 5, 7, and all bottlenecks per-benchmark (12)
Top 3, 5, 7 and all bottlenecks across-benchmarks (16)

Integer vs. Floating-point 30 (Integer)
14 (Floating-Point) 30 randomly created subsets (30)

Core-bound
vs. Memory-bound

30 (Core)
14 (Memory) 30 randomly created subsets (30)

Language 32 (C)
9 (FORTRAN) 30 randomly created subsets (30)

Random 45 30 randomly created subsets (30)
High-frequency 45 / 26 All input sets per benchmark / 1 input set (2)

Table 2. Key parameters for eight base processor configurations

Configuration

Parameter #1 #2 #3 #4 #5 #6 #7 #8
Decode, issue,
commit width 4-way 8-way

Branch predictor,
BHT entries

Combined,
2K

Combined,
4K

Combined,
4K

Combined,
8K

Combined,
4K

Combined,
8K

Combined,
16K

Combined,
32K

ROB/LSQ entries 16/8 32/16 32/16 64/32 64/32 128/64 128/64 256/128
Int/FP ALUs,

(mult/div units)
2/2,
(1/1)

4/4,
(4/4)

2/2,
(1/1)

4/4,
(4/4)

6/6,
(4/4)

8/8,
(8/8)

6/6,
(4/4)

8/8,
(8/8)

L1 D-cache size,
assoc, latency (cycles)

8KB,
2-way, 1

16KB,
4-way, 1

32KB,
2-way, 1

64KB,
4-way, 1

16KB,
4-way, 1

32 KB,
4-way, 1

128 KB,
2-way, 1

256 KB,
4-way, 1

L2 cache size,
assoc, latency (cycles)

128KB,
4-way, 15

256KB,
4-way, 12

256KB,
4-way, 10

512KB,
8-way, 7

1024KB,
4-way, 25

2048KB,
8-way, 20

1024KB,
4-way, 15

2048KB,
8-way, 12

Memory latency (cycles):
First, following 150, 10 100, 5 150, 10 100, 5 300, 20 200, 10 300, 20 200, 10

0

10

20

30

40

50

60

70

80

90

100

110

120

130

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Number of Benchmarks in Each Subset

P
er

ce
nt

ag
e

C
PI

 E
rr

or

PCA (7PCs)
PB (Interaction across, 05D)
Random
Frequency (All input sets)

A. PCA, P&B, Random, and High-frequency

0

10

20

30

40

50

60

70

80

90

100

110

120

130

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Number of Benchmarks in Each Subset

Pe
rc

en
ta

ge
 C

PI
 E

rr
or

Integer
Floating-Point
Core
Memory
C
FORTRAN

C

B. Int/Float, Core/Memory, and C/FORTRAN

Figure 1. Absolute CPI accuracy of subsetting approaches, configuration #3

computer architects subset benchmark suites. Namely,
architecture researchers seem to choose a benchmark and then
choose one input set for that benchmark, thereby choosing a
specific benchmark and input set pair, as opposed to choosing

a benchmark and all of its input sets. Therefore, to maximize
the utility of the results and conclusion that we present in this
paper, we follow the lead of our colleagues and subset SPEC
CPU 2000 based on benchmark and input set pairs. Note that,

0

25

50

75

100

125

150

175

200

225

250

275

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Number of Benchmarks in Each Subset

Pe
rc

en
ta

ge
 E

DP
 E

rr
or

PCA (5PCs)
PB (Interaction across, 05D)
Random
Frequency (All input sets)

A. PCA, P&B, Random, and High-frequency

0

25

50

75

100

125

150

175

200

225

250

275

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Number of Benchmarks in Each Subset

Pe
rc

en
ta

ge
 E

D
P

Er
ro

r

Integer
Floating-Point
Core
Memory
C
FORTRAN

B. Int/Float, Core/Memory, and C/FORTRAN

Figure 2. Absolute EDP accuracy of subsetting approaches, configuration #3

in the remainder of this paper, for brevity, we often use the
term “benchmarks” to represent both benchmarks and input
sets.

