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Abstract  

Heterogeneous multi-core processors are attractive for 

power efficient computing because of their ability to meet 

varied resource requirements of diverse applications in a 

workload. However, one of the challenges of using a 

heterogeneous multi-core processor is to schedule different 

programs in a workload to matching cores that can deliver the 

most efficient program execution. This paper presents an 

energy-aware scheduling mechanism that employs fuzzy logic 

to calculate the suitability between programs and cores by 

analyzing important inherent program characteristics such as 

instruction dependency distance and branch transition rate. 

The obtained suitability is then used to guide the program 

scheduling in the heterogeneous multi-core system. The 

experimental results show that the proposed suitability-guided 

program scheduling mechanism achieves up to 15.0% average 

reduction in energy-delay product compared with that of the 

random scheduling approach. To the best of our knowledge, 

this study is the first to apply fuzzy logic to schedule programs 

in heterogeneous multi-core systems. 

 

I. INTRODUCTION 

Employing heterogeneity in multi-core processor design is 

demonstrated to be an effective approach toward power 

efficient computing. By integrating different types of cores in 

a single chip, the heterogeneous multi-core processor provides 

the architectural capability to accommodate the diverse 

computational requirements of the applications. It achieves 

efficient computing by running the application on the core 

that is most suitable for its execution in terms of energy delay 

product (EDP)[2]. The recent endeavors in industry 

(CELL[11]) as well as in academia (Core Fusion [9], TFlex 

[8]) further underscore the importance of heterogeneity in the 

multi-core system.    

While the heterogeneous multi-core provides the 

architectural support to match the programs’ diverse resource 

requirements, it is the program scheduling mechanism that 

leverages this architecture opportunity to energy efficient 

computing. However, the problem of how to schedule the 

program to the desired core has not been well solved and 

remains an open question. Prior research on program 

scheduling in heterogeneous system mainly focuses on 

scheduling the subtasks of the applications in order to 

minimize the overall subtask execution time [12][13]. This 

execution time driven scheduling mechanism is no longer 

appropriate in modern heterogeneous multi-core processors 

since the power consumption, in addition to the performance, 

stands out as another major consideration in designing a good 

scheduling algorithm. More recently, Kumar et.al [2] 

proposed a program scheduling mechanism based on dynamic 

core selection to account for the energy efficiency of the 

program execution. It tentatively runs the application on 

neighboring or all cores, samples the performance and power 

characteristics of the application during these tentative runs, 

and chooses the desired core based on the sampled data. 

Although it could adapt to the program phase changes, this 

trial-and-error scheduling method has a significant energy 

overhead not only in the core context switching but also in the 

additional cache snooping after program migration [16]; 

therefore it does not achieve the potential the heterogeneous 

multi-core processor has to offer.  

These existing scheduling methods did not exploit the 

relationship between a program’s inherent characteristics and 

its hardware resource requirements. In fact, a program’s 

hardware demands are governed by its inherent 

characteristics. For example, consider the instruction 

dependency distance distribution of a program (the number of 

instructions between the producer of a data and its consumer). 

As shown in Figure 1(a), the SPEC benchmark apsi has a 

large percentage of instructions with long dependency 

distance, while mcf has a high percentage of instructions with 

short dependency distance. These two opposite trends in 

dependency distance distribution indicate different amounts of 

instruction level parallelism (ILP) in these two programs, and 

hence different requirements of instruction issue width on the 

processor core. As shown in Figure 1(b), apsi demonstrates a 

near constant reduction rate in execution time as the 

instruction issue width goes from 1 to 8. This is because the 

program has sufficient ILP, as indicated in the dependency 

distance distribution, to keep up with the issue width scaling, 

and hence favors processor core with large issue width. On 

the other hand, mcf has a significantly lower reduction rate in 

execution time, and the amplitude of the rate sharply goes 



 

           (a)  

Figure 1. Instruction dependency distance distribution and execution time reduction of 

down as the instruction issue width gets larger, which means 

the program is more suitable to run on a core with small issue 

width. Therefore, programs’ inherent characteristics shape its 

hardware resource demands, and could be used to guide the 

program scheduling in heterogeneous multi-cores.       

 This paper presents a suitability-based approach to leverage 

this intuitive, yet fuzzy, relationship between programs and 

cores for the program scheduling in heterogeneous multi

processors. As shown in Figure 2, the proposed method 

profiles the applications to obtain important 

micro-architecture independent program characteristics

such as the dependency distance distribution, the reuse 

distance distribution and the branch transition rate distribution. 

These characteristics determine the ILP, the data locality as 

well as the branch predictability of the applications, which 

largely define the applications’ overall resource demands. The 

profiled characteristics, coupled with the corresponding 

hardware configurations, are used to generate the suitability 

degree for issue width, cache size and branch predictor size 

respectively. These degrees go through a fuzzy inference 

system, where we can integrate human knowledge in its rule 

system, to produce an overall suitability degree that represents 

the degree of the match between the program and the core. 

