
Copyright

by

Jee Ho Ryoo

2017

The Dissertation Committee for Jee Ho Ryoo
certifies that this is the approved version of the following dissertation:

Improving System Performance by Utilizing

Heterogeneous Memories

Committee:

Lizy K. John, Supervisor

Earl E. Swartzlander, Jr.

Nur A. Touba

Mattan Erez

Mitesh R. Meswani

Improving System Performance by Utilizing

Heterogeneous Memories

by

Jee Ho Ryoo, B.S., M.S.E.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2017

Dedicated to my family.

Acknowledgments

I would like to thank my advisor, Professor Lizy K. John, for being a

great mentor throughout the Ph.D. program. She has always been very sup-

portive and provided me invaluable guidance, and research funding throughout

my years here. She has motivated me to continue hard work and was always

available to provide research feedback. I would also like to thank Earl Swartz-

lander, Nur Touba, Mattan Erez and Mitesh Meswani for serving in my Ph.D.

committee. Their constructive criticism helped improve the quality of this

dissertation.

I also would like to thank my undergraduate advisors at Cornell. Pro-

fessor David H. Albonesi and Professor Christopher Batten have always been

supportive during my undergraduate as well as my graduate studies. Through-

out my Ph.D., I have met a number of great people. First, I need to thank

all of the members of the LCA research group for providing a creative and

helpful environment. Through multiple internships, I also met many mentors

and researchers at AMD Research, Oracle, and Samsung, whom I shared my

research interests with in great extent.

I would also like to thank the organizations that supported me finan-

cially during my Ph.D. studies. National Science Foundation (NSF), Semicon-

ductor Research Corporation (SRC), Oracle, and the University of Texas at

v

Austin provided grants for my research.

I am very grateful to my family for their emotional support through-

out my lengthy Ph.D. program. They have always been a great source of

encouragement and motivating factors in my pursuit towards this degree.

vi

Improving System Performance by Utilizing

Heterogeneous Memories

by

Jee Ho Ryoo, Ph.D.

The University of Texas at Austin, 2017

Supervisor: Lizy K. John

As device technologies scale in the nanometer era, the current off-chip

DRAM technologies are very close to reaching the physical limits where they

cannot scale anymore. In order to continue the memory scaling, vendors are be-

ginning to use new emerging memory technologies such as die-stacked DRAM.

Although each type of memory technology has advantages and disadvantages,

none has characteristics that are identical to conventional DRAM. For exam-

ple, High Bandwidth Memory (HBM) has better bandwidth but lower capacity

than DRAM whereas non-volatile memories offer more capacity, but are much

slower than DRAM. With the emergence of such disparate memory technolo-

gies, future memory systems are certain to be heterogeneous where the main

memory is composed of two or more types of memory.

Recent and current trends show that the number of cores in a processor

has been rising constantly. On the other hand, the off-chip DRAM bandwidth

vii

has not been scaling at the same rate as the bandwidth is limited mainly by

the pin count. This trend has resulted in lower bandwidth per core in today’s

system where the bandwidth available to each core is lower than the system

in the past. This has effectively created the “Bandwidth Wall” where the

bandwidth per core does not scale anymore. Consequently, memory vendors

are introducing HBM in order to enable the bandwidth scaling. The adoption

of such high bandwidth memory and other emerging memory technologies has

provided rich opportunities to explore how such heterogeneous main memory

systems can be used effectively.

In this dissertation, different ways to effectively use such heterogeneous

memory systems, especially those containing off-chip DRAM and die-stacked

DRAM such as HBM, are presented. First, hardware as well as software driven

data management schemes are presented where either hardware or software

explicitly migrates data between the two different memories. The hardware

managed scheme does not use a fixed granularity migration scheme, but rather

migrates variable amount of data between two different memories depending on

the memory access characteristics. This approach achieves low off-chip mem-

ory bandwidth usage while maintaining a high hit rate in the more desirable

memory. Similarly, a software driven scheme varies the migration granularity

without any additional hardware support by monitoring the spatial locality

characteristics of the running applications. In both solutions, the goal is to

migrate just the right amount of data into capacity constrained memory to

achieve the low off-chip memory bandwidth usage while still keeping the high

viii

hit rate.

While the capacity of die-stacked DRAM is not sufficient to meet the

demands of a server-class system, it is still non-trivial in size ranging from 8

to 16 GBs in typical configurations, so a fraction of the storage can be used

for non-conventional uses such as storing address translations. With increas-

ing deployment of virtual machines for cloud services and server applications,

one major contributor of performance overheads in virtualized environments is

memory address translation. An application executing on a guest OS generates

guest virtual addresses that need to be translated to host physical addresses.

In x86 architectures, both the guest and host page tables employ a 4-level

radix-tree table organization. Translating a virtual address to physical ad-

dress takes 4 memory references in a bare metal case using a radix-4 table,

and in the virtualized case, it becomes a full 2D translation with up to 24

memory accesses. A method to use a fraction of die-stacked DRAM as a very

large TLB is presented in this dissertation, so that almost all page table walks

are eliminated. This leads to a substantial performance improvement in virtu-

alized systems where the address translation takes a considerable fraction of

execution time.

ix

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xiv

List of Figures xv

Chapter 1. Introduction 1

1.1 Problem Description . 1

1.2 Overview of Proposed Research 4

1.3 Thesis Statement . 8

1.4 Contributions . 8

1.5 Dissertation Organization . 10

Chapter 2. Background Terminology and Related Work 12

2.1 Die-Stacked DRAM . 12

2.2 Address Translation . 14

2.3 Related Work . 16

2.3.1 Die-Stacked DRAM Data Management 16

2.3.2 Address Translation Optimization 18

Chapter 3. Methodology 20

3.1 Simulation Details . 21

3.1.1 Memory Timing Simulation 21

3.1.2 System Timing Simulation 22

3.1.3 Measurement on Real Machine 23

3.1.4 TLB Performance Modeling 24

3.2 Benchmark Suites . 26

x

3.2.1 SPEC CPU 2006 . 27

3.2.2 PARSEC . 27

3.2.3 Other Benchmarks . 27

Chapter 4. Challenges in Heterogeneous Memory System 29

4.1 Challenges with Transparent Data Management in Die-Stacked
DRAM . 29

4.1.1 Architecting Near Memory as Part of Memory 29

4.1.2 Hardware Managed Schemes 30

4.1.3 Software Managed Schemes 32

4.2 Challenges with Data Migration in Heterogeneous Memory . . 34

4.3 Challenges with Address Translation in Virtualized Systems . . 39

Chapter 5. SILC-FM: Subblocked InterLeaved Cache-Like Flat
Memory Organization 1 41

5.1 SILC-FM Memory Architecture 43

5.1.1 Hardware Swap Operations 45

5.1.2 Memory Activity Monitoring 50

5.1.3 Locking Pages . 51

5.1.4 Metadata Organization 52

5.1.5 Bypassing and Bandwidth Balancing 54

5.1.6 Latency Optimization 56

5.1.7 Overall SILC-FM Operation 57

5.2 Results . 59

5.2.1 Experimental Setup . 59

5.2.2 Workloads . 61

5.2.3 Performance . 62

5.2.4 Sensitivity Studies . 70

5.3 Summary . 72

xi

Chapter 6. Granularity-Aware Page Migration in Heterogeneous
Memory System 73

6.1 Baseline: OS-Managed Page Migration 76

6.2 Dynamically Selecting Migration Granularity 78

6.2.1 History-Based Migration Scheme 78

6.2.2 Sampling-Based Migration Scheme 82

6.3 Prototype and Results . 84

6.3.1 Baseline Setup . 85

6.3.2 Granularity-Aware Page Migration 87

6.3.3 Workloads . 88

6.3.4 Performance . 89

6.3.5 Sensitivity Studies . 93

6.4 Summary . 98

Chapter 7. POM-TLB: Very Large Part-of-Memory TLB 2 100

7.1 POM-TLB: A Very Large L3 TLB 102

7.1.1 System Level Organization 102

7.1.1.1 POM-TLB Organization 102

7.1.1.2 Support for Two Page Sizes 104

7.1.1.3 Caching TLB Entries 104

7.1.1.4 Page Size Prediction 106

7.1.1.5 Cache Bypass Prediction 107

7.1.1.6 Putting It All Together 107

7.1.2 Implementation Considerations 108

7.2 Results . 112

7.2.1 Experimental Setup . 112

7.2.2 Workloads . 113

7.2.3 Evaluation Methodology 114

7.2.4 Performance Simulation of POM-TLB 116

7.2.5 Performance . 118

7.2.6 Hit Ratio . 121

7.2.7 Predictor Accuracy . 122

7.2.8 Row Buffer Hits (RBH) in POM-TLB 123

xii

7.2.9 POM-TLB without Data Caches 124

7.3 Summary . 124

Chapter 8. Conclusion 126

8.1 Summary . 126

8.2 Future Work . 128

8.2.1 Enhancement to Data Management in Emerging Memories128

8.2.2 Enhancement to POM-TLB 129

Bibliography 130

xiii

List of Tables

5.1 SILC-FM Metadata and Operation Summary 47

5.2 SILC-FM Experimental Parameters 59

5.3 SILC-FM Workload Descriptions 61

5.4 SILC-FM Predictor Accuracy 68

6.1 Real Machine System Parameters 85

6.2 Real Machine Experiment Workload Descriptions 89

7.1 Benchmark Characteristics Related to TLB misses 113

xiv

List of Figures

1.1 Effect of Large Block Size on Hit Rate/Bandwidth 2

1.2 L2 TLB Scaling Trend . 7

2.1 Die-Stacked DRAM Structure 13

2.2 x86 1D Page Walk In Native Environment 14

2.3 x86 2D Page Walk In Virtualized Environment 15

4.1 Effect of Migration Granularity in Cost of Migration. 35

4.2 Impact of Migration Granularity on Application Performance . 36

4.3 Relative Number of Migrations Between Fast and Slow Memory
(lower is better) . 37

4.4 Average Translation Cycles per L2 TLB Miss (Virtualized Plat-
form) . 39

4.5 Ratio of Virtualized to Native Translation Costs 40

5.1 NM Set Mapping (Each Set Contains 32 Subblocks in Imple-
mentation) . 44

5.2 Example of Interleaved Swap 46

5.3 Locking and Associativity . 49

5.4 SILC-FM Data and Metadata Organization 53

5.5 Performance Improvement with Varying Access Rate 54

5.6 Overall Execution Flow of SILC-FM 58

5.7 SILC-FM Performance Improvement Breakdown 63

5.8 SILC-FM Performance Comparison with Other Schemes . . . 65

5.9 Fraction of FM and NM Bandwidth Usage 67

5.10 SILC-FM Normalized Energy Delay Product 69

5.11 SILC-FM Performance Improvement with Various NM Capacities 70

6.1 Baseline OS Driven Migration Scheme 76

xv

6.2 Dynamic Granularity Scheme Execution Time Normalized to
Baseline (All NM) . 90

6.3 Dynamic Granularity Scheme Breakdown of Total Granularity
Decisions . 92

6.4 Dynamic Granularity Scheme Execution Time Normalized to
Baseline (All NM) with Varying NM Capacities 93

6.5 Dynamic Granularity Scheme Execution Time Normalized to
Baseline (All NM) with Varying NM Latencies 95

6.6 Dynamic Granularity Scheme Execution Time Normalized to
Baseline (All NM) with Varying Threshold of Accessed Pages
within 2MB/64KB Region . 96

6.7 Dynamic Granularity Scheme Execution Time Normalized to
Baseline (All NM) with Varying Latency Ratio 98

7.1 POM-TLB Die-Stacked DRAM Row Organization 103

7.2 POM-TLB Architecture Overview 108

7.3 Performance Improvement of POM-TLB (8 Core) 117

7.4 Hit Ratio of POM-TLB (8 Core) 120

7.5 POM-TLB Predictor Accuracy (8 core) 123

7.6 Row Buffer Hits in POM-TLB (8 core) 124

7.7 POM-TLB With and Without Data Caching (8 core) 125

xvi

Chapter 1

Introduction

DRAM technology is facing fundamental physical design challenges

with shrinkage of the cell size [1]. Thus, it is becoming harder to continue

growing the capacity of conventional DRAM-only homogeneous memory sys-

tems. Fortunately, several non-volatile memory (NVM) technologies like Phase

Change Memory (PCM) [2, 3], memristor [4], and MRAM [5] are quickly

emerging as a credible supplement to DRAM since they scale well with tech-

nology shrinkage. In an orthogonal but concurrent trend, the advancement in

3D integration techniques has allowed high-bandwidth stacked memories [6, 7]

to be integrated on commercial processors [8–10]. Each of these disparate

memory technologies has distinct access characteristics – each has different

access latencies, access energy and/or bandwidth. With the emergence of

such disparate memory technologies, future memory systems are certain to be

heterogeneous.

1.1 Problem Description

Although the capacity of die-stacked DRAM is much greater than con-

ventional SRAM caches, many emerging applications often have a working

1

0

5

10

15

20

25

0

0.2

0.4

0.6

0.8

1

Baseline 64 128 256 512 1024 2048 4096 8192

B
n

ad
w

id
th

 R
eq

u
ir

em
en

t

(N
or

m
al

iz
ed

 t
o

B
as

el
in

e)

M
is

s
R

at
e

Cacheline Size (Bytes)

Miss Rate Relative BW

Figure 1.1: Effect of Large Block Size on Hit Rate/Bandwidth

set size of several gigabytes [11–13]. Therefore, only a subset of pages can

be present in die-stacked DRAM at any one time. Using this memory as a

large Last Level Cache (LLC) can hold significantly more cacheline blocks than

on-chip SRAM caches, yet the metadata area overheads such as tags become

extremely high. Managing data at different cacheline sizes can reduce the

metadata storage overheads, yet the bandwidth consumption becomes high.

Keeping tags in SRAM is infeasible as 1GB of the die-stacked DRAM requires

approximately 20MB SRAM storage just for tags.

Using a large cacheline size can bring down the tag area overheads to a

manageable size as in [14]. However, Figure 1.1 shows the tradeoff data gath-

ered from simulation involving this large cacheline approach. Due to spatial

locality, the number of misses decreases as the cacheline size increases. How-

ever, at the same time, the size of data brought in on every eviction increases.

This relationship is shown by the relative bandwidth used by each cacheline

granularity. With each incremented cacheline size, the bandwidth used dou-

2

bles as a cache miss brings in twice as much data. Consequently, very large

page sizes not only hurt performance due to high overheads associated with

moving large amounts of data, but also place more pressure on the already

saturated off-chip memory bus, exacerbating the problem that this new mem-

ory technology is trying to solve. Sectored caches [15] can solve the bandwidth

problem by only fetching demanded sectors, or subblocks.

The Operating System (OS) can be involved to explicitly manage such

capacity via page placement [16–19]. The OS monitors page usage and swaps

hot pages from off-chip DRAM to die-stacked DRAM at some fixed time in-

tervals or epochs. In an epoch based scheme, the OS explicitly manages the

die-stacked DRAM capacity as a special region of memory. The OS moves

frequently accessed pages, or hot pages, into die-stacked DRAM and the Page

Table Entry (PTE) is updated accordingly. Upon an access, the physical

address provided by Translation Lookaside Buffer (TLB) is directly used to

access data in die-stacked DRAM. Unlike hardware managed schemes, it does

not have additional hardware structures like tag checking logic or modified

addressing schemes. The major drawbacks include the high software related

overheads. To amortize the high overheads, the OS management is done at

coarse granularity (hundreds of milliseconds). As a result, software schemes

are typically slow to react to changes in the working set.

To address these issues, recent proposals [20, 21] expose the die-stacked

DRAM capacity while transparently migrating data between two memories

without involving the OS. The migration is done using hardware remapping

3

tables, so some off-chip memory data are remapped to die-stacked DRAM.

When die-stacked DRAM is used as a part of memory rather as a cache, there

are several sophisticated design challenges. First, when swapping is done with-

out OS intervention, a remap table is necessary to allow dynamic migration

of data between the two memories. However, keeping an SRAM based remap

table for every small block incurs high remap table storage overheads [20].

As die-stacked DRAM capacity scales up, the remap table storage overheads

become a more important issue. Therefore, efficiently storing such large meta-

data is challenging and important. Increasing the remapping granularity to

a large block (e.g., 2KB) can mitigate this issue, yet on each remapping mi-

gration, the bandwidth usage becomes exorbitant as many unused subblocks

also have to be migrated. Furthermore, recent work [22] has shown that as

die-stacked DRAM capacity scales, bandwidth is problematic even at the large

remap granularity.

1.2 Overview of Proposed Research

A solution to fully utilize the die-stacked DRAM capacity by intelli-

gently placing hot data in die-stacked DRAM is presented in this dissertation.

The solution adopts subblock level data movement that reduces the bandwidth

usage compared to a large cacheline scheme and prevents fetching data that

may not get utilized much. In effect, the proposed scheme gets the benefits of

both small and large block hardware managed schemes. Furthermore, the so-

lution interleaves hot subblocks between on-chip and off-chip DRAM, so that

4

subblocks originally from on-chip and off-chip DRAM can coexist together in

die-stacked DRAM. The solution is robust to common problems associated

with recent proposals since it incorporates a locking feature that prevents hot

pages from being involved in undesirable data migration operations. Also,

associativity protects those pages that are not locked and are actively partic-

ipating in data migrations from being frequently swapped out. Finally, the

memory bandwidth usage is optimized by utilizing both on-chip and off-chip

memory bandwidth. When die-stacked DRAM is used as a cache, the system

would achieve the maximum performance when all requests are serviced from

die-stacked DRAM. However, experiments in this dissertation have found that

splitting the bandwidth, or bypassing in other words, achieves higher overall

performance than getting everything from the slightly faster memory when it

is used as a part of memory.

In software-oriented perspectives, the software driven page migration is

advantageous as it does not require hardware modifications and can be imple-

mented on existing systems with heterogeneous memories. The OS directed

migration relies on using a fixed OS page size (e.g., 4KB default on x86-64). If

a larger migration granularity is used, then the amount of overhead increases

proportionally. However, it is advantageous for high spatial locality pages to

be migrated together as a large chunk, so that the overheads can be amortized.

If the migration granularity is increased based on the spatial locality of an ap-

plication, then some software overhead, like TLB shootdowns, can be reduced.

Since different applications show different spatial locality behavior, a scheme

5

that can dynamically adjust the migration granularity can improve the overall

performance without any extra hardware or any source code modifications.

Therefore, this dissertation proposes two dynamic granularity-aware schemes

implemented in Linux kernel and evaluate their performance on a real system.

Orthogonally, the entire die-stacked DRAM does not have to be used

for data storage purposes. Since it is much larger than conventional on-chip

SRAM structures, a fraction of it can be allocated for other uses. In today’s

computing, a structure that suffers from a lack of capacity is the translation

lookaside buffer (TLB). The effectiveness of TLBs directly affects the address

translation performance. As virtualized platforms become increasingly pop-

ular, one of the largest contributors of performance overhead in virtualized

environments is memory virtualization. An application executing on a guest

OS generates guest virtual addresses that need to be translated to host physical

addresses. Since physical memory is under the exclusive control of a hypervi-

sor, every guest physical address needs to be translated to host physical before

the guest application-issued memory access can complete. This requires nav-

igating through two sets of page tables: a guest page table where the guest

OS performs the virtual-to-physical address translation on the guest side, and

a host page table where the hypervisor performs virtual-to-physical address

translation on the host side. In x86 architectures, both the guest and host

page tables employ a 4-level radix-tree table organization. Translating a vir-

tual address to physical address takes 4 memory references in a bare metal

case using a radix-4 table, and in the virtualized case, it becomes a full 2D

6

0.0

0.2

0.4

0.6

0.8

0.5

1

1.5

2

2.5

3

16KB 32KB 64KB 128KB 256KB 512KB

M
is

s
R

a
te

N
o

rm
a

li
ze

d

L
a

te
n

cy

L2 TLB Capacity

cycles
miss rate

Figure 1.2: L2 TLB Scaling Trend

translation with up to 24 memory accesses. With the increased number of

cores and big data sets, the conventional two-level SRAM TLBs cannot hold

translations of all the pages in the working set. Increasing L2 TLB sizes to

sufficiently reduce TLB misses is not feasible because larger SRAM TLBs incur

higher access latencies. Figure 1.2 shows the access latency trend with larger

L2 TLB capacities. The access latency is normalized to that of 16KB SRAM,

and as seen, naively increasing the SRAM capacity does not scale.

In light of the above discussion, it would be desirable to have a TLB

with a large reach at tolerable latency, so that a large majority of translations

can be handled by TLBs rather than by Page Table Walkers (PTW). A novel

solution in this direction is presented in this dissertation, a very large level-3

TLB that is part of memory. While TLBs are dedicated structures and not

ordinarily addressable, the proposed solution is mapped into the memory ad-

dress space, and is stored in die-stacked DRAM. It is large enough to house

translation entries for significantly huge working sets. By making it part of

memory, it becomes possible to automatically take advantage of the growing

7

L2 and L3 data cache capacities. While data caches already cache page ta-

ble entries, multiple page table entries will be required per each translation,

whereas a single TLB entry will be sufficient to accomplish the virtualized

translation. Hence, caching TLB entries is more effective and beneficial than

caching page table entries.

1.3 Thesis Statement

Using high bandwidth on-package memories as a part of memory rather

than caches is beneficial from a capacity perspective, and using interleaved

data mapping and variable migration granularity rather than a fixed migra-

tion granularity suits the needs of applications better. In addition, a fraction

of the high bandwidth on-package memory capacity can be used for address

translations in order to reduce translation overheads, especially in the context

of virtualization.

1.4 Contributions

This dissertation makes the following contributions:

• The high bandwidth costs typically associated with large cacheline data

placement and migration in prior proposals can be eliminated by using

subblocking. Subblocking interleaves subblocks from off-chip DRAM

to reside in die-stacked DRAM, and thus, increase the usefulness of the

die-stacked DRAM capacity.

8

• Hot pages benefit from being placed in die-stacked DRAM as those pages

benefit from high bandwidth. A mechanism is presented in this disser-

tation to identify hot pages and to lock them in die-stacked DRAM, so

that conflicting data does not swap hot pages out to off-chip DRAM.

Unlike epoch based approaches, the locking does not need to occur at

coarse grain time intervals, and thus it can react more quickly to the

changes in the hot working set.

• When die-stacked DRAM is a part of the address space, 100% hit rate

does not give the maximum performance. It is beneficial to service a frac-

tion of requests from the off-chip DRAM to utilize the overall available

system bandwidth. If the bandwidth available from the two memory

levels are N:1, it is beneficial to service 1/(N+1) of the accesses from

off-chip DRAM. Therefore, the proposed mechanism achieves high per-

formance improvement with a slightly lower number of requests serviced

from die-stacked DRAM. This leads to balanced bandwidth utilization,

which in turn provides performance improvement.

• By analyzing a wide range of applications on real hardware, this dis-

sertation shows that different applications perform best under different

page migration granularities and that dynamic granularity adjustment

provides a considerable amount of performance improvement in hetero-

geneous memory systems.

• Two simple granularity-aware schemes to dynamically select the pre-

9

ferred page migration granularity for a given application at runtime

without any hardware or application modifications are presented in this

dissertation.

• The feasibility of using die-stacked DRAM for address translation is an-

alyzed in this dissertation. The proposed TLB uses a very large capacity

(albeit slow) that can house nearly all required translations, eliminating

a large number of expensive page table walks.

• The challenges encountered while implementing a TLB in die-stacked

DRAM are resolved in this dissertation. A low overhead TLB location

predictor and other enhancements make a shared L3 TLB a feasible

option.

1.5 Dissertation Organization

The dissertation is organized as follows: Chapter 2 presents background

and related work. It presents the details of die-stacked DRAM as well as ad-

dress translation in virtual platforms. Prior work related to die-stacked DRAM

as well as various address translation optimizations are also presented. Chap-

ter 3 presents the evaluation framework used in this dissertation and explains

the set of benchmarks that were used. Chapter 4 evalutes various dimensions

of data migration such as the hit rate, bandwidth usage and migration gran-

ularity in order to extract the most performance from die-stacked DRAM.

It also presents performance challenges associated with address translation in

10

virtualized systems. Chapter 5 describes the novel data migration scheme that

achieves high hit rate while maintaining low bandwidth usage. Additionally,

it explains several die-stacked DRAM specific features that can be exploited

to improve performance. Chapter 6 presents the design and evaluation of

a granularity-aware data migration scheme that adjusts the amount of data

migration by detecting the spatial locality of an application at runtime. Chap-

ter 7 presents another way to use die-stacked DRAM other than data storage.

More specifically, it uses die-stacked DRAM as a large TLB to address TLB

reach issues faced by today’s virtualized computing environments. Finally,

Chapter 8 presents the conclusions and the areas of future work.

11

Chapter 2

Background Terminology and Related Work

Efficient uses of emerging memory technologies have been explored

extensively by both industry and academia. However, there has not been

any concrete consensus on the best use of the technologies. This dissertation

mainly focuses on studying various mechanisms to use an emerging memory

technology, namely die-stacked DRAM, rather than attempting to propose a

single scheme. This chapter first provides a brief introduction to the termi-

nology used in heterogeneous memory system and virtual address translation

designs, followed by the related work on these fields. Detailed description of

related work for the specific schemes is discussed in depth in the corresponding

chapters.

2.1 Die-Stacked DRAM

Current DRAM technology is reaching its physical limit, and thus, it

does not scale in performance or capacity. At the same time, the number of

cores is constantly increasing. Therefore, the bandwidth demand from the pro-

cessor side is on the rise as a higher number of cores place more pressure on the

memory bus. This trend has created the ”Bandwidth Wall” [23]. To address

12

TSV

Logic

Layer

DRAM

Layers

Cores

High-speed

Link

Die-stacked

DRAM

Figure 2.1: Die-Stacked DRAM Structure

the bandwidth wall, memory vendors have introduced promising technology,

namely die-stacked DRAM.

Die-stacked DRAM is a new emerging memory technology that is com-

posed of DRAM layers that are stacked on top of each other vertically. Fig-

ure 2.1 shows the structure and layout of die-stacked DRAM. The bottom

layer is a logic layer that can be configured to the vendor’s preferences. It is

placed on the same silicon interposer as the cores, and is connected to them

by high-speed links. This link operates at a much higher frequency due to its

lower wire capacitance. The physical distance from the cores to die-stacked

structure is much shorter than that to the off-chip DRAM, so it can provide

slightly lower latency than today’s DRAM [7, 24]. The die-stacked structure it-

self also provides significant benefits. DRAM layers are stacked on top of each

other and connected by low resistance Through Silicon Vias (TSVs). Unlike

off-chip DRAM where one of the major bandwidth bottlenecks is the number

of pins, this structure does not need any pins, so the bandwidth is not limited

by the pin count. The fact that all traffic to this storage device never travels

13

L4
(1)

L3
(2)

L2
(3)

L1
(4)

PA VA

PAGE TABLE WALK CR3

Figure 2.2: x86 1D Page Walk In Native Environment

off-chip makes it an ideal complement for DRAM.

In this dissertation, the die-stacked DRAM is referred as Near Memory

(NM) and off-chip DRAM as Far Memory (FM) since NM is physically located

closer to the cores with high bandwidth. Also, we call 64B worth of contiguous

address space as a small block or subblock and 2KB worth of contiguous

address space as a large block.