4 Results and Analysis of Prevailing and

Emerging Benchmark Subsetting Approaches
The following three subsections present the benchmark

subsetting results and our analysis from the perspectives of
absolute accuracy, relative accuracy, and
representativeness/coverage.

4.1 Absolute Accuracy

Good absolute accuracy is important for processor
designers who want to run a small representative subset of the
benchmarks for performance estimation (e.g., estimating the
SPEC score) and for HDL verification. For others, good
absolute accuracy is important for profiling, workload
characterization, and performance estimation.

4.1.1 Absolute Accuracy of CPI Results and Analysis

Figure 1 presents the absolute accuracy of the various
subsetting approaches for CPI for configuration #3. (The
results for the other 7 configurations were extremely similar.)
Figure 1A presents the absolute accuracy results for the PCA,
P&B, random, and high-frequency subsetting approaches,
while Figure 1B presents the results for the other approaches
(Integer vs. floating-point, core-bound vs. memory-bound, and
C vs. FORTRAN).

The x-axis in Figure 1 shows the number of benchmark
and input set pairs in each subset while the y-axis shows the
percentage CPI error for each subset size, as compared to the
full SPEC CPU 2000 benchmark suite. Since there are a total
of 46 benchmark and input set pairs, the maximum number of
benchmark and input set pairs that can be in a subset is 45,
which is the maximum x-value.

Figure 1A shows several “plateaus” in the percentage CPI
error for the high-frequency (“frequency”) subsetting approach.
Since [1] only lists the benchmarks in order of frequency, i.e.,
does not list the frequency of the specific benchmark and input

set pairs, for the “all input set” permutation of the high-
frequency approach, to represent all input sets, we assign the
same percentage CPI error to all input sets for that benchmark.
For example, gzip, which is the most frequently used
benchmark, has five input sets. To represent each of its five
input sets, we set the percentage CPI error for each input set to
be 63.7%, which is the overall percentage CPI error for gzip.

The results in Figure 1 show that PCA (with 7 principal
components) and P&B (Top 5 bottlenecks by percentage of the
total variation in the CPI) are clearly the most accurate – and
consistently so – subsetting approaches. In particular, the
percentage CPI error is consistently less than 5% for subset
sizes larger than 17. In contrast, using any of the other five
approaches to subset SPEC CPU 2000 results in subsets that:
1) Are not representative of the entire benchmark suite (i.e.,
have high percentage CPI error) or 2) Have inconsistent
accuracy for larger subset sizes. An example of the former is
the random approach where the percentage CPI error is still
greater than 15% when half (23) of the benchmark and input
sets are in the subset. An example of the latter is the memory-
bound subsetting approach since its percentage CPI error
alternately increases and decreases with increasing subset size.
These two results illustrate the efficacy of the statistically-
based subsetting approaches.

From the point-of-view of simulation time vs. accuracy,
where the simulation time is proportional to the number of
benchmark and input set pairs in the subset, PCA, P&B, and
high-frequency are the only three approaches where the
percentage CPI error is less than 5% for consecutive subset
sizes. (The percentage CPI error never dips below 5% for
consecutive subset sizes for the other four subsetting
approaches.) To achieve this level of absolute accuracy, PCA
and P&B require 17 benchmark and input set pairs only, or,
approximately one-third of the entire benchmark suite. By
contrast, the high-frequency approach requires 39 benchmark
and input set pairs, or, approximately 80% of the entire suite.

4.1.2 Absolute Accuracy of EDP Results and Analysis

In addition to CPI, EDP is another important metric that

measures the processor’s efficiency. The formula to compute
the EDP is: EDP = CPI * EPI (where EPI is the average energy
consumed while executing one instruction). Figures 2A and 2B
are the corresponding figures to Figures 1A and 1B for EDP
accuracy, again for processor configuration #3. The results for
the other configurations were, again, extremely similar.

The conclusions from Figure 2 are exactly the same as
those from Figure 1. Namely, PCA and P&B are the most
accurate subsetting approaches while the other approaches are
generally very inaccurate. This conclusion is not particularly
surprising given the CPI results that were presented in Figures
1A and 1B.