We demonstrate that the overall suitability degree has a strong 

enough correlation with EDP to generate high quality 

program scheduling in heterogeneous multi

proposed scheduling method provides up to 15.0

reduction compared with the average EDP of random 

scheduling. The contributions of the paper include:

• Presents a model to measure the suitability between each 

characteristic and its corresponding hardware 

configuration. 

• Employs fuzzy logic in determining the overall 

suitability to guide the program scheduling for efficient

computing in heterogeneous multi-cores.

 The rest of the paper is organized as follows

presents the micro-architecture independent characteristics 

investigated in this paper as well as the suitability metrics for 

these characteristics. Section III describes the fundamentals 

and the implementation of the fuzzy inference system 

employed in this paper. Section IV gives the setup of the 
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Figure 1. Instruction dependency distance distribution and execution time reduction of apsi and 

down as the instruction issue width gets larger, which means 

the program is more suitable to run on a core with small issue 

th. Therefore, programs’ inherent characteristics shape its 

demands, and could be used to guide the 

cores.        

based approach to leverage 

fuzzy, relationship between programs and 

cores for the program scheduling in heterogeneous multi-core 

processors. As shown in Figure 2, the proposed method 

profiles the applications to obtain important 

architecture independent program characteristics [3], 

such as the dependency distance distribution, the reuse 

distance distribution and the branch transition rate distribution. 

These characteristics determine the ILP, the data locality as 

well as the branch predictability of the applications, which 

ely define the applications’ overall resource demands. The 

profiled characteristics, coupled with the corresponding 

hardware configurations, are used to generate the suitability 

degree for issue width, cache size and branch predictor size 

se degrees go through a fuzzy inference 
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the degree of the match between the program and the core. 
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uling method provides up to 15.0% EDP 

reduction compared with the average EDP of random 

ntributions of the paper include: 

Presents a model to measure the suitability between each 

characteristic and its corresponding hardware 

Employs fuzzy logic in determining the overall 

suitability to guide the program scheduling for efficient 

cores. 

follows: Section II 

architecture independent characteristics 

investigated in this paper as well as the suitability metrics for 

these characteristics. Section III describes the fundamentals 

and the implementation of the fuzzy inference system 

is paper. Section IV gives the setup of the 

experimental environment. Section V discusses the 

experimental results. Section VI summaries the related work, 

and Section VII concludes the paper. 

Figure 2. The overall flow to generate the program

instruction mix is used to tune the suitabilit

characteristics.

II. PROGRAM CHARACTERISTICS AND 

The proposed method exploits three major inherent 

characteristics of the programs. Each characteristic is 

associated with a suitability metric, which measures the degree 

of the match between that characteristic and the corresponding 

hardware configuration. This section describes these inherent 

program characteristics as well as the models to obtain the 

corresponding suitability metrics.  

A. Instruction Dependency Distance and

Suitability 

The issue width suitability attempts to measure the match 

between the program’s ILP and the processor’s issue width. 

The program’s ILP could be captured with instruction 

dependency distance, which is defined as the total number of 

instructions in the dynamic instruction stream between the 

producer and the first consumer of a register instance [3]. 

Unlike the conventional read-after-

distance, the instruction dependency distance followed by this 

definition excludes the non-critical RAW 

is more accurate in representing the program’s ILP. 

Specifically, for a given dependency distance distribution, the 

higher the percentage of instructions with long dependency 

mcf
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experimental environment. Section V discusses the 

experimental results. Section VI summaries the related work, 

and Section VII concludes the paper.  

 

to generate the program-core suitability. The 

instruction mix is used to tune the suitability degrees of the three 

characteristics. 

HARACTERISTICS AND SUITABILITY METRICS 

The proposed method exploits three major inherent 

characteristics of the programs. Each characteristic is 

ciated with a suitability metric, which measures the degree 

of the match between that characteristic and the corresponding 

hardware configuration. This section describes these inherent 

program characteristics as well as the models to obtain the 

 

Instruction Dependency Distance and Issue Width 

The issue width suitability attempts to measure the match 

between the program’s ILP and the processor’s issue width. 

The program’s ILP could be captured with instruction 

dependency distance, which is defined as the total number of 

ic instruction stream between the 

consumer of a register instance [3]. 

-write (RAW) dependency 

distance, the instruction dependency distance followed by this 

critical RAW dependencies, hence 

is more accurate in representing the program’s ILP. 

Specifically, for a given dependency distance distribution, the 

higher the percentage of instructions with long dependency 

->8



distance is, the larger the amount of ILP in the program would 

be.  

