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ABSTRACT 
Complete system simulation to understand the influence of archi- 
tecture and operating systems on application execution has been 
identified to be crucial for systems design. While there have been 
previous attempts at understanding the architectural impact of Java 
programs, there has been no prior work investigating the operating 
system (kernel) activity during their executions. This problem is 
particularly interesting in the context of Java since it is not only the 
application that can invoke kernel services, but so does the under- 
lying Java Virtual Machine (JVM) implementation which runs 
these programs. Further, the JVM style (JIT compiler or inter- 
preter) and the manner in which the different JVM components 
(such as the garbage collector and class loader) are exercised, can 
have a significant impact on the kernel activities. 

To investigate these issues, this research uses complete system 
simulation of the SPECjvm98 benchmarks on the SimOS simula- 
tion platform. The execution of these benchmarks on both JIT 
compilers and interpreters is profiled in detail, to identify and 
quantify where time is spent in each component. The kernel activ- 
ity of SPECjvm98 applications constitutes up to 17% of the exe- 
cution time in the large dataset and up to 31% in the small dataset. 
The average kernel activity in the large dataset is approximately 
10%, in comparison to around 2% in four SPECInt benchmarks 
studied. Of the kernel services, TLB miss handling is the most 
dominant in all applications. The TLB miss rates in the JIT com- 
piler, dynamic class loader and garbage collector portions of the 
JVM are individually analyzed. In addition to such execution pro- 
files, the ILP in the user and kernel mode are also quantified. The 
Java code is seen to limit exploitable parallelism and aggressive in- 
struction issue is seen to be less efficient for SPECjvm98 bench- 
marks in comparison to SPEC95 programs. Also, the kernel mode 
of execution does not exhibit as much ILP as the user mode. 
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1. INTRODUCTION 
Java offers the "write-once run-anywhere" promise that helps to 
develop portable software and standardized interfaces spanning a 
spectrum of hardware platforms. The Java Virtual Machine (JVM) 
is the cornerstone of this technology, and its efficiency in execut- 
ing portable Java bytecodes is crucial for the success and wide- 
spread adoption of Java. A first step towards building an efficient 
JVM is to understand its interaction with the underlying system 
(both hardware and operating system), and to identify the bottle- 
necks. Such a study can provide information to optimize both sys- 
terns software and architectural support for enhancing the perform- 
ance of a JVM. In addition, a closer look at the execution profile of 
the JVM can also give revealing insights that can help to restruc- 
ture its implementation. To our knowledge, existing studies [1, 2, 
3, 4, 5, 6, 7, 8] have been confined to examining JVM profiles 
from the architectural perspective, and there has been no attempt at 
understanding the influence of the operating system activities. It is 
becoming increasingly clear [9, 10, 11, 12] that accurate perform- 
ance analysis requires an examination of complete system - archi- 
tecture and operating system - behavior. 

Adhering to this philosophy, this paper presents results from an 
in-depth look at complete system profiling of the SPECjvm98 
benchmarks, focusing on the operating system activity. Of the dif- 
ferent JVM implementation styles [13, 14, 15, 16, 17, 18], this pa- 
per focuses on two popular techniques - interpretation and Just-In- 
Time (JIT) compilation. Interpretation [13] of the portable Java 
byte codes was the first approach that was used, and is, perhaps, 
the easiest to implement. In contrast, JIT compilers [14, 15, 16], 
which represent the state-of-the-art, translate the byte-codes to ma- 
chine native code at runtime (using sophisticated techniques) for 
direct execution. While JIT compilers are known to outperform 
interpreters, it is still import~t  to understand the performance of 
the interpretation process since it is a popular paradigm of Java 
execution and since it is an integral part of sophisticated JIT com- 
pilers [19]. Further, interpreters need a lower amount of memory 
than their JIT compiler counterparts, which can become important 
in resource-constrained environments, such as hand-held devices. 

While complete system simulation has been used to study sev- 
eral workloads [9, 10, 11], it has not been used in the context of 
Java programs or JVM implementations. A JVM environment can 
be significantly different from that required to support traditional 
C or FORTRAN based code. The major differences are due to: 1) 
object-griented execution with frequent use of virtual method calls 
(dynamic binding), dynamic object allocation and garbage collec- 
tion; 2) dynamic linking and loading of classes; 3) program-level 
multithreading and consequent synchronization overheads; and 4) 
software interpretation or dynamic compilation of byte-codes. 
These differences can affect the behavior of the operating system 
kernel in a different manner than conventional applications. For 
instance, dynamic linking and loading of classes can result in 
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higher file and I/O activities, while dynamic object allocation and 
garbage collection would require more memory management op- 
erations. Similarly, multithreading can influence the synchroniza- 
tion behavior in the kernel. A detailed profile of the interaction 
with the hardware and operating system can help us understand 
such intricacies so that the JVM can be restructured for better 
performance. Further, such profiles are also useful from the archi- 
tectural and operating systems perspective to identify enhance- 
ments for boosting Java performance. As an example, one could 
opt to provide a multi-ported cache if it is found that memory 
bandwidth related stall cycles are a major impediment to increasing 
instruction-level parallelism. 

Towards the goal of studying and profiling the complete system 
(architecture and operating system) behavior when executing Java 
programs, this paper specifically attempts to answer the following 
questions: 

* How much time is spent in user and kernel modes? What kernel 
activities are exercised during the execution, and how much over- 
head is incurred in each of these activities? Are Java studies with- 
out OS activity representative of the aggregate Java execution be- 
havior? How much of the time is spent in actually executing in- 
structions (useful work), as opposed to being spent in stalls, syn- 
chronization and idling? 
• Are these profiles different for the JIT compilation and inter- 
preter modes? Can we attribute the kernel activities to specific 
phases (class loading, garbage collection, etc.) of the JVM execu- 
tion? 
• How are the kernel and user parts of the JVM execution suited 
to the underlying parallelism in modem microprocessors? What are 
the characteristics of these portions influencing the instruction 
level parallelism (ILP) that they can exploit? What is the ideal 
speedup that one could ever get for these portions? 

We set out to answer these questions using the SPECjvm98 
[20] benchmarks and the SimOS [10] complete system simulator. 
We find that the kernel activities are not as insignificant as in four 
studied SPEC95 [21] benchmarks. On the average, the 
SPECjvrn98 workloads spend 10% of their execution time in ker- 
nel, contrasting to the less than 2% of kernel time found in studied 
SPEC95 benchmarks. Most of the kernel time is spent in TLB 
miss handling, with a significant fraction due to Java specific fea- 
tures for the JIT compiler mode. Among the architectural im- 
provements, the most notable gain (20%-32%) is achieved by a 2- 
ported cache. We also find that dynamic scheduling, wide issue 
and retirement are not very effective for SPECjvm98 codes due to 
the inherent ILP limitations of Java code. 

The rest of this paper is organized as follows. The next section 
gives an overview of the experimental platform and workloads. 
Section 3 presents the execution time and detailed statistics for the 
user and kernel activities in these workloads. Section 4 explores 
the ILP issues. Finally, Section 5 summarizes the contributions 
and implications of this work and identifies directions for future 
research. 