4.1.3 Comparison of Subsets for Principal Component
Analysis, Plackett and Burman, and High-Frequency
Table 3 shows benchmark and input set pairs that the PCA,

P&B, and high-frequency subsetting approaches select for
subset sizes of 10, 15, 20, and 25. Note that the high-frequency
approach is the de facto approach in computer architecture
research. By comparing the performance metrics of each PCA
or PB subsets vs. the performance metrics of the high-
frequency subset, we can determine why the high-frequency
subsetting approach has lower absolute accuracy.

The results of this analysis shows that, for all four subset
sizes, the high-frequency subsets are less accurate than the two
statistically-based approaches because they include benchmark

Table 3. Comparison of the subsets for PCA, P&B, and High-frequency subsets for 10, 15, 20, and 25
benchmark and input sets. Weights are shown only for the pairs that are in each subset.

Principal Components Analysis Plackett and Burman High-frequency
Benchmark Input Set 10 15 20 25 10 15 20 25 10 15 20 25

graphic 0.067 0.087
log

program 0.044 0.130 0.109 0.100 0.067 0.050 0.040
random 0.065 0.065

gzip

source 0.133 0.111 0.043
wupwise 0.043 0.022 0.040

swim 0.022 0.022 0.022 0.022 0.022 0.050 0.040
mgrid 0.022 0.022 0.087 0.065 0.040
applu 0.022 0.022 0.043 0.043 0.022 0.050 0.040
vpr route 0.022 0.022 0.022 0.022 0.022 0.100 0.067 0.050 0.040

166 0.044
200
expr 0.111 0.111 0.111 0.067 0.152

integrate 0.130 0.043 0.043 0.100 0.067 0.050 0.040
gcc

scilab 0.065 0.065
mesa 0.239 0.050 0.040
galgel 0.022 0.022 0.022 0.065 0.065 0.043 0.022 0.040

110 0.044 0.044 0.044 0.044 0.065 0.065 0.067 0.050 0.040 art 470 0.087 0.043
mcf 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.100 0.067 0.050 0.040

equake 0.067 0.022 0.022 0.022 0.043 0.022 0.022 0.022 0.067 0.050 0.040
crafty 0.022 0.100 0.067 0.050 0.040

facerec 0.089 0.067 0.022 0.040
ammp 0.022 0.022 0.022 0.022 0.022 0.067 0.050 0.040
lucas 0.022 0.022 0.022 0.022 0.022 0.022 0.050 0.040
fma3d 0.111 0.043 0.043
parser 0.022 0.022 0.100 0.067 0.050 0.040

sixtrack 0.178 0.067 0.022 0.022 0.022 0.022 0.022 0.022 0.040
cook

kajiya 0.022 0.109 0.087 eon
rushmeier 0.089 0.067 0.067 0.044 0.067 0.050 0.040
diffmail 0.196

makerand 0.022 0.022 0.043 0.043 0.043
splitmail 535
splitmail 704 0.111 0.111 0.087 0.100 0.067 0.050 0.040
splitmail 850 0.196

perlbmk

splitmail 957 0.156 0.156
gap 0.067 0.050 0.040

1 0.067 0.067 0.067 0.067 0.100 0.067 0.050 0.040
2 0.087 0.109 vortex
3

graphic 0.087 0.087 0.065 0.065 0.100 0.067 0.050 0.040
program 0.111 0.133 0.111 bzip2
source 0.244

twolf 0.022 0.022 0.022 0.100 0.067 0.050 0.040
apsi 0.022 0.022 0.050 0.040

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Number of Benchmarks in Each Subset

Pe
rc

en
ta

ge
 S

pe
ed

up
 E

rr
or

PCA (5PCs)
PB (No interaction per, 03D)
Random
Frequency (All input sets)

A. PCA, P&B, Random, and High-frequency

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Number of Benchmarks in Each Subset

Pe
rc

en
ta

ge
 S

pe
ed

up
 E

rr
or

Integer
Floating-Point
Core
Memory
C
FORTRAN

B. Int/Float, Core/Memory, and C/FORTRAN

Figure 3. Relative CPI accuracy of subsetting approaches for a larger ROB/LSQ, configuration #1