2.2 Address Translation

The capacity of die-stacked DRAM ranges from hundreds of megabytes

to several gigabytes. Thus, a subset of this large capacity can be used for

other purposes such as storing address translations. Even though it is a small

fraction from die-stacked DRAM’s perspectives, this is much larger than con-

ventional on-chip TLBs, and thus, provides much larger TLB reach for appli-

cations whose memory footprint is very large.

One of the largest performance overhead in virtualized environments

is memory virtualization. In non-virtualized systems, an address translation

in x86 architectures requires up to 4 memory accesses as shown in Figure 2.2

since the architecture employs a four-level page table walk. Many of these

14

hL4
(1)

hL3
(2)

hL2
(3)

hL1
(4)

gL4
(5)

hL4
(6)

hL3
(7)

hL2
(8)

hL1
(9)

gL3
(10)

hL4
(11)

hL3
(12)

hL2
(13)

hL1
(14)

gL2
(15)

hL4
(16)

hL3
(17)

hL2
(18)

hL1
(19)

gL1
(20)

hL4
(21)

hL3
(22)

hL2
(23)

hL1
(24)

hPA

gVA
47:39

38:30

29:21

20:12

11:00

HOST WALK

G
U
E
S
T

W
A
L
K

gPA

gCR3

hCR3

hCR3

hCR3

hCR3

hCR3

Figure 2.3: x86 2D Page Walk In Virtualized Environment

intermediate page table walk entries are stored in data caches, so they do not

require accesses to long latency off-chip DRAM. The case is little different in

virtualized systems. An application executing on a guest OS generates guest

virtual addresses (gV A) that need to be translated to host physical addresses

(hPA). Since physical memory is under the exclusive control of a hypervisor,

every guest physical address (gPA) needs to be translated to host physical be-

fore the guest application issued memory access can complete. This requires

navigating through two sets of page tables: a guest page table that the guest

OS implements (gV A→ gPA), and a host page table that the hypervisor im-

plements (gPA → hPA). In x86 architectures, both the guest and host page

tables employ a 4-level radix-tree table organization. Translating a virtual ad-

dress to physical address takes 4 memory references in a bare metal case using

a radix-4 table, and in the virtualized case, it becomes a full 2D translation

with up to 24 memory accesses as depicted in Figure 2.3.

15

In order to bridge the performance gap associated with address trans-

lations, recent processors have added architecture supports in the form of

nested page tables [25] and extended page tables [26] that cache guest-to-host

translations. Processor vendors have also added dedicated MMU/page walk

caches [27, 28] to cache the contents of guest and host page tables. Addi-

tional techniques to reduce the overhead of page walks include caching of page

table entries in data caches, agile paging [29], TLB prefetching [30], shared

L2 TLBs [31], transparent huge pages (THP) [32], translation storage buffers

(TSB) [33], speculative TLB fetching [34] and splintering [35]. These page

walk enhancements have significantly reduced translation costs; however, the

translation overhead continues to be a source of inefficiency in virtualized en-

vironments.

2.3 Related Work

2.3.1 Die-Stacked DRAM Data Management

Emerging memory technologies have provided opportunities for creat-

ing interesting memory system designs. Much of the work has been focused

on efficiently storing metadata overheads for scalability of this multi-gigabyte

memory technology. Since memory bandwidth is often the bottleneck, some

work [14, 22, 36–45] has focused on reducing the FM bandwidth usage while

managing a high hit rate to NM. These proposals manage NM as hardware

caches, and thus, do not take advantage of added NM capacity. With growing

NM capacity, the capacity expected to be a considerable amount of the total

16

memory capacity in the near future, and thus, PoM [21] and CAMEO [20]

are two state-of-the-art schemes that have focused on using this capacity as

a part of OS visible space to take advantage of added capacity. However,

their schemes are based on conventional caching techniques, and thus, they

are susceptible to problems that exist in SRAM caches. Tagging using TLBs

has been proposed [46], yet their focus was different as the work reduces the

address translsation energy.

Previous software managed proposals focused on detecting what to mi-

grate to NM. Meswani et al. [18] introduced per-page access counters to mi-

grate pages whose counts are higher than a threshold at regular time inter-

vals. The next-touch algorithm proposed by Goglin et al. [47] and the one

proposed by Oskin et al. [48] use the demand request to trigger a migration.

Non-Uniform Memory Architecture (NUMA) proposals [49–51] also attempt

to solve data management challenges in memory systems with different access

latencies. However, these proposals use placement strategies that are tailored

towards placing hot data that benefits local nodes in a NUMA system. In

the context of the memory system in this dissertation, the hot data placement

must benefit all nodes since all nodes are considered local in heterogeneous

memory systems. Other prior work [52–54] explored application/user feed-

back to guide page migrations. Lin et al. [52] proposed asynchronous migra-

tion triggered by user request. Similarly, Meswani et al. [53] explicitly manage

die-stacked DRAM under application’s direction, and Cantalupo et al. [54]

proposed a explicit user level heap manager. In contrast to these proposals,

17

the proposed scheme in this dissertation does not require application modifi-

cations. Kwon et al. [55] proposes an efficient transparent huge page support

to better coalesce 4KB OS pages into a huge page, but they focus on finding

as many contiguous pages as possible.

Prefetching techniques [56–58] have been explored extensively for mask-

ing the long memory access latencies by proactively fetching data into SRAM

caches. Such techniques are done to move data from one level of memory to

another whereas this dissertation treats both FM and NM as a part of the

address space of the same memory hierarchy.

2.3.2 Address Translation Optimization

Caching and speculation techniques have been proposed to improve the

two dimensional address translation overheads in virtualized platforms [25, 27,

29, 34, 35, 59]. Caching schemes such as page walk cache [27, 29, 60] attempt to

bypass the intermediate level walks. Some processors such as Power8 adopts

an inverted page table to reduce the number of page walks [61]. Also, recent

work [62] showed that hashing PTEs can reduce the number of page walks.

However, these approaches do not solve the fundamental small capacity prob-

lem of TLBs. Speculation schemes [34, 35] let the processor execution continue

with speculated page table entries and invalidate speculated instructions upon

detecting the misspeculation. These schemes are motivated by the fact that

conventional TLBs are likely to cause more page table walks [25] for emerging

big data workloads with large memory footprints. Therefore, they focus on

18

reducing/hiding the overheads of page table walks. This dissertation focuses

on a more fundamental solution. Using very large TLBs that can withstand

increased address translation pressure from virtualization by virtue of offer-

ing a translation storage with high capacity and high bandwidth significantly

reduces the number of walks.

Some other schemes [29, 63, 64] attempt to reduce the levels of page

table walks in either native or virtualized systems. Moreover, TLB prefetch-

ing techniques [30, 65, 66] improve the TLB hit rate by fetching entries ahead

of time. However, the fundamental problem of current TLB’s insufficient ca-

pacities is still not addressed. Thus, by increasing the capacity significantly,

the inherent structural bottleneck in today’s system is solved in this disserta-

tion. However, increasing the TLB capacity is orthogonal to aforementioned

schemes, as the existing or proposed page walk structures are not altered by

our proposal. Thus, the large TLB proposal can easily be added to these

schemes.

The Linux Transparent Huge Page [32] along with various schemes [59,

63, 67–70] try to increase the fraction of large pages by either using hardware

or by the OS to reduce the number of TLB misses. This dissertation merely

uses such features as is because the memory traces contain the page size in-

formation. Yet, improving them can even further increase the TLB hit rate in

this dissertation as a single 2MB entry incorporates 512 4KB entries, thereby

effectively further increasing the reach of TLBs.

19

Chapter 3

Methodology

This dissertation uses a combination of a system simulator, Sniper [71],

along with a detailed memory simulator, Ramulator [72], to evaluate the pro-

posed schemes that efficiently use die-stacked DRAM. Even though each pro-

posed scheme in this dissertation modifies the components of the existing sim-

ulator, and various system configurations, the overall experimental methodol-

ogy and setup remain the same. For the majority of the dissertation, SPEC

CPU2006 [73], PARSEC [74] and graph500 [75] benchmark suite was used as a

representative, general purpose benchmark suite. In addition, the real system

experiments used in this dissertation uses the modified Linux kernel to emulate

the heterogeneous memory system where the memory latency is modified to

model heterogeneous memories with different latencies. The evaluation on a

real system uses multithreaded application suites to drive the multiple cores.

Finally, the TLB related proposals are done by using a combination of a trace

driven and a custom simulator to evaluate performance. A heavily modified

Pin instrumentation tool [76] is used to extract necessary information such as

the page size in order to drive the custom TLB simulator, which eventually

computes the performance after simulating various steps in the memory access

or address translation. The remainder of this chapter presents an introduction

20

to each tool and a description of workload suites that are used to evaluate the

proposed schemes.

3.1 Simulation Details

3.1.1 Memory Timing Simulation

In order to evaluate the memory system performance, a detailed mem-

ory timing simulator is adopted in this dissertation. Although there are many

detailed memory simulators, they all slow down the processor simulation. A

memory simulator that is reasonably fast and accurate is needed. Ramulator

is a detailed timing simulator that decouples the work of querying/updating

the state-machines that are used in many other memory simulators. Its speed

is approximately 3X faster than a popular memory simulator, DRAMSim [77].

Ramulator is internally built using a collection of lookup-tables, which are

computationally inexpensive to query and update. This enables Ramulator to

reduce the simulation runtime and provide cycle accurate performance mod-

els for a wide variety of standards such as DDR3/4, LPDDR3/4, GDDR5,

WIO1/2, HBM, SALP, ALDRAM, TL-DRAM, RowClone, and SARP. Since

the unmodified version of Ramulator does not support heterogeneous memory

systems, the simulator is modified to model a heterogeneous setup. Differ-

ent memory technologies have their own independent memory controllers with

appropriate timing configurations.

21

3.1.2 System Timing Simulation

This dissertation uses Sniper multicore simulator as a front-end simu-

lator that can feed memory requests into Ramulator. This simulator uses Pin

tool as an instruction emulator, which provides x86 instructions. Sniper uses

an interval simulation model where the simulation is done at a higher level of

abstraction in comparison to traditional detailed cycle-accurate simulation.

The interval simulation abstracts the core performance, which takes a

significant amount of simulation time in cycle accurate simulations, by lever-

aging a mechanistic analytical model. It improves the simulation performance,

namely simulation time, by driving the timing simulation without the detailed

tracking of individual instructions. This model tracks miss events (e.g., branch

mispredictions, cache and TLB misses) and divides instruction streams into

intervals. The analytical model derives the timing from miss events for each

interval. The interaction between the analytical model and the miss events

increases the accuracy in multi-core simulations. The simulator maintains a

window of instructions, which corresponds to the reorder buffer. The overlap

of long-latency load misses is found using miss events. The functional emu-

lator, Pin tool, feeds instructions into this window at the window tail. For

example, when there is I-cache miss, the core simulation time is increased by

the miss latency. These long latency operations add the miss latency to the

core simulated time, and the window for independent miss events that are

overlapped by the long-latency load is scanned.

22

3.1.3 Measurement on Real Machine

The granularity-aware migration scheme in this dissertation is evalu-

ated on a real machine. Since the scheme attempts to optimize the system

overheads such as TLB shootdowns, which cannot be easily modeled in sim-

ulators, the real machine experiment is adopted. The experiments are per-

formed on AMD A10-7850K processor [78] running Linux OS (kernel version

3.16.36) [79]. While systems with heterogeneous memory are imminent (e.g.,

Intel 3DXpoint [80]), they are yet to be available commercially. The heteroge-

neous memory system is emulated using Linux’s NUMA emulation feature [79].

This feature allows us to divide the aggregate physical memory available in the

system (32GB) in equally sized contiguous physical memory zones. Pages can

then be migrated across these zones. Specifically, four physical memory zones

with 8GB each are created. This configuration allowed each physical memory

zone to be mapped on to separate DIMMS since the experimental machine has

4 DIMMs. Of these, one of the zones acts as die-stacked DRAM and another

as the off-chip memory. It is important to ensure that applications’ memory

footprint exceeds the capacity of the die-stacked DRAM to trigger the page

migration. Another Linux feature called Memory HotPlug [81] is utilized since

it allows part of physical memory to be offlined as if it does not exist. The ef-

fective (usable) capacity of the die-stacked DRAM is reduced to 400MB in the

baseline in order to emulate the real machine scenario where the die-stacked

DRAM is a fraction of the application memory footprint.

23

3.1.4 TLB Performance Modeling

The performance of TLB is evaluated using a combination of real sys-

tem measurement, Pin-based simulation, and performance models. The vir-

tualization platform is QEMU 2.0 with KVM support and the host system

is Ubuntu 14.04 running on Intel Skylake [28] with Transparent Huge Pages

(THP) [32] turned on. It also has Intel VT-x with support for Extended Page

Tables while the guest OS is Ubuntu 14.04 with THP turned on. The system

has separate L1 TLBs for each page size (4KB, 2MB, and 1GB) though the

applications do not use the 1GB size. The L2 TLB is a unified TLB for both

4KB and 2MB pages. Finally, the specific performance counters (e.g., 0x0108,

0x1008, 0x0149, 0x1049) that are used to read page walk cycles take MMU

cache hits into account, so the page walk cycles used in this dissertation are

the average cycles spent after a translation request misses in L2 TLB.

First, workloads are executed to completion and the Linux perf utility

is used to measure the total instructions (Itotal), cycles (Ctotal), number of L2

TLB misses (Mtotal) and total L2 TLB miss penalty cycles (Ptotal) in a manner

similar to the methodology in prior work [29–31, 60, 82]. The baseline IPC is

obtained as: IPCbaseline = Itotal/Ctotal. Then, the ideal cycles Cideal and the

average translation penalty cycles per L2 TLB miss PBaseline
Avg are computed as:

Cideal = Ctotal − Ptotal (3.1)

PBaseline
Avg = Ptotal/Mtotal (3.2)

Note that the effects of various caching techniques like page walk caches,

24

caching of PTEs in data caches, and Intel EPTs are already included in the

performance measurement. Next, the Pin instrumentation and the Linux

pagemap are used to generate memory traces for the workloads. For each

workload, all load and store requests are recorded. The Linux pagemap is

used to extend the Pin tool to include page size and other OS related meta-

data. The trace contains virtual address, instruction count, read/write flag,

thread ID and page size information of each reference. Memory instructions

are traced in detail while the non-memory instructions are abstracted. The

memory traces for 20 billion instructions are recorded.

Furthermore, this dissertation uses a detailed memory hierarchy simu-

lator that models two levels of private TLBs, two levels of private data caches,

and a 3rd level shared data cache. The simulator executes memory references

from multiple traces while scheduling them at the proper issue cadence by using

their instruction order. Information on the number of instructions in between

the memory instructions are captured in the traces, and thus, the memory

level parallelism and overlap/lack of overlap between memory instructions are

simulated. Note that the simulator is using both the address translation traffic

as well as data request traffic that go into underlying data caches. Finally, it

reports the L2 TLB miss cycles and detailed statistics such as hits and misses

in the L1/L2 TLBs, and data caches. The DRAM simulation accounts for ac-

cess latencies resulting from row-buffer hits and misses. It may also be noted

that, since the baseline performance, obtained from real system measurements,

already includes the benefits of hardware structures such as large pages, EPT

25

and Page Structure Caches, these are not modeled in the simulator. Instead,

the baseline ideal cycles is used together with the estimated cost incurred by

various TLB schemes.

Total cycles taken by the simulator and the resulting IPC for each core

are obtained as:

CTLB
total = Cideal + Mtotal ∗ P TLB

Avg (3.3)

IPCTLB = Itotal/C
TLB
total (3.4)

P TLB
Avg denotes the average L2 TLB miss cycles in TLBs obtained from sim-

ulation. Having obtained the baseline and IPCs for each core, the overall

performance improvement of the TLB is calculated. It may be observed that

the linear additive formula adds the L2 TLB miss cycles to the ideal cycles.

This linear performance model ignores potential overlap of TLB processing

cycles with execution cycles, but is similar to models used in previous re-

search [29–31, 60, 82].

3.2 Benchmark Suites

This dissertation uses a number of benchmark suites to provide the nec-

essary workloads for the simulations. The suites include single/multi threaded

CPU, scientific and other typical representative applications that can drive

multi-core simulations. This section provides a brief description of each bench-

mark suite to help aid the explanations.

26

3.2.1 SPEC CPU 2006

SPEC CPU2006 is a popular standard set of benchmarks used in the

evaluation of the CPU performance. A total of 29 benchmarks consists of in-

teger and floating point suites ranging from CPU intensive to memory bound

applications. The workload does not use extensive system IO traffic and is

single threaded. In order to use this suite on multicore platforms, multipro-

grammed workloads are formed where each instance of an application is run on

each core. Each instance is independent, and thus, does not share the memory

address space.

3.2.2 PARSEC

The PARSEC benchmark suite [74] includes programs to evaluate multi-

core processors. It is multi-threaded and focuses on emerging desktop and

server applications. Its diverse set of benchmarks is not skewed towards HPC

programs. The suite includes benchmarks from computer vision, media pro-

cessing, computational finance, enterprise servers and animation physics. In

this dissertation, the number of threads used is equal to the number of pro-

cessors, and the native input set is used to drive the simulations.

3.2.3 Other Benchmarks

Graph500: Graph 500 [75] is a compact application with multiple kernels

that accesses a single data structure. It is designed with a scalable data gen-

erator, which produces edge tuples containing the start vertex and end vertex

27

for each edge.

NAS Parallel Benchmarks: The NAS parallel benchmarks [83] are a set

of programs designed to evaluate the performance of parallel supercomputers.

It is based on computational fluid dynamics applications and consists of five

kernels and three pseudo-applications.

HPC Challenge: The HPC Challenge suite [84] evaluates the performance

of HPC architectures using kernels. The kernels use memory access patterns

that are more challenging than those of the High Performance Linpack (HPL)

benchmark. The benchmarks are scalable with the data set sizes being a func-

tion of the largest HPL matrix for a system.

Mantevo Benchmark Suite: Mantevo [85] consists of applications that are

performance proxies known as miniapps. They encompass the dominant nu-

merical kernels contained in stand-alone applications.

CORAL Benchmark Suite: CORAL [86] is a collaborative effort from Na-

tional Laboratories to deliver three preexascale HPC. The benchmark ranges

from complex applications to single node tests. It is scalable and provides

performance improvement with weak and strong scaling.

28

Chapter 4

Challenges in Heterogeneous Memory System

This chapter describes the challenges associated with current die-stacked

DRAM usage as well as address translation techniques in virtualized systems.

4.1 Challenges with Transparent Data Management in
Die-Stacked DRAM

4.1.1 Architecting Near Memory as Part of Memory

Using die-stacked DRAM as a part of memory rather than caches poses

sophisticated design challenges. First, when swapping is done without OS in-

tervention, a remap table is necessary to allow dynamic migration of data

between NM and FM. However, keeping an SRAM based remap table for ev-

ery small block will easily exceed today’s on-chip SRAM capacity [20]. As NM

scales to a larger capacity, the remap table storage overheads become a more

important issue. For example, 1GB requires 96MB of tag storage and approxi-

mately 100 cycles of lookup latency [42].Therefore, efficiently storing such large

metadata is challenging and important. Increasing the remapping granularity

to a large block (2KB) can mitigate this issue, yet on each remapping migra-

tion, the bandwidth usage becomes exorbitant as unnecessary subblocks also

have to be migrated. Furthermore, recent work [22] has shown that as NM ca-

29

pacity scales, even making the remap granularity larger becomes problematic.

Using the OS to intervene in the system and to perform the remapping can

completely eliminate such remapping overheads. Yet, this has to be done at

a large time interval to minimize the OS related overheads, so its adaptation

to memory behavior changes is inherently slow. Therefore, carefully choosing

the remap granularity and the frequency is crucial. Similarly, identifying what

to place in NM is an important task since only a subset of the entire memory

space can be held in NM. Currently, the OS main memory activity monitoring

is done at a page granularity level based on the reference bit in Page Table

Entry (PTE). This method limits the OS ability to accurately identify hot

blocks to place in NM [18]. Therefore, a more detailed monitoring method is

necessary.

4.1.2 Hardware Managed Schemes

Hardware data management schemes use different block sizes to migrate

data between NM and FM. A block-based scheme swaps either small or large

size blocks between two memories upon a request. This category of schemes

attempts to exploit temporal locality as they expect swapped blocks in NM

to be used frequently in the near future. To manage the mapping of swapped

blocks, each block in NM has a remap table entry, which identifies whether a

requested block resides in NM or FM. Schemes differ in their data management

granularities from a small block (64B) to a large block (2KB). The key idea in

this category of schemes is that, while it allows the NM capacity to be exposed

30

to the OS, the dynamic remapping between NM and FM allows the data to

move between two memories without OS intervention at low overheads.

CAMEO manages data at a small subblock granularity, and each block

must have an accompanying remap table entry. The metadata, namely the

remap table, is stored next to data within the same row in NM. During an NM

access, the burst length is increased to fetch the extra bytes of metadata, and

this saves latency as only one memory request is required per access instead

of two. The direct-mapped organization is preferred as prior work [44] showed

the difficulties involved with associative structures in NM as fetching multiple

data in parallel from the same NM row is not possible. CAMEO has several

disadvantages such as high metadata overheads and conflict misses. First, since

the number of subblocks are high due to NM’s large capacity, the remap table

entries occupy a considerable capacity. Second, since CAMEO adopts a direct-

mapped organization, conflicts misses are inherent. Third, by only swapping

one small block at a time from FM, this scheme does not take advantage of

abundant spatial locality at a large block level. The original CAMEO proposal

does not implement any prefetching scheme, which might benefit high spatial

locality workloads, thus it achieves a lower hit rate. Other work [22, 41, 87, 88]

has shown CAMEO lost performance opportunities by only fetching 64B at

a time. Therefore in addition to original CAMEO, this dissertation has also

evaluated CAMEO with prefetching to see higher spatial locality effects.

PoM manages data at 2KB granularity unlike CAMEO to exploit spa-

tial locality. It can perceive the performance improvement through migrating

31

a large block into NM and getting a high hit rate. On the other hand, naively

fetching a large block size for low spatial locality workloads is harmful as a

large part of 2KB data that is brought into NM will not be used by an ap-

plication. This results in wasted bandwidth as well as NM capacity. In order

to mitigate such effects, the PoM scheme adopts a threshold based migration

scheme where each block keeps track of the number of accesses made to that

particular block. Once the counter goes over a certain predefined threshold,

which seems beneficial based on the cost-benefit analysis, is migrated into NM.

Until then, the block is not migrated and stays in FM. By doing so, the scheme

is able to migrate only blocks that will overcome the migration overheads and

benefit the system performance. The drawback of this scheme is that many

applications do not need all subblocks within the 2KB segment. Since 2KB

blocks are migrated all together, the bandwidth and capacity is still wasted.

A better approach is selectively fetching subblocks that are needed, so the

rigid 2KB requirement of PoM results in suboptimal performance. Finally,

the scheme can be slow to phase changes as each 2KB requires the block to

accumulate a certain number of accesses prior to become a candidate for a mi-

gration. Since it requires a certain period of time to elapse to get migrated, the

potential performance improvement opportunities during this period is lost.

4.1.3 Software Managed Schemes

In this section, the term an “epoch” is used to describe a fixed time

quanta (e.g., 100 million cycles). In an epoch based OS scheme, the OS explic-

32

itly manages the NM capacity as a special region of memory. In this disserta-

tion, the state-of-the-art epoch based scheme, the HMA scheme [18], is used

to describe the advantages and disadvantages. The HMA scheme relies on hot

page detection to achieve performance improvement without additional hard-

ware to perform sophisticated operations such as dynamic remapping. HMA

uses a dynamic threshold based counter where the pages, whose access counts

are higher than a set threshold, are marked using an unused bit in PTE. The

page migration occurs at a large epoch. At each epoch boundary, the OS

sweeps through the PTEs to select those pages that are marked, and the bulk

page migration occurs between NM and FM. In addition to the time spent

on physically transferring pages, this operation requires the system to update

PTEs and invalidate corresponding TLB entries.

The HMA scheme has design and access latency advantages. Unlike

hardware managed schemes, it does not have additional hardware structures

like the remap table or modified addressing schemes, which result in uncon-

ventional data layout in a row. In CAMEO, the addressing scheme in the

memory controllers has to be modified to fetch the remap table entry located

next to every data block. Yet, the NM data layout and addressing of epoch

based OS schemes is the same as in the conventional DRAM, so it does not

require specialized logic in memory controllers. In addition, the HMA scheme

reacts slowly to changes in the hot working set, which is a common behavior

in many applications with different execution phases. For example, a page

can become hot in FM, yet this page cannot be serviced from NM until the

33

next epoch boundary, which may take millions of cycles to reach. Until then,

the potential to get performance benefits from placing the page in NM is not

exercised. Lastly, the working set coverage by NM is fixed during an epoch as

no data migration occurs between NM and FM except at epoch boundaries.

In contrast, if a larger working set coverage is desired, the hardware manage-

ment scheme can swap blocks from FM and a larger amount of data can be

served from NM at the end. Lastly, costs related to operations such as up-

dating PTEs are extremely high, and thus the benefit of performing the block

migration has to be large enough to offset the expensive costs [18, 21, 36].

4.2 Challenges with Data Migration in Heterogeneous
Memory

The OS driven data migration in heterogeneous memory is not free of

costs. In a migration, any time spent beyond the copying of the data from

one type of memory to the other is considered as overheads of migration.

TLB shootdowns and the process of invoking migrations [18, 48, 89] contribute

significantly to this overhead. Whenever a PTE is updated, TLB shootdowns

ensure that TLBs are coherent across all cores. The granularity at which the

data is migrated impacts this overhead. For example, if a 2MB contiguous

memory region is migrated at 4KB (default) granularity, then it incurs 512

TLB shootdowns – one each for 512 4KB pages. However, if the same memory

region is migrated at 2MB granularity, then it will incur only one shootdown.

Thus, migrating in larger granularity could amortize the overheads better.

34

0

50

100

150

200

250

16MB 32MB 64MB 128MB 256MB

E
xe

ce
cu

ti
on

 T
im

e
(m

s)

Data Transfer Size

4KB

64KB

2MB

(a) Time to Migrate Contiguous Virtual Memory with Varying Migration Gran-
ularities.

0

50

100

150

200

250

4KB 64KB 2MB

E
xe

cu
ti

on
 T

im
e

(m
s)

Migration Granularity

data copy overheads

(b) Breakdown of Migration Latency for Different Granularities.

Figure 4.1: Effect of Migration Granularity in Cost of Migration.

The effect of migration granularity on the migration overhead is quan-

tified using a system with AMD A10-7850K processor [78] running Linux OS.