2. EXPERIMENTAL METHODOLOGY 
The experimental platform used to perform this study is SimOS 
[11, 22, 10], a complete simulation environment that models 
hardware components with enough detail to boot and run a full- 
blown commercial operating system. In this study, the SimOS ver- 
sion that runs the Silicon Graphics IRIX5.3 operating system was 
used. The interpreter and JIT compiler versions of the Java Devel- 
opment Kit 1.1.2 [23] from Sun Microsystems are simulated on 
top of the IRIX 5.3 operating system. Our studies are based on 
programs from the SPECjvm98 suite (see Table 1), a set of pro- 
grams intended to evaluate performance for the combined hard- 
ware (CPU, cache, memory, and other platform-specific perform- 
ance) and software aspects (efficiency of JVM, the JIT compiler, 
and OS implementations) of the JVM client platform [20]. The 
SPECjvm98 uses common computing features such as integer and 
floating point operations, library calls and I/O, but does not in- 
clude AWT (window), networking, and graphics. Each benchmark 

can be run with th r~  different input sizes referred to as s l ,  s l0  and 
sl00; however, i twas  observed that these data sizes do not scale 
linearly, as the naming Suggests. 

T a b l e  1. S P E C j v m 9 8  W o r k l o a d s  
Benchmarks i Description 

compress Modified Lempel-Ziv method (LZW) to 
conal~tess and decompress large file 

jess Jav,i'expert shell system based on NASA's 
CLIPS expert system . 

clb Perforn~ multiple database functions on a 
memory resident database 

j a v a c  The JDK 1.0,2 Java compiler 'compiling 
225,000 lines of code 

mpegaudio Decoder to decompress MPEG-3 audio file 

mere Dual-threaded raytracer 

j a e k  Parser generator with lexical analysis, early" 
version of what is now JavaCC 

SimOS includes multiple processor simulators (Embra, Mipsy, 
and MXS) that model the CPU at different levels of detail [10]. 
We use the fastest CPU simulator, Embra [24] to boot the OS and 
perform initialization, and then use Mipsy and MXS, the detailed 
CPU models of SimOS to conduct performance measurements. For 
the large and complex workloads, the booting and initialization 
phase may cause the execution of  several tens of billions of in- 
structions [12]. SimOS has a cheekpointing ability which allows 
the hardware execution status (e.g. contents of register file, main 
memory and I/O devices) to besaved as a set of files (dubbed as a 
checkpoint), and simulation may resume from the checkpoint. This 
feature allows us to conduct multiple runs from identical initial 
status. To ensure that SimOS accurately simulates a complete exe- 
cution of each workload, we write annotations that allow SimOS to 
automatically invoke a studied workload after a checkpoint is re- 
stored and to exit simulation as soon as the execution completes 
and OS prompt is returned. Our techniques, which avoid the need 
of interactive input to control the simulation after it begins and 
before it completes, make each run complete, accurate, and compa- 
rable. 

The performance results presented in this study are generated by 
Mipsy and MXS, the detailed CPU models of SimOS. Mipsy mod- 
els a simple, single-issue pipelined processor with one-cycle result 
latency and one-cycle repeat rate [10]. Although Mipsy is not an 
effective model from the perspective of detailed processor per- 
formance investigations, it does provide valuable information such 
as TLB activities, instruction counts, and detailed memory system 
behavior. We use Mipsy to generate the basic characterization 
knowledge and memory system behavior of studied workloads. 

The performance evaluation of rnicroarchitecture level optimi- 
zations are done with MXS [25], which models a superscalar mi- 
croprocessor with multiple instruction issue, register renaming, 
dynamic scheduling, and speculative execution with precise ex- 
ceptions. Our baseline architectural model is a four issue super- 
scalar processor with M1PS R10000 [26, 27] instruction latencies. 
Unlike the MIPS R10000, our processor model has a 64-entry in- 
struction window, a 64-entry reorder buffer and a 32-entry 
load/store buffer. Additionally, all functional units can handle any 
type of instructions. Branch prediction is implemented as a 1024- 
entry table with 3-bit saturating counter predictors. By default, the 
branch prediction algorithm allows fetch unit to fetch through up 
to 4 unresolved branches. 

The memory subsystem consists of a split L1 instruction and 
data cache, a Unified L2 cache, and main memory. The processor 
has a MIPS R4000 TLB with a base page size of 4KB. The LI in- 
struction cache is 32KB, and has a cache line size of 64-bytes. The 
L1 data cache is 32KB, and has 32-byte lines. The L2 cache is 
1MB with 128-byte lines. A hit in the L1 cache can be serviced in 
one cycle, while a hit in the L2 cache is serviced in 10 cycles. All 
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caches are 2-way associative, with LRU replacement and write 
back write miss allocation policies and have four miss status han- 
ding registers (MSHR) [28]. Main memory consists of 256 MB 
DRAM with a 60-cycle access time. Our simulated machine also 
includes a validated HP97560 disk model and a single console de- 

vice. The described architecture is simulated cycle by cycle. The 
instruction and data accesses of both applications and operating 
system are modeled. 
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The execution time of each workload is sepa- 
rated into the time spent in user, kernel, and idle 
(idle) modes on the SimOS Mipsy CPU model. 
User and kernel modes are further subdivided into 
instruction execution (user instr, kernel inset), 
memory stall (user stall, kemel stall), and syn- 
chronization (kernel sync, only for kernel mode). 
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"rile JVM and SPECjvm98 could be ported to SimOS in a 
straightforward manner because the SimOS environment allows 
any binary that is compatible to the IRIX 5.3 operating system. We 
are able to investigate complete executions of real world work- 
loads due to this reason. In order to validate our experimental envi- 
ronment, during the early stages of this study, we worked with 
pmake, SPLASH-2 and some SPEC95 benchmarks and compared 
our experimental results with those published in [12, 25, 29, 30]. 
After the results were validated, we switched to the SPECjvrn98 
suite. 

3. KERNEL ACTIVITY OF SPECjvm98 

3.1 Execution Profile Using JIT Compiler and In- 
terpreter 

Figure 1 shows the execution time profile of the SPECjvrn98 
benchmarks for JIT compiler mode of execution. The measured pe- 
riod includes time for loading the program, verifying the class 
files, compiling on the fly by JIT compiler and executing native in- 
struction stream on simulated hardware. The profile is presented in 
terms of the time spent in executing user instructions, stalls in- 
curred during the execution of these instructions (due to memory 
and pipeline stalls), the time spent in kernel instructions, the stalls 
due to these kernel instructions, synchronization operations within 
the kernel and any remaining idle times. Some of the applications 
(compres s, jack,  and j avac) iterate multiple times over the same 
input [35], which contributes the repetitive shape of some graphs 
in Figure 1. 

Table 2 summarizes the breakdown of execution time spent in 
kernel, user, and idle for each SPECjvm98 benchmark. The kernel 
activity is seen to constitute 0.2% (mpegaudio with i n t r )  to 
17% ( jack  with j i t )  of the overall execution time. On the av- 
erage, the SPECjvm98 programs spend 10.4% (with j i t )  and 
7.7% (with i n t r )  of their execution time in kernel, contrasting to 
the less than 2% of that found in SPECInt95 benchmarks. This 
fact implies that ignoring kernel instructions in SPECjvm98 
workloads study may not represent complete and accurate execu- 
tion behavior. 

