
Using Complete System Simulation to Characterize
SPECjvm98 Benchmarks

Tao Li +, Lizy Kurian John +, Vijaykrishnan Narayanan*, Anand Sivasubramaniam*,
Jyotsna Sabarinathan +, and Anupama Murthy*

+ Laboratory for Computer Architecture

Department o f Electr ical and Computer Engineering

The Universi ty of Texas at Austin

Austin, TX 78712

{ tli3,1j ohn,sabarina } @ece.utexas.edu

* 220 Pond Lab

Department of Computer Science and Engineering

The Pennsylvania State Universi ty

University Park, PA 16802

{ vijay,anand } @ cse.psu.edu

ABSTRACT
Complete system simulation to understand the influence of archi-
tecture and operating systems on application execution has been
identified to be crucial for systems design. While there have been
previous attempts at understanding the architectural impact of Java
programs, there has been no prior work investigating the operating
system (kernel) activity during their executions. This problem is
particularly interesting in the context of Java since it is not only the
application that can invoke kernel services, but so does the under-
lying Java Virtual Machine (JVM) implementation which runs
these programs. Further, the JVM style (JIT compiler or inter-
preter) and the manner in which the different JVM components
(such as the garbage collector and class loader) are exercised, can
have a significant impact on the kernel activities.

To investigate these issues, this research uses complete system
simulation of the SPECjvm98 benchmarks on the SimOS simula-
tion platform. The execution of these benchmarks on both JIT
compilers and interpreters is profiled in detail, to identify and
quantify where time is spent in each component. The kernel activ-
ity of SPECjvm98 applications constitutes up to 17% of the exe-
cution time in the large dataset and up to 31% in the small dataset.
The average kernel activity in the large dataset is approximately
10%, in comparison to around 2% in four SPECInt benchmarks
studied. Of the kernel services, TLB miss handling is the most
dominant in all applications. The TLB miss rates in the JIT com-
piler, dynamic class loader and garbage collector portions of the
JVM are individually analyzed. In addition to such execution pro-
files, the ILP in the user and kernel mode are also quantified. The
Java code is seen to limit exploitable parallelism and aggressive in-
struction issue is seen to be less efficient for SPECjvm98 bench-
marks in comparison to SPEC95 programs. Also, the kernel mode
of execution does not exhibit as much ILP as the user mode.

This research is supported in part by the National Science Foundation un-
der Grants EIA-9807112, CCR-9796098, CCR-9900701, Career Award
MIP-9701475, State of Texas ATP Grant #403, and by Sun Microsys-
tems® , Dell ®, Intel ® , Microsoft ® and IBM ® .

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed tbr profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on se~,ers or to redistribute to Jlsts,
requires prior specific permission and/or a fee.
ICS 2000 Santa Fe New Mexico USA
Copyright ACM 2000 1-58113-270-0/00/5...$5.00

1. INTRODUCTION
Java offers the "write-once run-anywhere" promise that helps to
develop portable software and standardized interfaces spanning a
spectrum of hardware platforms. The Java Virtual Machine (JVM)
is the cornerstone of this technology, and its efficiency in execut-
ing portable Java bytecodes is crucial for the success and wide-
spread adoption of Java. A first step towards building an efficient
JVM is to understand its interaction with the underlying system
(both hardware and operating system), and to identify the bottle-
necks. Such a study can provide information to optimize both sys-
terns software and architectural support for enhancing the perform-
ance of a JVM. In addition, a closer look at the execution profile of
the JVM can also give revealing insights that can help to restruc-
ture its implementation. To our knowledge, existing studies [1, 2,
3, 4, 5, 6, 7, 8] have been confined to examining JVM profiles
from the architectural perspective, and there has been no attempt at
understanding the influence of the operating system activities. It is
becoming increasingly clear [9, 10, 11, 12] that accurate perform-
ance analysis requires an examination of complete system - archi-
tecture and operating system - behavior.

Adhering to this philosophy, this paper presents results from an
in-depth look at complete system profiling of the SPECjvm98
benchmarks, focusing on the operating system activity. Of the dif-
ferent JVM implementation styles [13, 14, 15, 16, 17, 18], this pa-
per focuses on two popular techniques - interpretation and Just-In-
Time (JIT) compilation. Interpretation [13] of the portable Java
byte codes was the first approach that was used, and is, perhaps,
the easiest to implement. In contrast, JIT compilers [14, 15, 16],
which represent the state-of-the-art, translate the byte-codes to ma-
chine native code at runtime (using sophisticated techniques) for
direct execution. While JIT compilers are known to outperform
interpreters, it is still import~t to understand the performance of
the interpretation process since it is a popular paradigm of Java
execution and since it is an integral part of sophisticated JIT com-
pilers [19]. Further, interpreters need a lower amount of memory
than their JIT compiler counterparts, which can become important
in resource-constrained environments, such as hand-held devices.

While complete system simulation has been used to study sev-
eral workloads [9, 10, 11], it has not been used in the context of
Java programs or JVM implementations. A JVM environment can
be significantly different from that required to support traditional
C or FORTRAN based code. The major differences are due to: 1)
object-griented execution with frequent use of virtual method calls
(dynamic binding), dynamic object allocation and garbage collec-
tion; 2) dynamic linking and loading of classes; 3) program-level
multithreading and consequent synchronization overheads; and 4)
software interpretation or dynamic compilation of byte-codes.
These differences can affect the behavior of the operating system
kernel in a different manner than conventional applications. For
instance, dynamic linking and loading of classes can result in

22

higher file and I/O activities, while dynamic object allocation and
garbage collection would require more memory management op-
erations. Similarly, multithreading can influence the synchroniza-
tion behavior in the kernel. A detailed profile of the interaction
with the hardware and operating system can help us understand
such intricacies so that the JVM can be restructured for better
performance. Further, such profiles are also useful from the archi-
tectural and operating systems perspective to identify enhance-
ments for boosting Java performance. As an example, one could
opt to provide a multi-ported cache if it is found that memory
bandwidth related stall cycles are a major impediment to increasing
instruction-level parallelism.

Towards the goal of studying and profiling the complete system
(architecture and operating system) behavior when executing Java
programs, this paper specifically attempts to answer the following
questions:

* How much time is spent in user and kernel modes? What kernel
activities are exercised during the execution, and how much over-
head is incurred in each of these activities? Are Java studies with-
out OS activity representative of the aggregate Java execution be-
havior? How much of the time is spent in actually executing in-
structions (useful work), as opposed to being spent in stalls, syn-
chronization and idling?
• Are these profiles different for the JIT compilation and inter-
preter modes? Can we attribute the kernel activities to specific
phases (class loading, garbage collection, etc.) of the JVM execu-
tion?
• How are the kernel and user parts of the JVM execution suited
to the underlying parallelism in modem microprocessors? What are
the characteristics of these portions influencing the instruction
level parallelism (ILP) that they can exploit? What is the ideal
speedup that one could ever get for these portions?

We set out to answer these questions using the SPECjvm98
[20] benchmarks and the SimOS [10] complete system simulator.
We find that the kernel activities are not as insignificant as in four
studied SPEC95 [21] benchmarks. On the average, the
SPECjvrn98 workloads spend 10% of their execution time in ker-
nel, contrasting to the less than 2% of kernel time found in studied
SPEC95 benchmarks. Most of the kernel time is spent in TLB
miss handling, with a significant fraction due to Java specific fea-
tures for the JIT compiler mode. Among the architectural im-
provements, the most notable gain (20%-32%) is achieved by a 2-
ported cache. We also find that dynamic scheduling, wide issue
and retirement are not very effective for SPECjvm98 codes due to
the inherent ILP limitations of Java code.

The rest of this paper is organized as follows. The next section
gives an overview of the experimental platform and workloads.
Section 3 presents the execution time and detailed statistics for the
user and kernel activities in these workloads. Section 4 explores
the ILP issues. Finally, Section 5 summarizes the contributions
and implications of this work and identifies directions for future
research.

2. EXPERIMENTAL METHODOLOGY
The experimental platform used to perform this study is SimOS
[11, 22, 10], a complete simulation environment that models
hardware components with enough detail to boot and run a full-
blown commercial operating system. In this study, the SimOS ver-
sion that runs the Silicon Graphics IRIX5.3 operating system was
used. The interpreter and JIT compiler versions of the Java Devel-
opment Kit 1.1.2 [23] from Sun Microsystems are simulated on
top of the IRIX 5.3 operating system. Our studies are based on
programs from the SPECjvm98 suite (see Table 1), a set of pro-
grams intended to evaluate performance for the combined hard-
ware (CPU, cache, memory, and other platform-specific perform-
ance) and software aspects (efficiency of JVM, the JIT compiler,
and OS implementations) of the JVM client platform [20]. The
SPECjvm98 uses common computing features such as integer and
floating point operations, library calls and I/O, but does not in-
clude AWT (window), networking, and graphics. Each benchmark

can be run with th r~ different input sizes referred to as s l , s l0 and
sl00; however, i twas observed that these data sizes do not scale
linearly, as the naming Suggests.