Figure 4.1a shows the time to migrate varying amount of data at different gran-

ularities when pages are moved from one emulated NUMA node to the other

(although the system has 4 NUMA nodes, only 2 nodes are used to emulate

fast and slow memory). The x-axis shows the varying amount of contiguous

virtual memory being migrated while the y-axis shows the time required to

migrate. The measured time includes the time to physically migrate pages

35

FN Size

425MB

benchmark Baseline 4KB 64KB 2MB 4KB 64KB 2MB

g500 36.05233 68.255 48.804 61.60133333 1.89322 1.353699 1.708664

xs 137.94 213 245 251 1.54415 1.776135 1.819632

lul 29.455 143.12 138 118.2006667 4.858937 4.685113 4.012924

0.8

1.0

1.2

1.4

1.6

1.8

2.0

xsN
o
rm

a
li

ze
d

 E
x
ec

u
ti

o
n

 T
im

e

0.8

1.0

1.2

1.4

1.6

1.8

2.0

g500

4KB 64KB

2MB
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

lul

Figure 4.2: Impact of Migration Granularity on Application Performance

as well as accompanying overheads such as TLB shootdowns and OS context

switches. Three lines in the graph represent three different migration granu-

larities. It is apparent that as the amount of data being migrated increases,

the larger granularity takes less time to migrate a given amount of data by

amortizing overheads.

Figure 4.1b shows the breakdown of execution time while migrating

256MB of contiguous virtual memory. Linux’s perf utility [90] is used for

this measurement. When a smaller granularity is used, then the overhead of

migration dominates while, with a larger granularity, the overhead goes down

significantly.

However, a larger migration granularity does not necessarily improve

an application’s overall performance in a heterogeneous memory system. Fig-

ure 4.2 shows the normalized runtime of three representative applications with

different migration granularities. There are three subgraphs, one for each indi-

vidual application. Each subgraph has three bars representing the normalized

runtime (y-axis) under the migration granularity of 4KB (default), 64KB and

36

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

xs g500 lul

R
el

at
iv

e
N

u
m

b
er

of
 M

ig
ra

ti
on

s 4KB 64KB 2MB

Figure 4.3: Relative Number of Migrations Between Fast and Slow Memory
(lower is better)

2MB respectively. The y-axis values are normalized to the runtime when there

is no migration, i.e., when the die-stacked DRAM capacity is configured to fit

the entire memory footprint of a given application. The experiment was per-

formed with the die-stacked DRAM capacity of 400MB where the application

footprints were 5.5GB, 761MB, and 696MB for xsbench, graph500, and lulesh

respectively. The application xsbench (“xs”) performs best when the migra-

tion granularity is set to 4KB while lulesh (“lu”) prefers 2MB granularity.

The xsbench benchmark has near-random memory access pattern that rarely

shows spatial locality across multiple neighboring pages. At the same time, the

main loop of lulesh is close to purely streaming-like memory access behaviors.

Application graph500 (“g500”), on the other hand, performs best with 64KB

granularity. Though this application performs pointer-chasing on a graph, it

shows some access locality across a few neighboring 4KB pages, but locality

quickly falls off beyond a handful of pages.

Further analysis is performed to quantify why some applications lose

performance with larger migration granularity. The number of migrations is

collected for each application with different migration granularities as shown

37

in Figure 4.3. Like the previous figure, this figure also has three subgraphs, one

for each application. Each subgraph has three bars representing the normal-

ized number of migrations with different migration granularities. The height

of each bar is normalized to the number of migrations with 4KB granular-

ity. The application xsbench has the highest number of migrations when the

migration granularity is the largest since unnecessary pages occupy the die-

stacked DRAM capacity and cause more capacity misses. Moving the data

in a larger granularity in die-stacked DRAM wastes its capacity by evicting

otherwise useful pages from die-stacked DRAM. These evicted pages would

later need to be migrated back again to die-stacked DRAM when demanded

by the application; increasing the number of migrations. Furthermore, extra

data migrated into die-stacked DRAM due to a larger granularity is rarely

useful to this application due to its near-random accesses. Application lulesh

makes better use of a larger amount of data migrated with a larger granular-

ity, and thus, lowers the total number of migrations. As expected, graph500

is again somewhere in the middle. It can make use of a larger granularity up

to a certain point (here 64KB), but the usefulness of even a larger granularity

(2MB) falls off due to the larger number of migrations. In hindsight, this is

intuitive as the benefit of lowering migration overhead with a larger migration

granularity could be offset by extra migrations if an application does not make

good use of additional migrated data.

38

0

50

100

150

200

250

300

350

g
ra

p
h

5
0
0

g
u

p
s

p
a

g
er

a
n

k

co
n

_
co

m
p

ca
n

n
ea

l

st
re

a
m

cl
u

st
er

a
st

a
r

b
w

a
v
es

g
cc

G
em

sF
D

T
D

lb
m

li
b

q
u

a
n

tu
m

m
cf

so
p

le
x

ze
u

sm
p

A
v

g
er

a
g

e
V

ir
tu

a
li

ze
d

P
a
g
e

W
a
lk

 C
y
cl

es

1158

Figure 4.4: Average Translation Cycles per L2 TLB Miss (Virtualized Plat-
form)

4.3 Challenges with Address Translation in Virtualized
Systems

In this section, the performance overheads associated with address

translation in virtualized systems is presented. Figure 4.4 is based on our

experiments on a state-of-the-art Intel Skylake system (i7-6700). It shows the

average number of cycles spent in address translation (per L2 TLB miss) in

several SPEC, PARSEC and graph workloads. The workloads are run on a

VM with Linux THP support enabled, and the performance overhead is mea-

sured using the Linux perf utility. The translation overhead per L2 TLB miss

is seen to range from 61 cycles in the canneal benchmark to 1158 cycles in the

connected component graph benchmark. The translation overhead running

into 100+ cycles has also been reported in prior work [59, 91, 92].

The experiments on the Intel Skylake platform also shed light on the

virtualization overhead compared to native execution of the same workload.

39

0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30
1.40
1.50

gr
ap

h5
00

gu
ps

pa
ge

ra
nk

co
n_

co
m

p

ca
nn

ea
l

st
re

am
cl

us
te

r

as
ta

r

bw
av

es gc
c

G
em

sF
D

T
D

lb
m

lib
qu

an
tu

m

m
cf

so
pl

ex

ze
us

m
p

R
at

io
 o

f P
ag

e
W

al
k

C
yc

le

(V
ir

tu
al

 /
N

at
iv

e)

1.6 26 1.9 2.6 2.5

Figure 4.5: Ratio of Virtualized to Native Translation Costs

Figure 4.5 plots the ratio of translation cycles in virtualized and native setups.

Workloads such as gups (1.5x), con comp (26x), gcc (1.9x), lbm (2.5x) and mcf

(2.5x) have far higher translation overhead in virtualized execution compared

to native execution. Many benchmarks spend up to 14% execution time in

translation even in the native case.

With the increased number of cores and big data sets, the conventional

two-level SRAM TLBs cannot hold translations of all pages in the working set.

Increasing L2 TLB sizes to reduce TLB misses is not practically feasible be-

cause larger SRAM TLBs incur higher access latencies. Using the CACTI [93]

tool, the access latency sensitivity study is performed with larger L2 TLB

capacities in Figure 1.2. The access latency is normalized to that of 16KB

SRAM. As seen previously, naively increasing the SRAM capacity does not

scale, and it is not a solution to the limited reach problem of today’s TLBs.

40

Chapter 5

SILC-FM: Subblocked InterLeaved Cache-Like

Flat Memory Organization3

With current DRAM technology reaching its limit, emerging heteroge-

neous memory systems have become attractive to keep memory performance

scaling. This dissertation argues for using a small, fast memory closer to the

processor as part of a flat address space where the memory system is composed

of two or more memory types. OS-transparent management of such memory

has been proposed in prior works such as CAMEO [20] and Part of Memory

(PoM) [21] work. Data migration is typically handled either at coarse granu-

larity with high bandwidth overheads (as in PoM) or at fine granularity with

low hit rate (as in CAMEO). Prior work uses restricted address mapping only

from congruence groups in order to simplify the mapping. At any time, only

one page (block) from a congruence group is resident in the fast memory.

A flat address space organization called Subblocked InterLeaved Cache-

like Flat Memory (SILC-FM) [87, 88] that uses a large granularity but allows

3J. Ryoo, A. Prodromou, M. R. Meswani, and L. K. John, “SILC-FM: Subblocked Inter-
Leaved Cache-Like Flat Memory Organization”, in Proceedings of the 23rd Symposium on
High Performance Computer Architecture, 2017. Jee Ho Ryoo contributed to the idea devel-
opment and implementations. Andreas Prodromou was involved in the initial experimental
simulation setup. Mitesh R. Meswani and Lizy K. John supervised the overall project.

41

subblocks from two pages to coexist in an interleaved fashion in NM is pre-

sented in this dissertation. Data movement is done at subblocked granularity,

avoiding fetching of useless subblocks and consuming less bandwidth compared

to migrating the entire large block. SILC-FM can get more spatial locality hits

than CAMEO and PoM due to page-level operation and interleaving blocks

respectively. The interleaved subblock placement improves performance by

55% on average over a static placement scheme without data migration. The

scheme also selectively locks hot blocks to prevent them from being involved

in the hardware swapping operations. Additional features such as locking, as-

sociativity and bandwidth balancing improve performance by 11%, 8%, and

8% respectively, resulting in a total of 82% performance improvement over a

no migration static placement scheme. Compared to the best state-of-the-art

scheme, SILC-FM gets a performance improvement of 36% with 13% energy

savings. The technique provides the following insights:

• The high bandwidth costs typically associated with page-level data place-

ment and migration in prior PoM can be eliminated by using subblock-

ing. Subblocking together with interleaving subblocks from two dif-

ferent pages increases the usefulness of the fast memory layer.

• It is preferred that hot pages reside in on-chip memory as those pages

benefit from high bandwidth. A mechanism is developed to identify hot

pages and to lock them in fast memory, so that conflicting data does not

swap hot pages out to off-chip DRAM. Unlike epoch based approaches,

42

the locking does not need to occur at coarse grain time intervals, and

thus the proposed scheme can react quicker to the changes in the hot

working set.

• In memory bandwidth limited systems, the bandwidth is the scarce re-

source. Thus, instead of maximizing the total number of requests ser-

viced from the fast memory layer, it is beneficial to service a fraction of

requests from the off-chip DRAM to utilize the overall available system

bandwidth. If the bandwidth available from the two memory levels are

N:1, it is beneficial to service 1/(N+1) of the accesses from the slower

memory layer. Therefore, SILC-FM achieves high performance improve-

ment with a slightly lower number of requests serviced from die-stacked

DRAM. This leads to balanced bandwidth utilization, which in turn

provides performance improvement.

SILC-FM is evaluated against the state-of-the-art scheme, which also

fully utilizes the added fast memory capacity as a part of memory. It outper-

forms the state-of-the-art scheme by 36%. Also, with die-stacked DRAM’s low

energy consumption, it reduces the Energy-Delay Product (EDP) by 13% in

comparison to the state-of-the-art scheme.

5.1 SILC-FM Memory Architecture

In this section, the details of SILC-FM are presented. The SILC-FM

scheme uses NM as OS visible space while internally operating with subblock

43

NM FM
Block 0 Block 1 Block 3

E F G H A B C D I J K L

Block 4 Block 5 Block 7

Q R S T M N O P U V W X

Set 0

Set 1

Figure 5.1: NM Set Mapping (Each Set Contains 32 Subblocks in Implemen-
tation)

based mechanisms. NM is organized as associative structure where subblocks

are swapped between NM and FM. A locking feature prevents hot blocks from

being swapped out to FM while a bypassing feature utilizes the overall system

bandwidth.

Figure 5.1 shows the initial memory state where each row is a congru-

ence set. The congruence set is the similar concept used in prior work [20, 21].

In this example, each block contains four subblocks and the mapping is direct-

mapped. This implies that multiple subblocks from only one large block (from

the same set) in FM can swap into corresponding subblocks in NM at any one

point of time. For example, subblock A and C are in the same large NM block

whereas another subblock F is in different large block in FM, so the subblocks

F and J can only swap into subblock B in NM. At any point in time, either

only one of subblock F or J can reside in NM. In Figure 5.1, the migration

between two pages within the same set occurs at subblock granularity. This is

bandwidth efficient as only 64B worth of data is migrated, yet managing the

remap table at a large block granularity reduces the remap table overheads.

The subblock tracking is done using a bit vector per NM block where individ-

44

ual bits validate the corresponding subblock’s residency in NM. When a block

is swapped out of NM, the history of bit vectors is stored in a small SRAM

structure called a bit vector table. The bit vector history table has a total of

1 million entries (approximately 4MB). Multiple subblocks are fetched using

this bit vector when a block is swapped in again. This exploits spatial locality

as previously used subblocks are swapped at the same time, so any subsequent

request to either of the subblocks results in a subblock serviced from NM. In

comparison to CAMEO, SILC-FM can achieve higher spatial hits. Since this

scheme does not swap any other undesirable subblocks, it is more bandwidth

efficient than large block based schemes such as PoM, which have to swap

every subblock within a large block.

Since NM is not a cache, the term “hit rate” is not used to describe the

fraction of requests serviced from NM. Rather, the term, “access rate”, is used

as done in a recent die-stacked DRAM paper [20]. The access rate is defined as

in Equation 5.1. In this dissertation, assume that NM uses the lower addresses

in the physical address space and FM uses the higher addresses.

AccessRate =

total number of requests
serviced from NM

total number of requests
missed from LLC

(5.1)

5.1.1 Hardware Swap Operations

Since NM is a part of memory space, when data is brought into NM,

the existing data from NM needs to be swapped out. Unlike hardware caching

schemes where there is always a copy in FM, SILC-FM needs to perform a

45

NM FM
Block 0 Block 1 Block 3

Initial State

E F G H A B C D I J K L Set 0

NM FM
Block 0 Block 1 Block 3

Swap Operation

E B G D A F C H I J K L Set 0

remap bit vector

1 0101

set 0
metadata

remap bit vector

- 0000

set 0
metadata

Figure 5.2: Example of Interleaved Swap

swap operation. Figure 5.2 shows a direct mapped scheme to describe the

swapping operation for subblocks F and H. When two back to back requests

are made to subblock F and H, they are brought in one by one from block 1

in FM into block 0 in NM. The corresponding subblocks (subblock B and D)

in block 0 are swapped out to block 1. Any subsequent access to subblock F

and H will be serviced from NM. There are no duplicate copies of data and

hence the total memory capacity is the sum of NM and FM capacities, which

is much greater than in cache schemes such as Alloy Cache [44]. In SILC-FM,

the address is used to calculate an index, which refers to a set of unique NM

blocks. Upon a memory request, the index is calculated by performing the

modulo operation with the incoming address and the total number of blocks

in NM. Then, the incoming address is again checked against the remap field

of the metadata. The remap entry is only used for the swapped in data from

FM since it contains the large block address of the swapped in block.

46

Remap Bit Vector NM Address Action

match 1 - service from
NM

match 0 - swap subblock
from FM

mismatch 1 yes swap subblock
from FM

mismatch 0 yes service from
NM

mismatch 1 no restore current
block and
swap subblock
from FM

mismatch 0 no restore current
block and
swap subblock
from FM

Table 5.1: SILC-FM Metadata and Operation Summary

Subblocking is done via a bit vector, which consists of valid bits to indi-

cate whether a particular subblock in this NM block has been swapped in from

FM. In Figure 5.2, when subblock H is brought into NM, the corresponding

bit, which is calculated using the block offset, is set in the bit vector. Also, the

remap table entry is updated, so it contains the block address of the swapped

in block, which is 1. Note that SILC-FM does not have a valid bit at block

granularity. Unlike caches, there is always data in NM since NM is used as

flat memory, so the block is always valid. The difficulty here is to distinguish

which block the data belongs to. SILC-FM can achieve that by using the NM

address range and remap entry. Using the remap table entry, bit vector and

the request address, there can be 6 scenarios of swap operations. Table 5.1 lists

each operation and this table will be referred to explain each swap operation.

47

First, the example begins with the case where the remap entry matches with

the request address. If a bit in the bit vector is not set and the request address

belongs to the NM address space, then the subblock (original NM subblock)

is resident. Otherwise, if the bit is set, then the original subblock is swapped

out to FM.

In the scenario with a remap entry mismatch, the bit is set, and the

address falls in the NM address space, then the swapped out subblock (the

one originally belonging to NM) is brought into NM. The FM location where

the swapped out subblock currently resides is the block address in the remap

entry, so the remap entry is consulted to bring the subblock back. In the

same scenario with the bit not set, the original subblock is resident, so the

request is serviced from NM. Lastly, if the remap entry mismatches and the

requesting block address belongs to the FM space, the original mapping is

restored. Although the bit vector is not used to perform an execution action,

the bit vector is consulted to restore the original mapping. At the same time,

the bit vector is saved in a bit vector table. This is a small SRAM structure

that is indexed using the xor’ed PC and the address of the first swapped-in

subblock within the block (first in timely sense). Thus, this PC and request

address is stored along with other metadata for each block. These two variables

have shown to have high correlation with the program execution [57, 94–96],

so when this block is accessed again in the future, it is likely that a similar

access pattern will repeat. Since the bit vector has a pattern of previous

subblock usage, it will be used to fetch multiple subblocks when this block is

48

NM FM
Block 0 Block 1 Block 3

E F G P A B C D I J K L

Block 4 Block 5 Block 7

Q R S T M N O H U V W X

Set 0
2 way
Assoc

locked
block

Figure 5.3: Locking and Associativity

swapped into NM again. The bit vector table is indexed and those subblocks

corresponding to 1’s in the bit vector are fetched together from FM, which

takes advantage of spatial locality. The concept of using a bit vector is similar

to prior work [15, 97]. By doing so, SILC-FM can achieve a higher access rate

than small block schemes. Now, after successfully restoring a block, the new

swapping occurs between NM and FM.

If a FM subblock has to be swapped into NM, the corresponding sub-

block in NM (the subblock that originally belongs to the NM address space)

is swapped out to FM. The corresponding bit is set and the subblock is now

resident. Since the large block size is 2KB and the subblock size is 64B, there

are 32 bits per block. Each bit is responsible for each subblock position in

NM. Unlike caches, dirty bits are not tracked in NM. In caches, dirty bits

facilitate the eviction process by only writing back dirty data and invalidating

clean data. However, since data in NM is the only copy of the data in the

physical address space, all swapped in blocks need to be written back to FM

when necessary. Therefore, SILC-FM does not need dirty bits.

49

5.1.2 Memory Activity Monitoring

SILC-FM monitors memory access activities to classify data into hot

and cold data. The idea is to keep only hot pages in NM to benefit from NM’s

high bandwidth. The cold data should not interfere with hot data so that hot

data is not inadvertently swapped out to FM. The activity tracking metadata,

namely NM and FM counters, are used to gather memory access statistics,

and each page in NM has its own dedicated set of NM and FM counters. Each

NM page has two counters stored in NM, each with 6 bits, so the total area

overhead is 1.5MB, which is negligible. If there are any swapped subblocks in

NM, then two different blocks coexist in the same NM row; ones originally in

NM space and the others swapped in from FM. Unlike the remap entry where

only one entry is needed to distinguish those two sets, for monitoring activities,

SILC-FM needs two sets of counters, each for NM and FM blocks. The counter

is used to classify two coexisting blocks as either hot or cold blocks. Upon an

access, the updated counter value is compared against a threshold and if it

exceeds this value, the large block is hot. Otherwise, it is considered cold.

This later helps to identify candidates to lock in NM. In order to distinguish

between current and past hot blocks, these counters are implemented using

aging counters where the counter value is shifted to the right every one million

memory accesses.

50

5.1.3 Locking Pages

Once the system identifies hot blocks, SILC-FM locks hot blocks in

NM as those blocks are responsible for high bandwidth usage, which bene-

fits from being placed in NM. When the counter crosses the threshold, the

block is locked. To reduce hardware complexity, the locking is done at large

granularity although the unlocked pages still operate at subblock granular-

ity. Unlike unlocked blocks, the locked blocks have all their subblocks in NM.

Therefore, when locking the block, the missing subblocks, which are residing

in FM, are swapped into NM. After locking, a complete large block remap

has been performed as the large block originally belonging to NM is now com-

pletely remapped to a location in FM and vice versa. The counter for this

locked page is still incremented upon each access, but the bit vector checking

is ignored. The counter is still monitored to ensure that the locked block is

still hot. If the locked block is no longer hot and the access count goes be-

low the threshold, the lock bit is unset. Clearing the lock bit does not have

an immediate effect as it operates as if the unlocked block has all subblocks

swapped in from FM (all bits in the valid bit vector are set). If this block is,

in fact, no longer hot, then other hot subblocks will be swapped into this place

in NM. The locking and unlocking mechanism can react quicker to changes in

the hot working set than epoch based schemes as migrating hot blocks do not

have to wait until epoch boundaries. In fact, the proposed scheme does not

have any notion of epochs, so locking and unlocking can happen at anytime

for any number of blocks.

51

One drawback with locking is that it makes other subblocks in the

same FM set inaccessible to NM. They can only be swapped into NM in the

same set when a direct-mapped scheme is used. Therefore, SILC-FM allows

swapped in subblocks to be placed with some flexibility by allowing block

level associativity. Using a large block size (2KB), different associativities are

experimented. A direct-mapped organization (1-way associativity) achieves

the least performance improvement as several hot blocks get swapped out

due to conflicts and thrashing. Increasing the associativity to two improves

performance by removing many conflicts. Yet, the index is still calculated

using a part of the address bits, so multiple hot blocks (more than two) are

still mapped to the same set. Consequently, increasing the associativity to

four further improves the performance. The latency overhead associated with

the increased associativity is modeled in the simulation. As a result, SILC-

FM adopts four-way associative structure. Therefore, the incoming address is

checked again all ways to find the matching remap entry. Prior page-based

work [21, 22, 39] showed similar results regarding associativity, yet the use of

associativity is distinct from prior work in that depending on the number of

pages locked, the associativity can vary from 1-way to 4-way.

5.1.4 Metadata Organization

The overall metadata organization in SILC-FM is shown in Figure 5.4.

The block address for those swapped in subblocks are stored in the remap field

as shown in the figure. The FM counter tracks the number of accesses made

52

Way 0 Way 1 Way 2 Way 3

2KB

•••

FM Subblocks

NM Subblocks

Unlocked Block

•••

Locked Block

2KB worth of data

Data
Banks •••

Channel 1 Channel N-1
Meta Data

Banks

Channel 0

Metadata 0 Metadata 1 Metadata 2 Metadata 3

LRU 101111

valid bit vector

NM
Counter Lock Remap

FM
Counter PC+ Addr

Figure 5.4: SILC-FM Data and Metadata Organization

to these swapped-in blocks. The FM counter is used since those subblocks

originally belong to the FM address space. The block corresponding to Way-0

shows the layout of the data where subblocks shaded in black within 2KB

block indicate subblocks which are swapped-in. Those subblocks which are

swapped in originally belong to FM address space, but they are brought into

NM upon a request. The white subblocks are data belonging to the original

pages that reside in NM address space. Upon a request, this remap entry has

to be checked to determine if the requested block has been swapped in or not.

SILC-FM maintains one remap entry per large block/page while the residency

of subblocks within a block is validated using a bit vector. SILC-FM also has

other metadata fields such as lock and LRU, which are used for locked pages

and finding the swapping candidate in NM. The total metadata size is 8 bytes

per 2KB, so it occupies 0.39% of the NM capacity. The metadata is stored in a

53

1.0

1.2

1.4

1.6

1.8

2.0

2.2

0.0 0.2 0.4 0.6 0.8 1.0P
er

fo
rm

a
n

ce
 I

m
p

ro
v

em
en

t

Access Rate

astar cactus lib mcf geomean

Figure 5.5: Performance Improvement with Varying Access Rate

separate channel to increase the NM row buffer hit rate of accessing metadata.

Separating the metadata storage from data has been shown to increase the row

buffer locality [39].

5.1.5 Bypassing and Bandwidth Balancing

Always swapping subblocks upon access increases the overall access

rate. Although such an approach makes sense for caches where NM is consid-

ered another level in memory hierarchy, it may leave the available bandwidth

to FM idle once the access rate becomes high. In cache-like organizations, FM

being idle is actually beneficial since all requests are serviced from a layer of

memory closer to the processor. Yet, in the situation where NM is a part of

the memory space just like FM, having a portion of the memory being idle

has similar effects as disabling a fraction of the memory in the same memory

hierarchy. This is not a desirable outcome, and in this case, making use of the

54

FM bandwidth can increase the effective available bandwidth to the system.

The effects of bypassing using the CAMEO scheme are performed and the FM

is steered an appropriate amount of traffic to match the desired access rate.

Unlike SRAM caches where the maximum performance is achieved at 100%

hit rate, in this experiment, the optimal performance improvement point is at

0.8 instead of 1.0 as shown in Figure 5.5. In the experimental platform, the

available bandwidth ratio between FM and NM is 4:1, so routing 80% of the

traffic to NM and 20% to FM matches this bandwidth ratio. Since NM and

FM are at the same memory hierarchy level, using this FM bandwidth makes

the processor utilize all bandwidth available in the system at the NM and FM

memory layer. Thus, it is able to gain extra performance from the memory

system. Since SILC-FM focuses on memory bandwidth bottlenecked systems,

having more bandwidth available to the application helps. In addition, prior

work [98–100] also showed that bandwidth throttling is effective in bandwidth

constrained systems. However, the bypassing in SILC-FM is at much finer

granularity (at page level) than in prior work, which uses a segment of mem-

ory as bypassing zones. In SILC-FM, its goal is to make the access rate be 0.8,

so it incorporates the bypassing feature if the access rate exceeds this value.

When this happens, no more subblocks are swapped into NM. However, the

unlocked blocks, which are already in NM, can still operate normally from

NM. For example, subblock G in Figure 5.3 can be swapped into block 1 upon

a request and still work under the unlocked condition. However, in the by-

passing scenario, this swapping is not allowed, so the bit vector will not be

55

updated, and subblock G will be serviced from FM. However, if the access rate

again becomes lower than 0.8, this bypassing feature is turned off to increase

the access rate.

5.1.6 Latency Optimization

Having an associativity structure adds to the NM access latency as

fetching multiple remap entries is a serialized operation. In SRAM caches, it

does not add significant latency as multiple entries can be fetched and checked

simultaneously. However, that is not the case for NM since NM uses DRAM

based technology. The implementation uses 4-way associativity, so in each

access, four independent remap entries are fetched. This operation has to

be serialized as the maximum fetch bandwidth is limited by the bus width.

The metadata serialization problem was also addressed in prior work [42, 44].

In order to hide the long latency of fetching multiple remap entries, a small

predictor is added to bypass this serialization. The predictor has 4K entries

in total. The predictor uses the instruction and data addresses since they are

known to have a strong correlation with the execution phase of a program [57,

94–96], and thus, they are widely used as predictors in DRAM caches [39, 41,

44]. The program counter and data address offset values are xor’ed to form

an index into the predictor. This table keeps track of a recently accessed

way for each particular index. On each access, the index is calculated to

access this table. Since this table is a small structure, the access latency is

negligible. However, the access to the table begins with LLC access, so by the

56

time the LLC miss is identified, the predicted way is available to access NM.

Furthermore, one more bit in each entry is added to speculate on the location

of the data (NM or FM).

The latency on an access to FM is longer than on an access to NM

since the remap entry has to be checked first in NM prior to accessing FM.