Table 2. Execution Time Percentages 
(sl00 Dataset, J: with JIT compiler, I: with Interpreter) 

, m N ~ m 

comp J 92.81 i87.19 5 .62 4 .30  3.78 0 . 4 9  0 .03  2.89 
I 98.~ 9~.23 0 .65  0 ,~2 0 .69  Q.12 0 .01  0.30 

jess J 84.95 73.63 11.32 14.90 14.19 0 .66 0 .05  0.15 
I 92.26 185.82 6.4,4 7 .67 7 .32  0 .33  0 . 0 2  0.07 

db J 87.10 ~77.50 9 .60  12.64 !i.91 0 .69  0 . 0 4  0.26 
I 83.28 176.90 6 .38  16.~7 16.0~ 0 .50 0 . 0 2  0.15 

javac J 84.31 170.92 1~.39 14.92 13.85 1.03 0 , 0 4  0.77 
I 88.~7 !79.77 ~ .80  10.92 10.15 0.75 0.Q2 0.~1 

mpeg J 99.08 96.94 2 .14 0 .73 0 .44  0 . 2 6  0 .03  0.19 
I 99.78 98.95 0 .83 0.2Q 0 .12  0 .07  0.01 0.0~ 

mtrt J 91.22 80.34 10.88 8.60 7.86 0.71 0 . 0 3  0.15 
1 98.26 94.33 3.93 1.70 !.22 0 .47  0.01 0.04 

jack J 82.94 72.51 10.43 16.90 13.51 2 .96 0.4.3 0.16 
I 83.78 74.08 9 .70  16.11 13.25 2.52 0.34 0.11 

Tables 3 and 4 further break down the kernel activities into spe- 
cific services. These tables give the number of invocation of these 
services, the number of cycles spent in executing each routine on 
the average, a break down of these cycles between actual instruc- 
tion execution, stalls and synchronization. The memory cycles per 
instruction (MCPI) while executing each of these services is also 
given together with its breakdown into instruction and data por- 
tions. The read or write kernel may involve disk accesses and sub- 
sequent copying of data between file caches and user data struc- 

tures. It should be noted that the time spent in disk accesses is not 
accounted for within the read or write kernel calls, but will figure 
as idle times in the execution: profile (because the process is 
blocked on UO activity). So the read and write overheads are 
mainly due to memory copy operations. 

In the execution profile graphs, we see that the bulk of the time 
is spent in executing user instructions. This is particularly true for 
rapeg that spends 99% of its execution in user instructions in both 
interpreter (Profile graphs for interpreter can be found in [31 ] and 
are omitted for lack of space) and YlT compiler modes. The rapeg 
benchmark decompresses audio files based on the MPEG layer3 
audio specification. While I/O (read) is needed to load the audio 
files, subsequent executions are entirely user operations. These op- 
erations are mainly compute intensive with substantial spatial and 
temporal locality (as can be seen in the significantly lower user 
stalls compared to other applications in Table 2). This locality also 
results in high TLB hit rates making the TLB handler (utlb) invo- 
cation infrequent. This is also the reason why the percentage of 
kernel time spent in utlb is much lower (less than 35% in both exe- 
cution modes) as compared to the othe!" applications (See Tables 3 
and 4). As a result, other service routines such as the clock, read 
and runqproc constitute a reasonabl6fraction of the kernel execu- 
tion time. 

While user execution constitutes over 90% of the time in com- 
p r e s s  as well, one can observe spikes in the kernel activity in the 
execution. This benchmark reads in five tar files and compresses 
them. These operations are followed by the decompression of the 
compressed files. The spikes are introduced by the file activities 
that can be attributed to both the application (loading of the five tar 
files) as well as the JVM characteristics. Most of the time spent in 
these spikes (read) is ir~ memory stalls, particularly when reading 
data from file buffers. This is reflected in the higher d-MCPI com- 
pared to i-MCPI for the read routine in  Tables 3 and 4. Other ker- 
nel routines such as demandzero that is used to initialize new 
pages before allocation, and the process clock interrupt (clock) 
routines also contribute to the stalls. Despite these spikes, I/O ac- 
tivity still constitutes less than 10% of the kernel execution time. 
In addition to the spikes, we also see a relatively uniform presence 
of kernel instructions during the course of execution. As evident 
from Tables 3 and 4, this is due to the handling of TLB misses. In 
the user mode and with the JIT compiler, we find around 5% of the 
time being spent in stalls. The JIT compiler generates and installs 
code dynamically during execution resulting in bursty writes to the 
memory, leading to increased memory stalls in the JIT mode. 

In general, the relatively flat kernel activity in the lower portion 
of Figure 1 is mainly due to TLB miss handling while spikes can 
be attributed to other services (read in particular). The kernel ac- 
tivity in mere and j e s s  ate dominated by the TLB miss handling 
with a small part spent in I/O (read) during initial class loading. 
On the other hand, the I10 (read) component of j ack  is 20-25% of 
the kernel execution time, with the stalls from this component 
showing up in the execution profile graphs. The TLB miss han- 
dling still constitutes the major portion. Benchmark j ack  performs 
16 iterations of building up a live heap structure and collapsing it 
again while repeatedly generating a parser from the same input 
[35]. This behavior explains the repeated pattern observed for the 
kernel activity. The TLB miss handling overhead of javac  is not 
as uniform as in the other applications. This application is a Java 
compiler that compiles the code for the j e s s  benchmark repeat- 
edly for four times. We observe this non-uniformity in the user 
stalls (top portion of the profile). This can be attributed to the code 
installation spikes during code generation by the compiler applica- 
tion. This is similar to the reason for the differences in stall be- 
haviors between the JIT compiler and interpreter mode for com- 
press. Code installation also worsens the locality of the application 
[2] resulting in higher TLB misses during those phases. 

Figure 2 shows the memory stall time expressed as memory stall 
time per instruction (MCPI). The stall time is shown separately for 
the both the kernel (-K) and user (-13) modes and is also decom- 
posed into instruction (-I) and data (-D) stalls. Further, the stalls 
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are shown as that occurring due to L1 or L2 caches. For both the 
JIT compiler and interpreter modes of execution, it is observed that 
the kernel routines can experience much higher MCPI than user 
code, indicating the worse memory system behavior of the kernel. 
For example, mpeg has a MCPI of 0.55 within the kernel compared 
to the negligible MCPI for the user mode, since it touches a num- 
ber of different kernel routines (See Tables. 3 and 4) and data 
structures. Fortunately, the kernel portion foitms a maximum of 
only 17% of the overall execution time among all the SPECjvm98 
benchmarks and this mitigates the impact on overall MCPI. It can 
also be observed from Figure 2 that the MCPI in the user mode is 

less for the interpreter mode as compared to the JIT mode. The 
bursty writes during dynamic compilation and the additional non- 
memory instructions executed while interpreting the bytecodes re- 
sult in this behavior, It is also observed that the stalls due to data 
references are more significant than that due to the instruction ac- 
cesses. The MCPI due to L2 cache accesses is quite small for the 
compress and mpeg workloads that exhibit a significant data lo- 
cality. The other SPECjvm98 benchmarks can, however, benefit 
from stall reduction techniques employed for the L2 cache. 