To calculate the issue width suitability, we classify the 

distances into four groups according to the dependency 

distance distribution, i.e., group 1 with distance of 1, group 2 

with distance of 2-3, group 3 with distance of 4-7, and group 4 

with distance of 8 and larger. Each group has its most suitable 

issue width to exploit its parallelism, that is, issue width of 1 

for group 1, issue width of 2 for group 2, issue width of 4 for 

group 3, and issue width of 8 for group 4. Let Xi, i=1..4, 

represent the issue width from 1 to 8, then the mass center (or 

the weighted average) of the distribution would be ∑ �� ∗������ / ∑ ������  ,where Pi is the percentage of instructions 

whose dependency distance falls in group i. This mass center of 

the distribution indicates where the application locates in the 

spectrum of issue widths. Therefore, the distance between the 

center of mass and the node representing certain issue width 

shows how close the program’s ILP matches the core’s issue 

width, and hence could be the degree of issue width suitability 

when mapping the application to that particular core. The 

equation is shown as follows: 


���
����ℎ�������������� = ��� − ∑ �� ∗ ������ ∑ ������� �   (1) 

This degree, however, has the opposite meaning with the 

original definition of the suitability since the smaller the 

degree is, the closer the distance is, and hence the higher the 

suitability would be. Nevertheless, this degree can still be 

applied in our fuzzy inference system by complementing the 

corresponding conditions in the fuzzy rule base.  

B. Branch Transition Rate and Branch Predictor Suitability 

The branch predictor suitability tries to measure the match 

between program’s branch predictability and the branch 

predictor size. To capture the branch predictability of the 

program, we use branch transition rate, which is demonstrated 

to be an appropriate metric for the branch predictability of the 

program by Huang et.al [14]. Generally speaking, the branch 

instructions with extremely low and extremely high transition 

rate are easy to predict since the branch history pattern of 

these instructions could be captured with short history 

registers. As the transition rate approaches 50%, it becomes 

harder to predict the branch results since longer history 

register is required to capture the history pattern of these 

branch instructions. Based on this observation, we evenly 

divide the transition rates into 10 buckets. Specifically, we 

have the buckets [0, 0.1], [0.1, 0.2], [0.2, 0.3] … [0.9, 1.0]. 

Each bucket i has its percentage �� representing the amount 

of branch instructions whose transition rate falls in that range. 

Since the branch instructions in the buckets [0.4, 0.5] and 

[0.5, 0.6] are the hardest to predict, they are associated with 

the largest branch predictor. The branch instructions in the 

buckets [0.3, 0.4] and [0.6, 0.7] are relatively easier to predict, 

and hence are associated with a smaller branch predictor. 

Same trend applies in buckets [0.2, 0.3] and [0.7, 0.8], and 

buckets [0.1, 0.2] and [0.8, 0.9]. Therefore, similar with the 

way of calculating issue width suitability, we have the 

following equation to calculate the branch suitability: 

    � �!"ℎ�������������� = 

#�� − �$%∗�&'(&)�($'∗�&*(&+�($*∗�&,(&-�($,∗.∗∑ &/�0/12∑ &/(∑ &/)/1-,/1' (.∗∑ &/0/12 #    (2) 

where Bi, i=1..4, are the x coordinates of the nodes 

representing the sizes of the branch predictors, organized in 

an increasing order with B1 the smallest and B4 the largest 

(This study only considers four different-sized branch 

predictors of the same type). We do not consider the buckets 

[0, 0.1] and [0.9, 1] because branch instructions in this range 

are very easy to predict, and even the smallest branch 

predictor in this study would be more than enough for them. 

The parameter w is used to tune the weight of the largest 

branch predictor, and equals α×Pcond. α is an empirically 

determined value, and increases as the instruction issue width 

increases. It is used to keep track of the fact that as the issue 

width gets wider the branch misprediction penalty also 

increases, and hence a larger branch predictor with higher 

prediction accuracy is more desirable. Pcond is the percentage 

of the conditional branches in the instruction mix. A large 

Pcond leads to a large number of hard-to-predict branches, and 

hence the weight of large branch predictor should be high. 

Like the issue width suitability, Equation (2) calculates the 

distance between the mass center of the transition rate 

distribution and the node representing certain branch predictor 

size. Again, this distance has the opposite meaning with the 

original definition of the suitability. Therefore, the 

corresponding conditions in the fuzzy rule base need to be 

complemented before using this distance as the suitability for 

the branch predictor. 

C. Data Reuse Distance and L1 Data Cache Suitability 

The cache suitability attempts to measure the degree of the 

match between the program’s data locality and the cache size. 

The program’s data locality is characterized with data reuse 

distance, which is defined as the number of unique memory 

accesses between two consecutive memory accesses to the 

same block address[15]. By grouping the data accesses in 

terms of their reuse distances, we can have the reuse distance 

distribution, which gives the percentages of the data accesses 

with a certain reuse distance among the total data accesses. 