T a b l e 1. S P E C j v m 9 8 W o r k l o a d s
Benchmarks i Description

compress Modified Lempel-Ziv method (LZW) to
conal~tess and decompress large file

jess Jav,i'expert shell system based on NASA's
CLIPS expert system .

clb Perforn~ multiple database functions on a
memory resident database

j a v a c The JDK 1.0,2 Java compiler 'compiling
225,000 lines of code

mpegaudio Decoder to decompress MPEG-3 audio file

mere Dual-threaded raytracer

j a e k Parser generator with lexical analysis, early"
version of what is now JavaCC

SimOS includes multiple processor simulators (Embra, Mipsy,
and MXS) that model the CPU at different levels of detail [10].
We use the fastest CPU simulator, Embra [24] to boot the OS and
perform initialization, and then use Mipsy and MXS, the detailed
CPU models of SimOS to conduct performance measurements. For
the large and complex workloads, the booting and initialization
phase may cause the execution of several tens of billions of in-
structions [12]. SimOS has a cheekpointing ability which allows
the hardware execution status (e.g. contents of register file, main
memory and I/O devices) to besaved as a set of files (dubbed as a
checkpoint), and simulation may resume from the checkpoint. This
feature allows us to conduct multiple runs from identical initial
status. To ensure that SimOS accurately simulates a complete exe-
cution of each workload, we write annotations that allow SimOS to
automatically invoke a studied workload after a checkpoint is re-
stored and to exit simulation as soon as the execution completes
and OS prompt is returned. Our techniques, which avoid the need
of interactive input to control the simulation after it begins and
before it completes, make each run complete, accurate, and compa-
rable.

The performance results presented in this study are generated by
Mipsy and MXS, the detailed CPU models of SimOS. Mipsy mod-
els a simple, single-issue pipelined processor with one-cycle result
latency and one-cycle repeat rate [10]. Although Mipsy is not an
effective model from the perspective of detailed processor per-
formance investigations, it does provide valuable information such
as TLB activities, instruction counts, and detailed memory system
behavior. We use Mipsy to generate the basic characterization
knowledge and memory system behavior of studied workloads.

The performance evaluation of rnicroarchitecture level optimi-
zations are done with MXS [25], which models a superscalar mi-
croprocessor with multiple instruction issue, register renaming,
dynamic scheduling, and speculative execution with precise ex-
ceptions. Our baseline architectural model is a four issue super-
scalar processor with M1PS R10000 [26, 27] instruction latencies.
Unlike the MIPS R10000, our processor model has a 64-entry in-
struction window, a 64-entry reorder buffer and a 32-entry
load/store buffer. Additionally, all functional units can handle any
type of instructions. Branch prediction is implemented as a 1024-
entry table with 3-bit saturating counter predictors. By default, the
branch prediction algorithm allows fetch unit to fetch through up
to 4 unresolved branches.

The memory subsystem consists of a split L1 instruction and
data cache, a Unified L2 cache, and main memory. The processor
has a MIPS R4000 TLB with a base page size of 4KB. The LI in-
struction cache is 32KB, and has a cache line size of 64-bytes. The
L1 data cache is 32KB, and has 32-byte lines. The L2 cache is
1MB with 128-byte lines. A hit in the L1 cache can be serviced in
one cycle, while a hit in the L2 cache is serviced in 10 cycles. All

23

caches are 2-way associative, with LRU replacement and write
back write miss allocation policies and have four miss status han-
ding registers (MSHR) [28]. Main memory consists of 256 MB
DRAM with a 60-cycle access time. Our simulated machine also
includes a validated HP97560 disk model and a single console de-

vice. The described architecture is simulated cycle by cycle. The
instruction and data accesses of both applications and operating
system are modeled.

100

8 0

6 0

4O

2 0

0
0

c o m p r e s s s l O 0

2 5 5 0 7 5 100 125 150
~ m e (s e c o n d s)

d b s l o e

5 0 1 O0 1 50 2 0 0 Zbg ~UU
Time, (seconds)

8

o

0

1 0 0

40

2 0

0
0

o 1

~5

J

2 5

j e s s s l O 0

2 5 5 0 7 5 100 1 2 5 1 5 0
T i m e (s e c o n d s)

5 0 7 5 1 0 0 1 2 5 1,50 17'~ 2 0 0 2 2 5
'T ime (s e c o n d s)

m t r t e l O 0

o 1
E

" 5

2 5 50 7~
Time, (seconcls)

0 2 5 ~50 7 5 100 1 2 5 1~0
T ime (seconds)

id le
stlal
inslr

kernel sync
kernel seth
k~,rnel ins~

T i m e (s e c o n d s)

Figure 1. Execut ion Profde o f
S P E C j v m 9 8 W o r k l o a d s (wi th JIT
Compi ler and s l 0 0 dataset)

The execution time of each workload is sepa-
rated into the time spent in user, kernel, and idle
(idle) modes on the SimOS Mipsy CPU model.
User and kernel modes are further subdivided into
instruction execution (user instr, kernel inset),
memory stall (user stall, kemel stall), and syn-
chronization (kernel sync, only for kernel mode).

24

"rile JVM and SPECjvm98 could be ported to SimOS in a
straightforward manner because the SimOS environment allows
any binary that is compatible to the IRIX 5.3 operating system. We
are able to investigate complete executions of real world work-
loads due to this reason. In order to validate our experimental envi-
ronment, during the early stages of this study, we worked with
pmake, SPLASH-2 and some SPEC95 benchmarks and compared
our experimental results with those published in [12, 25, 29, 30].
After the results were validated, we switched to the SPECjvrn98
suite.

3. KERNEL ACTIVITY OF SPECjvm98

3.1 Execution Profile Using JIT Compiler and In-
terpreter

Figure 1 shows the execution time profile of the SPECjvrn98
benchmarks for JIT compiler mode of execution. The measured pe-
riod includes time for loading the program, verifying the class
files, compiling on the fly by JIT compiler and executing native in-
struction stream on simulated hardware. The profile is presented in
terms of the time spent in executing user instructions, stalls in-
curred during the execution of these instructions (due to memory
and pipeline stalls), the time spent in kernel instructions, the stalls
due to these kernel instructions, synchronization operations within
the kernel and any remaining idle times. Some of the applications
(compres s, jack, and j avac) iterate multiple times over the same
input [35], which contributes the repetitive shape of some graphs
in Figure 1.

Table 2 summarizes the breakdown of execution time spent in
kernel, user, and idle for each SPECjvm98 benchmark. The kernel
activity is seen to constitute 0.2% (mpegaudio with i n t r) to
17% (jack with j i t) of the overall execution time. On the av-
erage, the SPECjvm98 programs spend 10.4% (with j i t) and
7.7% (with i n t r) of their execution time in kernel, contrasting to
the less than 2% of that found in SPECInt95 benchmarks. This
fact implies that ignoring kernel instructions in SPECjvm98
workloads study may not represent complete and accurate execu-
tion behavior.