Table 3. OS Kernel Characterization of SPECjvm98 Workloads (wi th  J I T  C o m p i l e r  and sl00 Datase t )  
utlb fault reloads the TLB for user addresses, demandzero is a block clear operation occurs when the operating system allocates a page 

for data. (The page has to be zeroed out before being used.) The read system calls is responsible for transferring data from kernel address 
address space, clock and vfault are clock 

Benchmarks Service %Kerne! Num. Cycles " %Exec %Stall " % Sync MCPI d-MCPI i-MCPI 
u.tlb 80.85 8.64t~+07 13 99 I 10 0.01 0.01 0 
read 9.51 6317 21140 39 ~J8 3 1.42 1,32 0.1 

compress clock 3.41 116328 2934 ~,7 i60 3 1,56 1,07 0.49 
demand zero 2.33 4807 6813 44 i53 3 1.13 1 0,13 
other 3.90 . . . . . . . . . . . . . . . .  
utlb 95. l 0 3.69E+08 13 98 2 0 0.02 0.02 0 

jess clock 1.48 17342 4396 26 72 ~ 2.77 !,44 1.33 
read 1.40 !20889 3474 .67 i22 11 0.3 0.04 0.26 
other 2.02 . . . . . . . . . . . . . . . .  
utlb 94.17 5.60E+08 13 97 3 0 0.03 0.03 0 

cab clock 1.95 131439 4917 23 175 2 3.21 ! .64 1.57 
rf~td 1,44 30048 3804 61 29 10 0.41 0,1 0.31 
other 2.44 . . . . . . . . . . . . . .  
utlh - 91.39 4.71E÷08 13 96 4 0 0.04 0.04 0 
D.BL FAULT 3.82 12812267 94 90 10 0 0.11 1.07 0.04 

j a v a c  clock 1.60 123302 4786 2~ 74 3 3,1 1.41 i .69 
.rrfead i .0 110652 6386 48 46 6 0.89 0.41 0.48 
other 2.19 . . . . . .  I . . . . . . . . . .  
utlb 34_22  15273604 14 90 10 0 0.11 0.11 0 
r i s k  23.34 15070 3426 32 ; 65 3 1.96 0.93 1.03 
read 19.47 18013 5376 55 137 8 0.61 0.28 0.33 
mnooroc 4.09 l I 9039903 48 149 3 0.99 0.39 0.6 
demand zero 3.09 ' 997 6865 43 ! 54 3 1.18 i 0.18 

mpeg BSD 2.07 4359 1052 52 i4~ 3 0.84 0,~3 0.51 
timein 1.66 1008 3633 44 148 8 0.99 0.34 0.65 
caeheflush 1.64 11821 1995 51 145 4 0.85 0.38 0.47 
open 1.49 1228 14470 56 L30 14 0.44 0.16 0.28 
fork 1.16 ~26 99071 39 51 10 1,1 0,57 0.53 
other 7.77 . . . . . . . . . . . . . . .  
utlb 93.41 1.61 E÷08 13 95 5 0 0.05 i0.05 0 

mtrt clock 2.45 13745 4222 26 71 3 2.64 11.26 1.38 
read 1.19 7403 3804 64 ~6 10 0.36 !0.11 0.25 
other 2.95 . . . . . . . . . . . . . . . . .  
uflb 63.13 2.38E÷08 13 95 5 0 ~ 0.05 0.05 0 
cecad 25.21 296866 4401 52 40 8 i0.67 0.09 0.58 

j a c k  BSD 9.32 585482 825 67 30 3 2017 0.14 0.3 
.¢10¢k 1.09 15332 3686 30 68 2 0.92 1.28 
other 1 . 2 5  . . . . . . . . . . . . . . . .  

~i~ I ~" "W jit t L~ 4 EE t 

I (a) 0 . 4 0  

O.IO 

0 .0  

°16° intr 

! i  ~ i i l  !el (b) 

Figure 2. Memory Stall Time in Kernel (-K) and User (-U) Modes: (a) jit, (b) intr, both with sl00 Dataset 
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Table 4. OS Kernel Characterization of 
Benchmarks Service % Kernel Num. 

utlb 73.46 1.39E+08 

compress 

jess 

db 

j avac 

mpeg 

mtrt 

jack 

clock 
read 
runqproc 
timein 
demandzero 
other 

13.64 152657 
5.32 6 3 2 4  
3.20 1 
1.15 9336 
1.02 
2.21 

uflb 94.20 
clock 2.38 
read 
other 

other 

3767 

4.17E+08 
38068 

1.30 20896 
2.12 

utlb 96.64 [ 1.38E+09 
clock 1.21 !56665 

I .. 2.15 
93.67 I 5.53E+08 uflb 

clock 1.82 
DBL FAULT 1.76 
other 2.75 
clock 49.93 
utlb 16.31 

12.06 

36676 

mnqproc 
read 

1487739 
. _  

136610 
5643427 
1 

7.82 8020 
fimein 4.59 8327 
fork 2.48 26 
bdflush 1.30 1 

1.09 857 
4.42 -- 
83.04 7.95E+07 

demand zero 
other 
utlb 
clock 9.13 47562 
read 1.77 7410 

1.75 l 
1.0 2173 
3.31 -- 

0.93 

rtmqproc 
demand_zero 
other 
uflb 70.21 3.51E+08 
read 20.30 296873 
BSD 7.48 585470 
clock 1.08 21211 

. .  other 

i Cycles 

13 
2245 
21119 
8026993 
3107 
6786 
. .  

13 
3656 
3625 
- .  

13 
4008 
. .  

14 
3972 
95 

1974 
16 
6511053 
5268 
2976 
515111 
7014395 
6856 
. _  

17 
3096 
3848 
2821687 
7375 

14 
4672 
872 
3495 

vm98 Workloads (with Interpreter and sl00 Dataset) 
%Exec %Stall % Sync MCPI d-MCPI i-MCPI 

98 2 0 0.02 0.02 0 
49 48 3 0.94 0.67 0.27 
39 58 3 1.42 1.32 0.10 
54 4 3  3 0.76 0.35 0.41 
54 36 10 0.60 0.30 0.30 
44 53 3 1.12 0.99 0.13 

99 1 0 .0.01 0.01 0 
31 67 2 2.14 1.13 1.01 
65 25 10 '~ 0.35 0.04 0.31 

98 2 0 0.02 0.02 0 
28 70 2 2.44 . 1.33 1.11 

96 4 0 0.04 0.04 0 
28 70 2 2.4,0 1.21 1.19 
91 9 0 0.10 0.07 0.03 

55 41 : "; 4 0.71 0.45 0.26 
83 17 0 0.20 0.20 0 
58 38 4 0.61 0.26 0.35 
56 36 8 0.57 0.25 0.32 
57 33 10 0.53 0.27 0.26 
42 47 11 0.97 0.57 0.40 
37 61 2 1.56 1.35 0.21 
43 54 3 1.18 1.0 0.18 

77 23 0 0.29 0.29 0 
36 61 3 1.66 1.06 0.6 
63 27 10 0.38 0.11 0.27 
47 50 3 0.99 0.41 0.58 
40 57 3 1.31 1.09 0.22 

95 5 0 ]0.05 0.05 0 
49 43 8 10.77 0.09 0.68 
63 33 4 0.52 0.21 0.31 
31 66 3 2.03 0.85 1.18 
. . . . . .  I . . . . . .  

3.2 Differences within JVM Execution Styles 
and Dataset Sizes 
Until now we have made some general observations regardless of  
the JVM execution style. We identify below some differences in 
the behavior of interpreters and J1T compilers. 

• In general, looking at Table 2, the ratio of the time spent in exe- 
cuting instructions to the time spent in stalls in the user mode is 
lower for the JIT compiler as compared to the interpreter mode. 
This behavior is not only due to the code installation in JIT com- 
piler that increases stall times, but also due to the better data and 
instruction locality of the interpreter loop compared to the native 
code execution [2]. 

