
 Energy-Aware Application Scheduling on a Heterogeneous

Multi-core System

Jian Chen and Lizy K. John

The Electrical and Computer Engineering Department

The University of Texas at Austin

{jchen2, ljohn}@ece.utexas.edu

Abstract

Heterogeneous multi-core processors are attractive for

power efficient computing because of their ability to meet

varied resource requirements of diverse applications in a

workload. However, one of the challenges of using a

heterogeneous multi-core processor is to schedule different

programs in a workload to matching cores that can deliver the

most efficient program execution. This paper presents an

energy-aware scheduling mechanism that employs fuzzy logic

to calculate the suitability between programs and cores by

analyzing important inherent program characteristics such as

instruction dependency distance and branch transition rate.

The obtained suitability is then used to guide the program

scheduling in the heterogeneous multi-core system. The

experimental results show that the proposed suitability-guided

program scheduling mechanism achieves up to 15.0% average

reduction in energy-delay product compared with that of the

random scheduling approach. To the best of our knowledge,

this study is the first to apply fuzzy logic to schedule programs

in heterogeneous multi-core systems.

I. INTRODUCTION

Employing heterogeneity in multi-core processor design is

demonstrated to be an effective approach toward power

efficient computing. By integrating different types of cores in

a single chip, the heterogeneous multi-core processor provides

the architectural capability to accommodate the diverse

computational requirements of the applications. It achieves

efficient computing by running the application on the core

that is most suitable for its execution in terms of energy delay

product (EDP)[2]. The recent endeavors in industry

(CELL[11]) as well as in academia (Core Fusion [9], TFlex

[8]) further underscore the importance of heterogeneity in the

multi-core system.

While the heterogeneous multi-core provides the

architectural support to match the programs’ diverse resource

requirements, it is the program scheduling mechanism that

leverages this architecture opportunity to energy efficient

computing. However, the problem of how to schedule the

program to the desired core has not been well solved and

remains an open question. Prior research on program

scheduling in heterogeneous system mainly focuses on

scheduling the subtasks of the applications in order to

minimize the overall subtask execution time [12][13]. This

execution time driven scheduling mechanism is no longer

appropriate in modern heterogeneous multi-core processors

since the power consumption, in addition to the performance,

stands out as another major consideration in designing a good

scheduling algorithm. More recently, Kumar et.al [2]

proposed a program scheduling mechanism based on dynamic

core selection to account for the energy efficiency of the

program execution. It tentatively runs the application on

neighboring or all cores, samples the performance and power

characteristics of the application during these tentative runs,

and chooses the desired core based on the sampled data.

Although it could adapt to the program phase changes, this

trial-and-error scheduling method has a significant energy

overhead not only in the core context switching but also in the

additional cache snooping after program migration [16];

therefore it does not achieve the potential the heterogeneous

multi-core processor has to offer.

These existing scheduling methods did not exploit the

relationship between a program’s inherent characteristics and

its hardware resource requirements. In fact, a program’s

hardware demands are governed by its inherent

characteristics. For example, consider the instruction

dependency distance distribution of a program (the number of

instructions between the producer of a data and its consumer).

As shown in Figure 1(a), the SPEC benchmark apsi has a

large percentage of instructions with long dependency

distance, while mcf has a high percentage of instructions with

short dependency distance. These two opposite trends in

dependency distance distribution indicate different amounts of

instruction level parallelism (ILP) in these two programs, and

hence different requirements of instruction issue width on the

processor core. As shown in Figure 1(b), apsi demonstrates a

near constant reduction rate in execution time as the

instruction issue width goes from 1 to 8. This is because the

program has sufficient ILP, as indicated in the dependency

distance distribution, to keep up with the issue width scaling,

and hence favors processor core with large issue width. On

the other hand, mcf has a significantly lower reduction rate in

execution time, and the amplitude of the rate sharply goes

 (a)

Figure 1. Instruction dependency distance distribution and execution time reduction of

down as the instruction issue width gets larger, which means

the program is more suitable to run on a core with small issue

width. Therefore, programs’ inherent characteristics shape its

hardware resource demands, and could be used to guide the

program scheduling in heterogeneous multi-cores.

 This paper presents a suitability-based approach to leverage

this intuitive, yet fuzzy, relationship between programs and

cores for the program scheduling in heterogeneous multi

processors. As shown in Figure 2, the proposed method

profiles the applications to obtain important

micro-architecture independent program characteristics

such as the dependency distance distribution, the reuse

distance distribution and the branch transition rate distribution.

These characteristics determine the ILP, the data locality as

well as the branch predictability of the applications, which

largely define the applications’ overall resource demands. The

profiled characteristics, coupled with the corresponding

hardware configurations, are used to generate the suitability

degree for issue width, cache size and branch predictor size

respectively. These degrees go through a fuzzy inference

system, where we can integrate human knowledge in its rule

system, to produce an overall suitability degree that represents

the degree of the match between the program and the core.

We demonstrate that the overall suitability degree has a strong

enough correlation with EDP to generate high quality

program scheduling in heterogeneous multi

proposed scheduling method provides up to 15.0

reduction compared with the average EDP of random

scheduling. The contributions of the paper include:

• Presents a model to measure the suitability between each

characteristic and its corresponding hardware

configuration.

• Employs fuzzy logic in determining the overall

suitability to guide the program scheduling for efficient

computing in heterogeneous multi-cores.

 The rest of the paper is organized as follows

presents the micro-architecture independent characteristics

investigated in this paper as well as the suitability metrics for

these characteristics. Section III describes the fundamentals

and the implementation of the fuzzy inference system

employed in this paper. Section IV gives the setup of the

0

10

20

30

40

50

60

70

apsi

P
e

rc
e

n
ta

g
e

 o
f

In
st

ru
ct

io
n

s

Dependency Distance Distribution

DEP_DIST1 DEP_DIST2-3 DEP_DIST4

 (b)

Figure 1. Instruction dependency distance distribution and execution time reduction of apsi and

down as the instruction issue width gets larger, which means

the program is more suitable to run on a core with small issue

th. Therefore, programs’ inherent characteristics shape its

demands, and could be used to guide the

cores.

based approach to leverage

fuzzy, relationship between programs and

cores for the program scheduling in heterogeneous multi-core

processors. As shown in Figure 2, the proposed method

profiles the applications to obtain important

architecture independent program characteristics [3],

such as the dependency distance distribution, the reuse

distance distribution and the branch transition rate distribution.