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Number of Benchmarks in Each Subset

Pe
rc

en
ta

ge
 E

D
P

Er
ro

r

PCA (5PCs)
PB (No interaction across, 03D)
Random
Frequency (All input sets)

A. PCA, P&B, Random, and High-frequency

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Number of Benchmarks in Each Subset

Pe
rc

en
ta

ge
 E

D
P

Er
ro

r

Integer
Floating-Point
Core
Memory
C
FORTRAN

B. Int/Float, Core/Memory, and C/FORTRAN

Figure 4. Relative CPI accuracy of subsetting approaches for next-line prefetching, configuration #1

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Number of Benchmarks in Each Subset

Pe
rc

en
ta

ge
 E

D
P

Er
ro

r

PCA (5PCs)
PB (No interaction across, 03D)
Random
Frequency (All input sets)

A. PCA, P&B, Random, and High-frequency

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Number of Benchmarks in Each Subset

Pe
rc

en
ta

ge
 E

D
P

 E
rr

or

Integer
Floating-Point
Core
Memory
C
FORTRAN

B. Int/Float, Core/Memory, and C/FORTRAN

Figure 5. Relative CPI accuracy of subsetting approaches for larger and more associative caches,

configuration #1

and input sets pairs with lower L1 D-cache and L2 hit rates.
Furthermore, for some subset sizes, the branch prediction

accuracy is also lower. For example, for configuration #1, the
L1 D-cache hit rate for the entire suite is 91.1%, but the high-

frequency L1 D-Cache hit rates are 89.7%, 88.2%, 88.3% and
88.9% for subset sizes of 10, 15, 20, and 25, respectively. For
the same configuration, the overall L2 hit rate is 80.3%, but L1
D-cache hit rates for the high-frequency subsets are 77.5%,
74.7%, 75.2%, and 75.9%, respectively. By contrast, the
average L1 D-cache and L2 cache hit rates for PCA and P&B
subsets are much closer to the overall hit rates. Consequently,
and unsurprisingly, the average CPI for the high-frequency
subsets is significantly higher than their PCA and P&B
counterparts.

In particular, the high-frequency subsets contain
benchmark and input set pairs that have relatively low L1 D-
cache hit rates such as: gzip-program (87.8%), swim (82.7%),
art-110 (59.8%), and twolf (88.9%). On the other hand, the
benchmark and input sets pairs that lower the L2 cache hit
rates of the high-frequency subsets include: gcc-integrate
(77.4%), swim (65.3%), vpr-route (67.9%), art-110 (32.8%),
bzip2-graphic (59.9%), and twolf (76.6%).

Finally, since the PCA and P&B subsets in Table 3 have
the best absolute accuracy, it is important to note that
computer architects can use those subsets “out-of-the-box” for
their own simulations.

4.2 Relative Accuracy

As described in the previous section, good absolute
accuracy from a subsetting approach is important to processor
designers and for researchers doing profiling and workload
characterization research. However, for the computer
architects that are researching new processor enhancements,
relative accuracy, e.g., speedup, decreased cache miss rates,
power consumption reduction, etc., is more important.

To quantify the relative accuracy of each the benchmark
subsetting approaches, we quantified the speedup due to the
following microarchitectural “enhancements”: 1) A four-fold
larger reorder buffer and load-store queue, 2) Next-line
prefetching as described in [6], and 3) A L1 D-cache, L1 I-
cache, and L2 cache with four times the capacity of the
original cache and with 8-way associativity, without the
corresponding increase in cache access latency.