• An important difference between the two modes is shown in 
Figure 3. We observe in five of  the applications, the TLB miss rate 
is much higher in the JIT compiler. As in the previous observation 
for Table 2, the better locality in the interpreter loop translates to a 
higher TLB hit rate compared to the JIT compiler. However, the 
TLB miss rates of  cab and j a c k  are lower in the JIT compiler 
which appears somewhat counter-intuitive. A detailed investiga- 
tion of the interpreter behavior for these codes leads us to the fol- 
lowing reasoning. Benchmark db has a few methods (658 unique 
methods called 91753107 times) that execute repeatedly while ac- 
cessing several data items at random to perform database transac- 

tions. In both modes, the locality for these data items is relatively 
poor. This poor data locality also interferes with the access locality 
for the bytecode stream in the interpreter mode, where the bytecodes 
are treated as data by the interpreter loop. Since method reuse for 
the bytecode stream is high for rib, this effect is amplified resulting 
in a higher TLB miss rate in the interpreter mode. While executing 
j a ck ,  a significant amount of  time is spent in user and kernel stalls 
when reading 17 files during execution. This overshadows any dif- 
ference in TLB miss behavior between both style of  execution. The 
differences in TLB miss rate automatically translate to the differ- 
ences in the percentage of  kernel execution times between the two 
modes as shown in Table 2, particularly for those applications 
where the TLB miss handling overshadows the other kernel serv- 
ices. 

We have made all the above observations for the s l00  data set of  
the SPECjvm98 suite. We have also conducted a similar study for 
the sl and s l0  data sets [31]. Table 5 shows the kernel activities for 
these applications with the sl  and s l0  data set. 

An interesting observation is the fact that idle times (due to file 
reads) can be seen with the smaller data sets. As mentioned earlier, 
idle times are due to disk activity when the operation misses in the 
file cache. With the larger data set (sl00) that operates on the same 
set of files/blocks as a smaller data set, the longer execution time 
makes it difficult to give any prominence to the idle times in Figure 
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1. In most applications, the operation is invoked repeatedly to the 
same files/blocks leading to a higher hit percentage in the file 
cache while using the s l0 and sl00 data sets. As a result, we ob- 
served that the percentage of kernel time spent in the read call 
goes up for the smaller data sets. 

2 . 8  

.= 

2 . 4  

2 . 0  

1 . 6  

1 . 2  

0.8 

0 . 4  

o 
c o m p r e s s  j e S S  ¢Ib ja'~stc m p e g  m t r t  j a c k  

Figure 3. TLB Misses Behavior for 
SPECjvm98 Benchmarks 

Table 5. Execution Time Breakdown for s l  and sl0 
with JIT onl 

;trap t l  92,25 87.13 5.12 6.06 4.67 1.20 0.19 1169 
~10 83.57 78,50 5,07 5.44 4,3,1 0,97 0.16 10,99 

ess ~1 61,95 51.49 10.46 30.28 21.71 6.50 2.07 7.77 
~10 79.10 7030 8.40 16.99 13,61 2.66 0.72 1.91 
~1 52.07 44,19 7.88 30,91 20.12 8.23 2,56 17,02 
~10 79.08 70.45 8.63 15.89 12.69 2.45 0.75 ;.03 

javac ~1 71.18 62.08 9.10 18.56 12.17 5.13 1.26 10.26 
S10 73.06 62.50 10.56 11.99 %89 1.82 0.28 14.95 

xlpog ~1 81.00 76.12 4.92 10.92 6 .79  3 .27 0.86 1.04 
SI0 96.21 93.88 2 . 3 3  2.25 1.41 0 .70  0.14 1.54 

axtrt SI 89.99 81.23 8 . 7 6  7 . 2 7  5 .08  1.87 0.32 2.74 
SI0 91.98 82.50 9.48 6.71 5.37 1.18 0.16 1.31 

jack S1 80.53 70.34 10.19 17.36 13.31 3 .46 0.59 2.11 
Sl0 81.47 71.34 10.13 17.27 13.46 3.30 0.51 1.26 

3 .2  T L B  M i s s  A c t i v i t y  in Different Parts of  the 
JVM 

Since the TLB miss handler contributes to most of the kernel ac- 
tivity for both the JVM execution modes, we investigated the TLB 
characteristics in more detail to analyze the causes for the TLB 
misses. The TLB misses (See Table 6) that occurred during JVM 
execution while executing user code were split into those that oc- 
curred during class loading, garbage collection and dynamic com- 
pilation (for JIT mode only). Further, the misses in the unified 
TLB are split into those resulting from instruction or data accesses. 
The results for this section was performed with the sl data set (due 
to the time-consuming nature of selective profiling). We believe 
that the TLB behavior in these parts of the JVM due to Java's 
unique characteristics still hold good for the sl00 data set. How- 
ever, the percentage contribution of TLB misses due to dynamic 
compilation and loading will decrease with increased method reuse 
in the sl00 data set. The key observations from this study are 
summarized below: 
• The TLB miss rate due to data accesses is higher than that due to 
instruction accesses in both the execution modes. This suggests 
that the instruction access locality is better than that of data ac- 

cesses and is consistent with the cache locality behavior exhibited 
by SPECjvm98 benchmarks [2]. It is also observed that this behav- 
ior is true for the different parts of the JVM execution studied. In 
particular, this behavior is accentuated for the garbage collection 
phase, where the data miss rate is an order of magnitude or more 
than the instruction miss rate. This is due to the garbage collection 
of objects that are scattered in the heap space by a relatively small 
code sequence. 
• The TLB locality is better for the interpreter mode as compared to 
the JIT mode for both instruction and data accesses. One of the rea- 
sons for such a behavior is the higher miss rate during dynamic 
compilation (due to both instruction and data accesses) as compared 
to that of the overall TLB miss rate in JIT compiler mode. For ex- 
ample, the miss rate due to instruction and data accesses during dy- 
namic compilation of clb is 0.24% and 0.67% as compared to the 
0.17% overall TLB miss rate. It must be observed that the relative 
TLB miss rates of d.b in the interpreter and JIT compiler mode when 
using the sl data set is different from that of the sl00 data set, due 
to the reduced method reuse. The main reason for the poor TLB lo- 
cality during dynamic compilation is due to the drastic change in 
working set of the JVM. The code and data structures associated 
with the dynamic compiler are quite different from that of the rest of 
the JVM execution. Further, dynamic compilation also incurs TLB 
misses when codes are installed in new locations for the first time. 
Another reason for the better performance of the interpreter is due to 
the better locality in the interpreter loop. 
• Generally, the TLB miss rates for data accesses is the higher than 
the overall miss rates for each of the three instrumented parts of the 
JVM for both the modes. In particular, the TLB data miss rates are 
the highest during garbage collection. Thus, the frequent use of gar- 
bage collectors in memory-constrained systems will impact the 
overall JVM performance more significantly. In the JIT mode, the 
TLB instruction miss rate while dynamic loading is typically less 
than the overall instruction miss rate. But for the interpreter, the 
loading instruction miss rate is almost always higher than the gen- 
eral instruction miss rate. This behavior is more due to the increased 
instruction locality within the interpreter rather than a change in be- 
havior of the loading routine itself. 

3.3 Comparison with SPECInt Behavior 
Next, we set out to study whether the kernel activity of the 
SPECjvm98 benchmarks is different from that of traditional appli- 
cations. Figure 4 shows the most frequently used kernel routines in 
four benchmarks from the SPECInt95 suite. 