Table 2. Execution Time Percentages
(sl00 Dataset, J: with JIT compiler, I: with Interpreter)

, m N ~ m

comp J 92.81 i87.19 5 .62 4 .30 3.78 0 . 4 9 0 .03 2.89
I 98.~ 9~.23 0 .65 0 ,~2 0 .69 Q.12 0 .01 0.30

jess J 84.95 73.63 11.32 14.90 14.19 0 .66 0 .05 0.15
I 92.26 185.82 6.4,4 7 .67 7 .32 0 .33 0 . 0 2 0.07

db J 87.10 ~77.50 9 .60 12.64 !i.91 0 .69 0 . 0 4 0.26
I 83.28 176.90 6 .38 16.~7 16.0~ 0 .50 0 . 0 2 0.15

javac J 84.31 170.92 1~.39 14.92 13.85 1.03 0 , 0 4 0.77
I 88.~7 !79.77 ~ .80 10.92 10.15 0.75 0.Q2 0.~1

mpeg J 99.08 96.94 2 .14 0 .73 0 .44 0 . 2 6 0 .03 0.19
I 99.78 98.95 0 .83 0.2Q 0 .12 0 .07 0.01 0.0~

mtrt J 91.22 80.34 10.88 8.60 7.86 0.71 0 . 0 3 0.15
1 98.26 94.33 3.93 1.70 !.22 0 .47 0.01 0.04

jack J 82.94 72.51 10.43 16.90 13.51 2 .96 0.4.3 0.16
I 83.78 74.08 9 .70 16.11 13.25 2.52 0.34 0.11

Tables 3 and 4 further break down the kernel activities into spe-
cific services. These tables give the number of invocation of these
services, the number of cycles spent in executing each routine on
the average, a break down of these cycles between actual instruc-
tion execution, stalls and synchronization. The memory cycles per
instruction (MCPI) while executing each of these services is also
given together with its breakdown into instruction and data por-
tions. The read or write kernel may involve disk accesses and sub-
sequent copying of data between file caches and user data struc-

tures. It should be noted that the time spent in disk accesses is not
accounted for within the read or write kernel calls, but will figure
as idle times in the execution: profile (because the process is
blocked on UO activity). So the read and write overheads are
mainly due to memory copy operations.

In the execution profile graphs, we see that the bulk of the time
is spent in executing user instructions. This is particularly true for
rapeg that spends 99% of its execution in user instructions in both
interpreter (Profile graphs for interpreter can be found in [31] and
are omitted for lack of space) and YlT compiler modes. The rapeg
benchmark decompresses audio files based on the MPEG layer3
audio specification. While I/O (read) is needed to load the audio
files, subsequent executions are entirely user operations. These op-
erations are mainly compute intensive with substantial spatial and
temporal locality (as can be seen in the significantly lower user
stalls compared to other applications in Table 2). This locality also
results in high TLB hit rates making the TLB handler (utlb) invo-
cation infrequent. This is also the reason why the percentage of
kernel time spent in utlb is much lower (less than 35% in both exe-
cution modes) as compared to the othe!" applications (See Tables 3
and 4). As a result, other service routines such as the clock, read
and runqproc constitute a reasonabl6fraction of the kernel execu-
tion time.

While user execution constitutes over 90% of the time in com-
p r e s s as well, one can observe spikes in the kernel activity in the
execution. This benchmark reads in five tar files and compresses
them. These operations are followed by the decompression of the
compressed files. The spikes are introduced by the file activities
that can be attributed to both the application (loading of the five tar
files) as well as the JVM characteristics. Most of the time spent in
these spikes (read) is ir~ memory stalls, particularly when reading
data from file buffers. This is reflected in the higher d-MCPI com-
pared to i-MCPI for the read routine in Tables 3 and 4. Other ker-
nel routines such as demandzero that is used to initialize new
pages before allocation, and the process clock interrupt (clock)
routines also contribute to the stalls. Despite these spikes, I/O ac-
tivity still constitutes less than 10% of the kernel execution time.
In addition to the spikes, we also see a relatively uniform presence
of kernel instructions during the course of execution. As evident
from Tables 3 and 4, this is due to the handling of TLB misses. In
the user mode and with the JIT compiler, we find around 5% of the
time being spent in stalls. The JIT compiler generates and installs
code dynamically during execution resulting in bursty writes to the
memory, leading to increased memory stalls in the JIT mode.

In general, the relatively flat kernel activity in the lower portion
of Figure 1 is mainly due to TLB miss handling while spikes can
be attributed to other services (read in particular). The kernel ac-
tivity in mere and j e s s ate dominated by the TLB miss handling
with a small part spent in I/O (read) during initial class loading.
On the other hand, the I10 (read) component of j ack is 20-25% of
the kernel execution time, with the stalls from this component
showing up in the execution profile graphs. The TLB miss han-
dling still constitutes the major portion. Benchmark j ack performs
16 iterations of building up a live heap structure and collapsing it
again while repeatedly generating a parser from the same input
[35]. This behavior explains the repeated pattern observed for the
kernel activity. The TLB miss handling overhead of javac is not
as uniform as in the other applications. This application is a Java
compiler that compiles the code for the j e s s benchmark repeat-
edly for four times. We observe this non-uniformity in the user
stalls (top portion of the profile). This can be attributed to the code
installation spikes during code generation by the compiler applica-
tion. This is similar to the reason for the differences in stall be-
haviors between the JIT compiler and interpreter mode for com-
press. Code installation also worsens the locality of the application
[2] resulting in higher TLB misses during those phases.

Figure 2 shows the memory stall time expressed as memory stall
time per instruction (MCPI). The stall time is shown separately for
the both the kernel (-K) and user (-13) modes and is also decom-
posed into instruction (-I) and data (-D) stalls. Further, the stalls

25

are shown as that occurring due to L1 or L2 caches. For both the
JIT compiler and interpreter modes of execution, it is observed that
the kernel routines can experience much higher MCPI than user
code, indicating the worse memory system behavior of the kernel.
For example, mpeg has a MCPI of 0.55 within the kernel compared
to the negligible MCPI for the user mode, since it touches a num-
ber of different kernel routines (See Tables. 3 and 4) and data
structures. Fortunately, the kernel portion foitms a maximum of
only 17% of the overall execution time among all the SPECjvm98
benchmarks and this mitigates the impact on overall MCPI. It can
also be observed from Figure 2 that the MCPI in the user mode is

less for the interpreter mode as compared to the JIT mode. The
bursty writes during dynamic compilation and the additional non-
memory instructions executed while interpreting the bytecodes re-
sult in this behavior, It is also observed that the stalls due to data
references are more significant than that due to the instruction ac-
cesses. The MCPI due to L2 cache accesses is quite small for the
compress and mpeg workloads that exhibit a significant data lo-
cality. The other SPECjvm98 benchmarks can, however, benefit
from stall reduction techniques employed for the L2 cache.

Table 3. OS Kernel Characterization of SPECjvm98 Workloads (wi th J I T C o m p i l e r and sl00 Datase t)
utlb fault reloads the TLB for user addresses, demandzero is a block clear operation occurs when the operating system allocates a page

for data. (The page has to be zeroed out before being used.) The read system calls is responsible for transferring data from kernel address
address space, clock and vfault are clock

Benchmarks Service %Kerne! Num. Cycles " %Exec %Stall " % Sync MCPI d-MCPI i-MCPI
u.tlb 80.85 8.64t~+07 13 99 I 10 0.01 0.01 0
read 9.51 6317 21140 39 ~J8 3 1.42 1,32 0.1

compress clock 3.41 116328 2934 ~,7 i60 3 1,56 1,07 0.49
demand zero 2.33 4807 6813 44 i53 3 1.13 1 0,13
other 3.90
utlb 95. l 0 3.69E+08 13 98 2 0 0.02 0.02 0

jess clock 1.48 17342 4396 26 72 ~ 2.77 !,44 1.33
read 1.40 !20889 3474 .67 i22 11 0.3 0.04 0.26
other 2.02
utlb 94.17 5.60E+08 13 97 3 0 0.03 0.03 0

cab clock 1.95 131439 4917 23 175 2 3.21 ! .64 1.57
rf~td 1,44 30048 3804 61 29 10 0.41 0,1 0.31
other 2.44
utlh - 91.39 4.71E÷08 13 96 4 0 0.04 0.04 0
D.BL FAULT 3.82 12812267 94 90 10 0 0.11 1.07 0.04

j a v a c clock 1.60 123302 4786 2~ 74 3 3,1 1.41 i .69
.rrfead i .0 110652 6386 48 46 6 0.89 0.41 0.48
other 2.19 I
utlb 34_22 15273604 14 90 10 0 0.11 0.11 0
r i s k 23.34 15070 3426 32 ; 65 3 1.96 0.93 1.03
read 19.47 18013 5376 55 137 8 0.61 0.28 0.33
mnooroc 4.09 l I 9039903 48 149 3 0.99 0.39 0.6
demand zero 3.09 ' 997 6865 43 ! 54 3 1.18 i 0.18

mpeg BSD 2.07 4359 1052 52 i4~ 3 0.84 0,~3 0.51
timein 1.66 1008 3633 44 148 8 0.99 0.34 0.65
caeheflush 1.64 11821 1995 51 145 4 0.85 0.38 0.47
open 1.49 1228 14470 56 L30 14 0.44 0.16 0.28
fork 1.16 ~26 99071 39 51 10 1,1 0,57 0.53
other 7.77
utlb 93.41 1.61 E÷08 13 95 5 0 0.05 i0.05 0

mtrt clock 2.45 13745 4222 26 71 3 2.64 11.26 1.38
read 1.19 7403 3804 64 ~6 10 0.36 !0.11 0.25
other 2.95
uflb 63.13 2.38E÷08 13 95 5 0 ~ 0.05 0.05 0
cecad 25.21 296866 4401 52 40 8 i0.67 0.09 0.58

j a c k BSD 9.32 585482 825 67 30 3 2017 0.14 0.3
.¢10¢k 1.09 15332 3686 30 68 2 0.92 1.28
other 1 . 2 5