To calculate the relative accuracy, we computed the
speedup for each enhancement for all possible subsets. More
specifically, we compute the CPI speedup for the benchmark
and input pairs for that subset. Then to determine the relative
accuracy, we compare calculate the speedup error, i.e., the
difference in speedups when subsetting is not used and when
subsetting is used. The percentage difference between those
speedups is the speedup error, and our measure of relative
accuracy. In other words, we calculate the relative error as
follows:

Relative error = (Speedupwith_Subsetting – Speedupwithout_Subsetting) /

Speedupwithout_Subsetting * 100

Figures 3, 4, and 5 show the relative accuracy for each of the
three enhancements for configuration #1. For this
configuration, the average (mean) speedup across all 46
benchmarks and input set pairs is 25.7% for the ROB/LSQ

enhancement, 7.5% for next-line prefetching, and 56.5% for
the larger and more highly-associative caches.

The results in Figures 3, 4, and 5 are generally similar to
the results in Figures 1 and 2. Namely, PCA and P&B are the
most accurate subsetting approaches and the remaining five
approaches are less accurate. However, the key difference
between these results and those in Figures 1 and 2 is that the
relative error is much lower than the absolute error. For
example, the results in Figures 3, 4, and 5 show that the
relative error is less than 20% for most approaches and for
most subset sizes. On the other hand, the reverse is true for
absolute accuracy. With the exception of P&B and PCA, the
absolute accuracy of the remaining five approaches is greater
than 20% for most subset sizes. The key conclusion from these
results is that most subsetting approaches are accurate enough
to be used for comparative analysis, e.g., speedup, for a much
wider range of subset sizes.

The reason that the relative error is significantly lower
than the absolute error is because there is less variation in the
CPI between different architectures, i.e., base configuration vs.
enhancement, for a subset with the same benchmark and input
set pairs – which is the case for relative accuracy – than in the
CPI variability for the same architecture for different
benchmark and input set pairs – which is the case for absolute
accuracy. This is the same reason that allows computer
architects to use matched-pair comparisons [5] to reduce
simulation time.

Finally, the results for the other configurations and for
EDP were very similar.

4.3 Subset Representativeness and Coverage

In the previous two subsections, we analyzed the absolute
and relative accuracy of the subsetting approaches in terms of
their CPI and EDP accuracy. However, the results in those two
subsections do not measure the representativeness of the
subsetting approaches across a wide range of metrics nor do
they examine how well the benchmark and input set pairs of
each subset are distributed across the entire space of metrics
that the benchmark suite covers. Ideally, the benchmark and
input set pairs in a subset have good absolute CPI and EDP
accuracy while simultaneously covering the entire space of
metrics, as opposed to being clustered around the average CPI,
EDP, and value of each metric.

To quantify the representativeness and coverage of each
subsetting approach, we:

1. Vectorize the performance metrics and power metrics

for each benchmark and input set pair. The
performance metrics include: IPC; branch prediction
accuracy; L1 D-cache, L1 I-cache, and L2 cache hit
rates; and the D-TLB and I-TLB hit rates, while the
power metrics include the power for the rename logic,
branch predictor, reorder buffer, load-store queue,
register file, L1 D-cache, L1 I-cache, L2 cache,
functional units, result bus, and clock network.

2. Normalize the performance metrics to the maximum
possible value of each (the maximum IPC was set to

the issue width for each processor configuration) and
scaled to 100, while the power metrics normalized to
their percentage of the total power consumption.

3. Compute the Euclidean distance between each
benchmark input set not in the subset to each
benchmark and input set pair in the subset.

4. Assign the minimum Euclidean distance as the
distance for the benchmark and input set pair not in
the subset.

5. Sum the Euclidean distances for all benchmark and
input set pairs not in the subset and assign that
number as the total minimum Euclidean distance for
that subset size.

Intuitively, the total minimum Euclidean distance for each

subset represents how well the benchmark and input set pairs
in the subset are spread throughout the entire space of
benchmark pairs. A smaller total minimum Euclidean distance
means that benchmark and input set pairs that are not in the
subset are very close to a benchmark and input set pair that is
in subset. Then, from the viewpoint of representativeness, the

benchmark and input set pairs not in the subset are accurately
represented by a benchmark and input set pair in the subset,
and from the viewpoint of coverage, the benchmark and input
set pairs in the subset effectively cover the benchmark suite.