'-I I t !:hi i! [i ] "t Hi I! 0 °' ~,o . I  fJ-=! : =  ~ E . I . I ~  f i i ~ -  i.i, "#~i 
I I ] . , i  l l l i , - ~ l ! l  I l i , l _ - . : - , . ~  i l l . ~ t i l ~ . - l ~ : l  ' t t o  ~ '1:  - - "  . o  ' ~ e N O =  

compress95 n~.xsim i ~  pea 

Figure 4. Kernel Routines Distribution 
for SPECInt95 Benchmarks 

It is observed that the TLB miss handler that constituted a major 
part of the kernel activity in all SPECjvm98 benchmarks is quite in- 
significant for the iSpeg and p e r l  benchmark. It was observed 
earlier that features of Java such as class loading, garbage collec- 
tion, and dynamic loading affect the TLB even if the application ex- 
hibits good TLB locality. However, the application behavior plays 
an important role in the kernel activity as well. For example, utlb 
activity contributes to 94.5% o f  kernel activity when executing 
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compress95 and 80% of kernel activity in JIT mode when exe- centage of kernel activity in the read routine. Further, we find that 
curing compress  (SPECjvm98 suite). Though, compress95 and the SPECjvm98 benchmarks spend 10% of their execution time, on 
compress implement essentially the same algorithm, there are an average, in the kernel, in contrast to the four SPECint95 bench- 
differences in their data sets. These differences along with the dy- marks that spend less than 2% of their execution in the kernel. 
namic class loading behavior of compress result in a higher per- 

Tab le  6. In s t ruc t ion  a n d  Da ta  References  and Misses within a 
Fully Associative, 64 Entry, Unif ied  TLB wi th  L R U  Replacement Policy (with sl da tase t )  

The TLB misses  that occur dur ing JVM execut ion using s l  dataset  are split  into those due to data accesses (Data) and instruction accesses (Ins0.  Further, we 
decompose the TLB misses  based on the part of  the JVM executed: class loading, garbage col lect ion and dynamic  compilat ion.  The first row for each 
benchmark and execution mode gives  the number  of  TLB misses  in that part, and the second row gives  the miss  rate wi thin  that part of  the JVM (Num.: 
Number  of Misses ,  MR: Miss  Ratio). 

To ta l  L o a d i n g  G C  C o m p i l a t i o n  I O t h e r  To ta l  
B e n c h m a r k s  I n s t  D a t a  l n s t  D a t a  I n s t  D a t a  I n s t  ~Da ta  ~': .- I n s t  d a t a  N u m b e r  

j i t  Num. 13006215 90164039 1924105 13224248 2892209 20555146 18209621 12184675 6368939 44199970 103170254 
MR 0.0135% 0.3526% , 0.0128% 03309% 0.0109% 0.2911% 0.016"7% I 0.4215% ,i 0.0145% 0.3804% 0.0846% 

o u i n t r  Num. 3621486 38088720 1584432 5884113 1288338 13559689 --- i "-- 1 1748716 18644918 41710206 

MR 0.0054% 0.2001% !0.0056% 0.1994% 0.0052% 0.1924% -o- i "" , 0.0055% 0.2064% 0.0484% 

Num. 503314 535910 ' 15182 40626 512 12737 218118 I 163244 I 269502 319303 1039224 j i t  
t~ MR 0.1290% 0.5501% 0.0491% 0.6150% 0.0096% 1.0429% 0.1771% 0.5239% 0.1168% 0.5464% 0.2131% 

Num. 910696 2353513 15151 44031 520 12147 . . . . . .  895025 2297335 3264209 -r~ intr 
t~m 0.0438% 0.4247% 0.0467% 0.6291% 0.0084% 0.7924% . . . . .  0.0438% 0.4211% 0.1240% 

Num. 250358 236619 8782 23249 346 5759 129916 89773, 111314 117838 486977 
j i t  MR 0.1086% 0.4054% 0.0510% 0.5587% 0.0119% 0.9199% 0.2419% 0.6706% 0 . 0 7 1 1 %  0.2932% 0.1686% 

'~ Num. 213813 421717 8725 23782 301 5224 . . . .  204787 392711 635530 
intr 

MR 0.0496% 0.3658% 0.0508% 0.5726% 0.0097% 0.7258% . . . .  0.0499% 0.3557% 0.1164% 

j i t  Num. 476746 514612 6206 46992 780 19541 180341 131670 279419 316409 991358 
z,m 0.1196% 0.52817% 0.0431% 0.6121% 0.0077% 0.8295% 0.2490% 0.7250% .~0.1004% 0.45770% 0.1999% 

¢~ NUm. 570349 1310814 16186 49790 108754 336362 . . . .  44.5409 924662 1881163 -,~ intr 
MR 0.0431% 0.3767% 0.0416% 0.6207% 0.0310% 0.3596% - -  "L  0.0476% 0.3753% 0.1125% 

mm. 310681 293071 12865 28360 374 6920 159838 11.t828 137604 145963 603752 j i e  
MR 0.0625% 0.2128% 0.0593% 0.5511% 0.0110% 0.9277% 0.1698% 0.4780% 0.0364% 0.1346% 0.0951% 

intr Nma. 226424 1312574 10676 27866 312 6219 . . . . . .  " 215436 1278489 1538998 
MR 0.0041% 0.0832% 0.0526% 0.5840% 0.0086% 0.7131% . . . . . .  0.0039% 0.0813% 0.0219% 

Num. 749105 1084365 9458 25102 920 36481 174117 122187 564610 900595 1833470 5 i t  
t'm 0.0224% 0.1258% 0.0498% 0.5590% 0.0016% 0.2550% 0.2486% 0.6847% 0.0177% 0.1092% 0.0437% 

i n t r  Num. 963364 4126122 9525 25958 901 35296 . . . . . .  952938 4064868 5089486 
MR 0.0059% 0.0953% 0.0502% 0.5793% 0.0014% 0.2126% . . . . . .  0.0059% 0.0944% 0.0247% 

jit Num. 1083999 1279611 14859 31418 1207 26056 194008 136337 873925 1085800 2363610 

x MR 0.1466% 0.6897% 0.0654% 0.5830% 0.0054% 0.4709% 01382% 0.6612% 0.1426% 0.7052% 0.2556% 
Num. 3191125 11725770 11415 29253 1183 23986 . . . .  3178527 11672531 14916895 

"~ intr 
MR 0.0267% 0.3618% 0.0543% 0.5864% 0.0046% 0.3358% - -  - -  0.0267% 0.3615% 0.0982% 

4. INSTRUCTION LEVEL PARALLELISM 
IN JAVA WORKLOADS 

This section analyzes the impact of instruction level parallelism 
(ILP) techniques on SPECjvm98" suite by executing the complete 
workload on the detailed superscalar CPU simulator MXS. The 
effectiveness of microarchitectural features such as wide issuing 
and retirement and multi-ported cache are studied. Additionally, 
we investigate the bounds on available parallelism in Java work- 
loads by studying the nature of dependencies between instructions 
and computing the program parallelism. Due to the large slow- 
down of MXS CPU simulator, we use the reduced data size sl as 
the data input in this section. Just as before, we model instruction 
and data accesses in both application and OS. 

4.1 Effectiveness of Aggressive ILP Architectures 
Figure 5 illustrates the kernel, user, and aggregate execution 
speedup for a single pipelined (SP), a four-issue superscalar (SS) 
and an eight-issue superscalar microprocessor (normalized to the 
corresponding execution time on the SP system). Our four-issue 
SS simulates the machine model described in section 2. The eight- 
issue SS uses more aggressive hardware to exploit ILP. Its instruc- 
tion window and reorder buffer can hold 128 instructions, the 
load/store queue can hold 64 instructions, and the branch predic- 
tion table has 2048 entries. Furthermore, its L1 caches support up 

to four cache accesses per cycle. To focus the study on the per- 
forrnance of the CPU, there are no other differences on the mem- 
ory subsystem. 