However, due to the lack of well-defined relationship between 

the reuse distance and the corresponding desired L1 cache 

size, the idea of using the center of mass to represent the 

figure of merit could not be directly applied to reuse distance 

distribution. Therefore, we introduce a different metric, cache 

efficiency, to measure the suitability between the locality of 

the program and the L1 cache size. The cache efficiency is 

defined as PR<C/C, where C is the L1 data cache size and PR<C 

is the percentage of the data accesses with reuse distance less 

than C. The cache efficiency essentially calculates how much 



program locality per unit cache size captures. Since the value 

of suitability has to be in the range between 0 and 1, the cache 

efficiency should be normalized before it can be used as the 

cache suitability, which is shown in the following equation: 

  3�"ℎ
�������������� = &456/ 7/8�&456 78 �9:;   (3) 

where Ci is the L1 data cache size of core i in the 

heterogeneous multi-core processor, and (PR<C/C)max is the 

largest cache efficiency a program can have when it is 

mapped to the cores with different L1 data cache sizes. 

III. FUZZY INFERENCE SYSTEM 

 This paper employs fuzzy logic to combine individual 

suitability metrics and produce an overall suitability that 

indicates the overall degree of the match between a program 

and a core. Fuzzy logic allows explicit human knowledge 

representation using linguistic “IF-THEN” rules, and thus is 

more applicable in the situations like the matching between 

programs and cores, where well-defined deterministic 

mathematical model is not available. In this section, we first 

briefly introduce the fundamentals of fuzzy logic, and then 

describe the design of the fuzzy inference system for the 

program-core suitability. 

A. Fuzzy Inference System (FIS) 

Unlike Boolean logic, the fuzzy inference system uses a 

collection of membership functions and the built-in linguistic 

rules to map the inputs to an output. It is mainly composed of 

four steps: fuzzification, inference, composition, and 

defuzzification [10], as shown in Figure 3.  

The fuzzification process transforms the crisp input values 

into fuzzy degrees via input membership function evaluation. 

This step is necessary because the rules representing human 

knowledge is reasoned with the fuzzy sets. Then in the 

inference step, the fuzzy operator (AND or OR) is applied to 

two or more fuzzified input variables to obtain a number that 

represents the result of the premise for the rule. This number 

is used to truncate the corresponding output fuzzy set that 

represents the output of the rule. The truncated fuzzy sets are 

aggregated into a single fuzzy set during the composition step. 

Finally, the defuzzification process converts this single fuzzy 

set back to a crispy value, usually by calculating the center of 

area under the curve.  

 
Figure 3. Fuzzy inference system 

B. Implementation of FIS 

The task of FIS is to convert three suitability degrees, 

namely, the issue width suitability, the cache suitability and 

the branch predictor suitability, to an overall suitability for the 

program-core pair. Each suitability degree is assigned with 

two possible fuzzy sets, namely, “low” and “high”, leading to 

total eight output membership functions. As shown in Figure 

4, the input membership functions are designed in such a way 

that both “low” and “high” are triangle-shaped with “low” 

covering any value between 0 and 0.9 and “high” covering 

any value between 0.1 than 1.0. In addition, each output 

membership function is associated with a name, which is used 

in the rules to represent the linguistic meaning of the 

suitability level. 

 

Figure 4. Input and output membership functions. The output MFs divide the 

range [0,1] into 8 equal segments. 

   
(a)             (b)                    (c) 

Figure 5. Response surface of the fuzzy inference system 



Table I lists the rules employed in the fuzzy inference 

system. Each rule establishes the mapping relationship 

between the three individual suitability degrees and the 

overall suitability degree based on human knowledge about 

this relationship. For example, if all individual suitability 

degrees are low, which means the program doesn’t fit the core 

from any of the three aspects, the overall suitability is lowest, 

or extremely low (EL). Similarly, if all individual suitability 

degrees are high, the overall suitability is highest, or 

extremely high (EH). The rest of the rules are designed such 

that the three fuzzy variables in the IF conditions have 

different priorities, with “issue width suitability” the highest, 

and the “branch predictor suitability” the lowest. This is the 

case because instruction issue width usually has the most 

significant impact on the execution efficiency of the program, 

followed by the L1 cache size and the branch predictor if we 

do not consider L2 cache. Figure 5 shows the response surface 

of these rules. Three subfigures are required to display the 

overall response surface of the three-input fuzzy inference 

system. Each subfigure has two input variables, with the third 

input set to zero. 

Table I. Rules of the Fuzzy Inference System 

IF THEN 

(issue width suitability is low) AND 

(cache suitability is low) AND 

(branch predictor suitability is low) 

(overall 

suitability is EL) 

(issue width suitability is low) AND 

(cache suitability is low) AND 

(branch predictor suitability is high) 

(overall 

suitability is VL) 

(issue width suitability is low) AND 

(cache suitability is high) AND 

(branch predictor suitability is low) 

(overall 

suitability is L) 

(issue width suitability is high) AND 

(cache suitability is low) AND 

(branch predictor suitability is low) 

(overall 

suitability is ML) 

(issue width suitability is low) AND 

(cache suitability is high) AND 

(branch predictor suitability is high) 

(overall 

suitability is MH) 

(issue width suitability is high) AND 

(cache suitability is low) AND 

(branch predictor suitability is high) 

(overall 

suitability is H) 