To understand the correlation between total minimum
Euclidean distance and the difference between two vectors of
performance metrics, consider the following example. Suppose
that the Euclidean distance between two vectors is due solely
to a single metric, e.g., the L1 D-Cache hit rate, and that the
minimum difference in that metric for a benchmark and input
set pair not in the subset to a benchmark and input set pair in
the subset is the same for all benchmark and input set pairs not
in the subset. Assuming that there are 11 benchmark and input
set pairs in the subset, i.e., there are 35 benchmark and input
set pairs not in the subset, and that the minimum difference
between the L1 D-cache hit rates is 3%, since the L1 D-cache
hit rate is the only metric that differs, the minimum Euclidean
distance for any benchmark and input set pair not in the subset
to any benchmark and input set pair in the subset is 3 (square
root of 32), while the total minimum Euclidean distance for all
benchmark and input set pairs not in the subset is 105 (3*35).

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Number of Benchmarks in Each Subset

Eu
cl

id
ea

n
di

st
an

ce
 o

f p
ow

er
 m

et
ric

s

PCA (5PCs)
PB (Interaction across, 05D)
Random
Frequency (All input sets)

A. PCA, P&B, Random, and High-frequency

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Number of Benchmarks in Each Subset

Eu
cl

id
ea

n
di

st
an

ce
 o

f p
ow

er
 m

et
ric

s

Integer
Floating-Point
Core
Memory
C
FORTRAN

B. Int/Float, Core/Memory, and C/FORTRAN

Figure 6. Euclidean distance of performance metrics, configuration #5

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Number of Benchmarks in Each Subset

Eu
cl

id
ea

n
di

st
an

ce
 o

f p
ow

er
 m

et
ric

s

PCA (4PCs)
PB (Interaction across, 05D)
Random
Frequency (All input sets)

A. PCA, P&B, Random, and High-frequency

0

10

20

30

40
50

60

70

80

90

100

110
120

130

140

150

160

170

180
190

200

210

220

230

240
250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Number of Benchmarks in Each Subset

Eu
cl

id
ea

n
di

st
an

ce
 o

f p
ow

er
 m

et
ric

s

Integer
Floating-Point
Core
Memory
C
FORTRAN

B. Int/Float, Core/Memory, and C/FORTRAN

Figure 7. Euclidean distance of power metrics, configuration #5

If the difference between metrics is 5% and if there are only 6
benchmark and input set pairs in the subset (i.e., 40 benchmark
and input set pairs not in the subset), then the total minimum
Euclidean distance is 200 (5*40). Finally, for a subset size of
31, if one metric differs by a minimum 3% and another by a
minimum 4%, the minimum Euclidean distance is 5 (square
root of 32 + 42) and the total minimum Euclidean distance is 75
(5*15).

Figures 6 and 7 show the total minimum Euclidean
distance for performance and power metrics, respectively, for
configuration #5. The results in these two figures show that
PCA and P&B consistently have the smallest total minimum
Euclidean distances of all subsetting approaches. The
difference in the Euclidean distances of the PCA or P&B
approaches to the other approaches is typically over 100 for
the performance metrics and over 15 for the power metrics for
all subset sizes. There are two reasons why there is a smaller
difference in the total minimum Euclidean distances for the
power metrics as compared to the performance metrics. First,
since the power metrics are a percentage of the total power, the
maximum value for any single power metric is significantly
less than 100, which is the maximum value for a performance
metric. As a result, a smaller maximum means that there are
smaller differences in the values of the various power metrics,
which results in a smaller Euclidean distance. Second, due to
static power consumption, there is less variability in the power
results to begin with.

The conclusion from this subsection is that the PCA and
P&B based subsetting approaches produce benchmark subsets
that are significantly more representative than the subsets from
the other five subsetting approaches. In addition, PCA and
P&B are more effective at covering the entire space of the
benchmark suite as compared to the other five subsetting
approaches. This further explains and reinforces the
conclusions reached in the previous subsections.