Figure 5 shows that mieroarcehitectural techniques to exploit ILP 
reduce the execution time of all SPECjvm98 workloads on the 
four-issue SS. The total ILP speedup (in JIT mode), nevertheless, 
shows a wide variation (from 1.66x in j e s s  to 2.05x in mtr t ) .  
The average ILP speedup for the original applications is 1.81x (for 
user and kernel integrated). We see that kernel speedup (average 
1.4.4x) on an ILP processor is somewhat lower than that of the 
speedup for user code (average 2.14x). When the issue width is in- 
creased from four to eight, we observe a factor of less than 1.2x on 
performance improvement for all of ~PECjvm98 applications. 
Compared with the 1.tx (in SPECInt95) and 2.4x (in SPECfp95) 
performance gains obtained from wider issuing and retirement 
[29], our results suggest that aggressive ILP techniques are less ef- 
ficient for SPECjvm98 applications than for workloads such as 
SPEC95. Several features of SPECjvm98 workloads help explain 
this poor speedup: The stack based ISA results in tight dependen- 
cies between instructions. Als0, the execution of SPEC Java 
workloads, which involve JIT compiler, runtime libraries and OS, 
tends to contain more indirect branches to runtime library routines 
and OS calls, and exceptions. The benchmark db has a significant 
idle component in the sl data set, which causes the aggregate IPC 
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to be low although both kernel and user code individually exploit 
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reasonable ILP. 
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Figure 6. IPC Breakdown for 4-issue and 8-issue Superscalar Processors 

(T: Total; K: Kernel; U: User, with s l  Dataset and JIT Compiler) 

4.2 Breakdown o f  IPC - Where  have the Cy- 
cles Gone? 
To give a more detailed insight, we breakdown the ideal IPC into 
actual IPC achieved, IPC lost on instruction and data cache stall, 
and IPC lost on pipeline stall. We use the classification techniques 
described in [12, 29] to attribute graduation unit stall time to dif- 
ferent categories: a data cache stall happens when the graduation 
unit is stalled by a load or store which has a outstanding miss in 
data cache. If the entire instruction window is empty and the fetch 
unit is stalled on an instruction cache miss, an instruction cache 
stall is recorded. Other stalls, which are normally caused by pipe- 
line dependencies, are attributed to pipeline stall. Figure 6 shows 
the breakdown of IPCs on four-issue and eight-issue superscalar 
processors. 

On four-issue superscalar microprocessor, we see jess, rib, 
javac  and j ack  lost more IPC on instruction cache stall. This is 
partially due to high indirect branch frequency which tends to in- 
terrupt control flow. These four programs contain 22% to 28% in- 
direct branches. All studied applications show some IPC loss on 
data cache stall. The data cache stall time includes misses for byte- 
codes during compilation by the JIT compiler and those during the 
actual execution of compiled code on a'given data set. Figure 6 
shows that a significant amount of IPC is lost due to pipeline stalls 
and the IPC loss in pipeline stall on an eight-issue processor is 
more significant than that of four-issue processor. This fact implies 
that the more aggressive and complex ILP hardware may not 
achieve the desired performance gains on SPECjvm98 due to the 

inherent ILP limitation of these applications. All applications show 
limited increase in instruction cache IPC stall and data cache IPC 
stall on eight-issue processor. 

4.3 Impact  o f  Mult i -Ported  Cache  
Speculative, dynamically scheduled microprocessors require high 
instruction and data memory bandwidth. A viable solution is to em- 
ploy multiple cache ports that can be accessed simultaneously by the 
processor's load/store unit. This section characterizes the perform- 
ance benefits of multi-ported cache on SPECjvm98 applications. 
We present the performance of a 32KB multi-ported cache for each 
benchmark and on both user and kernel mode (with l i t ) ,  as shown 
in Figure 7. In user mode, increasing the number of cache ports 
from one to two shows 31% of improvement in performance for 
compress and mpeg, 22% of improvement for javac  and jack,  
and 20% of improvement for j e s s ,  ~ and mtr t .  The average per- 
formance improvement is 24%, which is approximately equivalent 
to the number for SPECInt95 reported in [36]. The average per- 
formance improvement for an increase of two to three and of three 
to four cache ports is 5% and 1% respectively. 

In kernel mode, we did not observe notable IPC speedup by in- 
creasing cache ports from one to four. The average additional im- 
provement in performance for 2, 3 and 4 cache pens is 8%, 3% and 
1% respectively. Our results suggest that a dynamic superscalar 
processor with two-port cache is cost-effective on SPECjvm98 
workloads. While the impact of multiple cache ports on Java user 
code is not different from that of SPECInt applications studied in 
[36], it is worth noting that the kernel code benefits less from 2 
ports cache than user code. 
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Figure 7. Impact of Multi-Ported Cache 
(with JIT Compiler and use s l  Dataset) 

4.4 Limits  o f  Avai lab le  Paral le l i sm 
In order to understand the instruction level parallelism issues in- 
volving the stack-oriented Java code, we investigated the limits of 
available parallelism in Java workloads. We also compare the ILP 
of the Java benchmarks to SPECInt95 applications, and several 
C++ programs. This work is focused on logical limits rather than 
implementation issues and towards this end, we assume an ideal 
machine with infinite machine level parallelism (MLP). MLP is 
defined to be the maximum number of instructions that the ma- 
chine is capable of scheduling in a single cycle. 

We use dynamic dependence analysis in order to compute the 
limits of ILP as in previous parallelism investigations [32, 33]. 
First, we construct a Dynamic Dependency Graph (DDG) which is 
a partially ordered, directed, and acyclic graph, representing the 
execution of a program for a particular input. The executed opera- 
tions comprise the nodes of the graph and the dependencies real- 
ized during the execution form the edges of the graph. The edges 
in the DDG force a specific order on the execution of dependent 
operations - forming the complete DDG into a weak ordering of 
the program's required operations. A DDG, which contains only 
data dependencies, and thus is not constrained by any resource or 
control limitations, is called a dynamic data flow graph. It lacks the 
total order of execution found in the serial stream; all that remains 
is the weakest partial order that will successfully perform the com- 
putations required by the algorithms used. If a machine were con- 
structed to optimally execute the DDG, its performance would rep- 
resent an upper bound on the performance attainable for the pro- 
gram. In our study, first, the critical path length defined as the 
height of the scheduled DDG (the absolute minimum number of 
steps required to evaluate the operations in the scheduled DDG) is 

determined. The available parallelism is computed by dividing the 
total number of nodes by the critieai path length. 

To give an upper bound on the available parallelism, an available 
Machine Level Parallelism (MLP) of infinity was considered but 
MLP of 8, 16, 32, 64 and 128 were also studied for comparative 
purposes (See Table 7). We consider only true dependencies (or 
RAW dependencies) while scheduling instructions, this is the ab- 
solute limit of parallelism that can potentially be exploited from that 
program, with the best of renaming, etc. The latency of all opera- 
tions is set to be 1 cycle. Perfect memory disambiguation and per- 
feet branch prediction are assumed. More details on these experi- 
ments can be found in [34]. In our study, the SPECjvm98 bench- 
marks are invoked with ~ i~e~reter. 

Table 7 shows that 3ave ~ l e  exhibits very low ILP in compari- 
son to all other workloads analyzed. The average available parallel- 
ism (in terms of the harmonic mean of the observations) of the four 
different suites of program s for different window sizes is summa- 
rized in Figure 8. 