These characteristics determine the ILP, the data locality as

well as the branch predictability of the applications, which

ely define the applications’ overall resource demands. The

profiled characteristics, coupled with the corresponding

hardware configurations, are used to generate the suitability

degree for issue width, cache size and branch predictor size

se degrees go through a fuzzy inference

system, where we can integrate human knowledge in its rule

system, to produce an overall suitability degree that represents

the degree of the match between the program and the core.

itability degree has a strong

enough correlation with EDP to generate high quality

program scheduling in heterogeneous multi-cores. The

uling method provides up to 15.0% EDP

reduction compared with the average EDP of random

ntributions of the paper include:

Presents a model to measure the suitability between each

characteristic and its corresponding hardware

Employs fuzzy logic in determining the overall

suitability to guide the program scheduling for efficient

cores.

follows: Section II

architecture independent characteristics

investigated in this paper as well as the suitability metrics for

these characteristics. Section III describes the fundamentals

and the implementation of the fuzzy inference system

is paper. Section IV gives the setup of the

experimental environment. Section V discusses the

experimental results. Section VI summaries the related work,

and Section VII concludes the paper.

Figure 2. The overall flow to generate the program

instruction mix is used to tune the suitabilit

characteristics.

II. PROGRAM CHARACTERISTICS AND

The proposed method exploits three major inherent

characteristics of the programs. Each characteristic is

associated with a suitability metric, which measures the degree

of the match between that characteristic and the corresponding

hardware configuration. This section describes these inherent

program characteristics as well as the models to obtain the

corresponding suitability metrics.

A. Instruction Dependency Distance and

Suitability

The issue width suitability attempts to measure the match

between the program’s ILP and the processor’s issue width.

The program’s ILP could be captured with instruction

dependency distance, which is defined as the total number of

instructions in the dynamic instruction stream between the

producer and the first consumer of a register instance [3].

Unlike the conventional read-after-

distance, the instruction dependency distance followed by this

definition excludes the non-critical RAW

is more accurate in representing the program’s ILP.

Specifically, for a given dependency distance distribution, the

higher the percentage of instructions with long dependency

mcf

Distribution

DEP_DIST4-7 DEP_DIST>=8

0%

5%

10%

15%

20%

25%

30%

35%

1->2 2->4 4-

R
e

d
u

ct
io

n
 P

e
rc

e
n

ta
g

e

Execution Time Reduction
apsi mcf

and mcf.

experimental environment. Section V discusses the

experimental results. Section VI summaries the related work,

and Section VII concludes the paper.

to generate the program-core suitability. The

instruction mix is used to tune the suitability degrees of the three

characteristics.

HARACTERISTICS AND SUITABILITY METRICS

The proposed method exploits three major inherent

characteristics of the programs. Each characteristic is

ciated with a suitability metric, which measures the degree

of the match between that characteristic and the corresponding

hardware configuration. This section describes these inherent

program characteristics as well as the models to obtain the

Instruction Dependency Distance and Issue Width

The issue width suitability attempts to measure the match

between the program’s ILP and the processor’s issue width.

The program’s ILP could be captured with instruction

dependency distance, which is defined as the total number of

ic instruction stream between the

consumer of a register instance [3].

-write (RAW) dependency

distance, the instruction dependency distance followed by this

critical RAW dependencies, hence

is more accurate in representing the program’s ILP.

Specifically, for a given dependency distance distribution, the

higher the percentage of instructions with long dependency

->8

distance is, the larger the amount of ILP in the program would

be.

To calculate the issue width suitability, we classify the

distances into four groups according to the dependency

distance distribution, i.e., group 1 with distance of 1, group 2

with distance of 2-3, group 3 with distance of 4-7, and group 4

with distance of 8 and larger. Each group has its most suitable

issue width to exploit its parallelism, that is, issue width of 1

for group 1, issue width of 2 for group 2, issue width of 4 for

group 3, and issue width of 8 for group 4. Let Xi, i=1..4,

represent the issue width from 1 to 8, then the mass center (or

the weighted average) of the distribution would be ∑ �� ∗������ / ∑ ������ ,where Pi is the percentage of instructions

whose dependency distance falls in group i. This mass center of

the distribution indicates where the application locates in the

spectrum of issue widths. Therefore, the distance between the

center of mass and the node representing certain issue width

shows how close the program’s ILP matches the core’s issue

width, and hence could be the degree of issue width suitability

when mapping the application to that particular core. The

equation is shown as follows:

���
����ℎ�������������� = ��� − ∑ �� ∗ ������ ∑ ������� � (1)

This degree, however, has the opposite meaning with the

original definition of the suitability since the smaller the

degree is, the closer the distance is, and hence the higher the

suitability would be. Nevertheless, this degree can still be

applied in our fuzzy inference system by complementing the

corresponding conditions in the fuzzy rule base.

B. Branch Transition Rate and Branch Predictor Suitability

The branch predictor suitability tries to measure the match

between program’s branch predictability and the branch

predictor size. To capture the branch predictability of the

program, we use branch transition rate, which is demonstrated

to be an appropriate metric for the branch predictability of the

program by Huang et.al [14]. Generally speaking, the branch

instructions with extremely low and extremely high transition

rate are easy to predict since the branch history pattern of

these instructions could be captured with short history

registers. As the transition rate approaches 50%, it becomes

harder to predict the branch results since longer history

register is required to capture the history pattern of these

branch instructions. Based on this observation, we evenly

divide the transition rates into 10 buckets. Specifically, we

have the buckets [0, 0.1], [0.1, 0.2], [0.2, 0.3] … [0.9, 1.0].

Each bucket i has its percentage �� representing the amount

of branch instructions whose transition rate falls in that range.