5 Discussion of Accuracy vs. Profiling Cost

The results in the previous section showed that the two
statistically-based subsetting approaches, PCA and P&B, had
the highest absolute and relative CPI and EDP accuracy,
produced the most representative subsets, and most effectively
covered the benchmark space. However, if the profiling data
needed to generate these subsets is prohibitively high or
sufficiently intrusive and/or if the time needed to process the
profiling data and generate the subsets is too onerous, then
computer architects may avoid using these techniques and opt
for less complex, albeit less accurate, subsetting approaches.
On the other hand, the time needed to generate subsets using
any of the other five approaches is trivial. In the remainder of
this section, we discuss the profiling cost, and the time/effort
needed to generate the subsets.

The profiling cost for P&B is significant. Since the input
parameters, i.e., bottlenecks, need to be low and high values
that are outside their normal range of values, the processor
configurations that the P&B design uses represent
configurations at the corners of the design space, whose
performance can only be measured via simulation. The

simulation time needed to gather the P&B profiling results is
proportional to the number of input parameters – which in this
case required several months – and the time to process the
input parameters is only a few seconds.

Collecting the program characteristics for the PCA
approach requires a specialized functional simulator or
instrumentation to be run each benchmark and input pair.
Since instrumentation using binary instrumentation tools such
as ATOM or PIN is faster than detailed processor simulation,
collecting the program characteristics for the PCA method is
faster than collecting the data set for P&B – the data set for
PCA can be gathered in a single instrumentation run whereas
P&B requires multiple detailed processor simulation runs.
After capturing the program characteristics, computing the
principal components is done in the order of seconds.

6 Summary

For several reasons, including minimizing the simulation
time or due to limitations in the simulation/measurement
infrastructure, computer architects often use only a subset of
the benchmarks in a benchmark suite. Despite the fact that the
virtually all computer architects – based on the results in
published papers – subset benchmark suites such as SPEC, the
accuracy and characteristics of the most popular and/or
proposed approaches is unknown. Using a subset that is not
representative of the entire benchmark suite can, in the worst
case, result in misleading conclusions.

To address this problem, in this paper, we evaluate the
accuracy and representativeness/coverage for the most
promising and popular benchmark subsetting approaches. In
particular, we evaluate the following seven approaches: 1)
Principal components analysis (PCA), 2) Performance
bottlenecks using a Plackett and Burman (P&B) design, 3)
Integer vs. floating-point, 4) Core-bound vs. memory-bound,
5) Language, 6) Random, and 7) By frequency of use, in terms
of their absolute CPI and energy-delay product (EDP)
accuracy, relative accuracy for three processor enhancements,
and representativeness/coverage for 46 benchmark and input
set pairs of the SPEC CPU 2000 benchmark suite. For the
latter five approaches, we evaluate 30 random combinations
for each subset size. For all approaches, we evaluate the entire
range of possible subset sizes.

Our results show that the two statistically-based
approaches, PCA and P&B, have the best absolute CPI and
EDP accuracy. In particular, their CPI and EDP error drops
below 5% for around 20 benchmark and input set pairs. In
contrast, the CPI and EDP error for the other five subsetting
approaches either never drops below 5% or only drops below
5% around 35 benchmark and input set pairs.

To help computer architects use representative subsets, we
give the subsets for PCA and P&B, which are the most
accurate and representative subsets, for several subsets sizes.

For the relative accuracy, we compare the speedup for
each subset against the speedup for the entire suite for the
following enhancements: 1) A larger reorder buffer and load-
store queue, 2) Next-line prefetching, and 3) Larger L1 and L2
caches. The conclusions for relative accuracy are the same as

the conclusions for absolute accuracy, namely, that PCA and
P&B are the most accurate approaches. However, for all
approaches and for corresponding subset sizes, the relative
error is lower than the absolute error due to smaller variations
in the CPI across architectures than across different subsets.

The representative/coverage analysis measures how even
distributed the benchmarks of the subset are distributed across
the entire space of benchmarks for several performance and
power metrics. The conclusion from this analysis is the same
as the conclusion from the absolute and relative accuracy
analysis in that PCA and P&B are the most accurate subsetting
approaches.