Table 7. Avai lab le  In s t ruc t i on  Level Parallelism 
of  Different Benchmarks 

(SPECjvm98 Benchmarks are Invoked with an Interpreter) 

Available ILP 
I 

Benchmarks ~ ,t , ,  ~ , 

ceapress 6.94 i 13.68 . 21.9 37.65 65.89 265.01 
gcc 7.26 !13.94 25.56 40.79 58.15 92.14 

,~ go 7.15 114.11 27.26 48.79 70.23 183.81 
l i  7.47 14.25 25.35 47.17 70.15 17248 
maeksX= 6.45 11.09 21.50 45.59 104.43 i133.36 

o~ iSpeg 7.44 14.67 2g.46 48.01 71.86 8465.51 
delgal) lua  7 .28 15.15 30.79 60..48 111.28 270.97 
eqn 7.42 14.18 26.54 37.96 43.51 272.09 

+ £dl 7.57 14.59 29.05 48.31 63.49 277.01 -i- 

t . . )  ixx 7.2 13.83 26.92 51.32 76.05 111.71 
richaz:ds 7.56 13.78 24.83 35.84 55.99 125.57 

6.75 11.59 19.54 28.55 3 3 . 7  41.06 
oo 5avac 6~66 10.67 15.55 19.82 21.89 25.13 

5ess [6.69 11.02 i6.17 19.54 20.78 22.83 
~) n~eg 7.27 10.11 12.86 14.63 15.19 15.39 

mt~e ,6"76 10.26 12.92 14.06 14.38 15.82 
c ~ = e s s  i6.98 9 . 6 6  11.46 11.68 11.88 11.95 
dot i7.97 15.91 31.82 63.58 127.10 8239.82 
g711 17 57 15.39 31.31 62.53 125.86 11064.15 

~, a u t oc o r  6.66 15.94 31.86 62.96 125.62 12057.35 
r~ £ i r  6.67 15.69 31.5  63.12 124.35 18964.54 

audio 16.79 15.67 31.52 60.35 117.41 21164.94 
adpc~a !7.26 13:42 24.19 40.37 40.48 40.59 

With infinite MLP, the mean ILP is 125 (for the SPECInt95 
benchmarks), 175 (for the C++ programs), 20 (for the Java pro- 
grams) and 240 (for the DSP benchmarks). The extremely low l i p  
of the Java programs, even with no other control or machine con- 
straints, can be attributed to the stack-based implementation of the 
Java Virtual Machine (JVM). The stack nature of the JVM imposes 
a strict ordering on the execution of the bytecodes. This observation 
is further supported by the behavior of the compress benchmark, 
which is present in both the $PECInt95 and SPECJvm98 suites. 
Both are text compression programs and the Java version is a Java 
port of the integer benchmark from SPECCPU95. It can be seen that 
with an MLP of infinity, the CPU95 compress benchmark has the 
highest ILP among all the SPECInt95 benchmarks while the Java 
compress program has the least ILP among the SPECJvm98 
benchmarks. 
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5. CONCLUSIONS 
The popularity and wide-spread adoption of Java has necessitated 
the development of an efficient Java Virtual Machine. This study 
has provided insights into the interaction of the JVM implementa- 
tions with the underlying system (both hardware and operating 
system). To our knowledge, this work is the first to characterize the 
kernel activity of the Java applications and analyze their influence 
on architectural enhancements. The major findings from this re- 
search are: 

• The kernel activity of SPECjvm98 applications constitutes up to 
17% of the execution time in the large (sl00) data set and up to 
31% in the small (sl)  data set. The average kernel activity in sl00 
case is approximately 10%, in comparison to around 2% in four 
SPECInt benchmarks studied. Generally, the JIT compiler mode 
consumes a larger portion of kernel services during execution. The 
only exception we found was in db for s l00 data set, which has 
high method reuse and interference of the bytecode and data local- 
ity in the interpreter mode. 

• The SPECjvm98 benchmarks spend most of their time in exe- 
cuting instructions in the user mode and spend less than 10% of 
the time in stall cycles during the user execution. The kernel stall 
mode in all SPECjvm98 benchmarks, except Sack that has a sig- 
nificantly higher file activity, is small. However, the MCPI of the 
kernel execution is found to be much higher than that of the user 
mode. 

• The kernel activity in the SPECjvm98 benchmarks is mainly due 
to the invocation of the TLB miss handler routine, utlb and the 
read service routine. In particular, the utlb routine consumes more 
than 80% of the kernel activity for four out of seven SPECjvm98 
benchmarks for the s l00 dataset. Further, the dynamic compila- 
tion, garbage collection and class loading phases of the JVM exe- 
cution utilize the utlb routine at a faster rate as they exhibit a 
higher TLB miss rate than the rest of the JVM. It is also observed 
that the dynamic class loading behavior influences the kernel ac- 
tivity more significantly for smaller datasets (sl and sl0) and in- 
creases the contribution of the read service routine. 

• The average ILP speedup on a four-issue superscalar processor 
for the SPECjvm98 benchmarks executed in the JIT compiler 
mode was found to be 1.81 times. Further it is found that the 
speedup of the kernel routines (average 1.44 times) is lower than 
that of the speedup of the user code (average 2.14 times). This be- 
havior can be attributed to the significant fraction of the kernel ac- 
tivity spent in the utlb routine that is a highly optimized sequence 
of interdependent instructions. 

• Aggressive ILP techniques such as wider issue and retirement 
are tess effective for SPECjvm98 benchmarks than for SPEC95. 
We observe that the performance improvement for SPECjvm98, 
when moving from 4 issue to 8 issue width is 1.2 times as com- 

pared to the 1.6 times and 2.4 times performance gains achieved by 
the SPECint95 and SPECfp95 benchmarks, respectively. The pipe- 
line stalls due to dependencies are the major impediment to achiev- 
ing higher speedup with increase in ILP issue width. Also, the 
SPECjvm98 workloads, which involve the dynamic compiler, run- 
time libraries and the OS, tend to contain more indirect branches to 
runtime library routines and OS services. These indirect branches 
that constitute up to 28% of all the dynamic branches in the 
SPECjvm98 suite tend to increase the i~truction cache stall times. 

• The SPECjvm98 benchmarks have inherently poor ILP compared 
to other classes of benchmarks. For an ideal machine with infinite 
machine level parallelism, the mean ILP is approximately 20 for the 
Java programs (in interpreted mode) as compared to the speedup of 
125, 175 and 240 for the SPECInt95, C++ and DSP benchmark 
suites. 

These results can help in providing insight towards designing 
systems software and architectural support for enhancing the per- 
formance of a JVM. For example, the use of single-address virtual 
space that could eliminate the TLB activity from the critical path of 
cache access may be useful for JVM implementations. Since the utlb 
handier forms the major part of the SPECjvm98 kernel activity, 
moving the TLB access to a cache miss can help reduce overall ker- 
nel activity. In addition, a closer look at these results can help re- 
structure the JVM implementation. For example, the high TLB miss 
rates that occur during collecting garbage can be reduced by col- 
lecting objects page wise. A simple modification from depth first 
search to breadth first search of objects during the mark phase of a 
garbage collection algorithm may help improve this. The key to an 
efficient Java virtual machine implementation is the synergy be- 
tween well-designed software (JVM and system software support), 
supportive architecture and efficient runtime libraries. While this 
paper has looked at kernel activities of SPECjvm98 benchmarks, we 
plan to characterize other Java applications as well, particularly 
those that have more garbage collection, network communication 
and multi-threading operations. 
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