~i~ I ~" "W jit t L~ 4 EE t

I (a) 0 . 4 0

O.IO

0 .0

°16° intr

! i ~ i i l !el (b)

Figure 2. Memory Stall Time in Kernel (-K) and User (-U) Modes: (a) jit, (b) intr, both with sl00 Dataset

26

Table 4. OS Kernel Characterization of
Benchmarks Service % Kernel Num.

utlb 73.46 1.39E+08

compress

jess

db

j avac

mpeg

mtrt

jack

clock
read
runqproc
timein
demandzero
other

13.64 152657
5.32 6 3 2 4
3.20 1
1.15 9336
1.02
2.21

uflb 94.20
clock 2.38
read
other

other

3767

4.17E+08
38068

1.30 20896
2.12

utlb 96.64 [1.38E+09
clock 1.21 !56665

I .. 2.15
93.67 I 5.53E+08 uflb

clock 1.82
DBL FAULT 1.76
other 2.75
clock 49.93
utlb 16.31

12.06

36676

mnqproc
read

1487739
. _

136610
5643427
1

7.82 8020
fimein 4.59 8327
fork 2.48 26
bdflush 1.30 1

1.09 857
4.42 --
83.04 7.95E+07

demand zero
other
utlb
clock 9.13 47562
read 1.77 7410

1.75 l
1.0 2173
3.31 --

0.93

rtmqproc
demand_zero
other
uflb 70.21 3.51E+08
read 20.30 296873
BSD 7.48 585470
clock 1.08 21211

. . other

i Cycles

13
2245
21119
8026993
3107
6786
. .

13
3656
3625
- .

13
4008
. .

14
3972
95

1974
16
6511053
5268
2976
515111
7014395
6856
. _

17
3096
3848
2821687
7375

14
4672
872
3495

vm98 Workloads (with Interpreter and sl00 Dataset)
%Exec %Stall % Sync MCPI d-MCPI i-MCPI

98 2 0 0.02 0.02 0
49 48 3 0.94 0.67 0.27
39 58 3 1.42 1.32 0.10
54 4 3 3 0.76 0.35 0.41
54 36 10 0.60 0.30 0.30
44 53 3 1.12 0.99 0.13

99 1 0 .0.01 0.01 0
31 67 2 2.14 1.13 1.01
65 25 10 '~ 0.35 0.04 0.31

98 2 0 0.02 0.02 0
28 70 2 2.44 . 1.33 1.11

96 4 0 0.04 0.04 0
28 70 2 2.4,0 1.21 1.19
91 9 0 0.10 0.07 0.03

55 41 : "; 4 0.71 0.45 0.26
83 17 0 0.20 0.20 0
58 38 4 0.61 0.26 0.35
56 36 8 0.57 0.25 0.32
57 33 10 0.53 0.27 0.26
42 47 11 0.97 0.57 0.40
37 61 2 1.56 1.35 0.21
43 54 3 1.18 1.0 0.18

77 23 0 0.29 0.29 0
36 61 3 1.66 1.06 0.6
63 27 10 0.38 0.11 0.27
47 50 3 0.99 0.41 0.58
40 57 3 1.31 1.09 0.22

95 5 0]0.05 0.05 0
49 43 8 10.77 0.09 0.68
63 33 4 0.52 0.21 0.31
31 66 3 2.03 0.85 1.18
. I

3.2 Differences within JVM Execution Styles
and Dataset Sizes
Until now we have made some general observations regardless of
the JVM execution style. We identify below some differences in
the behavior of interpreters and J1T compilers.

• In general, looking at Table 2, the ratio of the time spent in exe-
cuting instructions to the time spent in stalls in the user mode is
lower for the JIT compiler as compared to the interpreter mode.
This behavior is not only due to the code installation in JIT com-
piler that increases stall times, but also due to the better data and
instruction locality of the interpreter loop compared to the native
code execution [2].

• An important difference between the two modes is shown in
Figure 3. We observe in five of the applications, the TLB miss rate
is much higher in the JIT compiler. As in the previous observation
for Table 2, the better locality in the interpreter loop translates to a
higher TLB hit rate compared to the JIT compiler. However, the
TLB miss rates of cab and j a c k are lower in the JIT compiler
which appears somewhat counter-intuitive. A detailed investiga-
tion of the interpreter behavior for these codes leads us to the fol-
lowing reasoning. Benchmark db has a few methods (658 unique
methods called 91753107 times) that execute repeatedly while ac-
cessing several data items at random to perform database transac-

tions. In both modes, the locality for these data items is relatively
poor. This poor data locality also interferes with the access locality
for the bytecode stream in the interpreter mode, where the bytecodes
are treated as data by the interpreter loop. Since method reuse for
the bytecode stream is high for rib, this effect is amplified resulting
in a higher TLB miss rate in the interpreter mode. While executing
j a ck , a significant amount of time is spent in user and kernel stalls
when reading 17 files during execution. This overshadows any dif-
ference in TLB miss behavior between both style of execution. The
differences in TLB miss rate automatically translate to the differ-
ences in the percentage of kernel execution times between the two
modes as shown in Table 2, particularly for those applications
where the TLB miss handling overshadows the other kernel serv-
ices.

We have made all the above observations for the s l00 data set of
the SPECjvm98 suite. We have also conducted a similar study for
the sl and s l0 data sets [31]. Table 5 shows the kernel activities for
these applications with the sl and s l0 data set.

An interesting observation is the fact that idle times (due to file
reads) can be seen with the smaller data sets. As mentioned earlier,
idle times are due to disk activity when the operation misses in the
file cache. With the larger data set (sl00) that operates on the same
set of files/blocks as a smaller data set, the longer execution time
makes it difficult to give any prominence to the idle times in Figure

27

1. In most applications, the operation is invoked repeatedly to the
same files/blocks leading to a higher hit percentage in the file
cache while using the s l0 and sl00 data sets. As a result, we ob-
served that the percentage of kernel time spent in the read call
goes up for the smaller data sets.

2 . 8

.=

2 . 4

2 . 0

1 . 6

1 . 2

0.8

0 . 4

o
c o m p r e s s j e S S ¢Ib ja'~stc m p e g m t r t j a c k

Figure 3. TLB Misses Behavior for
SPECjvm98 Benchmarks

Table 5. Execution Time Breakdown for s l and sl0
with JIT onl

;trap t l 92,25 87.13 5.12 6.06 4.67 1.20 0.19 1169
~10 83.57 78,50 5,07 5.44 4,3,1 0,97 0.16 10,99

ess ~1 61,95 51.49 10.46 30.28 21.71 6.50 2.07 7.77
~10 79.10 7030 8.40 16.99 13,61 2.66 0.72 1.91
~1 52.07 44,19 7.88 30,91 20.12 8.23 2,56 17,02
~10 79.08 70.45 8.63 15.89 12.69 2.45 0.75 ;.03

javac ~1 71.18 62.08 9.10 18.56 12.17 5.13 1.26 10.26
S10 73.06 62.50 10.56 11.99 %89 1.82 0.28 14.95

xlpog ~1 81.00 76.12 4.92 10.92 6 .79 3 .27 0.86 1.04
SI0 96.21 93.88 2 . 3 3 2.25 1.41 0 .70 0.14 1.54

axtrt SI 89.99 81.23 8 . 7 6 7 . 2 7 5 .08 1.87 0.32 2.74
SI0 91.98 82.50 9.48 6.71 5.37 1.18 0.16 1.31

jack S1 80.53 70.34 10.19 17.36 13.31 3 .46 0.59 2.11
Sl0 81.47 71.34 10.13 17.27 13.46 3.30 0.51 1.26