Since the branch instructions in the buckets [0.4, 0.5] and

[0.5, 0.6] are the hardest to predict, they are associated with

the largest branch predictor. The branch instructions in the

buckets [0.3, 0.4] and [0.6, 0.7] are relatively easier to predict,

and hence are associated with a smaller branch predictor.

Same trend applies in buckets [0.2, 0.3] and [0.7, 0.8], and

buckets [0.1, 0.2] and [0.8, 0.9]. Therefore, similar with the

way of calculating issue width suitability, we have the

following equation to calculate the branch suitability:

 � �!"ℎ�������������� =

#�� − �$%∗�&'(&)�($'∗�&*(&+�($*∗�&,(&-�($,∗.∗∑ &/�0/12∑ &/(∑ &/)/1-,/1' (.∗∑ &/0/12 # (2)

where Bi, i=1..4, are the x coordinates of the nodes

representing the sizes of the branch predictors, organized in

an increasing order with B1 the smallest and B4 the largest

(This study only considers four different-sized branch

predictors of the same type). We do not consider the buckets

[0, 0.1] and [0.9, 1] because branch instructions in this range

are very easy to predict, and even the smallest branch

predictor in this study would be more than enough for them.

The parameter w is used to tune the weight of the largest

branch predictor, and equals α×Pcond. α is an empirically

determined value, and increases as the instruction issue width

increases. It is used to keep track of the fact that as the issue

width gets wider the branch misprediction penalty also

increases, and hence a larger branch predictor with higher

prediction accuracy is more desirable. Pcond is the percentage

of the conditional branches in the instruction mix. A large

Pcond leads to a large number of hard-to-predict branches, and

hence the weight of large branch predictor should be high.

Like the issue width suitability, Equation (2) calculates the

distance between the mass center of the transition rate

distribution and the node representing certain branch predictor

size. Again, this distance has the opposite meaning with the

original definition of the suitability. Therefore, the

corresponding conditions in the fuzzy rule base need to be

complemented before using this distance as the suitability for

the branch predictor.

C. Data Reuse Distance and L1 Data Cache Suitability

The cache suitability attempts to measure the degree of the

match between the program’s data locality and the cache size.

The program’s data locality is characterized with data reuse

distance, which is defined as the number of unique memory

accesses between two consecutive memory accesses to the

same block address[15]. By grouping the data accesses in

terms of their reuse distances, we can have the reuse distance

distribution, which gives the percentages of the data accesses

with a certain reuse distance among the total data accesses.

However, due to the lack of well-defined relationship between

the reuse distance and the corresponding desired L1 cache

size, the idea of using the center of mass to represent the

figure of merit could not be directly applied to reuse distance

distribution. Therefore, we introduce a different metric, cache

efficiency, to measure the suitability between the locality of

the program and the L1 cache size. The cache efficiency is

defined as PR<C/C, where C is the L1 data cache size and PR<C

is the percentage of the data accesses with reuse distance less

than C. The cache efficiency essentially calculates how much

program locality per unit cache size captures. Since the value

of suitability has to be in the range between 0 and 1, the cache

efficiency should be normalized before it can be used as the

cache suitability, which is shown in the following equation:

 3�"ℎ
�������������� = &456/ 7/8�&456 78 �9:; (3)

where Ci is the L1 data cache size of core i in the

heterogeneous multi-core processor, and (PR<C/C)max is the

largest cache efficiency a program can have when it is

mapped to the cores with different L1 data cache sizes.

III. FUZZY INFERENCE SYSTEM

 This paper employs fuzzy logic to combine individual

suitability metrics and produce an overall suitability that

indicates the overall degree of the match between a program

and a core. Fuzzy logic allows explicit human knowledge

representation using linguistic “IF-THEN” rules, and thus is

more applicable in the situations like the matching between

programs and cores, where well-defined deterministic

mathematical model is not available. In this section, we first

briefly introduce the fundamentals of fuzzy logic, and then

describe the design of the fuzzy inference system for the

program-core suitability.

A. Fuzzy Inference System (FIS)

Unlike Boolean logic, the fuzzy inference system uses a

collection of membership functions and the built-in linguistic

rules to map the inputs to an output. It is mainly composed of

four steps: fuzzification, inference, composition, and

defuzzification [10], as shown in Figure 3.

The fuzzification process transforms the crisp input values

into fuzzy degrees via input membership function evaluation.

This step is necessary because the rules representing human

knowledge is reasoned with the fuzzy sets. Then in the

inference step, the fuzzy operator (AND or OR) is applied to

two or more fuzzified input variables to obtain a number that

represents the result of the premise for the rule. This number

is used to truncate the corresponding output fuzzy set that

represents the output of the rule. The truncated fuzzy sets are

aggregated into a single fuzzy set during the composition step.

Finally, the defuzzification process converts this single fuzzy

set back to a crispy value, usually by calculating the center of

area under the curve.

Figure 3. Fuzzy inference system

B. Implementation of FIS

The task of FIS is to convert three suitability degrees,

namely, the issue width suitability, the cache suitability and

the branch predictor suitability, to an overall suitability for the

program-core pair. Each suitability degree is assigned with

two possible fuzzy sets, namely, “low” and “high”, leading to

total eight output membership functions. As shown in Figure

4, the input membership functions are designed in such a way

that both “low” and “high” are triangle-shaped with “low”

covering any value between 0 and 0.9 and “high” covering

any value between 0.1 than 1.0. In addition, each output

membership function is associated with a name, which is used

in the rules to represent the linguistic meaning of the

suitability level.

Figure 4. Input and output membership functions. The output MFs divide the

range [0,1] into 8 equal segments.