Finally, although PCA and P&B are the most accurate
subsetting approaches, the key difference between the two is in
their profiling cost. PCA uses microarchitectural independent
metrics that can be gathered using binary instrumentation, e.g.,
ATOM, while P&B relies on a simulator and needs to the
results of several dozen simulation runs to gather the necessary
profiling information. Therefore, given this result, PCA is the
subsetting approach that has the best combination of accuracy
versus profiling cost.

Acknowledgments

This research is supported in part by US National Science
Foundation grants CCF-0541162 and 0429806, the University
of Minnesota Digital Technology Center, the University of
Minnesota Supercomputing Institute, the European HiPEAC
network of excellence, IBM CAS Program, and Intel. Lieven
Eeckhout is a Postdoctoral Fellow of the Fund for Scientific
Research – Flanders (Belgium) (F.W.O Vlaanderen) and is also
supported by Ghent University, IW, the HiPEAC Network of
Excellence, and the European SARC project No. 27648.

References
[1] D. Citron, “MisSPECulation: Partial and Misleading Use

of SPEC CPU2000 in Computer Architecture
Conferences,” Panel Discussion in International
Symposium on Computer Architecture 2003.

[2] L. Eeckhout, H. Vandierendonck, and K. De Bosschere,
“Workload Design: Selecting Representative Program-
Input Pairs,” International Conference on Parallel
Architectures and Compilation Techniques, 2002.

[3] L. Eeckhout, J. Sampson, and B. Calder, “Exploiting
Program Microarchitecture Independent Characteristics
and Phase Behavior for Reduced Benchmark Suite
Simulation,” International Symposium on Workload
Characterization, 2005.

[4] L. Eeckhout, R. Sundareswara, J. Yi, D. Lilja, and P.
Schrater, “Accurate Statistical Approaches for Generating
Representative Workload Compositions,” International

Symposium on Workload Characterization, 2005.
[5] M. Ekman and P. Stenström, “Enhancing Multiprocessor

Architecture Simulation Speed using Matched-Pair
Comparison,” International Symposium on Performance
Analysis of Systems and Software, 2005.

[6] N. Jouppi, “Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-associative Cache and
Prefetch Buffers,” International Symposium on Computer
Architecture, 1990.

[7] A. KleinOsowski and D. Lilja, “MinneSPEC: A New
SPEC Benchmark Workload for Simulation-Based
Computer Architecture Research,” Vol. 1, June 2002.

[8] D. Montgomery, “Design and Analysis of Experiments”,
Third Edition, Wiley 1991.

[9] A. Phansalkar, A. Joshi, L. Eeckhout, and L. John,
“Measuring Program Similarity: Experiments with SPEC
CPU Benchmark Suites,” International Symposium on
Performance Analysis of Systems and Software, March
2005.

[10] R. Saavedra and A. Smith, “Analysis of benchmark
characteristics and benchmark performance prediction,”
ACM Transactions on Computer Systems, Vol. 14, No.4,
pp. 344-384, 1996.

[11] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,
“Automatically Characterizing Large Scale Program
Behavior,” International Conference on Architectural
Support for Programming Languages and Operating
Systems, 2002.

[12] http://www.eecs.umich.edu/~chriswea/benchmarks/SPEC
2000.html.

[13] H. Vandierendonck and K. De Bosschere, “Many
Benchmarks Stress the Same Bottlenecks,” Workshop on
Computer Architecture Evaluation using Commerical
Workloads, 2004.

[14] H. Vandierendonck and K. De Bosschere, “Experiments
with Subsetting Benchmark Suites,” Workshop on
Workload Characterization, 2004.

[15] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe,
“SMARTS: Accelerating Microarchitectural Simulation
via Rigorous Statistical Sampling,” International
Symposium on Computer Architecture, 2003.

[16] J. Yi, D. Lilja, and D. Hawkins, “A Statistically-Rigorous
Approach for Improving Simulation Methodology,”
International Symposium on High-Performance Computer
Architecture, 2003.

[17] J. Yi. S. Kodakara, R. Sendag, D. Lilja, and D. Hawkins,
“Characterizing and Comparing Prevailing Simulation
Techniques,” International Symposium on High-
Performance Computer Architecture, 2005.