3 .2 T L B M i s s A c t i v i t y in Different Parts of the
JVM

Since the TLB miss handler contributes to most of the kernel ac-
tivity for both the JVM execution modes, we investigated the TLB
characteristics in more detail to analyze the causes for the TLB
misses. The TLB misses (See Table 6) that occurred during JVM
execution while executing user code were split into those that oc-
curred during class loading, garbage collection and dynamic com-
pilation (for JIT mode only). Further, the misses in the unified
TLB are split into those resulting from instruction or data accesses.
The results for this section was performed with the sl data set (due
to the time-consuming nature of selective profiling). We believe
that the TLB behavior in these parts of the JVM due to Java's
unique characteristics still hold good for the sl00 data set. How-
ever, the percentage contribution of TLB misses due to dynamic
compilation and loading will decrease with increased method reuse
in the sl00 data set. The key observations from this study are
summarized below:
• The TLB miss rate due to data accesses is higher than that due to
instruction accesses in both the execution modes. This suggests
that the instruction access locality is better than that of data ac-

cesses and is consistent with the cache locality behavior exhibited
by SPECjvm98 benchmarks [2]. It is also observed that this behav-
ior is true for the different parts of the JVM execution studied. In
particular, this behavior is accentuated for the garbage collection
phase, where the data miss rate is an order of magnitude or more
than the instruction miss rate. This is due to the garbage collection
of objects that are scattered in the heap space by a relatively small
code sequence.
• The TLB locality is better for the interpreter mode as compared to
the JIT mode for both instruction and data accesses. One of the rea-
sons for such a behavior is the higher miss rate during dynamic
compilation (due to both instruction and data accesses) as compared
to that of the overall TLB miss rate in JIT compiler mode. For ex-
ample, the miss rate due to instruction and data accesses during dy-
namic compilation of clb is 0.24% and 0.67% as compared to the
0.17% overall TLB miss rate. It must be observed that the relative
TLB miss rates of d.b in the interpreter and JIT compiler mode when
using the sl data set is different from that of the sl00 data set, due
to the reduced method reuse. The main reason for the poor TLB lo-
cality during dynamic compilation is due to the drastic change in
working set of the JVM. The code and data structures associated
with the dynamic compiler are quite different from that of the rest of
the JVM execution. Further, dynamic compilation also incurs TLB
misses when codes are installed in new locations for the first time.
Another reason for the better performance of the interpreter is due to
the better locality in the interpreter loop.
• Generally, the TLB miss rates for data accesses is the higher than
the overall miss rates for each of the three instrumented parts of the
JVM for both the modes. In particular, the TLB data miss rates are
the highest during garbage collection. Thus, the frequent use of gar-
bage collectors in memory-constrained systems will impact the
overall JVM performance more significantly. In the JIT mode, the
TLB instruction miss rate while dynamic loading is typically less
than the overall instruction miss rate. But for the interpreter, the
loading instruction miss rate is almost always higher than the gen-
eral instruction miss rate. This behavior is more due to the increased
instruction locality within the interpreter rather than a change in be-
havior of the loading routine itself.

3.3 Comparison with SPECInt Behavior
Next, we set out to study whether the kernel activity of the
SPECjvm98 benchmarks is different from that of traditional appli-
cations. Figure 4 shows the most frequently used kernel routines in
four benchmarks from the SPECInt95 suite.

'-I I t !:hi i! [i] "t Hi I! 0 °' ~,o . I fJ-=! : = ~ E . I . I ~ f i i ~ - i.i, "#~i
I I] . , i l l l i , - ~ l ! l I l i , l _ - . : - , . ~ i l l . ~ t i l ~ . - l ~ : l ' t t o ~ '1: - - " . o ' ~ e N O =

compress95 n~.xsim i ~ pea

Figure 4. Kernel Routines Distribution
for SPECInt95 Benchmarks

It is observed that the TLB miss handler that constituted a major
part of the kernel activity in all SPECjvm98 benchmarks is quite in-
significant for the iSpeg and p e r l benchmark. It was observed
earlier that features of Java such as class loading, garbage collec-
tion, and dynamic loading affect the TLB even if the application ex-
hibits good TLB locality. However, the application behavior plays
an important role in the kernel activity as well. For example, utlb
activity contributes to 94.5% o f kernel activity when executing

28

compress95 and 80% of kernel activity in JIT mode when exe- centage of kernel activity in the read routine. Further, we find that
curing compress (SPECjvm98 suite). Though, compress95 and the SPECjvm98 benchmarks spend 10% of their execution time, on
compress implement essentially the same algorithm, there are an average, in the kernel, in contrast to the four SPECint95 bench-
differences in their data sets. These differences along with the dy- marks that spend less than 2% of their execution in the kernel.
namic class loading behavior of compress result in a higher per-

Tab le 6. In s t ruc t ion a n d Da ta References and Misses within a
Fully Associative, 64 Entry, Unif ied TLB wi th L R U Replacement Policy (with sl da tase t)

The TLB misses that occur dur ing JVM execut ion using s l dataset are split into those due to data accesses (Data) and instruction accesses (Ins0. Further, we
decompose the TLB misses based on the part of the JVM executed: class loading, garbage col lect ion and dynamic compilat ion. The first row for each
benchmark and execution mode gives the number of TLB misses in that part, and the second row gives the miss rate wi thin that part of the JVM (Num.:
Number of Misses , MR: Miss Ratio).

To ta l L o a d i n g G C C o m p i l a t i o n I O t h e r To ta l
B e n c h m a r k s I n s t D a t a l n s t D a t a I n s t D a t a I n s t ~Da ta ~': .- I n s t d a t a N u m b e r

j i t Num. 13006215 90164039 1924105 13224248 2892209 20555146 18209621 12184675 6368939 44199970 103170254
MR 0.0135% 0.3526% , 0.0128% 03309% 0.0109% 0.2911% 0.016"7% I 0.4215% ,i 0.0145% 0.3804% 0.0846%

o u i n t r Num. 3621486 38088720 1584432 5884113 1288338 13559689 --- i "-- 1 1748716 18644918 41710206

MR 0.0054% 0.2001% !0.0056% 0.1994% 0.0052% 0.1924% -o- i "" , 0.0055% 0.2064% 0.0484%

Num. 503314 535910 ' 15182 40626 512 12737 218118 I 163244 I 269502 319303 1039224 j i t
t~ MR 0.1290% 0.5501% 0.0491% 0.6150% 0.0096% 1.0429% 0.1771% 0.5239% 0.1168% 0.5464% 0.2131%

Num. 910696 2353513 15151 44031 520 12147 895025 2297335 3264209 -r~ intr
t~m 0.0438% 0.4247% 0.0467% 0.6291% 0.0084% 0.7924% 0.0438% 0.4211% 0.1240%

Num. 250358 236619 8782 23249 346 5759 129916 89773, 111314 117838 486977
j i t MR 0.1086% 0.4054% 0.0510% 0.5587% 0.0119% 0.9199% 0.2419% 0.6706% 0 . 0 7 1 1 % 0.2932% 0.1686%

'~ Num. 213813 421717 8725 23782 301 5224 204787 392711 635530
intr

MR 0.0496% 0.3658% 0.0508% 0.5726% 0.0097% 0.7258% 0.0499% 0.3557% 0.1164%

j i t Num. 476746 514612 6206 46992 780 19541 180341 131670 279419 316409 991358
z,m 0.1196% 0.52817% 0.0431% 0.6121% 0.0077% 0.8295% 0.2490% 0.7250% .~0.1004% 0.45770% 0.1999%

¢~ NUm. 570349 1310814 16186 49790 108754 336362 44.5409 924662 1881163 -,~ intr
MR 0.0431% 0.3767% 0.0416% 0.6207% 0.0310% 0.3596% - - "L 0.0476% 0.3753% 0.1125%

mm. 310681 293071 12865 28360 374 6920 159838 11.t828 137604 145963 603752 j i e
MR 0.0625% 0.2128% 0.0593% 0.5511% 0.0110% 0.9277% 0.1698% 0.4780% 0.0364% 0.1346% 0.0951%

intr Nma. 226424 1312574 10676 27866 312 6219 " 215436 1278489 1538998
MR 0.0041% 0.0832% 0.0526% 0.5840% 0.0086% 0.7131% 0.0039% 0.0813% 0.0219%

Num. 749105 1084365 9458 25102 920 36481 174117 122187 564610 900595 1833470 5 i t
t'm 0.0224% 0.1258% 0.0498% 0.5590% 0.0016% 0.2550% 0.2486% 0.6847% 0.0177% 0.1092% 0.0437%

i n t r Num. 963364 4126122 9525 25958 901 35296 952938 4064868 5089486
MR 0.0059% 0.0953% 0.0502% 0.5793% 0.0014% 0.2126% 0.0059% 0.0944% 0.0247%

jit Num. 1083999 1279611 14859 31418 1207 26056 194008 136337 873925 1085800 2363610

x MR 0.1466% 0.6897% 0.0654% 0.5830% 0.0054% 0.4709% 01382% 0.6612% 0.1426% 0.7052% 0.2556%
Num. 3191125 11725770 11415 29253 1183 23986 3178527 11672531 14916895

"~ intr
MR 0.0267% 0.3618% 0.0543% 0.5864% 0.0046% 0.3358% - - - - 0.0267% 0.3615% 0.0982%

4. INSTRUCTION LEVEL PARALLELISM
IN JAVA WORKLOADS

This section analyzes the impact of instruction level parallelism
(ILP) techniques on SPECjvm98" suite by executing the complete
workload on the detailed superscalar CPU simulator MXS. The
effectiveness of microarchitectural features such as wide issuing
and retirement and multi-ported cache are studied. Additionally,
we investigate the bounds on available parallelism in Java work-
loads by studying the nature of dependencies between instructions
and computing the program parallelism. Due to the large slow-
down of MXS CPU simulator, we use the reduced data size sl as
the data input in this section. Just as before, we model instruction
and data accesses in both application and OS.