(a) (b) (c)

Figure 5. Response surface of the fuzzy inference system

Table I lists the rules employed in the fuzzy inference

system. Each rule establishes the mapping relationship

between the three individual suitability degrees and the

overall suitability degree based on human knowledge about

this relationship. For example, if all individual suitability

degrees are low, which means the program doesn’t fit the core

from any of the three aspects, the overall suitability is lowest,

or extremely low (EL). Similarly, if all individual suitability

degrees are high, the overall suitability is highest, or

extremely high (EH). The rest of the rules are designed such

that the three fuzzy variables in the IF conditions have

different priorities, with “issue width suitability” the highest,

and the “branch predictor suitability” the lowest. This is the

case because instruction issue width usually has the most

significant impact on the execution efficiency of the program,

followed by the L1 cache size and the branch predictor if we

do not consider L2 cache. Figure 5 shows the response surface

of these rules. Three subfigures are required to display the

overall response surface of the three-input fuzzy inference

system. Each subfigure has two input variables, with the third

input set to zero.

Table I. Rules of the Fuzzy Inference System

IF THEN

(issue width suitability is low) AND

(cache suitability is low) AND

(branch predictor suitability is low)

(overall

suitability is EL)

(issue width suitability is low) AND

(cache suitability is low) AND

(branch predictor suitability is high)

(overall

suitability is VL)

(issue width suitability is low) AND

(cache suitability is high) AND

(branch predictor suitability is low)

(overall

suitability is L)

(issue width suitability is high) AND

(cache suitability is low) AND

(branch predictor suitability is low)

(overall

suitability is ML)

(issue width suitability is low) AND

(cache suitability is high) AND

(branch predictor suitability is high)

(overall

suitability is MH)

(issue width suitability is high) AND

(cache suitability is low) AND

(branch predictor suitability is high)

(overall

suitability is H)

(issue width suitability is high) AND

(cache suitability is high) AND

(branch predictor suitability is low)

(overall

suitability is VH)

(issue width suitability is high) AND

(cache suitability is high) AND

(branch predictor suitability is high)

(overall

suitability is EH)

IV. EXPERIMENT SETUP

We created a hypothetical single-ISA heterogeneous

multi-core processor with four different cores. The

configurations of these cores shall demonstrate enough

heterogeneity so that the mapping of an application to

different cores could yield noticeable difference in terms of

performance and energy consumption. Although the types of

the cores could be ranging from ASIC accelerator to VLIW

processor, this paper only focuses on out-of-order superscalar

processor cores with variations in instruction issue width, L1

data cache size and branch predictor size.

Table II. Configuration Options for Three Key Parameters

Items Configuration Options

Issue Width single-issue, 2-issue, 4-issue, 8-issue

L1 D-Cache

16KB, 4-way, block size 64byte,

32KB, 4-way, block size 64byte,

64KB, 4-way, block size 64byte,

128KB, 4-way, block size 64byte

Branch

Predictor

1K Gshare, 2K Gshare, 4K Gshare,

8K Gshare

Table II gives the configuration options of these three

parameters of the processor. To be consistent with the

assumptions made in the previous section, each parameter has

4 possible options, leading to 48 possible core configurations.

We assign both Xi and Bi (i=1..4),which are the x coordinates

of the nodes representing the issue widths and branch predictor

sizes, to be 0.125, 0.25, 0.5, and 1 so that the suitability degree

would be in the range of [0,1]. These configurations are used to

evaluate the effectiveness of the suitability metrics we

proposed. We also compose our heterogeneous quad-core

processor based on table II to evaluate the effectiveness of the

proposed suitability-guided program scheduling. The detailed

configurations of these cores are listed in Table III. Each core

has a private 512K L2 cache with a hit latency of 12 cycles, and

a miss latency of 100 cycles. The other parameters, including

the load/store queue size, and the number of ALUs, are chosen

in a way that the design of the core is balanced. We assume

there is no resource sharing between the cores on the chip, and

the communication and synchronization between the cores are

not considered in this study.

Table III. Core Configurations for Multi-core Processor

Items Configurations

Core 1

Out-of-order, 2-issue, Gshare(1k), 16k 4-way

d-cache 64byte, 32k 2-way i-cache 64byte,

512k L2 cache

Core 2

Out-of-order, 2-issue, Gshare(2k), 32k 4-way

d-cache 64byte, 32k 2-way i-cache 64byte,

512k L2 cache

Core 3

Out-of-order, 4-issue, Ghsare(4k), 32k 4-way

d-cache 64byte, 32k 2-way i-cache 64byte,

512k L2 cache

Core 4

Out-of-order, 8-issue, Gshare(8k), 64k 4-way

d-cache 64byte, 32k 2-way i-cache 64byte,

512k L2 cache

The application space of the experiment is composed of

benchmark programs from SPEC CPU2000, with both integer

and floating point benchmarks compiled to Alpha-ISA. We

modified SimProfile from Simplescalar tool set [5] to

instrument programs and collect the aforementioned

characteristics. To reduce the time for profiling and

simulation, each SPEC2000 program is profiled at its single

Simpoint interval with 100 million instructions [

the entire run of the program. Each Simpoint interval is

simulated on Wattch [7] to collect the performance and power

data. Since we assume there is no sharing and communication

between the programs running on different cores, the overall

EDP of the multi-core system is the sum of EDP of each core.

V. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of the

program scheduling in heterogeneous multi-core, we need to

evaluate the quality of the individual suitability metric as well

as the effectiveness of the overall suitability in guiding the

program scheduling. This section presents the expe

results for these two.

A. Evaluation of Individual Suitability

To evaluate the instruction issue width suitability, we chose

4 cores with different instruction issue widths, but the rest of

the hardware configurations are the same. We calculated

issue width suitability according to the equation (1) and

ranked the cores according to the calculated suitability for

each benchmark program. On the other hand, we also

performed simulations of each program on these cores to

obtain the corresponding EDPs, and ranked the cores

according to the simulated EDPs. We use Spearman’s rank

correlation coefficient [17] to measure the quality of the issue

width suitability metric, that is, how close the rank according

to issue width suitability matches the rank a

simulated EDP. Figure 6 shows the rank correlation

coefficient of each benchmark program. 9 out of the 20

benchmark programs have the correlation coefficient of 1,

which indicates a perfect match. The smallest observed rank

correlation coefficient is 0.6. It should be noted that with 4

cores, the worst case rank correlation coefficient is

Therefore, the issue width suitability captures the match

between the program’s ILP and the issue width with a high

accuracy.