(issue width suitability is high) AND 

(cache suitability is high) AND 

(branch predictor suitability is low) 

(overall 

suitability is VH) 

(issue width suitability is high) AND 

(cache suitability is high) AND 

(branch predictor suitability is high) 

(overall 

suitability is EH) 

IV. EXPERIMENT SETUP 

We created a hypothetical single-ISA heterogeneous 

multi-core processor with four different cores. The 

configurations of these cores shall demonstrate enough 

heterogeneity so that the mapping of an application to 

different cores could yield noticeable difference in terms of 

performance and energy consumption. Although the types of 

the cores could be ranging from ASIC accelerator to VLIW 

processor, this paper only focuses on out-of-order superscalar 

processor cores with variations in instruction issue width, L1 

data cache size and branch predictor size.  

Table II. Configuration Options for Three Key Parameters 

Items Configuration Options 

Issue Width single-issue, 2-issue, 4-issue, 8-issue 

L1 D-Cache  

16KB, 4-way, block size 64byte,  

32KB, 4-way, block size 64byte, 

64KB, 4-way, block size 64byte, 

128KB, 4-way, block size 64byte 

Branch 

Predictor 

1K Gshare, 2K Gshare, 4K Gshare, 

8K Gshare 

Table II gives the configuration options of these three 

parameters of the processor. To be consistent with the 

assumptions made in the previous section, each parameter has 

4 possible options, leading to 48 possible core configurations. 

We assign both Xi and Bi (i=1..4),which are the x coordinates 

of the nodes representing the issue widths and branch predictor 

sizes, to be 0.125, 0.25, 0.5, and 1 so that the suitability degree 

would be in the range of [0,1]. These configurations are used to 

evaluate the effectiveness of the suitability metrics we 

proposed. We also compose our heterogeneous quad-core 

processor based on table II to evaluate the effectiveness of the 

proposed suitability-guided program scheduling. The detailed 

configurations of these cores are listed in Table III. Each core 

has a private 512K L2 cache with a hit latency of 12 cycles, and 

a miss latency of 100 cycles. The other parameters, including 

the load/store queue size, and the number of ALUs, are chosen 

in a way that the design of the core is balanced. We assume 

there is no resource sharing between the cores on the chip, and 

the communication and synchronization between the cores are 

not considered in this study. 

Table III. Core Configurations for Multi-core Processor 

Items Configurations 

Core 1 

Out-of-order, 2-issue, Gshare(1k), 16k 4-way 

d-cache 64byte, 32k 2-way i-cache 64byte, 

512k L2 cache 

Core 2 

Out-of-order, 2-issue, Gshare(2k), 32k 4-way 

d-cache 64byte, 32k 2-way i-cache 64byte, 

512k L2 cache 

Core 3 

Out-of-order, 4-issue, Ghsare(4k), 32k 4-way 

d-cache 64byte, 32k 2-way i-cache 64byte, 

512k L2 cache 

Core 4 

Out-of-order, 8-issue, Gshare(8k), 64k 4-way 

d-cache 64byte, 32k 2-way i-cache 64byte, 

512k L2 cache 

The application space of the experiment is composed of 

benchmark programs from SPEC CPU2000, with both integer 

and floating point benchmarks compiled to Alpha-ISA. We 

modified SimProfile from Simplescalar tool set [5] to 

instrument programs and collect the aforementioned 

characteristics. To reduce the time for profiling and 

simulation, each SPEC2000 program is profiled at its single 



Simpoint interval with 100 million instructions [

the entire run of the program. Each Simpoint interval is 

simulated on Wattch [7] to collect the performance and power 

data. Since we assume there is no sharing and communication 

between the programs running on different cores, the overall 

EDP of the multi-core system is the sum of EDP of each core.   

V. EXPERIMENTAL RESULTS  

To demonstrate the effectiveness of the 

program scheduling in heterogeneous multi-core, we need to 

evaluate the quality of the individual suitability metric as well 

as the effectiveness of the overall suitability in guiding the 

program scheduling. This section presents the expe

results for these two. 

A. Evaluation of Individual Suitability  

To evaluate the instruction issue width suitability, we chose 

4 cores with different instruction issue widths, but the rest of 

the hardware configurations are the same. We calculated 

issue width suitability according to the equation (1) and 

ranked the cores according to the calculated suitability for 

each benchmark program. On the other hand, we also 

performed simulations of each program on these cores to 

obtain the corresponding EDPs, and ranked the cores 

according to the simulated EDPs. We use Spearman’s rank 

correlation coefficient [17] to measure the quality of the issue 

width suitability metric, that is, how close the rank according 

to issue width suitability matches the rank a

simulated EDP. Figure 6 shows the rank correlation 

coefficient of each benchmark program. 9 out of the 20 

benchmark programs have the correlation coefficient of 1, 

which indicates a perfect match. The smallest observed rank 

correlation coefficient is 0.6. It should be noted that with 4 

cores, the worst case rank correlation coefficient is 

Therefore, the issue width suitability captures the match 

between the program’s ILP and the issue width with a high 

accuracy.   