4.1 Effectiveness of Aggressive ILP Architectures
Figure 5 illustrates the kernel, user, and aggregate execution
speedup for a single pipelined (SP), a four-issue superscalar (SS)
and an eight-issue superscalar microprocessor (normalized to the
corresponding execution time on the SP system). Our four-issue
SS simulates the machine model described in section 2. The eight-
issue SS uses more aggressive hardware to exploit ILP. Its instruc-
tion window and reorder buffer can hold 128 instructions, the
load/store queue can hold 64 instructions, and the branch predic-
tion table has 2048 entries. Furthermore, its L1 caches support up

to four cache accesses per cycle. To focus the study on the per-
forrnance of the CPU, there are no other differences on the mem-
ory subsystem.

Figure 5 shows that mieroarcehitectural techniques to exploit ILP
reduce the execution time of all SPECjvm98 workloads on the
four-issue SS. The total ILP speedup (in JIT mode), nevertheless,
shows a wide variation (from 1.66x in j e s s to 2.05x in mtr t) .
The average ILP speedup for the original applications is 1.81x (for
user and kernel integrated). We see that kernel speedup (average
1.4.4x) on an ILP processor is somewhat lower than that of the
speedup for user code (average 2.14x). When the issue width is in-
creased from four to eight, we observe a factor of less than 1.2x on
performance improvement for all of ~PECjvm98 applications.
Compared with the 1.tx (in SPECInt95) and 2.4x (in SPECfp95)
performance gains obtained from wider issuing and retirement
[29], our results suggest that aggressive ILP techniques are less ef-
ficient for SPECjvm98 applications than for workloads such as
SPEC95. Several features of SPECjvm98 workloads help explain
this poor speedup: The stack based ISA results in tight dependen-
cies between instructions. Als0, the execution of SPEC Java
workloads, which involve JIT compiler, runtime libraries and OS,
tends to contain more indirect branches to runtime library routines
and OS calls, and exceptions. The benchmark db has a significant
idle component in the sl data set, which causes the aggregate IPC

29

to be low although both kernel and user code individually exploit

^

TKU

reasonable ILP.

c o m p m j e s s ¢ro je%~e.c m tc t j a c k c o m p l ~ j e s s d b j a n e m t r t j a c k b o m p r o j e s s
S P : S i m p l e Pipol ine~: l , S S : S u p e m c e l a r

Figure 5. I L P Speedup (with J I T)

d b jQ%ec m t r t j a c k

TKUTKUTKU

g~
g=

g.,
r ~

.d

T K U T K U T K U T K U

[] Pi~iBe St,~

Actual IPC

Jess ~ Jw,~c mpeg mttt Jack compress Jess db

T K U T K U T K U T K U T K U T K U

lance ml~Kt mtr t Jack

(a) 4-issue (b) 8-issue
Figure 6. IPC Breakdown for 4-issue and 8-issue Superscalar Processors

(T: Total; K: Kernel; U: User, with s l Dataset and JIT Compiler)

4.2 Breakdown o f IPC - Where have the Cy-
cles Gone?
To give a more detailed insight, we breakdown the ideal IPC into
actual IPC achieved, IPC lost on instruction and data cache stall,
and IPC lost on pipeline stall. We use the classification techniques
described in [12, 29] to attribute graduation unit stall time to dif-
ferent categories: a data cache stall happens when the graduation
unit is stalled by a load or store which has a outstanding miss in
data cache. If the entire instruction window is empty and the fetch
unit is stalled on an instruction cache miss, an instruction cache
stall is recorded. Other stalls, which are normally caused by pipe-
line dependencies, are attributed to pipeline stall. Figure 6 shows
the breakdown of IPCs on four-issue and eight-issue superscalar
processors.

On four-issue superscalar microprocessor, we see jess, rib,
javac and j ack lost more IPC on instruction cache stall. This is
partially due to high indirect branch frequency which tends to in-
terrupt control flow. These four programs contain 22% to 28% in-
direct branches. All studied applications show some IPC loss on
data cache stall. The data cache stall time includes misses for byte-
codes during compilation by the JIT compiler and those during the
actual execution of compiled code on a'given data set. Figure 6
shows that a significant amount of IPC is lost due to pipeline stalls
and the IPC loss in pipeline stall on an eight-issue processor is
more significant than that of four-issue processor. This fact implies
that the more aggressive and complex ILP hardware may not
achieve the desired performance gains on SPECjvm98 due to the

inherent ILP limitation of these applications. All applications show
limited increase in instruction cache IPC stall and data cache IPC
stall on eight-issue processor.

4.3 Impact o f Mult i -Ported Cache
Speculative, dynamically scheduled microprocessors require high
instruction and data memory bandwidth. A viable solution is to em-
ploy multiple cache ports that can be accessed simultaneously by the
processor's load/store unit. This section characterizes the perform-
ance benefits of multi-ported cache on SPECjvm98 applications.
We present the performance of a 32KB multi-ported cache for each
benchmark and on both user and kernel mode (with l i t) , as shown
in Figure 7. In user mode, increasing the number of cache ports
from one to two shows 31% of improvement in performance for
compress and mpeg, 22% of improvement for javac and jack,
and 20% of improvement for j e s s , ~ and mtr t . The average per-
formance improvement is 24%, which is approximately equivalent
to the number for SPECInt95 reported in [36]. The average per-
formance improvement for an increase of two to three and of three
to four cache ports is 5% and 1% respectively.

In kernel mode, we did not observe notable IPC speedup by in-
creasing cache ports from one to four. The average additional im-
provement in performance for 2, 3 and 4 cache pens is 8%, 3% and
1% respectively. Our results suggest that a dynamic superscalar
processor with two-port cache is cost-effective on SPECjvm98
workloads. While the impact of multiple cache ports on Java user
code is not different from that of SPECInt applications studied in
[36], it is worth noting that the kernel code benefits less from 2
ports cache than user code.

30

2.6
Impact ot Mdti-Ported Cache ~tJser)

z2~------~ ~ ~o~ ~ --
2 ~ 1 ¢~oas I I H .=

,.I dl ~ J-5," III Inl

c ~ p ~ s j ~ s ~ lavac mpeg rn~ lack
SPECjwn98 Benchmarks

Impact of Multi-Po~ed Cache (KerrY)

1.4 2 ~ ~rts
4 ~

1.2

• 0 . 8

0.6

0 . 4

0.2

0
compressjess db ja'~ac mp~ rn~t jack

SPECjwn98 Benchmarks

Figure 7. Impact of Multi-Ported Cache
(with JIT Compiler and use s l Dataset)

4.4 Limits o f Avai lab le Paral le l i sm
In order to understand the instruction level parallelism issues in-
volving the stack-oriented Java code, we investigated the limits of
available parallelism in Java workloads. We also compare the ILP
of the Java benchmarks to SPECInt95 applications, and several
C++ programs. This work is focused on logical limits rather than
implementation issues and towards this end, we assume an ideal
machine with infinite machine level parallelism (MLP). MLP is
defined to be the maximum number of instructions that the ma-
chine is capable of scheduling in a single cycle.