Figure 6. Rank correlation coefficient between the rank

width suitability and the rank according to simulated EDP

 Similarly, to evaluate the branch predictor suitability, we

selected three groups of processor cores. Each group is a

0

0.2

0.4

0.6

0.8

1

1.2

C
o

rr
e

la
ti

o
n

 C
o

e
ff

ic
ie

n
t

Rank Coefficient for Issue Suitability

impoint interval with 100 million instructions [6] instead of

Each Simpoint interval is

simulated on Wattch [7] to collect the performance and power

data. Since we assume there is no sharing and communication

between the programs running on different cores, the overall

core system is the sum of EDP of each core.

ESULTS

To demonstrate the effectiveness of the suitability-based

core, we need to

evaluate the quality of the individual suitability metric as well

as the effectiveness of the overall suitability in guiding the

program scheduling. This section presents the experimental

To evaluate the instruction issue width suitability, we chose

4 cores with different instruction issue widths, but the rest of

the hardware configurations are the same. We calculated the

issue width suitability according to the equation (1) and

ranked the cores according to the calculated suitability for

each benchmark program. On the other hand, we also

performed simulations of each program on these cores to

DPs, and ranked the cores

according to the simulated EDPs. We use Spearman’s rank

correlation coefficient [17] to measure the quality of the issue

width suitability metric, that is, how close the rank according

to issue width suitability matches the rank according to the

shows the rank correlation

coefficient of each benchmark program. 9 out of the 20

benchmark programs have the correlation coefficient of 1,

which indicates a perfect match. The smallest observed rank

ficient is 0.6. It should be noted that with 4

cores, the worst case rank correlation coefficient is -1.

Therefore, the issue width suitability captures the match

between the program’s ILP and the issue width with a high

. Rank correlation coefficient between the rank according to issue

width suitability and the rank according to simulated EDP.

Similarly, to evaluate the branch predictor suitability, we

selected three groups of processor cores. Each group is a

collection of 4 cores with different branch predictors (as

shown in table II), and the rest of the hardware configurations

are the same across these 4 cores. The cores from different

group have different instruction issue widths, ranging from 2

to 8. We calculated the branch predictor suitability according

to the equation (2) and ranked the cores within each group

according to the calculated suitability for each benchmark

program. We then calculated the correlation coefficients

between these ranks and the ranks accord

EDP within each group. As shown in Figure 7

observed correlation coefficient is 0.2 (sixtrack), and the most

of the other programs have a coefficient above 0.8. Also, as

the issue width increases, the correlation coeffici

or remains the same for most benchmark programs, which

demonstrates the effectiveness of the weight we introduced in

the equation (2). However, the programs, like

exhibit an opposite trend with the other ones. This is because

these programs have a small optimum branch history length,

and as the history length becomes larger, the branch predictor

becomes less accurate, which is opposite with the assumption

we made in the branch predictor suitability model.

Nevertheless, the branch predictor suitability provides a good

measurement of the match between the program’s branch

predictability and the branch predictor size.

Figure 7. Rank correlation coefficient between the rank according to branch

predictor suitability and the rank according to simulated EDP

 To evaluate the cache suitability, we choose 4 cores with

different L1 data cache sizes, and employ the method same as

what we used in evaluating the suitability of instruction issue

width to obtain the rank correlation coeffici

that the rank correlation coefficient is 1.0 for each benchmark

program, which means the proposed cache suitability

perfectly captures the efficiency of L1 data cache. This is not

surprising because each time L1 cache size doubles, the

power consumption almost doubles yet the performance gain

is much less. This effect of diminishing return is properly

captured in equation (3).

B. Evaluation of the Overall Suitability

 The objective of the overall suitability is to guide the

program scheduling in the heterogeneous multi

so that the total energy delay product would be minimized. In

Rank Coefficient for Issue Suitability

0

0.2

0.4

0.6

0.8

1

1.2

C
o

rr
e

la
ti

o
n

 C
o

e
ff

ic
ie

n
t

Rank Coefficient for Branch Suitability

2-issue 4-issue

of 4 cores with different branch predictors (as

shown in table II), and the rest of the hardware configurations

are the same across these 4 cores. The cores from different

group have different instruction issue widths, ranging from 2

e branch predictor suitability according

to the equation (2) and ranked the cores within each group

according to the calculated suitability for each benchmark

program. We then calculated the correlation coefficients

between these ranks and the ranks according to the simulated

As shown in Figure 7, the smallest

observed correlation coefficient is 0.2 (sixtrack), and the most

of the other programs have a coefficient above 0.8. Also, as

the issue width increases, the correlation coefficient increases

or remains the same for most benchmark programs, which

demonstrates the effectiveness of the weight we introduced in

the equation (2). However, the programs, like art and applu,

exhibit an opposite trend with the other ones. This is because

hese programs have a small optimum branch history length,

and as the history length becomes larger, the branch predictor

becomes less accurate, which is opposite with the assumption

we made in the branch predictor suitability model.

h predictor suitability provides a good

measurement of the match between the program’s branch

bility and the branch predictor size.

. Rank correlation coefficient between the rank according to branch

according to simulated EDP

To evaluate the cache suitability, we choose 4 cores with

different L1 data cache sizes, and employ the method same as

what we used in evaluating the suitability of instruction issue

width to obtain the rank correlation coefficient. We observe

that the rank correlation coefficient is 1.0 for each benchmark

program, which means the proposed cache suitability

perfectly captures the efficiency of L1 data cache. This is not

surprising because each time L1 cache size doubles, the

r consumption almost doubles yet the performance gain

is much less. This effect of diminishing return is properly

B. Evaluation of the Overall Suitability

The objective of the overall suitability is to guide the

g in the heterogeneous multi-core processor

uct would be minimized. In

Rank Coefficient for Branch Suitability

8-issue

order to evaluate the quality of the overall suitability, we ran

each program on each of the 48 possible cores exhaustively

and ranked the cores in terms of the simulated EDPs. We also

ranked these cores according to the overall suitability of

program-core pair. Figure 8 shows the rank correlation

coefficient of the two sets of ranks. The minimum observed

coefficient is 0.58, and the average coefficient is 0.81. This

result shows the overall suitability captures the match

between programs and cores with a high quality.