Figure 6. Rank correlation coefficient between the rank 

width suitability and the rank according to simulated EDP

 Similarly, to evaluate the branch predictor suitability, we 

selected three groups of processor cores. Each group is a 
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impoint interval with 100 million instructions [6] instead of 

Each Simpoint interval is 

simulated on Wattch [7] to collect the performance and power 

data. Since we assume there is no sharing and communication 

between the programs running on different cores, the overall 

core system is the sum of EDP of each core.    

ESULTS   

To demonstrate the effectiveness of the suitability-based 

core, we need to 

evaluate the quality of the individual suitability metric as well 

as the effectiveness of the overall suitability in guiding the 

program scheduling. This section presents the experimental 

To evaluate the instruction issue width suitability, we chose 

4 cores with different instruction issue widths, but the rest of 

the hardware configurations are the same. We calculated the 

issue width suitability according to the equation (1) and 

ranked the cores according to the calculated suitability for 

each benchmark program. On the other hand, we also 

performed simulations of each program on these cores to 

DPs, and ranked the cores 

according to the simulated EDPs. We use Spearman’s rank 

correlation coefficient [17] to measure the quality of the issue 

width suitability metric, that is, how close the rank according 

to issue width suitability matches the rank according to the 

shows the rank correlation 

coefficient of each benchmark program. 9 out of the 20 

benchmark programs have the correlation coefficient of 1, 

which indicates a perfect match. The smallest observed rank 

ficient is 0.6. It should be noted that with 4 

cores, the worst case rank correlation coefficient is -1. 

Therefore, the issue width suitability captures the match 

between the program’s ILP and the issue width with a high 

 

. Rank correlation coefficient between the rank according to issue 

width suitability and the rank according to simulated EDP. 

Similarly, to evaluate the branch predictor suitability, we 

selected three groups of processor cores. Each group is a 

collection of 4 cores with different branch predictors (as 

shown in table II), and the rest of the hardware configurations 

are the same across these 4 cores. The cores from different 

group have different instruction issue widths, ranging from 2 

to 8. We calculated the branch predictor suitability according 

to the equation (2) and ranked the cores within each group 

according to the calculated suitability for each benchmark 

program. We then calculated the correlation coefficients 

between these ranks and the ranks accord

EDP within each group. As shown in Figure 7

observed correlation coefficient is 0.2 (sixtrack), and the most 

of the other programs have a coefficient above 0.8. Also, as 

the issue width increases, the correlation coeffici

or remains the same for most benchmark programs, which 

demonstrates the effectiveness of the weight we introduced in 

the equation (2). However, the programs, like 

exhibit an opposite trend with the other ones. This is because 

these programs have a small optimum branch history length, 

and as the history length becomes larger, the branch predictor 

becomes less accurate, which is opposite with the assumption 

we made in the branch predictor suitability model. 

Nevertheless, the branch predictor suitability provides a good 

measurement of the match between the program’s branch 

predictability and the branch predictor size. 

Figure 7. Rank correlation coefficient between the rank according to branch 

predictor suitability and the rank according to simulated EDP

 To evaluate the cache suitability, we choose 4 cores with 

different L1 data cache sizes, and employ the method same as 

what we used in evaluating the suitability of instruction issue 

width to obtain the rank correlation coeffici

that the rank correlation coefficient is 1.0 for each benchmark 

program, which means the proposed cache suitability 

perfectly captures the efficiency of L1 data cache. This is not 

surprising because each time L1 cache size doubles, the 

power consumption almost doubles yet the performance gain 

is much less. This effect of diminishing return is properly 

captured in equation (3). 

B. Evaluation of the Overall Suitability

 The objective of the overall suitability is to guide the 

program scheduling in the heterogeneous multi

so that the total energy delay product would be minimized. In 
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of 4 cores with different branch predictors (as 

shown in table II), and the rest of the hardware configurations 

are the same across these 4 cores. The cores from different 

group have different instruction issue widths, ranging from 2 

e branch predictor suitability according 

to the equation (2) and ranked the cores within each group 

according to the calculated suitability for each benchmark 

program. We then calculated the correlation coefficients 

between these ranks and the ranks according to the simulated 

As shown in Figure 7, the smallest 

observed correlation coefficient is 0.2 (sixtrack), and the most 

of the other programs have a coefficient above 0.8. Also, as 

the issue width increases, the correlation coefficient increases 

or remains the same for most benchmark programs, which 

demonstrates the effectiveness of the weight we introduced in 

the equation (2). However, the programs, like art and applu, 

exhibit an opposite trend with the other ones. This is because 

hese programs have a small optimum branch history length, 
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we made in the branch predictor suitability model. 
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order to evaluate the quality of the overall suitability, we ran 

each program on each of the 48 possible cores exhaustively 

and ranked the cores in terms of the simulated EDPs. We also 

ranked these cores according to the overall suitability of 

program-core pair. Figure 8 shows the rank correlation 

coefficient of the two sets of ranks. The minimum observed 

coefficient is 0.58, and the average coefficient is 0.81. This 

result shows the overall suitability captures the match 

between programs and cores with a high quality. 