The predictor attempts to ameliorate this issue. If the predictor speculates

that the data is located in FM, then the request is sent to FM at the same

time as the remap entry request is sent to NM. Upon correct speculation that

the data is in FM, the latency is just a single FM access latency, hiding the

NM remap entry fetching latency. Therefore, the saved time is the NM access

latency. Note that the predictor only forwards the requests to FM when the

block is speculated to exist in FM. In the case where the block is speculated

to be in NM, no additional action is taken. If this prediction was not correct

(e.g., FM was speculated, but data is in NM), the simultaneously forwarded

request to FM is ignored.

5.1.7 Overall SILC-FM Operation

Now, the overall scheme is explained from the point of view of an LLC

miss using Figure 5.6. The congruence set index is calculated using the modulo

operator to access both the remap entry and data in NM. Also along with LLC

access, the PC and the request address are used to access the predictor. The

request is sent to NM using the calculated index and predicted way. If the

lock bit is set and the remap field is a match, the NM data is fetched. In the

57

Common Operations

req
addr

XOR

PC

NM way

0 0

1 2

••• •••

1 1

%

Locked
?

Locked

yes

no no

yes

remap
?

FM?
yes

remap
?

yes

no swap subblock
from FM

fetch subblock
from NM

fetch subblock
from NM

NM access FM access Unlocked

swap subblock
from FM

no bit
vector

?

no NM
addr

space?

yes

swap subblock
from FM

yes

bit
vector

?

yes

fetch subblock
from NM

no

swap subblock
from FM

index
predicted way

+ index

Speculative Path
(Only for FM Speculation)

Figure 5.6: Overall Execution Flow of SILC-FM

case of a remap mismatch, the request address is checked to see whether it

falls under the NM address space. If so, the bit vector is checked to determine

the location of the requested subblock. If the subblock is resident in NM,

then the bit has to be 0. The prediction, shown in a dotted line, can skip

the previously mentioned metadata fetching steps. If the block address does

not fall under NM space, then the update of the remap entry and swapping

of the subblock from FM are initiated. The subblock is swapped to available

ways within the set. A similar operation occurs for a remap mismatch. If the

request was made to one of locked blocks, the remap entry is checked. If it

matches, then the corresponding subblock is fetched from NM. If not, then

the subblock is swapped from FM to NM blocks other than this locked block.

Every swap from FM operation, as shown in Figure 5.6, checks the access rate.

If it is enabled, then the swap from FM becomes a fetch from FM without any

metadata update. Also, only the correct way speculation path is shown. In the

58

Processor Values

Number of Cores (Freq) 16 (3.2GHz)
Width 4 wide out-of-order

Caches Values

L1 I-Cache (private) 64 KB, 2 way, 4 cycles
L1 D-Cache (private) 16 KB, 4 way, 4 cycles
L2 Cache (shared) 8 MB, 16 way, 11 cycles

HBM Values

Bus Frequency 800 MHz (DDR 1.6 GHz)
Bus Width 128 bits
Channels 8
Ranks 1 Rank per Channel
Banks 8 Banks per Rank
Row Buffer Size 8KB (open-page policy)
tCAS-tRCD-tRP-tRAS 7-7-7-28 (memory cycles)

DDR3 Values

Bus Frequency 800 MHz (DDR 1.6 GHz)
Bus Width 64 bits
Channels 4
Ranks 1 Rank per Channel
Banks 8 Banks per Rank
Row Buffer Size 8KB (open-page policy)
tCAS-tRCD-tRP-tRAS 11-11-11-44 (memory cycles)

Table 5.2: SILC-FM Experimental Parameters

case of a way prediction misspeculation, the remap entry check takes longer

as four remap entries are checked in series.

5.2 Results

5.2.1 Experimental Setup

To evaluate the SILC-FM scheme, a Pin-based Sniper simulator [71]

is used to model a 8-core server class processor similar to AMD’s A10-7850K

59

processor [78]. Each core is a 4-wide issue processor with 128 ROB entries

per core. A detailed memory simulator, Ramulator [72], is configured with 32-

entry read and write queues per channel. Timing and configuration parameters

are listed in Table 5.2. The simulator performs the virtual-to-physical address

translation and assumes that FM to NM capacity ratio is 4:1. For NM memory,

the configuration uses HBM Generation 2 and derived timing parameters from

JEDEC 235 and 235A datasheet [6, 101] along with other publicly available

sources [7, 24, 102, 103]. DDR3 technology is used as FM memory with latency

parameters derived from JEDEC and vendor datasheet [104, 105]. The baseline

is a system without NM. The bit vector history table is 72KB and the predictor

is 1.5KB, both with an access latency of 1 cycle. The access latency of SRAM

structures is derived from CACTI [93]. Experimentally for the NM, the FM

counter threshold of 50 is found to work the best to determine the block

hotness, so this value is used. The execution time is calculated using the time

when all workloads in all cores terminate. The speedup (figure of merit) is

calculated using the total execution of the baseline with no HBM memory over

the execution time of a corresponding scheme, and therefore, higher speedup

represents higher performance.

SILC-FM is compared against other five other designs: Random Static

Placement (rand), HMA (hma), CAMEO (cam), CAMEOP (camp), and Part

of Memory (pom). Random uses the entire NM and FM as OS visible address

space and maps pages randomly. Thus, this scheme does not consider different

bandwidth/latency characteristics of NM and FM, but rather, treats them

60

Category Benchmark MPKI (per core) Footprint (GB)

Low
MPKI

bwaves 10.12 6.82
cactus 7.52 2.31
dealII 4.46 0.69
xalanc 5.98 2.87

Medium
MPKI

gcc 31.23 1.34
gems 15.95 10.59
leslie 11.28 1.19

omnet 27.22 2.06
zeusmp 11.41 3.32

High
MPKI

lbm 53.29 6.30
lib 35.50 0.50
mcf 88.95 18.46
milc 34.13 9.05

soplex 43.32 0.78

Table 5.3: SILC-FM Workload Descriptions

the same. HMA and CAMEO are described in Chapter 4. CAMEOP is an

enhancement to the CAMEO scheme with a prefetcher that fetches an extra

3 lines along with the miss. Lastly, Part of Memory [21] migrates 2KB blocks

based on block access counts.

5.2.2 Workloads

A representative region of SPEC CPU2006 benchmark suite [106] is

run using 1 billion instruction slice Simpoint [107, 108]. Only a subset of the

benchmarks, which exhibit high memory bandwidth usage, are used. Chosen

benchmarks are categorized into three groups: low, medium, and high Misses

Per Kilo Instructions (MPKI). Those workloads whose MPKI is lower than

11 are categorized as low MPKI benchmarks, those higher than 32 as high

MPKI workloads, and those in between as medium MPKI workloads. Table 5.3

61

summarizes the workload composition and related characteristics. All reported

MPKI are the LLC MPKIs computed per core, and the footprint is calculated

by counting the total number of unique pages seen from LLC misses.

5.2.3 Performance

The breakdown of SILC-FM execution time improvement is shown in

Figure 5.7. The stack bar begins with the Random scheme as it is the most

naive scheme. Then, the performance improvement achieved through each

technique is stacked on top. SILC-FM swap shows the performance improve-

ment achieved with a direct-mapped small block scheme when any associa-

tivity, locking or bypassing technique is not applied. The system is able to

achieve the speedup of 1.55 with only subblock granularity swapping between

FM and NM. In high MPKI workloads where more bandwidth demand exists,

the swapping alone can significantly alleviate the bandwidth bottleneck by

swapping many hot blocks into NM. For that reason, Figure 5.7 shows that

high MPKI workloads achieve the overall highest performance improvement.

Workloads such as milc do not get much benefit from swapping as conflicts

constantly swap out recently swapped in subblocks, which in turn shows the

need for other features that are incorporated in SILC-FM. Then, the locking

feature is added to SILC-FM, which can improve the hot page residency in

NM. In this case, not all benchmarks benefit as some benchmarks do not have

a significant amount of thrashing or conflicts from the baseline. However, a

benchmark such as xalancbmk achieves an extra 14% performance improve-

62

1.00
1.20
1.40
1.60
1.80
2.00
2.20
2.40
2.60
2.80
3.00

b
w

a
v

es

ca
ct

u
s

d
ea

lI
I

x
a

la
n

c

g
eo

m
ea

n

g
cc

g
em

s

le
sl

ie

o
m

n
et

ze
u

sm
p

g
eo

m
ea

n

lb
m li
b

m
cf

m
il

c

so
p

le
x

g
eo

m
ea

n

g
eo

m
ea

n
 t

o
ta

l

P
er

fo
rm

a
n

ce
 I

m
p

ro
v

em
en

t

rand swap lock assoc bypass

Low MPKI Medium MPKI High MPKI

Figure 5.7: SILC-FM Performance Improvement Breakdown

ment just by locking hot pages. The problem of hot blocks being swapped out

to FM, if they are not locked, arises due to the fact that address bits are used

to place blocks, so not all hot pages are evenly spread out in the NM indexing.

The xalancbmk benchmark is a good example and locking ensures that some

hot blocks are locked, so at least those blocks can be serviced from NM even

if not all hot blocks can be accommodated in the NM set.

Now for unlocked blocks, adding associativity achieves similar effects.

In some benchmarks, the fraction of hot blocks that reach over the hotness

threshold may not be a large portion of the entire working set, meaning many

blocks are just lukewarm. In this case, the effects of associativity, which pro-

tects those unlocked pages from unwanted conflicts and thrashing, can be quite

significant. For example, gcc achieves significant speedup of 36% with the ad-

dition of associativity while adding locking only improves performance by 11%.

This is a good example of a case where the benchmark has many lukewarm

63

blocks. As a result, locking, which only benefits hot blocks, provides negligi-

ble improvement, but associativity brings a huge performance improvement.

Lastly, the bypassing feature is added in SILC-FM. Note that the bypassing

feature is enabled only when the access rate exceeds 0.8. Benchmarks such as

bwaves do not reach this point, so adding the bypassing feature does not pro-

vide additional performance. In contrast, milc exceeds the 0.8 access rate, and

as a result, the bypassing feature enhances performance by utilizing the FM

bandwidth, which otherwise would have been idle. Overall, SILC-FM is able

to capture hot blocks and subblocks within lukewarm blocks in NM through

features such as swapping, locking, and associativity while higher system-wide

bandwidth utilization is achieved through bypassing.

Comparison with Other Schemes Figure 5.8 shows the performance im-

provement of SILC-FM against other schemes. First, the Random scheme

does not see much significant performance improvement. The placement is

done randomly without considering NM and FM characteristics, so pages are

statically allocated. Although some pages may sit in NM, the access rate is

low. Since there are no other overheads due to page migration during the

execution, all workloads achieve similar performance improvement.

The HMA and PoM schemes improve upon the Random scheme by

intelligently selecting hot pages and placing them in NM. The threshold based

decision is able to select a subset of pages (mostly hot pages) and move them

to NM. As seen in Figure 5.8, HMA achieves significantly higher performance

than Random even though this scheme has additional software overheads such

64

0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5
2.7

b
w

a
v

es

ca
ct

u
s

d
ea

lI
I

x
a

la
n

c

g
eo

m
ea

n

g
cc

g
em

s

le
sl

ie

o
m

n
et

ze
u

sm
p

g
eo

m
ea

n

lb
m li
b

m
cf

m
il

c

so
p

le
x

g
eo

m
ea

n

g
eo

m
ea

n
 t

o
ta

l

P
er

fo
rm

a
n

ce
 I

m
p

ro
v

em
en

t

rand pom hma cam camp silc-fm

Low MPKI Medium MPKI High MPKI

Figure 5.8: SILC-FM Performance Comparison with Other Schemes

as context switching and TLB shootdowns. This makes the majority of hot

pages reside in NM. However, the migration only occurs at a very large time

interval, so the selected pages may not be hot anymore by the time the decision

is made, which is shown in bwaves and milc. PoM uses a similar scheme as

HMA, yet in the evaluation, PoM uses much more FM bandwidth because

it frequently transfers 2KB blocks. In high spatial workloads, most of 2KB

blocks are used, yet most workloads have a rather low number of unique used

subblocks within 2KB. Also, PoM has to accumulate a certain access count

before the migration is triggered, so it achieves a lower performance.

The CAMEO scheme reacts quickly to any changes in the hot working

set and it moves data at a small block granularity. In all workloads, this

scheme effectively places most hot small blocks in NM. Yet, conflict misses are

unavoidable since the NM is direct mapped. For example, cactus suffers from

conflict misses, to the extent that schemes, such as HMA, that can withstand

65

conflicts perform better than CAMEO. In addition, since only one small block

is brought into NM at each time, CAMEO does not take advantage of abundant

spatial locality within a page. However, the CAMEO scheme’s data movement

granularity, a small block granularity, uses FM bandwidth efficiently, so it

achieves an overall higher performance improvement than other schemes. The

improved CAMEO with prefetcher achieves a higher speedup as it enjoys some

degree of spatial locality. However, naively prefetching subblocks also wastes

bandwidth as those prefetched subblocks are not always useful.

The SILC-FM scheme effectively removes conflicts by offering associa-

tivity and locked blocks. Unlike HMA where pages are migrated and locked

into NM at epoch boundaries, the blocks are locked in NM as soon as the ac-

cess count reaches the threshold. This makes the hot block capturing ability of

SILC-FM respond quicker to changes in the hot working set. The gemsFDTD

workload shows performance degradation with HMA, but performance im-

provement with CAMEO. This benchmark has many short-lived hot pages,

and as a result, the epoch length is too long to make smart migration deci-

sions. SILC-FM, on the other hand, responds quickly, so performance benefits

are seen. The associativity reduces conflicts among those pages that are not

locked yet. For libquantum, HMA performs well since it offers fully associa-

tive placement at epoch boundaries. Here, CAMEO suffers from conflicts that

SILC-FM can withstand by means of locking and associativity. Furthermore,

the bit vector based fetching scheme migrates more useful subblocks than

CAMEO with a prefetcher, and thus SILC-FM’s benefits are greater. This ad-

66

0.0

0.2

0.4

0.6

0.8

1.0

ra
n
d

p
o
m

h
m

a
c
a
m

c
a
m

p
si

lc
-f

m

ra
n
d

p
o
m

h
m

a
c
a
m

c
a
m

p
si

lc
-f

m

ra
n
d

p
o
m

h
m

a
c
a
m

c
a
m

p
si

lc
-f

m

ra
n
d

p
o
m

h
m

a
c
a
m

c
a
m

p
si

lc
-f

m

F
r
a

c
ti

o
n

 o
f

B
W

NM FM

Low MPKI Medium MPKI High MPKI Total Low MPKI Medium MPKI High MPKI Total
Figure 5.9: Fraction of FM and NM Bandwidth Usage

ditional performance gain makes SILC-FM achieve higher performance than

the state-of-the-art scheme, CAMEO. Furthermore, the bypassing feature cre-

ates additional performance opportunities for certain workloads such as milc

by using FM bandwidth, which would have been idle in other schemes due to

its high access rate.

Figure 5.9 shows the fraction of the total demanded bandwidth usage

broken down by either NM or FM. The ideal point here is 0.8 as discussed in

Section 5.1.5. Note that only the bandwidth consumed by demand requests

and not by migrations is shown, so the bulk page migration in the HMA

scheme is not shown here. In HMA and PoM, 71% and 58% of the total de-

manded bandwidth usage, respectively, is consumed by NM on average, so the

NM’s high bandwidth is well utilized. Yet, CAMEO’s low access rate makes

it service more requests from FM when more of NM’s bandwidth could be

used. CAMEO with prefetcher adds additional traffic on NM bandwidth as

67

MPKI Low Medium High Total

Accuracy 0.59 0.69 0.64 0.64

Table 5.4: SILC-FM Predictor Accuracy

prefetched subblocks consume bandwidth, and thus, it creates an imbalance

between FM and NM. Without bypassing, SILC-FM leaves FM bandwidth

near idle, but by enabling the bypassing feature, we control the access rate.

This makes SILC-FM to have 76% of the total bandwidth usage on NM band-

width, which is only 4% below the ideal 80%. Therefore, it effectively utilizes

available bandwidth in both NM and FM and improves performance.

Prediction Accuracy Schemes with NM metadata such as SILC-FM and

CAMEO rely on predictors to reduce the serial latency associated with meta-

data. The correct predictor speculation on the miss path hides the NM access

latency for fetching metadata. The SILC-FM predictor is unique from prior

approaches in that it speculates the NM/FM location as well as the way.

Since associativity significantly reduces conflicts and thrashing in large block

schemes, it is desirable that the associativity is enforced in such designs. Ta-

ble 5.4 shows the accuracy of our predictor. The speculation is considered

correct if it correctly predicts both the NM/FM and the way. If only one is

speculated correct, it is not considered as a correct speculation in this table.

The average accuracy is 64% with the most accurate being 75% with soplex.

SILC-FM predicts two outcomes at the same time, thus the accuracy is not as

high as in prior work, which predicts either the NM/FM or the way. Yet, it al-

lows the request to completely bypass NM upon a correct outcome. Therefore,

68

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ra
n

d

p
om

h
m

a

ca
m

ca
m

p

si
lc

-f
m

ra
n

d

p
om

h
m

a

ca
m

ca
m

p

si
lc

-f
m

ra
n

d

p
om

h
m

a

ca
m

ca
m

p

si
lc

-f
m

ra
n

d

p
om

h
m

a

ca
m

ca
m

p

si
lc

-f
m

N
or

m
al

iz
ed

 E
D

P

Low MPKI Medium MPKI High MPKI Total

Figure 5.10: SILC-FM Normalized Energy Delay Product

64% of accesses retrieve data while the metadata is being fetching, and even in

cases where the NM/FM location prediction is incorrect, the way prediction

can save serialized associative remap table fetching latency.

Energy Delay Product Analysis The Energy Delay Product (EDP) of

SILC-FM is compared against other schemes. The results include both static

and dynamic energy using publicly available data [7, 24, 102, 103]. For the pro-

cessor side, the McPat [109] tool is used to compute the dynamic and static

power of cores and on-chip caches. The Energy Delay Product (EDP) metric

quantifies the amount of execution time reduction relative to the amount of

increased energy. If EDP is reduced, then performance gain is higher than

increased energy consumption. Therefore, a lower EDP value is desired and

this section compares SILC-FM’s EDP values with other schemes to show

whether SILC-FM’s performance improvement is worth the cost of increased

energy consumption. Figure 5.10 shows the normalized EDP values to the

baseline system. Since the execution time dominates the baseline scheme, it

69

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

1
/1

6

1
/8

1
/4

1
/1

6

1
/8

1
/4

1
/1

6

1
/8

1
/4

1
/1

6

1
/8

1
/4

P
er

fo
rm

a
n

ce
 I

m
p

ro
v

em
en

t rand pom hma
cam camp silc-fm

Low MPKI Medium MPKI High MPKI Total

Figure 5.11: SILC-FM Performance Improvement with Various NM Capaci-
ties

has the overall highest EDP. Furthermore, SILC-FM is able to offset the en-

ergy consumption by having a significant speedup even in low MPKI cases

where the processor energy is higher than other schemes (cores are more ac-

tive since memory is not stalling them frequently). Similarly, CAMEO with

prefetching outperforms other schemes such as Random and HMA, which show

relatively high EDP values in comparison to SILC-FM as their increase in en-

ergy consumption is not compensated by performance improvement. Overall,

SILC-FM is able to achieve 66% and 14% improvements in EDP over baseline

and CAMEO respectively.

5.2.4 Sensitivity Studies

Capacity Analysis In this section, the performance improvement with dif-

ferent NM to FM capacity ratios is analyzed because the proportion of the

NM capacity can range from a small to a large fraction of the overall memory

capacity. This study varies the NM:FM capacity ratio from 1/16 to 1/4. In

70

recent Intel Knights Landing processor [8], NM to FM ratio is approximately

1:24, so the capacity close to this ratio is evaluated to see performance effects.

Figure 5.11 shows the performance improvement with various schemes and ca-

pacities. CAMEO and CAMEOP perform better with a larger capacity since

it has larger number of sets, which reduces its inherent problem of conflicts.

HMA and PoM’s performance is not affected significantly by NM capacities.

Although they can capture long-lasting hot pages, short-lived hot pages are

not well captured. The set of benchmarks used in this paper does not have the

varying number of long-lasting pages with NM capacities, and thus, their per-

formance remains approximately constant with varying NM capacities. How-

ever, in other domains of benchmarks such as the cloud domain, it is possible

that their performance improvement could be noticeable. SILC-FM, on the

other hand, captures hot blocks/subblocks across various capacities. When

the capacity is small, such as 1/16, the scheme also has a smaller number of

sets like CAMEO; however, locking and associativity significantly prevent the

problems with thrashing and conflicts that hurt CAMEO. This is apparent in

low MPKI workloads, which does not cause significant performance degrada-

tion for SILC-FM even with a much reduced number of sets. Therefore, while

conflicts and thrashing play a huge performance role in other schemes such as

CAMEO, SILC-FM is able to minimize such an impact when the capacity is

reduced. Overall, SILC-FM’s average performance improves from 1.83 to 2.04

when the ratio grows from 1/16 to 1/4 while the best comparable scheme only

improves from 1.47 to 1.67.

71

5.3 Summary

Die-stacked DRAM can help to overcome many challenges faced by

current memory subsystems. Prior approaches focused on using block-based

schemes, but naively adopting such schemes will benefit only a subset of dif-

ferent workloads. This chapter has presented an associative locking memory

architecture called SILC-FM that locks hot pages in NM and intelligently

remaps FM subblocks into NM. Unlike using NM as a cache, SILC-FM fully

exposes the die-stacked DRAM capacity to the OS to take advantage of the

additional capacity provided by NM. SILC-FM incorporates a predictor to

reduce the access latency. In addition, some memory requests bypass NM

and directly access FM to utilize the FM bandwidth available to the proces-

sor. In the end, SILC-FM is able to achieve, on average, 36% performance

improvement over state-of-the-art die-stacked DRAM architecture. Not only

does SILC-FM improve performance, but also it achieves energy efficiency by

minimizing the number of accesses to energy-costly FM. In conclusion, SILC-

FM is a novel memory architecture that takes the advantage of the large NM

capacity by holding a significant amount of data in NM while effectively using

the overall system bandwidth.

72

Chapter 6

Granularity-Aware Page Migration in

Heterogeneous Memory System

In a heterogeneous memory system, the efficiency of the data migration

mechanism between memories composed of different technologies is a key de-

terminant of the overall system performance. Prior works on migration have

focused on what to migrate and when to migrate. This chapter demonstrates

the need to investigate another dimension in any migration scheme – how much

to migrate. Specifically, the amount of data migrated together during a single

migration attempt (called “migration granularity”), has a profound impact on

the performance of an OS-driven page migration scheme. Through analysis

performed on real hardware, it is shown that the best-performing migration

granularity is different across applications, owing to their distinct memory ac-

cess patterns. Since this best-performing migration granularity for a given

application may not be known a priori, this dissertation proposes two schemes

to dynamically infer the best migration granularity for an application. When

these schemes were implemented by modifying the Linux OS running on real

x86 hardware, the performance of a heterogeneous memory system improved

by 66% on average across 13 benchmarks and up to 74%.

73

Detailed experiments on real hardware running Linux OS and across a

wide range of applications were performed to show that different applications

perform best with different migration granularities. Specifically, we studied

three different migration granularities – 4KB, 64KB and 2MB. Applications

like xsbench [110], which demonstrate near-random memory access patterns

with little spatial locality across multiple pages, perform best with the smallest

migration granularity (here, 4KB). Applications with a streaming-like behavior

(e.g., lulesh [111]) prefer a large migration granularity (here, 2MB) as it helps

amortize the costs of migration and implicitly prefetchs useful data to NM.

Interestingly, there are applications like graph500 [75], which fall somewhere in

the middle; the use of smallest migration granularity adds extra overheads, but

if the granularity is too large, then the performance drops due to extraneous

migration. This application has some spatial reuse across a few pages, but it

is not to the degree of applications with streaming-like behavior.

Unfortunately, which application prefers which migration granularity

may not be known a priori. Applications have also been known to show phase

behaviors [112]. Therefore, two dynamic schemes are proposed to determine

the preferred migration granularity for an application at runtime. In the first

scheme, the OS monitors page-grain meta-data (e.g., access bits) to estimate

application’s spatial access locality. It then uses the largest migration granu-

larity that it estimates will contain enough reusable data. This ensures that

the overhead of migration is amortized using the largest migration granularity

that is beneficial. At the same time, it ensures that the NM’s capacity is not

74

wasted due to useless data migration. Then, another independent scheme that

uses sampling is proposed. Specifically, it breaks the execution into short sam-

pling phases followed by normal execution phases. During the sampling phase,

it performs migration with three different granularities (e.g., 4KB, 64KB and

2MB) and chooses the one that incurred the least overheads. The sampling

phase repeats periodically to capture any phase change in application’s behav-

ior.

The aforementioned schemes are implemented in the Linux OS. While

one possible page migration scheme is chosen to show the importance of select-

ing the right migration granularity, the lessons learned broadly apply to any

other page migration scheme. In short, this chapter presents contributions as

follows:

• The work demonstrates the need to consider the migration granularity in

designing an effective page migration scheme for heterogeneous memory

systems.

• By analyzing a wide range of applications on real hardware, it shows

that different applications perform best under different page migration

granularities.

• Two simple schemes are presented to dynamically select the preferred

page migration granularity for a given application.

• The prototype implementation of the above mentioned schemes in Linux

75

Slow MemoryFast Memory

CPU

Fast Memory

Request/

Servicing

Slow Memory Request

(page permission fault)

Move_In Path

(migrate requested

page)

Move_Out Path

(low free pages in

Fast Memory)

Slow Memory

Servicing

Figure 6.1: Baseline OS Driven Migration Scheme

OS shows that two schemes can improve performance by up to 74% over

the state-of-the-art baseline page migration scheme.

6.1 Baseline: OS-Managed Page Migration

The goal is to demonstrate the importance of choosing the right mi-

gration granularity in an OS-managed page migration scheme. To make the

contributions concrete, a state-of-the-art migration scheme is chosen as the

baseline scheme. This scheme closely follows the one proposed by Oskin et

al. [48] where the OS migrates pages between the FM and the NM, driven

by the application’s memory accesses. The baseline scheme is built in to the

OS-based prototype that runs on a modern hardware and executes unmodified

applications.

Figure 6.1 depicts a simplified depiction of the baseline. Both NM and

76

FM are part of the main memory and are accessible by the OS. An application

can directly access data resident in the NM through load/store without OS

intervention, but an access to the FM triggers a page permission fault (but no

disk access). This helps OS monitor application’s accesses to the slow-memory

resident data. Initially data is allocated on the NM, and when it is full, then

the data is migrated to the FM to make space. This process of evicting data

from the fast to FM is called the move out path. As mentioned before, the

application’s access to the FM triggers a page permission fault, which in turn,

triggers the OS to migrate the page with the requested data to the NM. This

migration into the NM is referred as the move in path. A page is moved to

the NM and the new mapping for this page is used in TLB. This means that

no TLBs contain mappings for the pages in FM. During the steady state of an

application whose memory footprint exceeds the NM capacity, every move in

will trigger a move out as the NM would be full. In the baseline scheme,

the page migrations happen at a fixed granularity of 4KB (x86-64’s default

page size). Note that while this migration scheme is chosen as the baseline,

the contribution of this work equally applies to other OS-managed migration

schemes.