Figure 8. Rank correlation coefficient between the ranks according to the

overall suitability and the ranks according to the overall

 To evaluate the effectiveness of the overall suitability in

program scheduling, we randomly chose 3 to 8 programs from

the benchmark suite, and schedule them to the cores in our

hypothetical heterogeneous quad-core processor, both

randomly and under the guidance of the suitability. The

random scheduling method schedules the program from the

top of the queue to core 1, followed by core 2, core 3, and so

on. The randomness is achieved by permuting the sequence of

the programs in the program queue. The suitability

scheduling method first sorts the program-core pairs in terms

of their overall suitability, and then selects the program with

the highest rank for the given available core. In case there is a

tie, the program in the leading position of the program queue

takes precedence. We then compared the average overall EDP

with suitability-guided scheduling against the average EDP

with the random scheduling. Figure 9 shows the average EDP

reduction achieved by suitability-guided scheduli

the performance of suitability-guided scheduling continuously

improves as the number of programs in the queue increase,

with the average EDP reduction rate from 8.1% when the

program number is 3 to 15.0% when the program number is 8.

This is because as the number of programs to be scheduled

increases, it is more likely for the suitability-guided scheduler

to find the most suitable program for the available core, hence

reduce the overall EDP cost. Also shown in Figure 8 is the

average EDP reduction achieved by oracle scheduling. The

oracle scheduling assumes that the EDP of each program

pair is known even before the program has been executed on

the core. The mechanism of the oracle scheduling is the same

as that of the suitability-guided scheduling except that the

oracle scheduling uses the EDP instead of the suitability to

determine which program in the queue should be scheduled to

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

rr
e

la
ti

o
n

 C
o

e
ff

ic
ie

n
t

Rank Correlation Coefficient

order to evaluate the quality of the overall suitability, we ran

each program on each of the 48 possible cores exhaustively

rms of the simulated EDPs. We also

ranked these cores according to the overall suitability of each

shows the rank correlation

coefficient of the two sets of ranks. The minimum observed

cient is 0.81. This

result shows the overall suitability captures the match

between programs and cores with a high quality.

the ranks according to the

all simulated EDP

To evaluate the effectiveness of the overall suitability in

program scheduling, we randomly chose 3 to 8 programs from

the benchmark suite, and schedule them to the cores in our

core processor, both

mly and under the guidance of the suitability. The

random scheduling method schedules the program from the

top of the queue to core 1, followed by core 2, core 3, and so

on. The randomness is achieved by permuting the sequence of

m queue. The suitability-guided

core pairs in terms

of their overall suitability, and then selects the program with

the highest rank for the given available core. In case there is a

position of the program queue

takes precedence. We then compared the average overall EDP

guided scheduling against the average EDP

shows the average EDP

guided scheduling. Note that

guided scheduling continuously

improves as the number of programs in the queue increase,

with the average EDP reduction rate from 8.1% when the

program number is 3 to 15.0% when the program number is 8.

because as the number of programs to be scheduled

guided scheduler

to find the most suitable program for the available core, hence

reduce the overall EDP cost. Also shown in Figure 8 is the

tion achieved by oracle scheduling. The

oracle scheduling assumes that the EDP of each program-core

pair is known even before the program has been executed on

the core. The mechanism of the oracle scheduling is the same

heduling except that the

oracle scheduling uses the EDP instead of the suitability to

determine which program in the queue should be scheduled to

the available core. The oracle scheduling is an ideal case, and

it sets an upper bound of what different sched

could achieve in average EDP reduction. Note that the

average EDP reduction rate of the oracle scheduling increases

from 9.0% to 21.6% as the number of the programs in the

queue increases from 3 to 8. The maximum observed gap

between the average EDP reduction of the suitability

scheduling and that of the oracle scheduling is 6.6%, which

indicates the good quality of the suitability

Figure 9. Average EDP reduction rates achieved with the suitability guided

program scheduling and with the oracle scheduling when compared with that

of the random scheduling. The error bars are the 95% confidence interval of

the EDP reduction rate.

We also compared our suitability

the trial-and-error scheduling proposed by Kumar [2]. To

implement the trial-and-error scheduling algorithm, we

tentatively ran the program on the cores for the first 2 million

instructions and sampled the EDP during this interval. These

sampled EDPs are used to guide the program scheduling such

that the program with the minimum sampled EDP in the

program queue is scheduled to the available core. When we

calculated the overall EDP, we included the ener

execution time overhead caused by the cache cold start effect

during the tentative runs. However, we did not consider the

additional overhead caused by the context switching. Figure

10 shows the comparison of EDPs between these two

scheduling mechanisms for several program combinations. As

can be seen from the figure, the EDP of the suitability

scheduling is always less than that of the trial

scheduling. Obviously the EDP overhead during the tentative

runs significantly degrades the

trial-and-error scheduling. In addition, the sampled EDP

during the tentative runs may not accurately represent overall

EDP of the entire program phase due to the interference of

cold start effects. As a result, the scheduling based on t

sampled EDP could possibly yield a large overall EDP of a

certain program combination. Moreover, if we consider the

context switching overhead in the tentative runs, the

performance of trial-and-error scheduling could be even

worse. Therefore, our suitability

mechanism offers an attractive alternative to the dynamic

trial-and-error scheduling.

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

3 4 5

E
D

P
 R

e
d

u
ct

io
n

 R
a

te

Number of Programs in the Queue

Average EDP Reduction

Guided

the available core. The oracle scheduling is an ideal case, and

it sets an upper bound of what different scheduling heuristics

could achieve in average EDP reduction. Note that the

average EDP reduction rate of the oracle scheduling increases

from 9.0% to 21.6% as the number of the programs in the

queue increases from 3 to 8. The maximum observed gap

verage EDP reduction of the suitability-guided

scheduling and that of the oracle scheduling is 6.6%, which

indicates the good quality of the suitability-guided scheduling.