Figure 8. Rank correlation coefficient between the ranks according to the 

overall suitability and the ranks according to the overall 

 To evaluate the effectiveness of the overall suitability in 

program scheduling, we randomly chose 3 to 8 programs from 

the benchmark suite, and schedule them to the cores in our 

hypothetical heterogeneous quad-core processor, both 

randomly and under the guidance of the suitability. The 

random scheduling method schedules the program from the 

top of the queue to core 1, followed by core 2, core 3, and so 

on. The randomness is achieved by permuting the sequence of 

the programs in the program queue. The suitability

scheduling method first sorts the program-core pairs in terms 

of their overall suitability, and then selects the program with 

the highest rank for the given available core. In case there is a 

tie, the program in the leading position of the program queue 

takes precedence. We then compared the average overall EDP 

with suitability-guided scheduling against the average EDP 

with the random scheduling. Figure 9 shows the average EDP 

reduction achieved by suitability-guided scheduli

the performance of suitability-guided scheduling continuously 

improves as the number of programs in the queue increase, 

with the average EDP reduction rate from 8.1% when the 

program number is 3 to 15.0% when the program number is 8. 

This is because as the number of programs to be scheduled 

increases, it is more likely for the suitability-guided scheduler 

to find the most suitable program for the available core, hence 

reduce the overall EDP cost. Also shown in Figure 8 is the 

average EDP reduction achieved by oracle scheduling. The 

oracle scheduling assumes that the EDP of each program

pair is known even before the program has been executed on 

the core. The mechanism of the oracle scheduling is the same 

as that of the suitability-guided scheduling except that the 

oracle scheduling uses the EDP instead of the suitability to 

determine which program in the queue should be scheduled to 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
o

rr
e

la
ti

o
n

 C
o

e
ff

ic
ie

n
t

Rank Correlation Coefficient

order to evaluate the quality of the overall suitability, we ran 

each program on each of the 48 possible cores exhaustively 

rms of the simulated EDPs. We also 

ranked these cores according to the overall suitability of each 

shows the rank correlation 

coefficient of the two sets of ranks. The minimum observed 

cient is 0.81. This 

result shows the overall suitability captures the match 

between programs and cores with a high quality.  

 

the ranks according to the 

all simulated EDP  

To evaluate the effectiveness of the overall suitability in 

program scheduling, we randomly chose 3 to 8 programs from 

the benchmark suite, and schedule them to the cores in our 

core processor, both 
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random scheduling method schedules the program from the 

top of the queue to core 1, followed by core 2, core 3, and so 

on. The randomness is achieved by permuting the sequence of 

m queue. The suitability-guided 

core pairs in terms 

of their overall suitability, and then selects the program with 

the highest rank for the given available core. In case there is a 

position of the program queue 

takes precedence. We then compared the average overall EDP 

guided scheduling against the average EDP 

shows the average EDP 

guided scheduling. Note that 

guided scheduling continuously 

improves as the number of programs in the queue increase, 

with the average EDP reduction rate from 8.1% when the 

program number is 3 to 15.0% when the program number is 8. 

because as the number of programs to be scheduled 

guided scheduler 

to find the most suitable program for the available core, hence 

reduce the overall EDP cost. Also shown in Figure 8 is the 

tion achieved by oracle scheduling. The 

oracle scheduling assumes that the EDP of each program-core 

pair is known even before the program has been executed on 

the core. The mechanism of the oracle scheduling is the same 

heduling except that the 

oracle scheduling uses the EDP instead of the suitability to 

determine which program in the queue should be scheduled to 

the available core. The oracle scheduling is an ideal case, and 

it sets an upper bound of what different sched

could achieve in average EDP reduction. Note that the 

average EDP reduction rate of the oracle scheduling increases 

from 9.0% to 21.6% as the number of the programs in the 

queue increases from 3 to 8. The maximum observed gap 

between the average EDP reduction of the suitability

scheduling and that of the oracle scheduling is 6.6%, which 

indicates the good quality of the suitability

Figure 9. Average EDP reduction rates achieved with the suitability guided 

program scheduling and with the oracle scheduling when compared with that 

of the random scheduling. The error bars are the 95% confidence interval of 

the EDP reduction rate.