Although it is possible to implement the migration driver in the back-

ground to reduce the overhead of invoking an OS when an access is made to

FM, it is not considered in this work. First, this work is focused on study-

ing the impact of a dynamic migration granularity, not a migration scheme.

Therefore, the work does not modify the original migration scheme proposed

77

in prior state-of-the-art work [48]. Second, when the migration effect is on

the critical path as in the presented baseline, the impact of dynamically ad-

justable migration granularity can be easily shown. Therefore, the original

scheme from prior state-of-the-art work is used.

6.2 Dynamically Selecting Migration Granularity

In this section, two independent schemes to select migration granularity

at runtime are proposed. While there are a plethora of other alternative mech-

anisms to dynamically select migration granularity, the broader contribution

is to quantitatively demonstrate the need to consider migration granularity as

a key design parameter in any OS-directed page migration scheme.

6.2.1 History-Based Migration Scheme

The goal of any scheme for dynamically selecting migration granularity

is to make use of largest granularity of migration as long as the migrated data

is used enough by the application. This helps to amortize the overheads of

migration as much as possible without flooding the capacity-constrained NM

with useless data. One way to infer if a larger migration granularity would

be helpful is to monitor application’s spatial access locality across contiguous

virtual memory regions (migration granularity). If there is substantial spatial

locality within a larger virtual memory region, then the proposed scheme uses

a larger migration granularity. For easier explanation of the scheme and how

it is prototyped in the Linux OS, the description is organized into two parts –

78

move-in and move-out.

Algorithm 1 History Based Algorithm (Move In Path)

1: // per application variables
2: VAR app.curr granularity//current migration granularity
3: VAR app.2MB region, app.64KB region
4: procedure Move In(VA addr)
5: UPGRADE GRANULARITY(addr)
6: MIGRATE TO NM(addr)

7: procedure Upgrade Granularity(VA addr)
8: // Decide if larger granualrity is preferrable
9: if app.curr granularity 6= 2MB then

10: region := addr >> 21 // 2MB align
11: NM pages := NUM 4KB IN NM[region]++
12: if NM pages ≥ thr NM 2MB then
13: if (++app.2MB regions)≥ thr movein 2MB then
14: app.curr granularity := 2MB
15: CLEAR MOVEIN STATS()
16: return
17: if app.curr granularity = 4KB then
18: region := addr >> 16 // 64KB align
19: NM pages := NUM 4KB IN NM[region]++
20: if NM pages ≥ thr NM 64KB then
21: if (++app.64K regions)≥ thr movein 64KB then
22: app.curr granularity := 64KB
23: CLEAR MOVEIN STATS()

24: return
25: procedure migrate to NM(VA addr)
26: if app.curr granularity = 2MB then
27: Move 2MB virtually aligned contiguous pages to NM
28: else if app.curr granularity = 64KB then
29: Move 64KB virtually aligned contiguous pages to NM
30: else if app.curr granularity = 4KB then
31: Move 4KB page to NM

32: Unset access bit in PTE of each migrated pages

In the move-in path (Algorithm 1), the scheme decides if an applica-

tion could have benefited by using a larger migration granularity than it is

currently using. For this purpose, the scheme keeps counters (software coun-

ters in OS) for the 2MB (64KB) contiguous virtual memory regions of an

application to track how many base pages (4KB) within its corresponding

2MB (64KB) region have been moved to the NM. A higher value signifies

good spatial usage across the given virtual memory region. Instead of keep-

79

ing such counters for every such virtual memory region in an application’s

address space, the scheme employs a hashmap of counters indexed by 2MB

(64KB) aligned virtual memory address (NUM 4KB IN NM). These counters

are software counters that are kept internally inside Linux kernel. When one

such per-region counter crosses a pre-determined threshold, a per-application

counter is incremented to track the number of such 2MB (64KB) regions in

the application (Line 12-13 and line 20-21). When this per-application counter

passes a threshold (thr movein 2MB), then it indicates the existence of enough

number of 2MB (64KB) regions, which could have benefited from using larger

migration granularity (Algorithm 1: Line 13 and 21). It then sets a per-

application variable that stores the current migration granularity for the appli-

cation (app.curr granularity) to 2MB (64KB). Although it is possible that the

scheme can limit the migration granularity to change only from 2MB to 64KB

and 64KB to 4KB, the proposed scheme does not enforce such constraints in

order to make the scheme react quickly to changes in memory access patterns.

The next part of the move-in path performs actual data migration from

the slow to NM. Here, the history based scheme simply checks the current

migration granularity (app.curr granularity). If this is set to migration gran-

ularity of 2MB (64KB), then we migrate any FM-resident 4KB pages within

its corresponding 2MB (64KB) virtual memory region, at once.

The move-out path (Algorithm 2) is triggered by the need to evict data

from the NM to make space for incoming data. This process starts by select-

ing a victim page (4KB) using Linux’s already-existing LRU-based schemes.

80

Algorithm 2 History Based Algorithm (Move Out Path)

1: // per application variables
2: VAR app.curr granularity//current migration granularity
3: VAR app.4KB unuse, app.64KB unuse
4: procedure Move Out()
5: if low free pages in NM then
6: addr := find LRU page in NM
7: if (app.curr granularity 6= 4KB) then
8: DOWNGRADE GRANULARITY(addr)

9: MIGRATE TO FM(addr)

10: procedure Downgrade Granularity(VA addr)
11: // Decide if smaller granualrity is preferrable
12: not accessed = FRAC NOT ACCESSED(addr)
13: if not accessed ≥ thr NM 4KB then
14: if (++app.4KB unuse) ≥ thr1 moveout 4KB then
15: app.curr granularity := 4KB
16: CLEAR MOVEOUT STATS()

17: else if app.curr granularity = 2MB &&
18: (not accessed ≥ thr NM 64KB) then
19: if (++app.64KB unuse) ≥ thr1 moveout 64KB then
20: app.curr granularity := 64KB
21: CLEAR MOVEOUT STATS()

22: procedure migrate to SM(VA addr)
23: if app.curr granularity = 2MB then
24: Move 2MB virtually aligned contiguous pages to FM
25: else if app.curr granularity = 64KB then
26: Move 64KB virtually aligned contiguous pages to FM
27: else if app.curr granularity = 4KB then
28: Move 4KB page to FM

29: Shootdown TLBs

More importantly, the scheme then determines if it should have used a smaller

migration granularity when it is currently using 2MB (64KB) migration gran-

ularity (Line 7 - 8). For this purpose, the scheme estimates if there are many

neighboring 4KB (base) pages in the 2MB (64KB) contiguous virtual memory

region where the victim pages map to. It does so by taking advantage of x86-

64’s access bit available in each PTE. Every x86-64 processor is guaranteed to

set this bit in the PTE on the first access to the corresponding page [113]. This

bit is first set to 0 in each PTE of a page that is being migrated from the slow

to NM in the move-in path. Later, this bit is checked at the time of page’s evic-

81

tion from the NM. If the access bit is still zero, then it signifies that the content

of the page was unused while in the NM. FRAC NOT ACCESSED function

in Algorithm 2 performs the calculation and finds the fraction of the number

of such 4KB pages in its 2MB (64KB) aligned virtual memory region. If it is

above a pre-defined threshold, then migrating in a larger migration granularity

was wasteful (Line 13 and 17). When a enough number of such occurrences are

found, then the application’s current migration granularity is altered (variable

app.curr granularity) to 64KB (4KB). Thereafter, both move-in (migration)

and move-out (eviction) of data is performed in granularity of 4KB (or 64KB);

until the move-in path upgrades the migration granularity again. Also note, ir-

respective of the data migration granularity, one TLB shootdown is performed

for each migration.

6.2.2 Sampling-Based Migration Scheme

The primary contribution in this work is to demonstrate the need to

dynamically select the migration granularity and not any specific migration

scheme. The above claim is substantiated by proposing another orthogonal

dynamic scheme. Furthermore, the history-based scheme is reactive and thus

can alter migration granularity only after the history has been made. Below, a

predictive scheme that does not depend on the past access history is proposed.

The key observation here is that the relative number of TLB shoot-

downs performed while employing different migration granularities is a good

indicator of which granularity is preferred by application’s access pattern. For

82

example, if an application has perfect streaming behavior then using 2MB

granularity instead of 4KB will decrease the number of TLB shootdowns by

512X. On the other hand, if an application has a complete random access

pattern over large memory region, then it is possible that only one 4KB page

in every 2MB region is touched while in the NM. In this case, the number of

shootdowns with 2MB granularity could be equal to that with 4KB granular-

ity. The 2MB granularity can incur more shootdowns by evicting useful data

from the NM, which then needs to be re-migrated. In short, the ratio of the

number of TLB shootdowns to different migration granularities is employed to

select the preferred migration granularity.

Algorithm 3 Sampling Based Algorithm

1: // per application variables
2: VAR app.curr granularity := {4KB, 64KB, 2MB}
3: procedure Sampling Phase()
4: if 4KB sampling phase then
5: app.curr granularity := 4KB
6: num shootdowns := 0
7: Enter 64KB sampling phase after 10 ms
8: else if 64KB sampling phase then
9: 4KB # = num shootdowns

10: app.curr granularity := 4KB
11: num shootdowns := 0
12: Enter 2MB sampling phase after 10 ms
13: else if 2MB sampling phase then
14: 64KB # = num shootdowns
15: app.curr granularity := 2MB
16: num shootdowns := 0
17: Enter execution phase after 10 ms
18: else if execution phase then
19: 2MB # = num shootdowns
20: if 4KB # / 2MB # ≥ thr prof 2MB then
21: app.curr granularity := 2MB
22: else if 4KB # / 2MB # ≥ thr prof 64KB then
23: app.curr granularity := 64KB
24: else
25: app.curr granularity := 4KB

26: Enter 4KB sampling phase phase after 200 ms

Algorithm 3 shows the simplified pseudo-code of a sampling based

83

scheme for dynamically selecting the migration granularity that is inspired

by the above observation. Specifically, it breaks the execution in two repeat-

ing phases – a sampling phase and a normal execution phase, each with a

fixed time length. The sampling phase is further divided equally into three

parts and three different migration granularities are tried out. At the same

time, the number of TLB shootdowns are noted for each of these sub-phases

during sampling. At the end of the sampling phase, the schemes calculate

the shootdowns seen with different migration granularities and based on pre-

defined thresholds, one of them is selected (Algorithm 3: Lines 20-25). In this

work, the predefined threshold is experimentally found. Next, the normal exe-

cution period begins and uses the selected migration granularity. This cycle of

sampling phase followed by normal execution phase repeats itself throughout

the execution. One optimization that can be done is to only sample 2MB and

calculate appropriate ratios to select the preferred granularity.

6.3 Prototype and Results

In this section, the evaluation methodology is first discussed and then

the modifications to Linux OS for prototyping granularity-aware page migra-

tion are discussed. This is followed by a presentation of the detailed evaluation

of the prototype.

84

Processor Values
Number of Cores 4
Frequency 3.8 GHz

Caches Values
L1 I-Cache 128 KB, 2 way
L1 D-Cache 64 KB, 4 way
L2 Cache 4 MB, 16 way

NM Values
Type DDR3-1866
Capacity 400 MB

FM Values
Type PCM (emulated)
Capacity 8 GB

Table 6.1: Real Machine System Parameters

6.3.1 Baseline Setup

The scheme is evaluated on AMD A10-7850K processor [78] running

Linux OS (kernel version 3.16.36) [79]. Table 6.1 lists the configuration of the

machine we used for evaluation. While systems with heterogeneous memory

are imminent (e.g., Intel 3DXpoint [80]), they are not yet available com-

mercially. Thus, the heterogeneous memory system is emulated using Linux’s

NUMA emulation feature [79]. This feature allows us to divide the aggregate

physical memory available in the system (32GB) in equally sized contigu-

ous physical memory zones. Pages can then be migrated across these zones.

Specifically, four physical memory zones with 8GB each are created. This con-

figuration allowed each physical memory zone to be mapped on to separate

DIMMs since our test machine have 4 DIMMs. Of these, one of the zones

acts as the NM and another as the FM. It is important that the memory foot-

85

print of an application surpasses the capacity of the NM in order to observe a

meaningful number of page migrations. Another Linux feature called Memory

HotPlug [81] allows part of physical memory to be offlined as if it does not

exist. The effective (usable) capacity of the NM is reduced to 400MB and FM

to 8GB in the baseline in order to emulate the real world scenario where the

NM is a fraction of the application’s memory footprint. Although a recent

driver such as the one offered to Intel’s Knights Landing [114] provides a way

to migrate data, the experimental platform used in this dissertation does not

use it as the modification is purely done inside official Linux kernel source

code.

Next, the longer access latency of the FM is emulated by modifying the

Linux kernel. In the baseline, accesses to the FM generate a page permission

fault to trigger the migration to the NM. This is ensured by assigning NULL

page permission to PTE entries for any page mapped to the FM. An additional

latency is added in addition to the page permission fault latency for migrating

data from the slow to NM such that an access latency to the FM is roughly

3X that of the NM [115, 116]. Since any migration uses the Linux page fault

handler function, the delay is added inside the function call. Furthermore,

the swapping functionality of Linux is disabled to avoid any interference. It

ensured that the memory footprint of applications fits in the combined capacity

of the fast and FM (400MB + 8GB). The scheme presented in this chapter

does not exploit the bypassing feature presented in the previous chapter, so the

performance shown in this chapter is an underestimate. Table 6.2 shows the

86

description of workloads used in this chapter. Note that the Resident Set Size

(RSS) is larger than the NM capacity (400MB). This indicates that having the

NM itself is not sufficient to cover the memory footprint, so the migration is

necessary in all workloads.

6.3.2 Granularity-Aware Page Migration

To model the proposed schemes, two tasks are required: 1 enable mi-

grations with varying granularity, 2 implement dynamic schemes to select the

preferred migration granularity for a given application during runtime. These

goals are accomplished by modifying the Linux kernel and by adding a new

OS driver. Specifically, a new functionality is added to the Linux kernel that

can migrate a contiguous chunk of memory in an application’s virtual address

space between the fast and FM zones. This functionality is then invoked by

the move-in and move-out path by specifying the desired migration granularity

(implemented in the OS driver to minimize kernel changes). Currently, three

migration granularities are supported – 4KB, 64KB and 2MB. However, the

mechanism can be easily extended to other granularities that are any multi-

ples of the base page size (4KB). Each migration issues one TLB shootdown,

irrespective of its granularity. However, each shootdown routine is slightly

different based on migration granularity. For 4KB, the shootdown routine ex-

ecutes x86-64’s invlpg instruction to invalidate the entry for that given page

in local TLBs of each (receiving) core. In x86, the invlpg instruction invali-

dates a single TLB entry across all cores. For 64KB, the shootdown routine at

87

each core executes 16 invlpg instructions to invalidate all sixteen 4KB pages

that that 64KB region maps to. For 2MB pages, instead of looping over 512

pages, it writes to local core’s cr3 register. Writing to cr3 flushes all entries

belonging to user applications from the local TLBs [113].

Next, a new OS driver is inserted to implement dynamic schemes to find

the preferred migration granularity. The driver monitors the access patterns

of applications, collects the number of TLB shootdowns, and alters the page

migration granularity by setting an internal variable that encodes preferred

migration granularity when needed (algorithm in previous Section). For the

history-based scheme, the default threshold value of 0.85 for both 2MB and

64KB (e.g., 85% of 2MB region is accessed) is used to determine whether to up-

grade/downgrade the migration granularity. For the profile-based scheme, the

threshold of 2X is used as the default ratio of the number of TLB shootdowns

between 4KB and 2MB to decide the migration granularity. The threshold

values are experimentally found and the sensitivity study is conducted later

in this chapter.

6.3.3 Workloads

The migration schemes are evaluated using a wide range of workloads

drawn from PARSEC [74], NAS Parallel benchmarks [83], HPC Challenge [84],

Mantevo [85], CORAL [110, 111], and graph500 [75]. Table 6.2 lists the in-

dividual applications used from these benchmark suites. The largest input is

used to make sure it is run out of NM. The table also lists the working/resident

88

Notation Suite Workloads Input RSS
g500 - graph500 - 761MB
gups HPC gups - 2.00GB
str HPC stream - 1.08GB
cg NAS cg C 890MB
ft NAS ft B 1.26GB
is NAS is C 1.03GB

mg NAS mg B 490MB
ua NAS ua C 483MB
can PARSEC canneal native 939MB
freq PARSEC freqmine native 678MB
lul CORAL lulesh - 696MB

mini Mantevo minife - 642MB
xs CORAL xsbench large 5.55GB

Table 6.2: Real Machine Experiment Workload Descriptions

set size (RSS) of each application as reported by Linux. This will help reader

to understand the memory footprint of each application in relation to the em-

ulated the NM capacity. All of the application are multi-threaded and made

to use at least 8 threads. Workloads from PARSEC use pthread library while

all others use OpenMP for multi-threading.

6.3.4 Performance

Figure 6.2 shows the normalized execution time (lower is better) of

the baseline migration scheme under three different statically fixed migration

granularities and also of history-based and sampling-based dynamic schemes

that adjust the preferred migration granularity at runtime. The height of each

bar is normalized to the execution time of a given application running on a

89

0.9

1.4

1.9

2.4

2.9

3.4

3.9

4.4

4.9

g
5

0
0

g
u

p
s

s
tr c
g ft is

m
g

u
a

c
a
n

fr
e
q

lu
l

m
in

i

x
s

g
e
o
m

e
a

n

N
o

r
m

a
li

z
e
d

 E
x

e
c
u

ti
o

n
 T

im
e
 static_4KB static_64KB static_2MB dyn_hist dyn_prof

Figure 6.2: Dynamic Granularity Scheme Execution Time Normalized to Base-
line (All NM)

system where the NM capacity exceeds application’s memory footprint and

thus, incurs zero migrations. Each application has five bars – the first three

bars show the normalized execution time when the migration granularity is

statically fixed to 4KB, 64KB and 2MB. The last two bars show the same nor-

malized execution time when the proposed history-based and sampling based

dynamic schemes are employed, respectively.

First, accessing the FM and migrating pages can significantly slow down

an application, but its impact varies across workloads (e.g., lulesh is severely

affected by migration while ua is barely impacted). Second, five out of thir-

teen applications studied (gups, cg, ft, is, and xsbench) perform better when

migration granularity is statically set to 4KB. Three applications (graph500,

mg, and minife) prefer 64KB static migration granularity. Three applications

(stream, luesh, and freqmine) prefer 2MB static migration granularity. Appli-

cations ua and canneal are insensitive to migration granularity as they do not

90

have a significant number of migrations. This quantitatively establishes that

a migration granularity is an important aspect to be considered in designing

any migration scheme.

The history-based (indicated in figures as dyn hist) and sampling-based

(indicated in figures as dyn profiling) schemes for dynamically selecting mi-

gration granularity yield execution times close to that of the best-performing

static migration granularity for almost all applications. For three applications

(stream, is, and cg), the history-based dynamic scheme performs better than

their respective best static migration granularity. The history-based scheme

was able to achieve this by using different migration granularities at different

times during an application execution. Furthermore, for cg, is and ft, the

sampling-based dynamic scheme also performed better than any static mi-

gration granularity. This was possible since, unlike the static schemes, the

sampling-based scheme was able to react to application’s phase behavior. In

some cases, like lulesh and graph500, dynamic schemes could not completely

match the performance of the best static migration granularity. There, the

history-based scheme is too slow to use a larger migration granularity while

the sampling-based scheme’s sampling period fell in non-representative phase

of the applications.

Figure 6.3 further analyzes the performance of dynamic schemes by

showing the breakdown of migrations for each of the three possible granu-

larities. For each application, there are two stacked bars – one for history-

based scheme and one for the sampling-based scheme. Each stack bar shows

91

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

d
yn

_h
is

t
d

yn
_p

ro
f

d
yn

_h
is

t
d

yn
_p

ro
f

d
yn

_h
is

t
d

yn
_p

ro
f

d
yn

_h
is

t
d

yn
_p

ro
f

d
yn

_h
is

t
d

yn
_p

ro
f

d
yn

_h
is

t
d

yn
_p

ro
f

d
yn

_h
is

t
d

yn
_p

ro
f

d
yn

_h
is

t
d

yn
_p

ro
f

d
yn

_h
is

t
d

yn
_p

ro
f

d
yn

_h
is

t
d

yn
_p

ro
f

d
yn

_h
is

t
d

yn
_p

ro
f

d
yn

_h
is

t
d

yn
_p

ro
f

d
yn

_h
is

t
d

yn
_p

ro
f

g500 gups str cg ft is mg ua can freq lul mini xs

F
ra

ct
io

n
 o

f
M

ig
ra

ti
on

G
ra

n
u

la
ri

ty
 D

ec
is

io
n

s

4KB 64KB 2MB

Figure 6.3: Dynamic Granularity Scheme Breakdown of Total Granularity
Decisions

the fraction of migrations with 4KB, 64KB or 2MB granularity. Both dy-

namic schemes are able to pick the migration granularity that matches the

best-performing static migration granularity for an application. For example,

graph500 is known to prefer 64KB migration granularity, and the breakdown

in Figure 6.3 shows that both dynamic schemes picked that correctly. This

explains why the dynamic schemes are able to keep up with best-performing

static ones. Both dynamic schemes used a mix of migration granularities.

The history-based scheme was able to use different migration granularities for

different memory regions and at different times in the application’s execu-

tion while the sampling-based scheme did so by using different granularities in

different sampling-execution phases. Although the decisions were very accu-

rate in some workloads such as graph500, ua, xs, and gups, their performance

is not the same as the best static granularity case. Since the history based

scheme incurs some overheads such as looping through virtual addresses and

92

0.8

1.0

1.2

1.4

1.6

1.8

2.0

s
ta

ti
c
_

4
K

B

s
ta

ti
c
_

6
4
K

B

s
ta

ti
c
_

2
M

B

d
y

n
_

h
is

t

d
y

n
_

p
r
o

f

s
ta

ti
c
_
4
K

B

s
ta

ti
c
_

6
4
K

B

s
ta

ti
c
_

2
M

B

d
y

n
_

h
is

t

d
y

n
_

p
r
o

f

s
ta

ti
c
_
4
K

B

s
ta

ti
c
_

6
4
K

B

s
ta

ti
c
_

2
M

B

d
y

n
_

h
is

t

d
y

n
_

p
r
o

f

s
ta

ti
c
_
4
K

B

s
ta

ti
c
_

6
4
K

B

s
ta

ti
c
_

2
M

B

d
y

n
_

h
is

t

d
y

n
_

p
r
o

f

s
ta

ti
c
_

4
K

B

s
ta

ti
c
_

6
4
K

B

s
ta

ti
c
_

2
M

B

d
y

n
_

h
is

t

d
y
n

_
p

r
o
f

s
ta

ti
c
_

4
K

B

s
ta

ti
c
_

6
4
K

B

s
ta

ti
c
_

2
M

B

d
y

n
_

h
is

t

d
y
n

_
p

r
o
f

s
ta

ti
c
_

4
K

B

s
ta

ti
c
_

6
4
K

B

s
ta

ti
c
_

2
M

B

d
y

n
_

h
is

t

d
y
n

_
p

r
o
f

s
ta

ti
c
_

4
K

B

s
ta

ti
c
_

6
4
K

B

s
ta

ti
c
_

2
M

B

d
y

n
_

h
is

t

d
y

n
_

p
r
o

f

g500 gups mini xs g500 gups mini xs

N
o

r
m

a
li

z
e
d

 E
x

e
c
u

ti
o

n
 T

im
e 500MB300MB

Figure 6.4: Dynamic Granularity Scheme Execution Time Normalized to
Baseline (All NM) with Varying NM Capacities

translating them to appropriate physical addresses, the performance does not

completely match the best static performance. One improvement to reduce

such overhead is to sample a few pages rather than looping through the entire

2MB (64KB) region. Despite this overhead, the overall performance is higher

than the performance of any single static granularity.

6.3.5 Sensitivity Studies

In this section, the sensitivity of the dynamic migration granularity

schemes to various parameters is presented.

Capacity Sensitivity Results presented till now are measured with the NM

capacity of 400MB. This size is chosen such that considerable parts of every

applications’ working set exceeds the NM capacity. Otherwise, it would not

incur any meaningful number of migrations to study. However, to analyze

93

the robustness of the analysis and proposals, this section evaluates both static

migration granularities and dynamic schemes with the NM capacity of 300MB

and 500MB. The capacity of the NM visible to the software is changed using

Linux’s Hotplug [81].

Figure 6.4 shows the normalized execution time of four representative

applications with altered NM capacity. As earlier, the height of each bar is

normalized to the execution time with zero migrations. The left half of the

figure shows measurements with 300MB NM capacity and the right half shows

that with 500MB NM capacity. For each representative application, there

are five bars as in Figure 6.2. Three important observations are made from

the figure. Firstly, the overhead of migration decreases across the board with

larger (500MB) NM capacity since a larger part of an application’s working set

is held in the NM. Secondly, the best performing static migration granularity

remains the same for a given application across varying NM capacities. For

example, the migration granularity of 64KB is preferred by graph500 and 4KB

is preferred by xsbench across all three NM capacities we evaluated. This is

expected as the preference towards a particular migration granularity depends

upon an application’s memory access pattern. Thirdly, across different NM

capacities, the dynamic schemes perform close to the best static granularity

for a given application. This demonstrates the robustness of the proposed

schemes.

Latency Sensitivity Until now, a particular heterogeneous memory config-

uration is assumed where the FM’s access latency is 3X more than that of the

94

0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6

st
a
ti

c
_
4
K

B

st
a

ti
c
_
6
4

K
B

st
a
ti

c
_
2
M

B

d
y
n

_
h

is
t

d
y
n

_
p

r
o
f

st
a
ti

c
_
4
K

B

st
a

ti
c
_
6
4

K
B

st
a

ti
c
_
2
M

B

d
y
n

_
h

is
t

d
y
n

_
p

r
o
f

st
a
ti

c
_
4
K

B

st
a
ti

c
_
6
4
K

B

st
a
ti

c
_
2
M

B

d
y
n

_
h

is
t

d
y
n

_
p

r
o
f

st
a
ti

c
_
4
K

B

st
a
ti

c
_
6
4
K

B

st
a
ti

c
_
2
M

B

d
y
n

_
h

is
t

d
y
n

_
p

r
o
f

st
a
ti

c
_
4
K

B

st
a
ti

c
_
6
4
K

B

st
a
ti

c
_
2
M

B

d
y
n

_
h

is
t

d
y
n

_
p

r
o
f

st
a
ti

c
_
4
K

B

st
a

ti
c
_
6
4

K
B

st
a
ti

c
_
2
M

B

d
y
n

_
h

is
t

d
y
n

_
p

r
o
f

st
a
ti

c
_
4
K

B

st
a

ti
c
_
6
4

K
B

st
a

ti
c
_
2
M

B

d
y
n

_
h

is
t

d
y
n

_
p

r
o
f

st
a
ti

c
_
4
K

B

st
a
ti

c
_
6
4
K

B

st
a
ti

c
_
2
M

B

d
y
n

_
h

is
t

d
y
n

_
p

r
o
f

g500 gups mini xs g500 gups mini xs

N
o

r
m

a
li

z
e
d

 E
x

e
c
u

ti
o

n
 T

im
e

8X latency 2X latency

Figure 6.5: Dynamic Granularity Scheme Execution Time Normalized to
Baseline (All NM) with Varying NM Latencies

NM. However, a heterogeneous memory can be formed with different memory

technologies, which might have different NM and FM latency ratios. Here, this

is emulated by varying the FM to NM latency to 2X and 8X (the bandwidth

is not adjusted).