. Average EDP reduction rates achieved with the suitability guided

m scheduling and with the oracle scheduling when compared with that

of the random scheduling. The error bars are the 95% confidence interval of

the EDP reduction rate.

We also compared our suitability-guided scheduling with

error scheduling proposed by Kumar [2]. To

error scheduling algorithm, we

tentatively ran the program on the cores for the first 2 million

d the EDP during this interval. These

sampled EDPs are used to guide the program scheduling such

that the program with the minimum sampled EDP in the

program queue is scheduled to the available core. When we

calculated the overall EDP, we included the energy and

execution time overhead caused by the cache cold start effect

during the tentative runs. However, we did not consider the

additional overhead caused by the context switching. Figure

shows the comparison of EDPs between these two

isms for several program combinations. As

can be seen from the figure, the EDP of the suitability-guided

scheduling is always less than that of the trial-and-error

scheduling. Obviously the EDP overhead during the tentative

runs significantly degrades the performance of the

error scheduling. In addition, the sampled EDP

during the tentative runs may not accurately represent overall

EDP of the entire program phase due to the interference of

cold start effects. As a result, the scheduling based on the

sampled EDP could possibly yield a large overall EDP of a

certain program combination. Moreover, if we consider the

context switching overhead in the tentative runs, the

error scheduling could be even

bility-guided scheduling

mechanism offers an attractive alternative to the dynamic

6 7 8

Number of Programs in the Queue

Average EDP Reduction

Oracle

Figure 10. EDP comparison between suitability-guided scheduling and

trial-and-error scheduling. Each program combination has four programs

randomly chosen from the benchmark suite.

VI. RELATED WORK

There have been several attempts to optimize the program

scheduling in the heterogeneous computing environment.

Siegel presented static and hybrid heuristic to schedule the

subtasks in heterogeneous systems [12][13]. These methods

were based on the accurate estimation of the execution time of

each subtask with the objective of minimizing the overall

completion time of the program. Our method, however,

performs the scheduling on the granularity of enti

and attempts to achieve efficient computing by minimizing

the EDP of the heterogeneous multi-core processor.

Kumar et al.[1][2]discussed a dynamic scheduling approach

based on sampling the program’s behavior during the

switching intervals. This method tentatively runs the program

on different cores, each for a short period of time, and then

schedules the program to the optimum core according to the

sampled data during the tentative runs. The downside of this

method is the expensive context switching cost of the

tentative runs, which may significantly degrade the overall

efficiency of the multi-core system. In addition, this

trial-and-error approach does not scale well as the number of

cores increases. In future many-core chips, sampling a large

amount of cores before scheduling the program

impractical because the extra cost of sampling will exceed the

potential gain of core switching. Our method is static,

therefore, there is no requirement for tentative runs, and hence

no additional power overhead at runtime. In addition, our

method is scalable since it is free of tentative runs.

Chen et.al [4] also did static application mapping in

heterogeneous multi-cores based on micro

independent characteristics. Their work is based o

switching gain, which requires one processor core as the

reference. Our work is based on suitability and does not

require any core on the chip to be as the reference.

VII. CONCLUSION

This paper presents a fuzzy logic based approach to schedule

the program to its optimum core by analyzing key program

0.E+00

1.E+18

2.E+18

3.E+18

4.E+18

5.E+18

mgrid

twolf

mesa

vortex

gcc

equake

sixtrack

apsi

equake

vpr mcf

lucas

swim

vpr mcf

crafty

gcc

crafty

mesa

ammp

gap

equake

sixtrack

gzip

O
v

e
ra

ll
 E

D
P

EDP of Suitability-Guided Scheduling

and Trial-and-Error Scheduling
suitability-guided trial-and-error

guided scheduling and

error scheduling. Each program combination has four programs

randomly chosen from the benchmark suite.

There have been several attempts to optimize the program

scheduling in the heterogeneous computing environment.

Siegel presented static and hybrid heuristic to schedule the

systems [12][13]. These methods

were based on the accurate estimation of the execution time of

each subtask with the objective of minimizing the overall

completion time of the program. Our method, however,

performs the scheduling on the granularity of entire program,

and attempts to achieve efficient computing by minimizing

core processor.

Kumar et al.[1][2]discussed a dynamic scheduling approach

based on sampling the program’s behavior during the

method tentatively runs the program

on different cores, each for a short period of time, and then

schedules the program to the optimum core according to the

sampled data during the tentative runs. The downside of this

hing cost of the

tentative runs, which may significantly degrade the overall

core system. In addition, this

as the number of

core chips, sampling a large

the program would be

impractical because the extra cost of sampling will exceed the

potential gain of core switching. Our method is static,

therefore, there is no requirement for tentative runs, and hence

r overhead at runtime. In addition, our

method is scalable since it is free of tentative runs.

Chen et.al [4] also did static application mapping in

cores based on micro-architecture

independent characteristics. Their work is based on the

switching gain, which requires one processor core as the

reference. Our work is based on suitability and does not

require any core on the chip to be as the reference.

This paper presents a fuzzy logic based approach to schedule

the program to its optimum core by analyzing key program

characteristics such as the instruction dependency distance,

data reuse distance, and the branch transition rate. With the

built-in human intelligence in its rule system, the proposed

fuzzy logic method can measure the suitability of the

hard-to-model program-core relationship and use that

suitability to guide the program scheduling. The experiment

results show that the proposed

method achieves up to 15% average

product compared with that of the

approach. The proposed method provides an attractive way to

achieve stable and low, if not minimal, energy

the heterogeneous multi-core processor.

The future work of this research includes: employing more

program characteristics in determining the suitability;

considering the effects of resource sharing and inter

communication; and extending the core type fro

out-of-order superscalar to other types such as VLIW

processors and SIMD accelerators.

ACKNOWLEDGEMENTS

The authors would like to thank

Isen, and the anonymous reviewers for their valuable

feedback. This work is supported in part

award numbers 0702694. Any opinions,

conclusions or recommendations expressed

the authors and do not necessarily reflect

NSF.

REFERENCES

[1] R. Kumar, Dean M. Tullsen, Norman P.

optimization for heterogeneous chip multiprocessors

the 15th international conference on Para

compilation techniques, Sept. 2006.