We also compared our suitability

the trial-and-error scheduling proposed by Kumar [2]. To 

implement the trial-and-error scheduling algorithm, we 

tentatively ran the program on the cores for the first 2 million 

instructions and sampled the EDP during this interval. These 

sampled EDPs are used to guide the program scheduling such 

that the program with the minimum sampled EDP in the 

program queue is scheduled to the available core. When we 

calculated the overall EDP, we included the ener

execution time overhead caused by the cache cold start effect 

during the tentative runs. However, we did not consider the 

additional overhead caused by the context switching. Figure 

10 shows the comparison of EDPs between these two 

scheduling mechanisms for several program combinations. As 

can be seen from the figure, the EDP of the suitability

scheduling is always less than that of the trial

scheduling. Obviously the EDP overhead during the tentative 

runs significantly degrades the 

trial-and-error scheduling. In addition, the sampled EDP 

during the tentative runs may not accurately represent overall 

EDP of the entire program phase due to the interference of 

cold start effects. As a result, the scheduling based on t

sampled EDP could possibly yield a large overall EDP of a 

certain program combination. Moreover, if we consider the 

context switching overhead in the tentative runs, the 

performance of trial-and-error scheduling could be even 

worse. Therefore, our suitability

mechanism offers an attractive alternative to the dynamic 

trial-and-error scheduling.      
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Figure 10. EDP comparison between suitability-guided scheduling and 

trial-and-error scheduling. Each program combination has four programs

randomly chosen from the benchmark suite.

VI. RELATED WORK  

There have been several attempts to optimize the program 

scheduling in the heterogeneous computing environment. 

Siegel presented static and hybrid heuristic to schedule the 

subtasks in heterogeneous systems [12][13]. These methods 

were based on the accurate estimation of the execution time of 

each subtask with the objective of minimizing the overall 

completion time of the program. Our method, however, 

performs the scheduling on the granularity of enti

and attempts to achieve efficient computing by minimizing 

the EDP of the heterogeneous multi-core processor.

Kumar et al.[1][2]discussed a dynamic scheduling approach 

based on sampling the program’s behavior during the 

switching intervals. This method tentatively runs the program 

on different cores, each for a short period of time, and then 

schedules the program to the optimum core according to the 

sampled data during the tentative runs. The downside of this 

method is the expensive context switching cost of the 

tentative runs, which may significantly degrade the overall 

efficiency of the multi-core system. In addition, this 

trial-and-error approach does not scale well as the number of 

cores increases. In future many-core chips, sampling a large 

amount of cores before scheduling the program 

impractical because the extra cost of sampling will exceed the 

potential gain of core switching. Our method is static, 

therefore, there is no requirement for tentative runs, and hence 

no additional power overhead at runtime. In addition, our 

method is scalable since it is free of tentative runs.   

Chen et.al [4] also did static application mapping in 

heterogeneous multi-cores based on micro

independent characteristics. Their work is based o

switching gain, which requires one processor core as the 

reference. Our work is based on suitability and does not 

require any core on the chip to be as the reference. 

VII. CONCLUSION  

This paper presents a fuzzy logic based approach to schedule 

the program to its optimum core by analyzing key program 
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guided scheduling and 

error scheduling. Each program combination has four programs 

randomly chosen from the benchmark suite. 

There have been several attempts to optimize the program 

scheduling in the heterogeneous computing environment. 

Siegel presented static and hybrid heuristic to schedule the 

systems [12][13]. These methods 

were based on the accurate estimation of the execution time of 

each subtask with the objective of minimizing the overall 

completion time of the program. Our method, however, 

performs the scheduling on the granularity of entire program, 

and attempts to achieve efficient computing by minimizing 

core processor. 

Kumar et al.[1][2]discussed a dynamic scheduling approach 

based on sampling the program’s behavior during the 

method tentatively runs the program 

on different cores, each for a short period of time, and then 

schedules the program to the optimum core according to the 

sampled data during the tentative runs. The downside of this 

hing cost of the 

tentative runs, which may significantly degrade the overall 

core system. In addition, this 

as the number of 

core chips, sampling a large 

the program would be 

impractical because the extra cost of sampling will exceed the 

potential gain of core switching. Our method is static, 

therefore, there is no requirement for tentative runs, and hence 

r overhead at runtime. In addition, our 

method is scalable since it is free of tentative runs.    

Chen et.al [4] also did static application mapping in 

cores based on micro-architecture 

independent characteristics. Their work is based on the 

switching gain, which requires one processor core as the 

reference. Our work is based on suitability and does not 

require any core on the chip to be as the reference.  

This paper presents a fuzzy logic based approach to schedule 

the program to its optimum core by analyzing key program 

characteristics such as the instruction dependency distance,

data reuse distance, and the branch transition rate. With the 

built-in human intelligence in its rule system, the proposed 

fuzzy logic method can measure the suitability of the 

hard-to-model program-core relationship and use that 

suitability to guide the program scheduling. The experiment 

results show that the proposed 

method achieves up to 15% average 

product compared with that of the 

approach. The proposed method provides an attractive way to 

achieve stable and low, if not minimal, energy

the heterogeneous multi-core processor. 

The future work of this research includes: employing more 

program characteristics in determining the suitability; 

considering the effects of resource sharing and inter

communication; and extending the core type fro

out-of-order superscalar to other types such as VLIW 

processors and SIMD accelerators. 
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