As in capacity sensitivity, Figure 6.5 shows the normalized execution

time of four representative applications with different FM latencies. The left

half presents results for the FM latency being 2X that of the NM, thereby em-

ulating a faster FM scenario whereas 8X represents a case for a much slower

FM scenario. Regardless of the latency ratios, dynamic schemes achieved the

execution times close to or better than the best performing static cases. Intu-

itively, this result is expected as our dynamic migration schemes only depend

on application’s memory access patterns, which does not have any correlation

with memory latencies. Finally, even though the latency quadruples between

2X and 8X, the efficacy of the dynamic schemes is not impacted significantly.

95

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

g5
00

gu
ps st
r cg ft is

m
g ua ca
n

fr
eq lu

l

m
in

i

xs

ge
om

ea
n

0.75 0.85 0.90
N

or
m

al
iz

ed
 E

xe
cu

ti
on

 T
im

e

Figure 6.6: Dynamic Granularity Scheme Execution Time Normalized
to Baseline (All NM) with Varying Threshold of Accessed Pages within
2MB/64KB Region

Again, the scheme amortizes such migration overheads (and not page copy

latency) which are unrelated to memory latencies. Therefore, the improve-

ments achieved by the proposed schemes remain effective across varying FM

latencies.

Threshold Sensitivity Both dynamic schemes for selecting migration gran-

ularity employ several thresholds. In results presented this far, the best per-

forming thresholds are empirically used. In this sensitivity study, however, the

values of some of those thresholds are varied to show how these schemes react.

For a history-based scheme, the threshold that decides if a larger migration

granularity has enough spatial locality is changed. Specifically, the percent-

age of 4KB pages within a 2MB or within a 64KB migration granularity is

set to be 75%, 85% and 90%, to be deemed to have enough spatial locality.

The normalized execution times for each application with these thresholds are

96

presented in Figure 6.6. The history-based scheme performs best with this

threshold set to 85% and thus, this value is typically used in the evaluation. If

the threshold is set to 75% then the scheme becomes too aggressive and wastes

the NM capacity. The threshold at 95% makes it too conservative where it

loses opportunities to use larger migration granularities. Workloads such as

streamcluster and lulesh are sensitive to these thresholds as their streaming

memory behaviors make 85% to be an ideal ratio. The software counter used

for TLB shootdowns is the number of shootdown requests from remote nodes

(near memory), so setting the threshold to 90% makes the scheme rarely change

the migration granularity. The performance difference between 75% and 85%

is due to the sampling that the sampled execution phases show a better cor-

relation with 85%. If a better sampling mechanism is presented, then the

performance gap between 75% and 85% in these workloads would be small.

With the sampling period used in this work, the 85% TLB shootdown ratio

between 4KB and 2MB migration granularity seems to be a good indicator of

high and low spatial locality. If the sample period changes, this ratio might be

different as high spatial locality workloads will even have much fewer number

of TLB shootdowns with larger migration granularity.

Likewise, the sampling-based scheme also uses a threshold, which is

the ratio of TLB shootdowns between different granularities to decide which

granularity is likely to incur least overhead. The sensitivity to this threshold

is presented in Figure 6.7 where different ratios of 4KB and 2MB TLB shoot-

downs are used to make the granularity decisions. In this figure, 4X means

97

0.0

1.0

2.0

3.0

4.0

5.0

g5
00

gu
p

s

st
r cg ft is

m
g

u
a

ca
n

fr
eq lu

l

m
in

i

xs

ge
om

ea
n

1.5X 2X 4X

N
or

m
al

iz
ed

 E
xe

cu
ti

on
 T

im
e

Figure 6.7: Dynamic Granularity Scheme Execution Time Normalized to
Baseline (All NM) with Varying Latency Ratio

that the number of shootdowns between 4KB and 2MB must be greater than

4X in order to use a 2MB migration granularity. Making the ratio larger is a

conservative approach that 4KB should cause significantly more TLB shoot-

downs than 2MB in order to use 2MB. Therefore, workloads such as mg do

not achieve the best performance in case of 4X as its degree of spatial locality

is somewhere between 64KB and 2MB (closer to 2MB), yet the conservative

threshold always makes such workloads choose the minimum possible granu-

larity, which is 64KB in this case. Therefore, carefully choosing the threshold

in both dynamic schemes is also important.

6.4 Summary

This chapter has demonstrated that data migration schemes in hetero-

geneous memory systems must take another dimension into account, migra-

98

tion granularity. Two dynamic migration schemes are proposed that can de-

tect spatial locality and dynamically change the migration granularity. These

schemes achieve an overall system performance improvement up to 74% over

the state-of-the-art baseline scheme that uses a single migration granularity.

The implementation is only a prototype, and not only limited to the presented

baseline scheme, but rather it can extend to any migration schemes. There-

fore, the study has identified the migration granularity as an important design

parameter.

99

Chapter 7

POM-TLB: Very Large Part-of-Memory TLB4

With increasing deployment of virtual machines for cloud services and

server applications, memory address translation overheads in virtualized en-

vironments have received great attention. In the radix-4 type of page tables

used in x86 architectures, a TLB-miss necessitates up to 24 memory refer-

ences for one guest to host translation. While dedicated page walk caches and

such recent enhancements eliminate many of these memory references, the

measurements on the Intel Skylake processors indicate that many programs

in virtualized mode of execution still spend hundreds of cycles for translations

that do not hit in the TLBs.

This chapter presents an innovative scheme to reduce the cost of address

translations by using a very large Translation Lookaside Buffer that is part of

memory, the POM-TLB [117]. In the POM-TLB, only one access is required

instead of up to 24 accesses as required in commonly used 2D walks with radix-

4 page tables. Even if many of the 24 accesses may hit in the page walk caches,

4J. Ryoo, N. Gulur, S. Song, and L. K. John, “Rethinking TLB Designs in Virtualized
Environments: A Very Large Part-of-Memory TLB”, in Proceedings of the 44th International
Symposium on Computer Architecture, 2017. Jee Ho Ryoo and Nagendra Gulur equally
contributed to the idea development and implementations. Shuang Song ran machine-
measured experiments. Lizy K. John supervised the overall project.

100

the aggregated cost of the many hits plus the overhead of occasional misses

from page walk caches still exceeds the cost of one access to the POM-TLB.

Since the POM-TLB is part of the memory space, TLB entries (as opposed

to multiple page table entries) can be cached in large L2 and L3 data caches,

yielding significant benefits.

Through detailed evaluations running SPEC, PARSEC and graph work-

loads, the proposed POM-TLB improves performance by approximately 10%

on average. The improvement is more than 16% for 5 of the benchmarks. It

is further seen that a POM-TLB of 16MB size can eliminate nearly all TLB

misses in 8-core systems. This chapter makes the following contributions:

• Slow memory structures like DRAM can be used to house a large capacity

TLB that can hold nearly all required address translations. On average,

the proposed POM-TLB can achieve 10% performance improvement over

a baseline system. For 5 of the benchmarks, the speedup is 16% or higher.

• A mechanism is presented that makes it possible to cache TLB entries

(not page table entries) into data caches. To the best of knowledge, no

prior work proposed caching of TLB entries into general (non-dedicated)

caching structures.

• Several solutions are presented to the challenges encountered while im-

plementing a TLB in DRAM. Those include a low overhead TLB location

predictor and other enhancements to make a DRAM-based POM-TLB

a feasible option.

101

7.1 POM-TLB: A Very Large L3 TLB

In this section, the overall operation of POM-TLB is described where

it is implemented in off-chip memory or die-stacked DRAM. Implementing in

emerging die-stack DRAM gives some advantages although conceptually that

is not a requirement.

7.1.1 System Level Organization

Most modern processors have private multi-level TLBs. This section

uses an assumption that the TLB organization is similar to Intel Skylake ar-

chitecture [28] where there are two levels of TLBs. A large shared L3 TLB is

added after the private L2 TLBs. Conceptually, L2 TLB misses look up the

large shared TLB and initiate a page walk if this shared TLB also suffered a

miss. In practice, since DRAM look-up is slow, the POM-TLB is made ad-

dressable thereby enabling caching of TLB entries in data caches and faster

translations.

7.1.1.1 POM-TLB Organization

While conceptually not a requirement, implementing POM-TLB in

emerging die-stacked DRAMs integrated onto the processor gives bandwidth

and possibly small latency advantages, but is challenging. Figure 7.1 shows a

single channel of a typical die-stacked DRAM with multiple banks. The de-

tailed layout of a single row in a bank is shown. Each row can house multiple

TLB entries as the row size is 2KB. Each entry has a valid bit, process ID,

102

 Die-Stacked DRAM Bank 0

valid
VM
ID

Process
ID

VPN PPN Attr Entry 1 Entry 2 Entry 3 •••

16 bytes (single entry)

• • • • •
Bank 1 Bank N-1

2KB (die-stacked DRAM row)

Entry 0

64 bytes (die-stacked DRAM burst)

Figure 7.1: POM-TLB Die-Stacked DRAM Row Organization

Virtual Address (VA), and Physical Address (PA) as in on-chip TLBs. To

facilitate the translation in virtualized platforms, Virtual Machine (VM) ID

is supplied to distinguish addresses coming from different virtual machines as

in Intel’s Virtual Process ID (VPID) [26]. The attributes include information

such as replacement and protection bits. Each entry is 16B and four entries

make 64B. The TLB uses a four way associative structure since 1) the associa-

tivity lower than four invokes significantly higher conflict misses and 2) 64B

is the common die-stacked DRAM burst length where no memory controller

design modifications are necessary. Upon a request, four entries are fetched

from a single die-stacked DRAM row. Each row can incorporate 128 TLB

entries and with 4 way associativity, a row can hold 32 sets of TLB entries.

103

7.1.1.2 Support for Two Page Sizes

In order to support both small page (4KB) and large page (2MB) TLB

entries, and to avoid complexity in addressing a single TLB structure with

two page sizes, the TLBs are partitioned into two; one dedicated to hold 4KB

page entries (denoted POM TLBSmall) and the other dedicated to hold 2MB

page entries (denoted POM TLBLarge). In this implementation, their sizes

are statically set and remain fixed. As they are DRAM-based and can afford

large capacities, it is observed that their exact sizes do not matter much.

The implementation incorporates a page size predictor to minimize hav-

ing to perform two DRAM look-ups for the two page sizes. Based on the pre-

dicted page size, the corresponding TLB is accessed first. If it is a miss, the

other TLB is accessed next. The page size predictor is highly accurate, so the

address lookup almost always requires just a single DRAM access.

7.1.1.3 Caching TLB Entries

While L1 and L2 TLBs are designed for fast look-up, the POM-TLB is

designed for very large reach, and consequently, its DRAM-based implementa-

tion incurs higher access latency. In order to alleviate this, the POM-TLB is

mapped into the physical address space. Making the TLB addressable achieves

the important benefit of enabling the caching of TLB entries in data caches.

Although today’s system caches PTEs, making the TLB cacheable significantly

reduces the space occupied as only single TLB entry is needed instead of 24

in the worst case. Both POM TLBSmall and POM TLBLarge are assigned

104

address ranges. A POM-TLB comprising N sets is assigned an address range

of 64×N bytes as each set holds four 16-byte TLB entries. The virtual address

(V A) of the L2 TLB miss is converted to a POM-TLB set index by extracting

log2(N) bits of the V A (after XOR-ing them with the VM ID bits to distribute

the set-mapping evenly). For the POM TLBSmall, the memory address of the

set that the V A maps to is given by:

AddrPOM TLB Small(V A) =

((V A⊕ VM ID) >> 6)

(1 << log2(N)− 1)) ∗ 64 +

Base AddrPOM TLB Small

(7.1)

where Base AddrPOM TLB Small is the starting address of the POM TLBSmall.

POM TLBLarge addresses are computed similarly.

In this scheme, L2 TLB misses do not initiate page walks. Instead, for

each L2 TLB miss, the MMU computes the POM-TLB (say POM TLBLarge)

set address where the TLB entry for the virtual address of the miss may be

found. The MMU then issues a load request to the L2D$ with this address.

At this point, this becomes a normal cache access. If the entry is found in the

L2D$, then the MMU reads the L2D$ cache block (64B) to access all the 4

translation entries stored in it. It performs associative search of the 4 entries

to find a match for the incoming virtual address. If a match is found, then the

corresponding entry provides the translation for this address. Being a normal

read access, if the L2D$ does not contain the POM TLBLarge address, then

105

the request is issued to the L3D$. If no match was found in the L3D$, then

the physical memory (in this case a POM TLBLarge location) is accessed.

Associative search of the set stored in the POM TLBLarge is used to identify

if a translation of the virtual address is present or not. Like data misses, TLB

entries that are misses in data caches are filled into the caches after resolving

them at the POM-TLB or via page walks.

Since the POM-TLB provides two potential set locations where the

translation for a given V A may be found (POM TLBSmall and POM TLBLarge),

it has to perform two cache look-ups starting with the L2D$. Assuming an

equal number of accesses to 4KB and 2MB pages, this results in 50% addi-

tional TLB look-up accesses into the L2D$. This has both latency and power

implications. In order to address this, a simple yet highly accurate Page Size

Predictor is designed whose implementation is described next.

7.1.1.4 Page Size Prediction

A simple yet highly effective page size predictor comprises 512 2-bit

entries, with one of the bits used to predict the page size and the other bit

used to predict whether to bypass the caches. The predictor is indexed using

9 bits of the virtual address of the L2 TLB miss (ignoring the lower order 12

bits). If the predicted page size is incorrect (0 means 4KB, 1 means 2MB),

then the prediction entry for the index is updated. While consuming very little

SRAM storage (128 bytes per core), it achieves very high accuracy.

106

7.1.1.5 Cache Bypass Prediction

In workloads where the data load/store access rate to the data caches

far exceeds the rate of L2 TLB misses, the caches tend to contain very few

POM-TLB entries since they get evicted to make room to fill in data misses.

In such a scenario, looking up the data caches before reaching the POM-TLB

is wasteful in terms of both power and latency. Thus, a 1-bit bypass predictor

is incorporated to bypass the caches. The predictor implementation is shared

with the page size predictor described before.

7.1.1.6 Putting It All Together

POM-TLB relies on making the large TLB addressable to achieve both

a high hit rate in data caches as well as lower the access latency. Figure 7.2

shows an overall flow of POM-TLB. L2 TLB misses start out by consulting

the page size predictor. If the predictor indicates a cache bypass, then the

MMU directly accesses the predicted POM-TLB depending on the predicted

page size. If a translation entry is found, the PFN (Physical Page Frame) is

returned. If it is predicted not bypass, the MMU checks the POM-TLB entries

in data caches. In the common case, the predictor does not predict cache-

bypassing. The L2D$ is first probed with the address of the predicted POM-

TLB set location. If a match is found with correct (V A, VM ID), then the

translation is done with a single cache access by returning the corresponding

PFN. If no match is found, then the MMU probes the L3D$ similarly. If the

probed POM-TLB address misses in both L2D$ and L3D$, then the MMU

107

L2 TLB Miss

Predict
Page
Size

Generate
Small Page

POM-TLB addr

Lookup
L2D$

Hit
(return PFN)

Lookup
L3D$

Miss

Generate
Large Page

POM-TLB addr

Lookup
L2D$

Lookup
L3D$

Miss

4KB 2MB

Lookup
POM-TLB

(Pred. Size)

Miss Miss

Lookup
POM-TLB

(Other Size)

Miss
Page Walk

Bypassed
if predicted

Hit
(return PFN)

Hit
(return PFN)

Hit
(return PFN)

Miss

Miss Miss

Figure 7.2: POM-TLB Architecture Overview

computes a new POM-TLB address (corresponding to the size that was not

predicted) and initiates cache look-up. If the new POM-TLB address misses,

then a page walk is initiated. In practice, it is observed that a vast majority

of POM-TLB entries hit in the L2D$ and L3D$, resulting in very few DRAM

accesses.

7.1.2 Implementation Considerations

This subsection explains a few key design decisions of the POM-TLB.

Consistency: Since POM-TLB is shared across cores, the consistency re-

quirement between entries in POM-TLB and underlying L1/L2 TLB has to

be met. Although a strictly inclusive POM-TLB is desirable, it adds signifi-

108

cant hardware complexity. Since the TLB operates at DRAM latency, which is

already much slower than on-chip SRAM TLBs, adding a structure supporting

a strictly inclusive design is not a practical option. Similar to prior work [31],

POM-TLB adopts the mostly inclusive implementation, which is adopted in

x86 caches [118]. In this design, each TLB can make independent replacement

decisions, which makes it possible that some entries in L1/L2 TLBs are missing

from POM-TLB. However, this significantly reduces the hardware overheads

associated with keeping strictly inclusive. Therefore, POM-TLB is designed to

be aware of TLB-shootdowns. TLB-shootdowns require that all corresponding

TLBs are locked until the consistency issue is resolved. Yet, TLB-shootdowns

are rare occurrences and recent work [48] has shown a shootdown mechanism

that can significantly reduce the overhead. Thus, the benefits of having simpler

consistency check hardware outweighs the shootdown overheads, and hence,

such a design can be adopted. Since the infrastructure does not model TLB

shootdowns, the detailed shootdown overhead is not included in this disserta-

tion.

In addition, the consistency across different virtual machines is already

handled by modern virtual machine managers such as KVM hypervisor [119].

Upon a change in the TLB, a memory notifier is called to let the host system

know that a guest TLB has been updated. Then, the host OS invalidates all

related TLBs in other VMs. Therefore, issues such as dirty page handling,

process ID recycling, etc. are already incorporated in KVM and host OS. The

recent adoption of VM ID facilitates this process, and thus, POM-TLB can

109

maintain consistency in the presence of multiple virtual machines. Although

not all virtual machine managers have such feature, since such a feature is

implemented in software, future virtual machines can incorporate it.

Channel Contention: Memory systems share a common command/data bus

to exchange data between controllers and multiple banks. Many of today’s ap-

plications experience memory contention as the bandwidth is either saturated

or near saturation [120]. Implementing the POM-TLB in an integrated die-

stacked DRAM offers advantages from this perspective. The proposed scheme

adds additional traffic only to the integrated DRAM to retrieve translation

entries and not to the off-chip DRAM. Also, this additional traffic is minor

and only incurred when the L2D$ and L3D$ return cache misses when probed

for cached POM-TLB entries. The path from last level caches to die-stacked

DRAM architecture is different from one to off-chip DRAM as it has its own

dedicated high-speed bus to communicate with processors. Hence, additional

traffic due to POM-TLB does not interfere with existing main memory traf-

fic. In fact, POM-TLB’s high hit rate reduces a significant amount of page

table walks that result in main memory accesses, so it is likely that the main

memory traffic sees considerable performance benefits as well.

Entry Replacement: Since POM-TLB is four way associative, the attribute

metadata (annotated as attr in Figure 7.1) contains 2 LRU bits. These bits are

updated upon each POM-TLB access and the appropriate eviction candidate is

chosen using these bits. Since LRU bits of four entries are fetched in a DRAM

burst, the replacement decision can be made without incurring additional die-

110

stacked DRAM accesses. This replacement policy requires a read-write-modify

(RMW) operation as the LRU bit has to be updated on every access. Since

page walks are not bandwidth bound, the additional bandwidth is not modeled

as the increased bandwidth due to page walks is negligible. However, the

latency is modeled in the simulation. An optimization can be made where a

random entry replacement is performed to eliminate the RMW operation.

Other Die-Stacked DRAM Use: Die-stacked DRAM capacity is growing

to multi-gigabytes, and POM-TLB achieves good performance at capacities

like 16MB. The remaining die-stacked DRAM capacity can be used as a large

last level data cache or a part of memory as proposed by prior work [16–

18, 20, 22, 39, 41, 42, 44, 45, 121–123]. Since the HBM JEDEC standard incor-

porates multiple channels [6], this dissertation assumes using only one dedi-

cated channel to service the POM-TLB requests. When the large die-stacked

DRAM is used as both a large TLB and a large last level cache, the perfor-

mance improvement will be even higher than the results shown in this disserta-

tion, which only presents performance improvement from address translation.

Assuming 16MB of POM-TLB, there can be a tradeoff between using

this additional capacity as L4 data cache vs POM-TLB. In a cache design, a hit

saves one memory access. However, in the case of an POM-TLB, especially in

virtualized environment, the POM-TLB hit can save up to 24 accesses. This

significantly reduces the total number of overall memory accesses. Further-

more, data accesses are non-blocking accesses where multiple requests can be

on the fly. The access latency can be hidden by means of memory level par-

111

allelism such as bank level parallelism, which is common in today’s DRAM.

On the other hand, an address translation is a critical blocking request where

upon a TLB miss, the processor execution stalls. Therefore, the impact of

serving the translation request is much higher. Consequently, using the same

capacity as a large TLB is likely to save more cycles than using it as L4 data

cache. Note that 16MB is a small fraction of a die-stacked DRAM, and as

previously mentioned, the rest of die-stacked DRAM can be used as a large

data cache via a separate channel without translation traffic contention.

7.2 Results

7.2.1 Experimental Setup

The performance of POM-TLB is evaluated using a combination of

real system measurement, PIN-based and Ramulator-like [72] simulation, and

performance models. The virtualization platform is QEMU 2.0 with KVM

support and the host system is Ubuntu 14.04 running on Intel Skylake [28]

with Transparent Huge Pages (THP) [32] turned on. The host system has Intel

VT-x with support for Extended Page Tables while the guest OS is Ubuntu

14.04 installed on QEMU also with THP turned on. The system has separate

L1 TLBs for each page size (4KB, 2MB, and 1GB in the system) though the

applications do not use 1GB size.

The L2 TLB is a unified TLB for both 4KB and 2MB pages. Finally, the

specific performance counters (e.g., 0x0108, 0x1008, 0x0149, 0x1049) include

page walk cycles taking MMU cache hits into account, so the page walk cycles

112

astar bwaves canneal ccomponent gcc
Overhead Native (%) 13.89 0.73 3.19 0.73 0.30
Overhead Virtual (%) 16.08 7.70 6.34 7.40 12.12

Avg Cycles/L2TLB-miss Native 98 128 53 44 46
Avg Cycles/L2TLB-miss Virtual 114 151 61 1158 88

Frac Large Pages (%) 41.7 0.8 16.0 50.0 29.0

GemsFDTD graph500 gups lbm libquantum
Overhead Native (%) 10.58 1.03 12.20 0.05 0.02
Overhead Virtual (%) 16.01 7.66 17.20 12.02 7.37

Avg Cycles/L2TLB-miss Native 129 79 43 110 70
Avg Cycles/L2TLB-miss Virtual 133 80 70 290 75

Frac Large Pages (%) 71.0 7.0 2.59 57.4 32.9

mcf pagerank soplex streamcluster zeusmp
Overhead Native (%) 10.32 4.07 4.16 0.07 0.01
Overhead Virtual (%) 19.01 6.96 17.07 2.11 10.22

Avg Cycles/L2TLB-miss Native 66 51 144 74 136
Avg Cycles/L2TLB-miss Virtual 169 61 145 76 137

Frac Large Pages (%) 60.7 60.0 12.3 87.2 72.1

Table 7.1: Benchmark Characteristics Related to TLB misses

used in this chapter are the average cycles spent after a translation request

misses in L2 TLB.

7.2.2 Workloads

A subset of SPEC CPU and PARSEC applications, which are known

to be memory intensive, are chosen. In addition, graph workloads such as the

graph500 and big data workloads such as connected components and pager-

ank are also run. The benchmark characteristics are collected from the Intel

Skylake platform and are presented in Table 7.1. Applications whose page

walk cycles, walk overheads, etc are in a wide range of spectrum (low to high)

are used. Since SPEC CPU applications are single threaded, multiple copies

of SPEC CPU applications (as in the SPECrate mode) are run to evaluate

performance on the multicore simulator. It is ensured that applications do

not share the physical memory space through proper virtual-to-physical ad-

113

dress translation. For multithreaded workloads, benchmarks are profiled with

8 threads.

7.2.3 Evaluation Methodology

A combination of measurement (on real hardware), simulation and

performance modeling is used to estimate the performance of the proposed

scheme. First, the workloads listed in Table 7.1 are executed to completion

and the Linux perf utility is used to measure the total instructions (Itotal), cy-

cles (Ctotal), number of L2 TLB misses (Mtotal) and total L2 TLB miss penalty

cycles (Ptotal) in a manner similar to the methodology in prior work [29–

31, 60, 82]. The baseline IPC is obtained as: IPCbaseline = Itotal/Ctotal. Also,

the ideal cycles Cideal and average translation penalty cycles per L2 TLB miss

PBaseline
Avg are computed as:

Cideal = Ctotal − Ptotal (7.2)

PBaseline
Avg = Ptotal/Mtotal (7.3)

Note that the effects of various caching techniques like page walk caches,

caching of PTEs in data caches, Intel extended page tables and nested TLBs

are already included in the performance measurement since they are part of

the base commodity processor. Since the experimental platform has only a

single page walker, this result is reasonably accurate. Although the overlap of

page walks and instructions is not modeled, it is not a significant amount of

the total cycles. The average translation costs per L2 TLB miss, as computed

above, are also listed in the workloads table.

114

Next, PIN and the Linux pagemap are used to generate memory traces

for the workloads. For each workload, all load and store requests are recorded.

The Linux pagemap is used to extend the PIN tool to include page size and

other OS related metadata. The trace contains virtual address, physical ad-

dress, instruction count, read/write flag, thread ID and page size information

of each reference. Memory instructions are traced in detail while the non-

memory instructions are abstracted. The memory traces are collected for 20

billion instructions.

Furthermore, a detailed memory hierarchy simulator is used to simulate

two levels of private TLBs, two levels of private data caches, a 3rd level shared

data cache, and finally, the proposed 3rd level shared memory-based TLB.

The simulator also models the size predictor and the cache bypass predictor,

which are indexed using memory addresses. Although POM-TLB misses can

be handled by existing page walk caches, it is not modeled in the simulation.

Instead, the machine measured page walk cycle numbers, which have page

walk hits into account, are used. The simulator executes memory references

from multiple traces while scheduling them at the proper issue cadence by

using their instruction order. Information on the number of instructions in

between the memory instructions are captured in the traces and thus memory

level parallelism and overlap/lack of overlap between memory instructions are

simulated. Note that the simulator is simulating both address translation

traffic as well as data request traffic that go into underlying data caches.

Finally, the simulator reports the L2 TLB miss cycles and detailed statistics

115

such as hits and misses in the L1, L2 TLBs, data caches, the POM-TLB and

predictor performance.

7.2.4 Performance Simulation of POM-TLB

Since the baseline performance (obtained from real system measure-

ments) already includes the benefits of hardware structures such as large pages,

EPT and Page Structure Caches, these are not modeled in the simulator, and

instead, the baseline ideal cycles together with the estimated cost incurred by

the POM-TLB are used when the DRAM-based TLB incurs a miss.