We use dynamic dependence analysis in order to compute the
limits of ILP as in previous parallelism investigations [32, 33].
First, we construct a Dynamic Dependency Graph (DDG) which is
a partially ordered, directed, and acyclic graph, representing the
execution of a program for a particular input. The executed opera-
tions comprise the nodes of the graph and the dependencies real-
ized during the execution form the edges of the graph. The edges
in the DDG force a specific order on the execution of dependent
operations - forming the complete DDG into a weak ordering of
the program's required operations. A DDG, which contains only
data dependencies, and thus is not constrained by any resource or
control limitations, is called a dynamic data flow graph. It lacks the
total order of execution found in the serial stream; all that remains
is the weakest partial order that will successfully perform the com-
putations required by the algorithms used. If a machine were con-
structed to optimally execute the DDG, its performance would rep-
resent an upper bound on the performance attainable for the pro-
gram. In our study, first, the critical path length defined as the
height of the scheduled DDG (the absolute minimum number of
steps required to evaluate the operations in the scheduled DDG) is

determined. The available parallelism is computed by dividing the
total number of nodes by the critieai path length.

To give an upper bound on the available parallelism, an available
Machine Level Parallelism (MLP) of infinity was considered but
MLP of 8, 16, 32, 64 and 128 were also studied for comparative
purposes (See Table 7). We consider only true dependencies (or
RAW dependencies) while scheduling instructions, this is the ab-
solute limit of parallelism that can potentially be exploited from that
program, with the best of renaming, etc. The latency of all opera-
tions is set to be 1 cycle. Perfect memory disambiguation and per-
feet branch prediction are assumed. More details on these experi-
ments can be found in [34]. In our study, the SPECjvm98 bench-
marks are invoked with ~ i~e~reter.

Table 7 shows that 3ave ~ l e exhibits very low ILP in compari-
son to all other workloads analyzed. The average available parallel-
ism (in terms of the harmonic mean of the observations) of the four
different suites of program s for different window sizes is summa-
rized in Figure 8.

Table 7. Avai lab le In s t ruc t i on Level Parallelism
of Different Benchmarks

(SPECjvm98 Benchmarks are Invoked with an Interpreter)

Available ILP
I

Benchmarks ~ ,t , , ~ ,

ceapress 6.94 i 13.68 . 21.9 37.65 65.89 265.01
gcc 7.26 !13.94 25.56 40.79 58.15 92.14

,~ go 7.15 114.11 27.26 48.79 70.23 183.81
l i 7.47 14.25 25.35 47.17 70.15 17248
maeksX= 6.45 11.09 21.50 45.59 104.43 i133.36

o~ iSpeg 7.44 14.67 2g.46 48.01 71.86 8465.51
delgal) lua 7 .28 15.15 30.79 60..48 111.28 270.97
eqn 7.42 14.18 26.54 37.96 43.51 272.09

+ £dl 7.57 14.59 29.05 48.31 63.49 277.01 -i-

t . .) ixx 7.2 13.83 26.92 51.32 76.05 111.71
richaz:ds 7.56 13.78 24.83 35.84 55.99 125.57

6.75 11.59 19.54 28.55 3 3 . 7 41.06
oo 5avac 6~66 10.67 15.55 19.82 21.89 25.13

5ess [6.69 11.02 i6.17 19.54 20.78 22.83
~) n~eg 7.27 10.11 12.86 14.63 15.19 15.39

mt~e ,6"76 10.26 12.92 14.06 14.38 15.82
c ~ = e s s i6.98 9 . 6 6 11.46 11.68 11.88 11.95
dot i7.97 15.91 31.82 63.58 127.10 8239.82
g711 17 57 15.39 31.31 62.53 125.86 11064.15

~, a u t oc o r 6.66 15.94 31.86 62.96 125.62 12057.35
r~ £ i r 6.67 15.69 31.5 63.12 124.35 18964.54

audio 16.79 15.67 31.52 60.35 117.41 21164.94
adpc~a !7.26 13:42 24.19 40.37 40.48 40.59

With infinite MLP, the mean ILP is 125 (for the SPECInt95
benchmarks), 175 (for the C++ programs), 20 (for the Java pro-
grams) and 240 (for the DSP benchmarks). The extremely low l i p
of the Java programs, even with no other control or machine con-
straints, can be attributed to the stack-based implementation of the
Java Virtual Machine (JVM). The stack nature of the JVM imposes
a strict ordering on the execution of the bytecodes. This observation
is further supported by the behavior of the compress benchmark,
which is present in both the $PECInt95 and SPECJvm98 suites.
Both are text compression programs and the Java version is a Java
port of the integer benchmark from SPECCPU95. It can be seen that
with an MLP of infinity, the CPU95 compress benchmark has the
highest ILP among all the SPECInt95 benchmarks while the Java
compress program has the least ILP among the SPECJvm98
benchmarks.

31

250

2 0 0 -

150

~ 100

50

,I
0 ! I I I I I I I

8 16 32 64 128 Infinity
MI.P

F i g u r e 8. A v e r a g e Ava i l ab l e P a r a l l e l i s m of
S P E C I n t 9 5 , C + + , S P E C j v m 9 8 and

DSP benchmarks for Different MLP

5. CONCLUSIONS
The popularity and wide-spread adoption of Java has necessitated
the development of an efficient Java Virtual Machine. This study
has provided insights into the interaction of the JVM implementa-
tions with the underlying system (both hardware and operating
system). To our knowledge, this work is the first to characterize the
kernel activity of the Java applications and analyze their influence
on architectural enhancements. The major findings from this re-
search are:

• The kernel activity of SPECjvm98 applications constitutes up to
17% of the execution time in the large (sl00) data set and up to
31% in the small (sl) data set. The average kernel activity in sl00
case is approximately 10%, in comparison to around 2% in four
SPECInt benchmarks studied. Generally, the JIT compiler mode
consumes a larger portion of kernel services during execution. The
only exception we found was in db for s l00 data set, which has
high method reuse and interference of the bytecode and data local-
ity in the interpreter mode.

• The SPECjvm98 benchmarks spend most of their time in exe-
cuting instructions in the user mode and spend less than 10% of
the time in stall cycles during the user execution. The kernel stall
mode in all SPECjvm98 benchmarks, except Sack that has a sig-
nificantly higher file activity, is small. However, the MCPI of the
kernel execution is found to be much higher than that of the user
mode.

• The kernel activity in the SPECjvm98 benchmarks is mainly due
to the invocation of the TLB miss handler routine, utlb and the
read service routine. In particular, the utlb routine consumes more
than 80% of the kernel activity for four out of seven SPECjvm98
benchmarks for the s l00 dataset. Further, the dynamic compila-
tion, garbage collection and class loading phases of the JVM exe-
cution utilize the utlb routine at a faster rate as they exhibit a
higher TLB miss rate than the rest of the JVM. It is also observed
that the dynamic class loading behavior influences the kernel ac-
tivity more significantly for smaller datasets (sl and sl0) and in-
creases the contribution of the read service routine.

• The average ILP speedup on a four-issue superscalar processor
for the SPECjvm98 benchmarks executed in the JIT compiler
mode was found to be 1.81 times. Further it is found that the
speedup of the kernel routines (average 1.44 times) is lower than
that of the speedup of the user code (average 2.14 times). This be-
havior can be attributed to the significant fraction of the kernel ac-
tivity spent in the utlb routine that is a highly optimized sequence
of interdependent instructions.

• Aggressive ILP techniques such as wider issue and retirement
are tess effective for SPECjvm98 benchmarks than for SPEC95.
We observe that the performance improvement for SPECjvm98,
when moving from 4 issue to 8 issue width is 1.2 times as com-

pared to the 1.6 times and 2.4 times performance gains achieved by
the SPECint95 and SPECfp95 benchmarks, respectively. The pipe-
line stalls due to dependencies are the major impediment to achiev-
ing higher speedup with increase in ILP issue width. Also, the
SPECjvm98 workloads, which involve the dynamic compiler, run-
time libraries and the OS, tend to contain more indirect branches to
runtime library routines and OS services. These indirect branches
that constitute up to 28% of all the dynamic branches in the
SPECjvm98 suite tend to increase the i~truction cache stall times.

• The SPECjvm98 benchmarks have inherently poor ILP compared
to other classes of benchmarks. For an ideal machine with infinite
machine level parallelism, the mean ILP is approximately 20 for the
Java programs (in interpreted mode) as compared to the speedup of
125, 175 and 240 for the SPECInt95, C++ and DSP benchmark
suites.

These results can help in providing insight towards designing
systems software and architectural support for enhancing the per-
formance of a JVM. For example, the use of single-address virtual
space that could eliminate the TLB activity from the critical path of
cache access may be useful for JVM implementations. Since the utlb
handier forms the major part of the SPECjvm98 kernel activity,
moving the TLB access to a cache miss can help reduce overall ker-
nel activity. In addition, a closer look at these results can help re-
structure the JVM implementation. For example, the high TLB miss
rates that occur during collecting garbage can be reduced by col-
lecting objects page wise. A simple modification from depth first
search to breadth first search of objects during the mark phase of a
garbage collection algorithm may help improve this. The key to an
efficient Java virtual machine implementation is the synergy be-
tween well-designed software (JVM and system software support),
supportive architecture and efficient runtime libraries. While this
paper has looked at kernel activities of SPECjvm98 benchmarks, we
plan to characterize other Java applications as well, particularly
those that have more garbage collection, network communication
and multi-threading operations.