[2] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.

Tullsen. “Single-ISA Heterogeneous Multi

Potential for Processor Power Reduction”

on Microarchitecture, Dec. 2003.

[3] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John

Program Similarity: Experiments with SPEC CPU Benchmark Suites

IEEE International Symposium on Performance Analysis of Systems and

Software. pp10-20. Mar.2005

[4] Jian Chen, Nidhi Nayyar, and Lizy K. John, “Mapping of Applications

to Heterogeneous Multi-cores Based on Micro

Characteristics”, Third Workshop on Unique Chips and Systems,

ISPASS2007. April 2007.

[5] SimpleScalar LLC, D. Burger and T. M. Austin. The simplescalar tool

set version 3.02 http://www.simplescalar.com/

[6] Simpoint 3.0, Erez Perelman, Greg Hamerly

Statistically Valid and Early Simulation Points”,

Conference on Parallel Architectures and Compilation Techniques, Sept.

2003.

[7] Sim-Wattch 1.02, David Brooks, Vivek Tiwari, and Margaret Martonosi.

“Wattch: A Framework for Architectural

Optimizations,” 27th International Symposium on Computer

Architecture, June, 2000.

[8]. Kim, Changkyu; Sethumadhavan, Simha; Govindan, M.S.; Ranganathan,

Nitya; Gulati, Divya; Burger, Doug; Keckl

Lightweight Processors," 40th Annual IEEE/ACM International

Symposium on Microarchitecture, pp.381

bzip2

twolf

apsi

ammp

art

mgrid

vpr

bzip2

Guided Scheduling

Error Scheduling

instruction dependency distance, the

data reuse distance, and the branch transition rate. With the

man intelligence in its rule system, the proposed

fuzzy logic method can measure the suitability of the

core relationship and use that

suitability to guide the program scheduling. The experiment

 energy-aware scheduling

average reduction in energy-delay

compared with that of the random scheduling

. The proposed method provides an attractive way to

achieve stable and low, if not minimal, energy-delay product in

core processor.

The future work of this research includes: employing more

program characteristics in determining the suitability;

considering the effects of resource sharing and inter-core

communication; and extending the core type from

order superscalar to other types such as VLIW

CKNOWLEDGEMENTS
The authors would like to thank Dimitris Kaseridis, Ciji

the anonymous reviewers for their valuable

feedback. This work is supported in part through the NSF

Any opinions, findings, and

conclusions or recommendations expressed herein are those of

the authors and do not necessarily reflect the views of the

EFERENCES

[1] R. Kumar, Dean M. Tullsen, Norman P. Jouppi, “Core architecture

optimization for heterogeneous chip multiprocessors” Proceedings of

the 15th international conference on Parallel architectures and

R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M.

ISA Heterogeneous Multi-core Architectures: The

Potential for Processor Power Reduction” In International Symposium

A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John, “Measuring

Program Similarity: Experiments with SPEC CPU Benchmark Suites,”.

IEEE International Symposium on Performance Analysis of Systems and

Jian Chen, Nidhi Nayyar, and Lizy K. John, “Mapping of Applications

cores Based on Micro-architecture Independent

Third Workshop on Unique Chips and Systems,

, D. Burger and T. M. Austin. The simplescalar tool

http://www.simplescalar.com/

Simpoint 3.0, Erez Perelman, Greg Hamerly and Brad Calder. “Picking

Statistically Valid and Early Simulation Points”, In the International

Conference on Parallel Architectures and Compilation Techniques, Sept.

Wattch 1.02, David Brooks, Vivek Tiwari, and Margaret Martonosi.

ch: A Framework for Architectural-Level Power Analysis and

27th International Symposium on Computer

Kim, Changkyu; Sethumadhavan, Simha; Govindan, M.S.; Ranganathan,

Nitya; Gulati, Divya; Burger, Doug; Keckler, Stephen W., "Composable

40th Annual IEEE/ACM International

Symposium on Microarchitecture, pp.381-394, 1-5 Dec. 2007

[9]. E. İpek, M. Kırman, N. Kırman, and J.F. Martínez. “Core Fusion:

Accommodating software diversity in chip multiprocessors”. In Intl.

Symposium. on Computer Architecture, San Diego, CA, June 2007

[10]. Heintz-Jürgen Zimmermann, “Fuzzy Sets, Decision Making, and Expert

Systems”. Kluwer Academic Publishers, 1987.

[11]. Hofstee, H.P., "Power efficient processor architecture and the cell

processor," 11th International Symposium on High-Performance

Computer Architecture, HPCA-11. pp. 258-262, Feb. 2005

[12]. H.J. Siegel, Wang Lee, and V.P Roychowdhury, etc. “Computing with

heterogeneous parallel machines: advantages and challenges”,

Proceedings. Second International Symposium on Parallel

Architectures, Algorithms, and Networks, 12-14 June 1996.

[13]. M. Maheswaran and H.J.Siegel, “A Dynamic Matching and Scheduling

Algorithm for Heterogeneous Computing Systems”, Proc.

Heterogeneous Computing Workshop, pp. 57-69, 1998.

[14]. M.Haungs, P.Sallee, M. Farrens, "Branch transition rate: a new metric

for improved branch classification analysis," Proceedings. Sixth

International Symposium on High-Performance Computer Architecture.

HPCA-6., pp.241-250, 2000

[15]. T. Lafage and A. Seznec, “Choosing Representative Slices of Program

Execution for Microarchitecture Simulations: A Preliminary

Application to the Data Stream”, Workshop on Workload

Characterization (WWC-2000), Sept 2000

[16]. C. S. Ballapuram, A. Sharif and Hsien-Hsin S. Lee, “Exploiting Access

Semantics and Program Behavior to Reduce Snoop Power in Chip

Multiprocessors”, Proceedings of 13th International Conference on

Architectural Support for Programming Languages and Operating

Systems, pp 60-69, March 2008.

[17]. M. Hollander, D.A. Wolfe, "Nonparametric statistical methods", Wiley

1973.