Total cycles taken by the POM-TLB and the resulting IPC for each

core are obtained as:

CPOM TLB
total = Cideal + Mtotal ∗ P POM TLB

Avg (7.4)

IPCPOM TLB = Itotal/C
POM TLB
total (7.5)

P POM TLB
Avg denotes the average L2 TLB miss cycles in POM-TLB obtained

from simulation. Having obtained the baseline and POM-TLB IPCs for each

core, the overall performance improvement of the POM-TLB is obtained. It

may be observed that the linear additive formula is used to add the L2 TLB

miss cycles to the ideal cycles. This linear performance model ignores potential

overlap of TLB processing cycles with execution cycles, but is similar to models

used in previous research [29–31, 60, 82]. Such effects not only exist in POM-

TLB, but also in the baseline, so the performance impacts from this exists

equally in all schemes.

116

0
2
4
6
8

10
12
14
16
18
20

a
s
ta

r

b
w

a
v

e
s

c
a

n
n

e
a
l

c
c
o
m

p
o
n

e
n

t

g
c
c

G
e
m

sF
D

T
D

g
r
a
p

h
5

0
0

g
u

p
s

lb
m

li
b

q
u

a
n

tu
m

m
c
f

p
a
g

e
r
a
n

k

so
p

le
x

st
r
e
a

m
c
lu

s
te

r

z
e
u

s
m

p

g
e
o
m

e
a

n

P
e
r
fo

r
m

a
n

c
e
 I

m
p

r
o

v
e
m

e
n

t
(%

)

POM_TLB Shared_L2 TSB

Figure 7.3: Performance Improvement of POM-TLB (8 Core)

In addition, POM-TLB is compared against other prior work, which is

annotated as Shared L2 in the rest of this chapter. This scheme is implemented

similar to [31]. Shared L2 combines private SRAM-based L2 TLBs into a single

shared TLB, so when a request misses in L1 TLB, the large SRAM-based

shared TLB is looked up. Finally, a comparison is made between POM-TLB

and the Translation Storage Buffer (TSB) that exists in SPARC processors.

Since TLB misses are handled by OS in SPARC processors, TSB is managed by

OS although indexing and address calculation is done by dedicated hardware.

Unlike x86 architecture, upon a TLB miss in the SPARC architecture, an OS

trap is called and appropriate TSB lookup or a software page table walk is

initiated. TSB can be considered as a large MMU cache implemented in a

large buffer, but is dedicated and cannot be cached. POM-TLB is compared

against such TSB design to show the benefits of POM-TLB.

117

7.2.5 Performance

Figure 7.3 plots the performance improvements of 16MB POM-TLB

on 8 core configuration. The baseline is the execution time gathered from the

experimental runs on SkyLake processors. Note that the improvement is shown

in percentage (%) and 2 different comparable schemes are presented in addition

to POM-TLB. The improvement ranges from 1% in streamcluster to 17% in

soplex. The workloads with high page walk overheads in virtualized platforms

have the highest improvement (such as mcf, soplex, GemsFDTD, astar and

gups), which indicates that POM-TLB is effective in reducing costly page

walks. The streamcluster benchmark does not contain significant page walk

overheads to begin with (2.11%). Therefore, this benchmark does not possess

a lot of headroom for improvement from POM-TLB. On average, POM-TLB

is able to achieve the performance improvement of 9.57%. It may also be noted

that these performance gains are obtained with the use of large pages. Even

where a large fraction of pages are 2MB pages (for example, mcf has 70% and

astar has 40% large pages), the workloads exhibit considerable performance

improvements.

Shared L2 is able to achieve 6.10% performance improvement on aver-

age. This scheme does benefit from sharing of the combined L2 TLB capacities,

yet it is still limited in terms of capturing the hot set of TLB entries. Thus, it

encounters high shared L2 TLB miss penalty. On the other hand, POM-TLB

is able to capture many more TLB entries. First, the physical capacity of

POM-TLB is 16MB, which is a few orders of magnitude higher than TLBs in

118

existing systems or L2 TLB capacity in Shared L2 design. Upon a TLB miss

in Shared L2, when the page walk is initiated,the data caches are also searched

since intermediate PTEs are stored in data caches. However, in order to get

a complete translation, many of these intermediate entries must be searched

until the last level PTE is found. Only then is the translation done. Even

though the access’s latency only comes from SRAM latency, multiple accesses

are made in order to complete the page walk. MMU caches, such as PSC, help

to reduce the number of such intermediate entry walks, yet their capacity is

very limited, so they only cache a small amount of the TLB misses. In addi-

tion, even though POM-TLB is located in die-stacked DRAM, which incurs

an access latency similar to DRAM, many of TLB entries are cached in data

caches. This enables the POM-TLB to achieve much lower access latency as

many of these entries are cached in data caches. Exploiting L2D$ and L3D$

captures a lot of TLB entries in caches. An additional advantage is that single

virtual address only requires single entry in data caches whereas Shared L2

has multiple intermediate PTEs stored in caches, which consumes much more

capacity.

TSB achieves an average performance improvement of 4.27% across

the workloads. The improvement is surprising low considering that it uses

16MB capacity as in POM-TLB. However, the performance of this scheme is

limited as each TLB miss incurs a trap operation, which is required in the

operation of TSB as it is software managed. Unlike POM-TLB, which has an

associativity of 4, TSB is a direct mapped organization, so it sees more conflict

119

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

as
ta

r

bw
av

es

ca
nn

ea
l

cc
om

po
ne

nt gc
c

G
em

sF
D

T
D

gr
ap

h5
00

gu
ps

lb
m

lib
qu

an
tu

m

m
cf

pa
ge

ra
nk

so
pl

ex

st
re

am
cl

us
te

r

ze
us

m
p

ge
om

ea
n

H
it

 R
at

io

L2D$ L3D$ POM_TLB

Figure 7.4: Hit Ratio of POM-TLB (8 Core)

misses. POM-TLB uses the 64B cacheline size, so each cacheline has 4 TLB

entries. Since the data transfer granularity between die-stacked DRAM and

on-chip caches is done at 64B, it allows POM-TLB to have an associativity

of 4. Furthermore, TSB entries are not cached as with the POM-TLB, so an

access to TSB incurs a higher access latency than POM-TLB. An interesting

observation is made for the gups benchmark. This benchmark is known to

have low locality in page tables, so an ability to achieve high performance for

such low spatial locality workloads can show how well each scheme retains

translation entries. In the case of TSB, it is not able to capture many of these

entries even with 16MB as it only achieves 1.80% improvement. However,

POM-TLB achieves performance improvement of 16%, approximately an order

of magnitude of difference in performance. Therefore, POM-TLB makes much

better use of the 16MB space that is located in die-stacked DRAM.

120

7.2.6 Hit Ratio

The effectiveness of POM-TLB can be shown using the hit ratio. This

can indicate how well POM-TLB can capture L2 TLB misses, thereby reducing

costly page walks. Figure 7.4 shows the hit ratio perceived at the different

levels of the memory subsystem where TLB entries are stored by the proposed

scheme. First, the L2D$ has a very high hit rate of 89.7% on average. Since

L2 data caches are private, it is not affected by interference from other cores.

Since the L2 capacity is much larger than other private TLB structures in the

processor, it keeps a lot of translation traffic from performing page walks. Note

that caching of TLB entries is only feasible since POM-TLB is addressable.

In conventional systems, the TLB entries are not visible as they are entirely

managed by MMUs, yet the novel idea of making the large TLB addressable

has enabled a larger number of TLB requests to be cached in rather large

on-chip caches.

When a request misses in L2D$, then it is looked up in shared L3D$.

The hit ratio here is not as good as L2D$. First, it is a shared data structure,

so interference starts degrading performance. Also, a majority of TLB requests

are filtered by L2D$, so only requests with a low degree of locality are passed

down to the L3D$. However, POM-TLB in die-stacked DRAM again picks

up a lot of these requests as shown by the higher hit ratio of 88% on average.

POM-TLB can achieve this as the capacity is rather large, so it can recapture

many translation requests that missed in a smaller L3D$. It may also be noted

that the data caches are also caching the normal data accesses made by the

121

cores and are not being used solely for TLB entries.

7.2.7 Predictor Accuracy

POM-TLB incorporates two predictors, which are size and bypass pre-

dictors. The size predictor speculates whether the incoming translation ad-

dress is going to be a request for a large or small pages. Although there are

proposals [124] that enable simultaneous accesses to TLB structures to check

both small and large pages, it requires sophisticated design/verification efforts

as well as consumes more power. Rather, POM-TLB uses a simple predictor.

As seen in Figure 7.5, the size predictor is highly accurate as it achieves an

average accuracy of 95%. The accuracy is calculated by dividing the total

number of correct speculations by the total number of speculations. In such

cases, the second TLB accesses to look for the other size are reduced 95%.

Yet, in comparison to performing a serialized access, the predictor can fetch

the correct TLB entry in a single POM-TLB access.

The implementation adds a miss penalty if translations miss in data

caches as additional on-chip cache lookups are performed prior to accessing

POM-TLB. The bypass predictor effectively eliminates such latency and for-

wards the request directly to POM-TLB upon L2 TLB miss. The predictor

achieves a low accuracy of 45.8% on average. Although some workloads such as

bwaves, lbm and libquantum are able to achieve close to perfect accuracy, oth-

ers such as soplex and pagerank have a low hit rate. Although the data cache

access latencies are an order of magnitude lower than page walk cycles, the

122

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

as
ta

r

bw
av

es

ca
nn

ea
l

cc
om

po
ne

nt gc
c

G
em

sF
D

T
D

gr
ap

h5
00

gu
ps

lb
m

lib
qu

an
tu

m

m
cf

pa
ge

ra
nk

so
pl

ex

st
re

am
cl

us
te

r

ze
us

m
p

ge
om

ea
n

A
cc

ur
ac

y

size predictor bypass predictor

Figure 7.5: POM-TLB Predictor Accuracy (8 core)

misprediction penalty keeps POM-TLB from achieving the best performance.

7.2.8 Row Buffer Hits (RBH) in POM-TLB

The spatial locality of TLB accesses can lead to a high Row Buffer Hits

(RBH) in the stacked DRAM. Figure 7.6 plots the RBH values showing that

the stacked DRAM achieves a high average RBH of 71%, thereby ensuring a

low latency POM-TLB lookup. Each row contains 128 TLB entries, which

is similar in capacity as an on-chip L2 TLB. Since they are located in the

same row, these TLB accesses are likely to hit in the row buffer. As expected,

applications with high spatial locality show high RBH values. For example,

streamcluster has streaming behaviors, which thus have high spatial locality,

explaining its high RBH value in Figure 7.6.

123

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

as
ta

r

bw
av

es

ca
nn

ea
l

cc
om

po
ne

nt gc
c

G
em

sF
D

T
D

gr
ap

h5
00

gu
ps

lb
m

lib
qu

an
tu

m

m
cf

pa
ge

ra
nk

so
pl

ex

st
re

am
cl

us
te

r

ze
us

m
p

ge
om

ea
n

R
ow

 B
uf

fe
r

H
it

Figure 7.6: Row Buffer Hits in POM-TLB (8 core)

7.2.9 POM-TLB without Data Caches

In this analysis, the performance gain of POM-TLB from storing TLB

entries in data caches is presented. Figure 7.7 shows the performance improve-

ment when TLB entries are cached in data caches and performance degradation

when not cached. As shown, caching significantly helps performance as it pro-

vides an additional performance improvement of 5%. Caching does not help

by reducing the number of page table walks. Whether data caches are used or

not does not affect the number of page walks as this reduction is performed by

the large capacity of POM-TLB. Instead, what caching enables is hiding the

long latency of die-stacked DRAM accesses, bridging the latency gap between

on-chip TLBs and die-stacked DRAM-based POM-TLB.

7.3 Summary

In this section, the feasibility of building very large L3 TLBs in die-

stacked DRAM is presented. A TLB which is part of the memory space enables

124

0
2
4
6
8

10
12
14
16
18
20

as
ta

r

bw
av

es

ca
nn

ea
l

cc
om

po
ne

nt gc
c

G
em

sF
D

T
D

gr
ap

h5
00

gu
ps

lb
m

lib
qu

an
tu

m

m
cf

pa
ge

ra
nk

so
pl

ex

st
re

am
cl

us
te

r

ze
us

m
p

ge
om

ea
n

Pe
rf

or
m

an
ce

 I
m

pr
ov

em
en

t (
%

)

With Data Caching Without Data Caching

Figure 7.7: POM-TLB With and Without Data Caching (8 core)

the possibility of caching TLB entries in conventional L2 and L3 data caches.

A thorough analysis using measurements on state-of-the-art Skylake proces-

sors, the simulation and an additive model show that the proposed POM-TLB

can practically eliminate the page walk overhead in most memory intensive

workloads. In addition, the proposed POM-TLB provides higher performance

improvement than previously proposed shared TLB or prefetching techniques

at the L1/L2 TLB level. Simulation studies with various number of cores

running SPEC, PARSEC and graph workloads demonstrated that more than

16% performance improvement can be obtained in a third of the experimented

benchmarks (with an average of 10% over all benchmarks). In most configu-

rations, 99% of the page walks can be eliminated by a very large TLB of size

16 MB.

125

Chapter 8

Conclusion

As emerging memory technologies are proposed in place of today’s off-

chip DRAMs, the needs for an innovative architecture to achieve higher perfor-

mance are introduced. One particular memory technology, die-stacked DRAM,

offers much higher bandwidth than off-chip DRAM and higher capacity com-

pared to on-chip SRAM. These unique characteristics create the need for new

designs that can exploit die-stacked DRAM in non-traditional ways. This work

presents a set of proposals that can utilize die-stacked DRAM as data as well

as address translation entry storage.

8.1 Summary

This work describes three major contributions of using die-stacked

DRAM for multicore systems. While the research is primarily done using

die-stacked DRAM technology, the concepts can be applied to many other

heterogeneous memory systems consisting of two or more disparate memory

devices.

SILC-FM data management scheme optimizes the data migration be-

tween two memories by orchestrating various features of die-stacked DRAM

126

without incurring OS overheads. Migrating subblock in an interleaved fash-

ion optimizes both the bandwidth and the hit rate of the memory system by

keeping the current and past history of the memory accesses. SILC-FM also

incorporates additional die-stacked DRAM features that extract extra perfor-

mance. Bypassing, locking and associativity can hold identified hot data much

longer than conventional data management schemes.

Granularity-aware migration scheme takes a different perspective on

optimizing the data movement by reducing overheads associated with an OS

driven migration scheme. An OS driven scheme is advantageous as it does

not need to wait for next generation processes that have custom hardware

modifications tailored to die-stacked DRAM. Kernel modifications presented

in this dissertation can easily detect the degree of spatial locality in either

memory regions and execution phases at run time. Then, the OS can adjust

its migration granularity to amortize the overheads of migration by migrating

as much useful data as possible simultaneously. Such mechanisms are robust to

various heterogeneous memory configurations as the optimized problem space

does not rely on memory latency or capacity.

Die-stacked DRAM can also allocate a small portion of its capacity for

address translation to address the problem that emerging virtualized platforms

suffer from scarce on-chip TLB capacity. Even though today’s most recent

processors have a larger L2 TLB capacity and MMU caches, the capacity is

still not enough. Using a small fraction of die-stacked DRAM (e.g., 16MB)

is a significant TLB capacity enhancement that eliminates virtually all page

127

walks that are very expensive due to radix-4 nested page tables in virtualized

systems. Even though die-stacked DRAM TLB is much slower than SRAM

TLBs, the latency issue can be addressed by making the TLB a part of memory

space. This enables the TLB entries in die-stacked DRAM to be stored in much

faster SRAM data caches. Therefore, highly used TLB entries are serviced

from SRAM caches, solving the issues associated with the slow access latency

of die-stacked DRAM.

8.2 Future Work

While this dissertation makes significant contributions in using emerg-

ing memory technologies, there are still opportunities for future work. This

section list possible future work in both data management schemes and address

translation schemes. Lastly, a general future work direction is also presented.

8.2.1 Enhancement to Data Management in Emerging Memories

An OS granularity-aware scheme presented in this thesis performs the

data migration on the critical path as every access to the slow memory triggers

a page permission fault. This adds considerable overhead since the migration

does not have to be on the critical path. The work can be extended to have

an OS driver that performs the data migration in the background. In fact,

whether the data is migrated or not does not affect the correctness of the

program execution. Therefore, moving the migration to the background will

provide a considerable amount of performance improvement.

128

8.2.2 Enhancement to POM-TLB

Although PTEs are currently stored in data caches, introducing cacheable

TLB entries makes the translation and data request traffic compete for capac-

ity in the data cache. Conventional systems will not distinguish the TLB en-

tries from data entries in making replacement decisions, so the least recently

used entries will blindly be chosen and replaced. It is more detrimental to

evict TLB entries than data cache entries. First, each 64B cacheline contains

4 TLB entries, which covers 16KB of address range with the 4KB page size.

On the other hand, evicting a data entry only affects a single 64B address

range. Therefore, conventional caching policies will not achieve the optimal

performance by obliviously evicting some important TLB entries. Second, an

address translation is often on the critical path of the execution, so servicing

the address translation is more likely to be critical than data requests. Giving

priority to TLB entries will thus be more beneficial in terms of performance.

In sum, the future enhancement to POM-TLB could be devising a new cache

replacement policy considering different types of entries in the data caches.

129

Bibliography

[1] P. J. Nair, D.-H. Kim, and M. K. Qureshi, “ArchShield: Architectural

framework for assisting DRAM scaling by tolerating high error rates,” in

ACM SIGARCH Computer Architecture News, vol. 41, pp. 72–83, ACM,

2013.

[2] Z. Li, R. Zhou, and T. Li, “Exploring high-performance and energy pro-

portional interface for phase change memory systems,” in 2013 IEEE

19th International Symposium on High Performance Computer Archi-

tecture (HPCA2013), pp. 210–221, IEEE, 2013.

[3] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change

memory as a scalable DRAM alternative,” in ACM SIGARCH Computer

Architecture News, vol. 37, pp. 2–13, ACM, 2009.

[4] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for

computing,” Nature Nanotechnology, vol. 8, no. 1, pp. 13–24, 2013.

[5] S. Tehrani, J. Slaughter, E. Chen, M. Durlam, J. Shi, and M. DeHerren,

“Progress and outlook for MRAM technology,” IEEE Transactions on

Magnetics, vol. 35, no. 5, pp. 2814–2819, 1999.

[6] JEDEC, “High Bandwidth Memory (HBM) DRAM Gen 2 (JESD235A).”

https://www.jedec.org, 2016.

130

[7] J. T. Pawlowski, “Hybrid memory cube: breakthrough DRAM perfor-

mance with a fundamentally re-architected DRAM subsystem,” in Hot

Chips, vol. 23, 2011.

[8] A. Sodani, “Knights Landing (KNL): 2nd Generation Intel R© Xeon Phi

processor,” in 2015 IEEE Hot Chips 27 Symposium (HCS), pp. 1–24,

IEEE, 2015.

[9] NVIDIA, “NVIDIA Pascal.” http://www.nvidia.com.

[10] J. Macri, “AMD’s next generation GPU and high bandwidth memory

architecture: FURY,” in 2015 IEEE Hot Chips 27 Symposium (HCS),

pp. 1–26, IEEE, 2015.

[11] G. B. Berriman, G. Juve, E. Deelman, M. Regelson, and P. Plavchan,

“The application of cloud computing to astronomy: A study of cost and

performance,” in e-Science Workshops, 2010 Sixth IEEE International

Conference on, pp. 1–7, IEEE, 2010.

[12] Y. Chen, S. Alspaugh, and R. Katz, “Interactive Analytical Processing in

Big Data Systems: A Cross-industry Study of MapReduce Workloads,”

Proc. VLDB Endow., vol. 5, no. 12, pp. 1802–1813, 2012.

[13] C. Luo, J. Zhan, Z. Jia, L. Wang, G. Lu, L. Zhang, C.-Z. Xu, and N. Sun,

“Cloudrank-d: benchmarking and ranking cloud computing systems for

data processing applications,” Frontiers of Computer Science, vol. 6,

no. 4, pp. 347–362, 2012.

131

[14] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell,

Y. Solihin, and R. Balasubramonian, “CHOP: Adaptive filter-based DRAM

caching for CMP server platforms,” in HPCA-16 2010 The Sixteenth

International Symposium on High-Performance Computer Architecture,

pp. 1–12, IEEE, 2010.

[15] S. Kumar and C. Wilkerson, “Exploiting spatial locality in data caches

using spatial footprints,” in ACM SIGARCH Computer Architecture

News, vol. 26, pp. 357–368, IEEE Computer Society, 1998.

[16] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi, “Simple but ef-

fective heterogeneous main memory with on-chip memory controller sup-

port,” in Proceedings of the 2010 ACM/IEEE International Conference

for High Performance Computing, Networking, Storage and Analysis,

pp. 1–11, IEEE Computer Society, 2010.

[17] G. H. Loh, N. Jayasena, K. Mcgrath, M. O’Connor, S. Reinhardt, and

J. Chung, “Challenges in Heterogeneous Die-Stacked and Off-Chip Mem-

ory Systems,” in the 3rd Workshop on SoCs, Heterogeneous Architec-

tures, and Workloads (SHAW), 2012.

[18] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and

G. H. Loh, “Heterogeneous memory architectures: A HW/SW approach

for mixing die-stacked and off-package memories,” in 2015 IEEE 21st

International Symposium on High Performance Computer Architecture

(HPCA), pp. 126–136, IEEE, 2015.

132

[19] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page placement in hy-

brid memory systems,” in Proceedings of the international conference on

Supercomputing, pp. 85–95, ACM, 2011.

[20] C. Chou, A. Jaleel, and M. K. Qureshi, “Cameo: A two-level memory

organization with capacity of main memory and flexibility of hardware-

managed cache,” in Proceedings of the 47th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, pp. 1–12, IEEE Computer

Society, 2014.

[21] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and H. Kim, “Trans-

parent hardware management of stacked DRAM as part of memory,” in

2014 47th Annual IEEE/ACM International Symposium on Microarchi-

tecture (MICRO), pp. 13–24, IEEE, 2014.

[22] D. Jevdjic, G. H. Loh, C. Kaynak, and B. Falsafi, “Unison cache: A

scalable and effective die-stacked DRAM cache,” in 2014 47th Annual

IEEE/ACM International Symposium on Microarchitecture, pp. 25–37,

IEEE, 2014.

[23] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang, and Y. Solihin,

“Scaling the bandwidth wall: challenges in and avenues for CMP scal-

ing,” in ACM SIGARCH Computer Architecture News, vol. 37, pp. 371–

382, ACM, 2009.

[24] HMC Consortium, “HMC Specification.” http://www.hybridmemorycube.

org, 2012.

133

[25] R. Bhargava, B. Serebrin, F. Spadini, and S. Manne, “Accelerating Two-

dimensional Page Walks for Virtualized Systems,” in Proceedings of the

13th International Conference on Architectural Support for Programming

Languages and Operating Systems, pp. 26–35, ACM, 2008.

[26] Intel, “Intel(R) Virtualization Technology.” http://www.intel.com/

content/www/us/en/virtualization/virtualization-technology/

intel-virtualization-technology.html.

[27] T. W. Barr, A. L. Cox, and S. Rixner, “Translation Caching: Skip, Don’t

Walk (the Page Table),” in Proceedings of the 37th Annual International

Symposium on Computer Architecture, pp. 48–59, ACM, 2010.

[28] Intel, “6th Generation Intel Core i7-6700K and i5-6600K Processors.”

http://www.intel.com/content/www/us/en/processors/core.

[29] J. Gandhi, M. D. Hill, and M. M. Swift, “Agile Paging: Exceeding the

Best of Nested and Shadow Paging,” in Proceedings of the 43rd Interna-

tional Symposium on Computer Architecture, pp. 707–718, IEEE, 2016.

[30] A. Bhattacharjee and M. Martonosi, “Inter-core Cooperative TLB for

Chip Multiprocessors,” in Proceedings of the Fifteenth Edition of ASP-

LOS on Architectural Support for Programming Languages and Operat-

ing Systems, pp. 359–370, ACM, 2010.

[31] A. Bhattacharjee, D. Lustig, and M. Martonosi, “Shared last-level TLBs

for chip multiprocessors,” pp. 62–63, 2011.

134

[32] A. Arcangeli, “Transparent hugepage support,” in KVM Forum, vol. 9,

2010.

[33] Oracle, “Translation Storage Buffer.” https://blogs.oracle.com/

elowe/entry/translation_storage_buffers.

[34] T. W. Barr, A. L. Cox, and S. Rixner, “SpecTLB: A Mechanism for

Speculative Address Translation,” in Proceedings of the 38th Annual In-

ternational Symposium on Computer Architecture, pp. 307–318, ACM,

2011.

[35] B. Pham, J. Vesely, G. H. Loh, and A. Bhattacharjee, “Using TLB

Speculation to Overcome Page Splintering in Virtual Machines,” tech.

rep., Technical Report DCS-TR-7132015. Rutgers University.

[36] J. H. Ryoo, K. Ganesan, Y.-M. Chen, and L. K. John, “i-MIRROR: A

Software Managed Die-Stacked DRAM-Based Memory Subsystem,” in

2015 27th International Symposium on Computer Architecture and High

Performance Computing (SBAC-PAD), pp. 82–89, IEEE, 2015.

[37] M. El-Nacouzi, I. Atta, M. Papadopoulou, J. Zebchuk, N. E. Jerger,

and A. Moshovos, “A dual grain hit-miss detector for large Die-Stacked

DRAM caches,” in Design, Automation Test in Europe Conference Ex-

hibition (DATE), 2013, pp. 89–92, 2013.

[38] S. Franey and M. Lipasti, “Tag tables,” in 2015 IEEE 21st International

135

Symposium on High Performance Computer Architecture (HPCA), pp. 514–

525, IEEE, 2015.

[39] N. D. Gulur, M. Mehendale, R. Manikantan, and R. Govindarajan,

“Bi-Modal DRAM Cache: Improving Hit Rate, Hit Latency and Band-

width,” in Proceedings of the 47th Annual IEEE/ACM International

Symposium on Microarchitecture, pp. 38–50, IEEE, 2014.

[40] F. Hameed, L. Bauer, and J. Henkel, “Simultaneously optimizing DRAM

cache hit latency and miss rate via novel set mapping policies,” in 2013

International Conference on Compilers, Architecture and Synthesis for

Embedded Systems (CASES), pp. 1–10, IEEE, 2013.

[41] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked DRAM Caches for

Servers: Hit Ratio, Latency, or Bandwidth? Have It All with Footprint

Cache,” in Proceedings of the 40th Annual International Symposium on

Computer Architecture, pp. 404–415, ACM, 2013.

[42] G. H. Loh and M. D. Hill, “Efficiently Enabling Conventional Block

Sizes for Very Large Die-stacked DRAM Caches,” in Proceedings of the

44th Annual IEEE/ACM International Symposium on Microarchitec-

ture, pp. 454–464, ACM, 2011.