REFERENCES
[1] C.-H. A. Hsieh, M. T. Conte, T. L. Johnson, J. C. Gyllenhaal

and W. W. Hwu, A Study of the Cache and Branch Perform-
ance Issues with Running Java on Current Hardware Platforms,
In Proceedings of COMPCON, pages 211-216, 1997.

[2] R. Radhakrishnan, N. Vijaykrishnan, L. K. John and A. Si-
vasubramaniam, Architectural Issue in Java Runtime Systems,
In Proceedings of the 6th International Conference on High
Performance Computer Architecture, pages 387-398, 2000.

[3] N. Vijaykrishnan, N. Ranganathan and R. Gadekarla, Object-
Oriented Architectural Support for a Java Processor, In Pro-
ceedings the 12th European Conference on Object-Oriented
Programming, pages 430-455,1998.

[4] N. Vijaykrishnan and N. Ranganathan, Tuning Branch Predic-
tors to Support Virtual Method Invocation in Java, In Pro-
ceedings of the 5th USENIX Conference of Object-Oriented
Technologies and Systems, pages 217-228, 1999.

[5] A. Barisone, F. Bellotti, R. Berta and A. D. Gloria, Ultrasparc
Instruction Level Characterization of Java Virtual Machine
Workload, from the 2nd Annual Workshop on Workload Char-
acterization, Workload Characterization for Computer System
Design, Kluwer Academic Publishers, pages 1-24, 1999.

[6] J.-S. Kim and Y. Hsu, Analyzing Memory Reference Traces of
Java Programs, from the 2nd Annual Workshop on Workload
Characterization, Workload Characterization for Computer
System Design, Kluwer Academic Publishers, pages 25-48,
1999.

[7] M. O'Connor and M. Tremblay, PicoJava-I: The Java Virtual
Machine in Hardware, IEEE Micro, pages 45-53, Mar. 1997.

32

[8] R. Radhakrishnan, J. Rubio and L. John, Characterization of
Java Applications at Bytecode and Ultra-SPARC Machine
Code Levels, In Proceedings of IEEE International Confer-
ence on Computer Design, pages 281-284, 1999.

[9] L. A. Barroso, K. Gharachodoo, and E. Bugnion, Memory
System Characterization of Commercial Workloads, In Pro-
ceedings of the 25th Annual International Symposium on
Computer Architecture, pages 3-14, 1998.

[10] S. A. Herrod, Using Complete Machine Simulation to Under-
stand Computer System Behavior, Ph.D. Thesis, Stanford
University, Feb. 1998.

[l l]M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta,
Complete Computer System Simulation: the SimOS Ap-
proach, IEEE Parallel and Distributed Technology: Systems
and Applications, vol.3, no.4, pages 34-43, Winter 1995.

[12] M. Rosenblum, E. Bugnion, S. A.Herrod, E. Witchel, and A.
Gupta, The Impact of Architectural Trends on Operating
System Performance, In Proceedings of the 15th ACM Sym-
posium on Operating System Principles, pages 285-298,
1995.

[13]C.-H. A. Hsieh, J. C. Gyllenhaal and W. W. Hwu, Java Byte-
code to Native Code Translation: the Caffeine Prototype and
Preliminary Results, In Proceedings of the 29th International
Symposium on Microarchitecture, pages 90-97, 1996.

[14IT. Cramer, R. Friedman, T. Miller, D. Seberger, R. Wilson
and M. Wolczko, Compiling Java Just-In-Time, IEEE Mi-
cro, vol. 17, pages 36--43, May 1997.

[15]A. Krall, Efficient JavaVM Just-In-Time Compilation, In
Proceedings of the International Conference on Parallel Ar-
chitectures and Compilation Techniques, pages 54-61, 1998.

[16] A. Adl-Tabatabai, M. Cierrtiak, G. Lueh, V. M. Parakh and J.
M. Stichnoth, Fast Effective Code Generation in a
Just-In-Time Java Compiler, In Proceedings of Conference on
Programming Language Design and Implementation, pages
280-290, 1998.

[17] H. McGhan and M. O'Connor, PicoJava: A Direct Execution
Engine for Java Bytecode , IEEE Computer, pages 22-30,
Oct. 1998.

[18]N. Vijaykrishnan, Issues in the Design of a Java Processor
Architecture. PhD Thesis, College of Engineering, University
of South Florida, July 1998.

[19]M. C. Merten, A. R. Trick, C. N. George, J. Gyllenhaal, and
W. W. Hwu, A Hardware Driven Profiling Scheme for Iden-
tifying Program Hot Spots to Support Runtime Optimization,
In Proceedings of the 26th Annual International Symposium
on Computer Architecture, pages 136-147, 1999.

[20] SPEC Jvm98 Benchmarks, http://www.spec.org/osg/jvm98/
[21] SPEC CPU95 Benchmarks, hnp://www.spec.org/osg/cpu95/
[22] S. A. Herrod, M. Rosenblum, E. Bugnion, S. Devine, R.

Bosch, J. Chapin, K. Govil, D. Teodosiu, E. Witchel, and B.
Verghese, The SimOS User Guide,
http ://simos.stanford.edu/userguide/

[23] Overview of Java Platform Product Family,
http://www.javasoft, com/products/O V jdkProduct, html

[24] E. Witchel and M. Rosenblum, Embra: Fast and Flexible Ma-
chine Simulation, In Proceedings of ACM SIGMETRICS "96:
Conference on Measurement and Modeling of Computer
Systems, 1996.

[25] J. Bennett and M. Fiynn, Performance Factors for Superscalar
Processors, Technical Report CSL-TR-95-661, Computer
Systems Laboratory, Stanford University, Feb. 1995.

[26]MIPS Technologies, Incorporated, R10000 Microprocessor
Product Overview, MIPS Open RISC Technology, Oct. 1994.

[27] K. C. Yeager, MIPS R10000, IEEE Micro, vol.16, no.l, pages
28-40, Apr. 1996.

[28] K. I. Farkas and N. P. Jouppi, Complexity/Performance Trade-
offs with Non-Blocking Loads, In Proceedings of the 21th In-
ternational Symposium on Computer Architecture, pages 211-
222, 1994.

[29] K. Olukotun, B.A. Nayfeh, L. Hammond, K. Wilson and K.-Y.
Chang, The Case for a Single-Chip Multiprocessor, In Pro-
ceedings of the 7th International Conference on Architectural
Support for Programming Languages and Operating Systems,
pages 1-4, 1996.

[30] B. Nayfeh, L. Hammond and K. Olukotun, Evaluation of De-
sign Alternatives for a~Multiprocessor Microprocessor, In Pro-
ceedings of the 23rd International Symposium on Computer
Architecture, pages 66-77, 1996.

[31] Tao Li, Using Complete System Simulation to Characterize the
Execution Behaviors of SPECjvm98 Benchmarks,
http://www.ece.utexas.edu/~tli3/tao-jvm98.ps

[32] T. M. Austin and G. S. Sohi, Dynamic Dependency Analysis of
Ordinary Programs, In Proceedings of the 19th Annual Inter-
national Symposium on Computer Architecture, pages 342-
351, 1992.

[33] R. Sathe and M. Franklin, Available Parallelism with Data
Value Prediction, In Proceedings of International Conference
on High Performance Computing, pages 194-201, 1998.

[34] J. Sabarinathan, A Study of Instruction Level Parallelism in
Contemporary Computer Applications, Master Report, Univer-
sity of Texas at Austin, Dec. 1999.

[35] S. Dieckmann and U. H61zle, A Study of the Allocation Be-
havior of the SPECjvm98 Java Benchmarks, In Proceedings of
the 13th European Conference~ on Object-Oriented Program-
ming, 1999, Springer Verlag,

[36] K. M. Wilson, K. Olukotun, and M. Rosenblum, Increasing
Cache Port Efficiency for Dynamic Superscalar Microproces-
sors, In Proceedings of the 23rd International Symposium on
Computer Architecture, pages 147-157,1996.

33

• . 7 7 ~ , ~ . ~L~o . ' ~

. ~ : ~ ~ i ~ ~ ~ _ ~ . Z~ . _ ~ ,~