[43] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan, “En-

abling Efficient and Scalable Hybrid Memories Using Fine-Granularity

DRAM Cache Management,” Computer Architecture Letters, vol. 11,

no. 2, pp. 61–64, 2012.

136

[44] M. K. Qureshi and G. H. Loh, “Fundamental Latency Trade-off in Archi-

tecting DRAM Caches: Outperforming Impractical SRAM-Tags with a

Simple and Practical Design,” in Proceedings of the 45th Annual IEEE/ACM

International Symposium on Microarchitecture, pp. 235–246, 2012.

[45] J. Sim, G. H. Loh, H. Kim, M. O’Connor, and M. Thottethodi, “A

mostly-clean DRAM cache for effective hit speculation and self-balancing

dispatch,” in Proceedings of the 2012 45th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, pp. 247–257, IEEE Computer

Society, 2012.

[46] A. Sembrant, E. Hagersten, and D. Black-Shaffer, “TLC: A Tag-less

Cache for Reducing Dynamic First Level Cache Energy,” in Proceedings

of the 46th Annual IEEE/ACM International Symposium on Microar-

chitecture, MICRO-46, pp. 49–61, ACM, 2013.

[47] B. Goglin and N. Furmento, “Memory migration on next-touch,” in

Linux Symposium, 2009.

[48] M. Oskin and G. H. Loh, “A Software-managed Approach to Die-stacked

DRAM,” in 2015 International Conference on Parallel Architecture and

Compilation (PACT), pp. 188–200, IEEE, 2015.

[49] J. Laudon and D. Lenoski, “The SGI Origin: a ccNUMA highly scal-

able server,” in ACM SIGARCH Computer Architecture News, vol. 25,

pp. 241–251, ACM, 1997.

137

[50] E. Hagersten, A. Saulsbury, and A. Landin, “Simple COMA node imple-

mentations,” in Proceedings of the Twenty-Seventh Hawaii International

Conference on System Sciences, vol. 1, pp. 522–533, IEEE, 1994.

[51] B. Falsafi and D. A. Wood, “Reactive NUMA: a design for unifying

S-COMA and CC-NUMA,” in ACM SIGARCH Computer Architecture

News, vol. 25, pp. 229–240, ACM, 1997.

[52] F. X. Lin and X. Liu, “Memif: Towards programming heterogeneous

memory asynchronously,” in Proceedings of the Twenty-First Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems, pp. 369–383, ACM, 2016.

[53] M. R. Meswani, G. H. Loh, S. Blagodurov, D. Roberts, J. Slice, and

M. Ignatowski, “Toward efficient programmer-managed two-level mem-

ory hierarchies in exascale computers,” in Hardware-Software Co-Design

for High Performance Computing (Co-HPC), 2014, pp. 9–16, IEEE,

2014.

[54] C. Cantalupo, V. Venkatesan, J. R. Hammond, K. Czurylo, and S. Ham-

mond, “User extensible heap manager for heterogeneous memory plat-

forms and mixed memory policies,” Architecture document, 2015.

[55] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel, “Coordinated

and efficient huge page management with ingens,” in 12th USENIX Sym-

posium on Operating Systems Design and Implementation (OSDI 16),

pp. 705–721, USENIX Association, 2016.

138

[56] K. J. Nesbit and J. E. Smith, “Data Cache Prefetching Using a Global

History Buffer,” IEEE Micro, vol. 25, no. 1, pp. 90–97, 2005.

[57] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi, “Spatio-temporal

memory streaming,” in ACM SIGARCH Computer Architecture News,

vol. 37, pp. 69–80, ACM, 2009.

[58] T. F. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Ailamaki, and

B. Falsafi, “Temporal streaming of shared memory,” in ACM SIGARCH

Computer Architecture News, vol. 33, pp. 222–233, IEEE Computer So-

ciety, 2005.

[59] J. Gandhi, A. Basu, M. D. Hill, and M. M. Swift, “Efficient Memory

Virtualization: Reducing Dimensionality of Nested Page Walks,” in Pro-

ceedings of the 47th Annual IEEE/ACM International Symposium on

Microarchitecture, pp. 178–189, IEEE Computer Society, 2014.

[60] A. Bhattacharjee, “Large-reach Memory Management Unit Caches,” in

Proceedings of the 46th Annual IEEE/ACM International Symposium

on Microarchitecture, pp. 383–394, ACM, 2013.

[61] A. S. Tanenbaum and H. Bos, Modern operating systems. Prentice Hall

Press, 2014.

[62] I. Yaniv and D. Tsafrir, “Hash, don’t cache (the page table).,” in SIG-

METRICS, pp. 337–350, 2016.

139

[63] V. Karakostas, J. Gandhi, A. Cristal, M. D. Hill, K. S. McKinley, M. Ne-

mirovsky, M. M. Swift, and O. S. Unsal, “Energy-efficient address trans-

lation,” in 2016 IEEE International Symposium on High Performance

Computer Architecture (HPCA), pp. 631–643, March 2016.

[64] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient

Virtual Memory for Big Memory Servers,” SIGARCH Comput. Archit.

News, vol. 41, no. 3, pp. 237–248, 2013.

[65] G. B. KANDIRAJU and A. SIVASUBRAMANIAM, “Going the dis-

tance for TLB prefetching: An application-driven study,” in Proceedings-

International Symposium on Computer Architecture, pp. 195–206, 2002.

[66] A. Saulsbury, F. Dahlgren, and P. Stenström, “Recency-based TLB

Preloading,” in Proceedings of the 27th Annual International Symposium

on Computer Architecture, pp. 117–127, ACM, 2000.

[67] L. Zhang, E. Speight, R. Rajamony, and J. Lin, “Enigma: architectural

and operating system support for reducing the impact of address trans-

lation,” in Proceedings of the 24th ACM International Conference on

Supercomputing, pp. 159–168, ACM, 2010.

[68] S. Srikantaiah and M. Kandemir, “Synergistic TLBs for high perfor-

mance address translation in chip multiprocessors,” in Proceedings of the

2010 43rd Annual IEEE/ACM International Symposium on Microarchi-

tecture, pp. 313–324, IEEE Computer Society, 2010.

140

[69] B. Pham, V. Vaidyanathan, A. Jaleel, and A. Bhattacharjee, “Colt: Co-

alesced large-reach TLBs,” in 2012 45th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture (MICRO), pp. 258–269, IEEE,

2012.

[70] B. Pham, A. Bhattacharjee, Y. Eckert, and G. H. Loh, “Increasing TLB

reach by exploiting clustering in page translations,” in 2014 IEEE 20th

International Symposium on High Performance Computer Architecture

(HPCA), pp. 558–567, IEEE, 2014.

[71] T. E. Carlson, W. Heirmant, and L. Eeckhout, “Sniper: exploring the

level of abstraction for scalable and accurate parallel multi-core simula-

tion,” in 2011 International Conference for High Performance Comput-

ing, Networking, Storage and Analysis (SC), pp. 1–12, IEEE, 2011.

[72] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensi-

ble DRAM Simulator,” IEEE Computer Architecture Letters, pp. 45–49,

2016.

[73] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM SIGARCH

Computer Architecture News, vol. 34, no. 4, pp. 1–17, 2006.

[74] C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark

suite: Characterization and architectural implications,” in Proceedings

of the 17th International Conference on Parallel Architectures and Com-

pilation Techniques, pp. 72–81, ACM, 2008.

141

[75] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introduc-

ing the graph 500,” Cray Users Group (CUG), 2010.

[76] V. J. Reddi, A. Settle, D. A. Connors, and R. S. Cohn, “PIN: a binary

instrumentation tool for computer architecture research and education,”

in Proceedings of the 2004 workshop on Computer architecture education:

held in conjunction with the 31st International Symposium on Computer

Architecture, ACM, 2004.

[77] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle ac-

curate memory system simulator,” IEEE Computer Architecture Letters,

vol. 10, no. 1, pp. 16–19, 2011.

[78] AMD, “AMD A-Series Desktop APUs.” http://www.amd.com/en-us/

products/processors/desktop/a-series-apu.

[79] Linux Kernel Organization, “The Linux Kernel Archives.” http://www.

kernel.org.

[80] R. Crooke and F. Al, “Intel Non-Volatile Memory Inside. The Speed of

Possibility Outside,” Intel Developer Foreum (IDF), 2015.

[81] Y. Ishimatsu, “Memory Hotplug.” https://events.linuxfoundation.

org.

[82] I. Yaniv and D. Tsafrir, “Hash, Don’T Cache (the Page Table),” in

Proceedings of the 2016 ACM SIGMETRICS International Conference

142

on Measurement and Modeling of Computer Science, pp. 337–350, ACM,

2016.

[83] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.

Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga,

“The NAS Parallel Benchmarks,” in Proceedings of the 1991 ACM/IEEE

Conference on Supercomputing, pp. 158–165, ACM, 1991.

[84] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lu-

cas, R. Rabenseifner, and D. Takahashi, “The HPC Challenge (HPCC)

benchmark suite,” in Proceedings of the 2006 ACM/IEEE Conference

on Supercomputing, p. 213, ACM, 2006.

[85] S. N. Laboratories, “Mantevo.” https://software.sandia.gov/mantevo/.

[86] X. Wu and V. Taylor, “Power and performance characteristics of CORAL

Scalable Science Benchmarks on BlueGene/Q Mira,” in 2015 Sixth Inter-

national Green Computing Conference and Sustainable Computing Con-

ference (IGSC), pp. 1–6, IEEE, 2015.

[87] J. H. Ryoo, M. R. Meswani, R. Panda, and L. K. John, “POSTER: SILC-

FM: Subblocked interleaved Cache-Like Flat Memory Organization,” in

2016 International Conference on Parallel Architecture and Compilation

Techniques (PACT), pp. 435–437, IEEE, 2016.

143

[88] J. H. Ryoo, A. Prodromou, M. R. Meswani, and L. K. John, “SILC-

FM: Subblocked interleaved Cache-Like Flat Memory Organization,” in

2017 IEEE International Symposium on High Performance Computer

Architecture.

[89] C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez, A. Mendel-

son, N. Navarro, A. Cristal, and O. S. Unsal, “DiDi: Mitigating the

performance impact of TLB shootdowns using a shared TLB directory,”

in 2011 International Conference on Parallel Architectures and Compi-

lation Techniques (PACT), pp. 340–349, IEEE, 2011.

[90] A. C. de Melo, “The new linux perf tools,” in Slides from Linux Kongress,

vol. 18, 2010.

[91] J. Buell, D. Hecht, J. Heo, K. Saladi, and R. Taheri, “Methodology for

performance analysis of VMware vSphere under Tier-1 applications,”

VMware Technical Journal, vol. 2, no. 1, 2013.

[92] B. Pham, J. Veselý, G. H. Loh, and A. Bhattacharjee, “Large Pages and

Lightweight Memory Management in Virtualized Environments: Can

You Have It Both Ways?,” in Proceedings of the 48th International Sym-

posium on Microarchitecture, pp. 1–12, ACM, 2015.

[93] S. J. E. Wilton and N. P. Jouppi, “CACTI: an enhanced cache access

and cycle time model,” IEEE Journal of Solid-State Circuits, vol. 31,

no. 5, pp. 677–688, 1996.

144

[94] S. M. Khan, D. A. Jiménez, D. Burger, and B. Falsafi, “Using dead

blocks as a virtual victim cache,” in Proceedings of the 19th Interna-

tional Conference on Parallel Architectures and Compilation Techniques,

pp. 489–500, ACM, 2010.

[95] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun, “A modified

approach to data cache management,” in Proceedings of the 28th An-

nual International Symposium on Microarchitecture, pp. 93–103, IEEE

Computer Society Press, 1995.

[96] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. Steely Jr,

and J. Emer, “SHiP: Signature-based hit predictor for high performance

caching,” in Proceedings of the 44th Annual IEEE/ACM International

Symposium on Microarchitecture, pp. 430–441, ACM, 2011.

[97] M. Talluri and M. D. Hill, “Surpassing the tlb performance of superpages

with less operating system support,” in Proceedings of the Sixth Interna-

tional Conference on Architectural Support for Programming Languages

and Operating Systems, pp. 171–182, ACM, 1994.

[98] C. Chou, A. Jaleel, and M. K. Qureshi, “BEAR: techniques for miti-

gating bandwidth bloat in gigascale DRAM caches,” in Proceedings of

the 42nd Annual International Symposium on Computer Architecture,

pp. 198–210, ACM, 2015.

[99] C.-C. Chou, A. Jaleel, and M. Qureshi, “BATMAN: Maximizing Band-

width Utilization for Hybrid Memory Systems,” tech. rep., Technical

145

Report TR-CARET-2015-01. Technical Report for Computer ARchi-

tecture and Emerging Technologies (CARET) Lab.

[100] N. Agarwal, D. Nellans, M. O’Connor, S. W. Keckler, and T. F. Wenisch,

“Unlocking bandwidth for GPUs in CC-NUMA systems,” in 2015 IEEE

21st International Symposium on High Performance Computer Architec-

ture (HPCA), pp. 354–365, IEEE, 2015.

[101] JEDEC, “High Bandwidth Memory (HBM) DRAM (JESD235).” https:

//www.jedec.org, 2013.

[102] “AMD Working With Hynix For Development of High-Bandwidth 3D

Stacked Memory.” http://wccftech.com, 2013.

[103] Micron, “HMC Generation 2.” http://www.hybridmemorycube.org,

2013.

[104] JEDEC, “DDR SDRAM (JESD79-3C).” https://www.jedec.org, 2008.

[105] Micron Technology Inc., “TN-46-03 Calculating Memory System Power

for DDR,” 2001.

[106] SPEC, “SPEC CPU 2006.” http://www.spec.org, 2006.

[107] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A. Karunanidhi,

“Pinpointing representative portions of large Intel R© Itanium R© pro-

grams with dynamic instrumentation,” in 37th International Symposium

on Microarchitecture, pp. 81–92, IEEE, 2004.

146

[108] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, and B. Calder,

“Using SimPoint for Accurate and Efficient Simulation,” SIGMETRICS

Perform. Eval. Rev., vol. 31, no. 1, 2003.

[109] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and

N. P. Jouppi, “McPAT: an integrated power, area, and timing modeling

framework for multicore and manycore architectures,” in 42nd Annual

IEEE/ACM International Symposium on Microarchitecture, pp. 469–

480, IEEE, 2009.

[110] J. R. Tramm, A. R. Siegel, T. Islam, and M. Schulz, “XSBench - The

Development and Verification of a Performance Abstraction for Monte

Carlo Reactor Analysis,” in PHYSOR 2014 - The Role of Reactor Physics

toward a Sustainable Future, (Kyoto).

[111] I. Karlin, J. Keasler, and R. Neely, “Lulesh 2.0 updates and changes,”

Tech. Rep. LLNL-TR-641973, 2013.

[112] A. Sembrant, D. Black-Schaffer, and E. Hagersten, “Phase behavior in

serial and parallel applications,” in 2012 IEEE International Symposium

on Workload Characterization (IISWC), pp. 47–58, 2012.

[113] AMD, “AMD64 Architecture Programmer’s Manual.” http://developer.

amd.com/wordpress/media/2012/10/24593_APM_v21.pdf.

[114] Intel, “Intel Xeon Phi Processor Software.” https://software.intel.

com/en-us/articles/xeon-phi-software.

147

[115] F. Bedeschi, C. Resta, O. Khouri, E. Buda, L. Costa, M. Ferraro, F. Pel-

lizzer, F. Ottogalli, A. Pirovano, M. Tosi, R. Bez, R. Gastaldi, and

G. Casagrande, “An 8Mb demonstrator for high-density 1.8V Phase-

Change Memories,” in 2004 Symposium on VLSI Circuits, 2004, pp. 442–

445, IEEE, 2004.

[116] C. T. Office, “Phase Change Memory.” http://www.pdl.cmu.edu/

SDI/2009/slides/Numonyx.pdf.

[117] J. H. Ryoo, N. Gulur, S. Song, and L. K. John, “Rethinking TLB Designs

in Virtualized Environments: A Very Large Part-of-Memory TLB,” in

2017 IEEE International Symposium on Computer Architecture.

[118] G. Hinton, D. Sager, M. Upton, D. Boggs, et al., “The microarchitecture

of the Pentium R© 4 processor,” in Intel Technology Journal, 2001.

[119] A. Arcangeli, “Linux KVM Forum,” 2008. http://www.linux-kvm.

org/page/KVM_Forum_2008.

[120] W. A. Wulf and S. A. McKee, “Hitting the Memory Wall: Implications

of the Obvious,” SIGARCH Comput. Archit. News, vol. 23, no. 1, 1995.

[121] B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. H. Loh,

D. McCaule, P. Morrow, D. W. Nelson, D. Pantuso, P. Reed, J. Rup-

ley, S. Shankar, J. Shen, and C. Webb, “Die Stacking (3D) Microarchi-

tecture,” in Proceedings of the 39th Annual IEEE/ACM International

148

Symposium on Microarchitecture, pp. 469–479, IEEE Computer Society,

2006.

[122] C.-C. Huang and V. Nagarajan, “ATCache: Reducing DRAM Cache La-

tency via a Small SRAM Tag Cache,” in Proceedings of the 23rd Interna-

tional Conference on Parallel Architectures and Compilation, pp. 51–60,

ACM, 2014.

[123] L. Zhao, R. Iyer, R. Illikkal, and D. Newell, “Exploring DRAM cache ar-

chitectures for CMP server platforms,” in 25th International Conference

on Computer Design, pp. 55–62, 2007.

[124] A. Seznec, “Concurrent Support of Multiple Page Sizes on a Skewed

Associative TLB,” IEEE Trans. Computers, vol. 53, no. 7, pp. 924–927,

2004.

[125] M. Wu and W. Zwaenepoel, “Improving TLB miss handling with page

table pointer caches,” tech. rep.

[126] R. Love, Linux Kernel Development. 3rd ed., 2010.

[127] ITRS, “The International Technology Roadmap for Semiconductors, Pro-

cess Integration, Device and Structures.” http://www.itrs.net, 2013.

[128] Amazon, “Amazon EC2 - Virtual Server Hosting.” https://aws.

amazon.com/ec2/.

149

[129] Rackspace, “OPENSTACK - The Open Alternative To Cloud Lock-In.”

https://www.rackspace.com/en-us/cloud/openstack.

[130] “NVIDIA Volta Next-Generation GPU Unveiled Features 1TB/S Band-

width and Stacked DRAM.” http://wccftech.com.

[131] SUN, “The SPARC Architecture Manual.” http://www.sparc.org/

standards/SPARCV9.pdf.

[132] JEDEC, “Wide I/O Single Data Rate (Wide I/O SDR).” https://www.

jedec.org/standards-documents/docs/jesd229, 2011.

[133] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.

Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and

R. W. Numrich, “Improving performance via mini-applications,” Sandia

National Laboratories, Tech. Rep. SAND2009-5574, vol. 3, 2009.

[134] E. Bolotin, D. Nellans, O. Villa, M. O’Connor, A. Ramirez, and S. W.

Keckler, “Designing efficient heterogeneous memory architectures,” IEEE

Micro, vol. 35, no. 4, pp. 60–68, 2015.

[135] F. Gaud, B. Lepers, J. Funston, M. Dashti, A. Fedorova, V. Quéma,

R. Lachaize, and M. Roth, “Challenges of memory management on mod-

ern NUMA systems,” Communications of the ACM, vol. 58, no. 12,

pp. 59–66, 2015.

150

[136] J. Gandhi, V. Karakostas, F. Ayar, A. Cristal, M. D. Hill, K. S. McKin-

ley, M. Nemirovsky, M. M. Swift, and O. S. Unsal, “Range Translations

for Fast Virtual Memory,” IEEE Micro, pp. 118–126, May 2016.

[137] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and B. Hughes,

“Cache Hierarchy and Memory Subsystem of the AMD Opteron Proces-

sor,” IEEE Micro, vol. 30, no. 2, pp. 16–29, 2010.

[138] D. Gove, “CPU2006 Working Set Size,” SIGARCH Comput. Archit.

News, vol. 35, no. 1, 2007.

[139] C. A. Waldspurger, “Memory Resource Management in VMware ESX

Server,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, 2002.

[140] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation

Techniques for Storage Hierarchies,” IBM System Journal, vol. 9, no. 2,

1970.

[141] H.-C. Shih, P.-W. Luo, J.-C. Yeh, S.-Y. Lin, D.-M. Kwai, S.-L. Lu,

A. Schaefer, and C.-W. Wu, “DArT: A Component-Based DRAM Area,

Power, and Timing Modeling Tool,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 33, no. 9, 2014.

[142] S. Eyerman and L. Eeckhout, “System-Level Performance Metrics for

Multiprogram Workloads,” IEEE Micro, vol. 28, no. 3, pp. 42–53, 2008.

[143] Y. Huai, M. Pakala, F. Albert, T. Valet, and P. Nguyen, “Observation of

spin-transfer switching in deep submicron-sized and low-resistance mag-

151

netic tunnel junctions,” Appl. Phys. Lett., vol. 84, no. cond-mat/0504486,

pp. 3118–3120, 2005.

[144] F. Bellard, “QEMU, a fast and portable dynamic translator,” in USENIX

Annual Technical Conference, FREENIX Track, pp. 41–46, 2005.

[145] T. S. Karkhanis and J. E. Smith, “A first-order superscalar processor

model,” in 31st Annual International Symposium on Computer Archi-

tecture, pp. 338–349, IEEE, 2004.

[146] Intel, “Intel 64 and IA-32 Architectures Software Developers Manual

Volume 3A: System Programming Guide Part 1,”

[147] Intel, “Intel Virtualization Technology: Processor Virtualization Exten-

sions and Intel Trusted execution Technology,”

[148] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A

low-overhead, high-performance, runtime mechanism to partition shared

caches,” in Proceedings of the 39th Annual IEEE/ACM International

Symposium on Microarchitecture, pp. 423–432, IEEE Computer Society,

2006.

[149] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu, “MISE:

Providing performance predictability and improving fairness in shared

main memory systems,” in 2013 IEEE 19th International Symposium

on High Performance Computer Architecture (HPCA2013), pp. 639–650,

IEEE, 2013.

152

[150] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy ef-

ficient main memory using phase change memory technology,” in 2009

International Symposium on Computer Architecture, pp. 14–23, ACM,

2009.

[151] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable High Perfor-

mance Main Memory System Using Phase-change Memory Technology,”

in Proceedings of the 36th Annual International Symposium on Computer

Architecture, pp. 24–33, ACM, 2009.

[152] H. Jang, Y. Lee, J. Kim, Y. Kim, J. Kim, J. Jeong, and J. W. Lee,

“Efficient footprint caching for Tagless DRAM Caches,” in 2016 IEEE

International Symposium on High Performance Computer Architecture

(HPCA), pp. 237–248, IEEE, 2016.

[153] J. Sim, J. Lee, M. K. Qureshi, and H. Kim, “FLEXclusion: balanc-

ing cache capacity and on-chip bandwidth via flexible exclusion,” in

2012 39th Annual International Symposium on Computer Architecture

(ISCA), pp. 321–332, IEEE, 2012.

[154] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and J. W. Lee, “A

fully associative, tagless DRAM cache,” in 2015 ACM/IEEE 42nd An-

nual International Symposium on Computer Architecture (ISCA), pp. 211–

222, IEEE, 2015.

[155] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,

C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the

153

Clouds: A Study of Emerging Scale-out Workloads on Modern Hard-

ware,” in Proceedings of the Seventeenth International Conference on

Architectural Support for Programming Languages and Operating Sys-

tems, pp. 37–48, ACM, 2012.

[156] B. Lepers, V. Quéma, and A. Fedorova, “Thread and memory place-

ment on NUMA systems: asymmetry matters,” in 2015 USENIX Annual

Technical Conference (USENIX ATC 15), pp. 277–289, 2015.

[157] F. Gaud, B. Lepers, J. Decouchant, J. Funston, A. Fedorova, and V. Quéma,

“Large pages may be harmful on NUMA systems,” in 2014 USENIX An-

nual Technical Conference (USENIX ATC 14), pp. 231–242, 2014.

[158] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers,

V. Quema, and M. Roth, “Traffic Management: A Holistic Approach

to Memory Placement on NUMA Systems,” in Proceedings of the Eigh-

teenth International Conference on Architectural Support for Program-

ming Languages and Operating Systems, pp. 381–394, ACM, 2013.

[159] Xilinx, “Xilinx SSI Technology,” 2012.

[160] J. Gaur, M. Chaudhuri, P. Ramachandran, and S. Subramoney, “Near-

optimal Access Partitioning for Memory Hierarchies with Multiple Het-

erogeneous Bandwidth Sources,” in Proceedings of the 2017 23rd IEEE/ACM

International Symposium on High Performance Computer Architecture

(HPCA), 2017.

154

[161] D. Chiou, P. Jain, L. Rudolph, and S. Devadas, “Application-specific

memory management for embedded systems using software-controlled

caches,” in Proceedings of the 37th Annual Design Automation Confer-

ence, pp. 416–419, ACM, 2000.

[162] Z. Wang, D. A. Jiménez, C. Xu, G. Sun, and Y. Xie, “Adaptive place-

ment and migration policy for an STT-RAM-based hybrid cache,” in

2014 IEEE 20th International Symposium on High Performance Com-

puter Architecture (HPCA), pp. 13–24, IEEE, 2014.

[163] A. Hartstein, V. Srinivasan, T. R. Puzak, and P. G. Emma, “Cache miss

behavior: is it 2?,” in Proceedings of the 3rd conference on Computing

frontiers, pp. 313–320, ACM, 2006.

[164] IBM, “Power8 Processor User’s Manual for the Single-Chip Module,”

[165] D. Kaseridis, J. Stuecheli, J. Chen, and L. K. John, “A bandwidth-aware

memory-subsystem resource management using non-invasive resource

profilers for large CMP systems,” in 2010 IEEE 16th International Sym-

posium on High Performance Computer Architecture (HPCA), pp. 1–11,

IEEE, 2010.

[166] P. Zhou, V. Pandey, J. Sundaresan, A. Raghuraman, Y. Zhou, and S. Ku-

mar, “Dynamic tracking of page miss ratio curve for memory manage-

ment,” in ACM SIGOPS Operating Systems Review, vol. 38, pp. 177–

188, ACM, 2004.

155

[167] Intel, “Intel Xeon Processor 5500 Series Datasheet, Vol. 1,”

[168] SanDisk, “CloudSpeed Ultra Gen. II SATA SSD,”

[169] M. Saxena and M. M. Swift, “FlashVM: Revisiting the Virtual Memory

Hierarchy,” in HotOS, pp. 13–13, 2009.

[170] Intel, “Intel 64 and IA-32 Architectures Software Developers Manual

Volume 3B: System Programming Guide, Part 2,”

[171] E. Seo, S. Y. Park, and B. Urgaonkar, “Empirical Analysis on Energy

Efficiency of Flash-based SSDs,” in Proceedings of the 2008 Conference

on Power Aware Computing and Systems, HotPower’08, 2008.

[172] E. Ipek, O. Mutlu, J. F. Mart́ınez, and R. Caruana, “Self-optimizing

memory controllers: A reinforcement learning approach,” in 35th Inter-

national Symposium on Computer Architecture, pp. 39–50, IEEE, 2008.

156

