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1. Introduction

State-of-the-art high performance microprocessorsagroriens of millions of transistors and operate at
frequencies close to 2GHz. These processors performaséasks in overlap, employ significant amounts
of speculation and out-of-order execution, and other mich@actural technigues, and are true marvels of
engineering. Designing and evaluating these microprocessarsajor challenge, especially considering
the fact that one second of program execution on thesegmars involves several billion instructions and
analyzing one second of execution may involve dealirtig t&hs of billion pieces of information.

In general, design of microprocessors and computer sysiewolves several steps (i) understanding
applications and workloads that the systems will be runfiiinignovating potential designs (iii) evaluating
performance of the candidate designs, and (iv) seletitimdpest design. The large number of potential
designs and the constantly evolving nature of workloagte hesulted in designs being largely adhoc. In
this article, we investigate major techniques used ip#nfrmance evaluation process.

It should be noted that performance evaluation is needsdvatal stages of the design. In early stages,
when the design is being conceived, performance elaiu@& used to make early design tradeoffs.
Usually, this is accomplished by simulation models, becduskling prototypes of state-of-the-art
microprocessors is expensive and time consuming. Sedesifn decisions are made before any
prototyping is done. Once the design is finalized andiiglimplemented, simulation is used to evaluate
functionality and performance of subsystems. Later, pedace measurement is done after the product is
available in order to understand the performance oatheal system to various real world workloads and
to identify modifications to incorporate in future designs

Performance evaluation can be classified into perfoomanodeling and performance measurement, as
illustrated in Table 1. Performance measurement is gessitly if the system of interest is available for
measurement and only if one has access to the paramétererest. Performance measurement may
further be classified into on-chip hardware monitoring,cbip hardware monitoring, software monitoring
and microcoded instrumentation. Performance modelingpisaily used when actual systems are not
available for measurement or if the actual systems@tohave test points to measure every detail of
interest. Performance modeling may further be diaedsiinto simulation modeling and analytical
modeling. Simulation models may further be classified intomerous categories depending on the
mode/level of detail of simulation. Analytical models ypsebabilistic models, queueing theory, Markov
models or Petri nets.

Table 1. A Classification of Performance Evaluati@tihiques

Microprocessor On-chip Performance Monitoring Counters
Performance Measurement Off-chip Hardware Monitoring

Software Monitoring

Micro-coded Instrumentation

Trace Driven Simulation
Execution Driven Simulation

Simulation Complete System Simulation
Event Driven Simulation
Performance Modeling Software Profiling
Probabilistic Models
Analytical Modeling Queuing Models

Markov Models
Petri Net Models

There are several desirable features that performandelimgymeasurement technigues and tools should
possess.
» They must be accurate. It is easy to build models thateaeily sanitized, however, such
models will not be accurate.



» They must be non-invasive. The measurement praoass not alter the system or degrade
the system's performance.

* They must not be expensive. Building the performance unement facility should not cost
significant amount of time or money.

» They must be easy to change or extend. Microprocessarsomputer systems constantly
undergo changes and it must be easy to extend the modelingfemeasufacility to include
the upgraded system.

» They must not need source code of applications. If taodstachniques necessitate source
code, it will not be possible to evaluate commerajaplications where source is not often
available.

* They should measure all activity including kernel and aséwity. Often it is easy to build
tools that measure only user activity. This was acceptab traditional scientific and
engineering workloads, however in database, web seavet, Java workloads, there is
significant operating system activity and it is impottembuild tools that measure operating
system activity as well.

» They should be capable of measuring a wide variety of afiplisaincluding those that use
signals, exceptions and DLLs (Dynamically Linked Librayries

* They should be user-friendly. Hard to use tools often are uniieed. Hard-to-use tools
also result in more user error.

* They should be fast. If a performance model is veowslong-running workloads which
take hours to run may take days or weeks to run on ttelmif an instrumentation tool is
slow, it can be invasive.

* Models should provide control over aspects that are mesilt should be possible to
selectively measure what is required.

* Models and tools should handle multiprocessor systemsnaittithreaded applications. Dual
and quad-processor systems are very common nowadaysic#jmpls are becoming
increasingly multithreaded especially with the advent @ Jand it is important that the tool
handles these.

o It will be desirable for a performance evaluation téghe to be able to evaluate the
performance of systems that are not yet built.

Many of these requirements are often conflicting. Retance, it is difficult for a mechanism to be fast and
accurate. Consider mathematical models. They areHasigver, several simplifying assumptions go into
their creation and often they are not accurate. Silyitais difficult for a tool to be non-invasive and use
friendly. Many users like graphical user interfaces (GUigwever, most instrumentation and simulation
tools with GUIs are slow and invasive.

Benchmarks and metrics to be used for performance digluhave always been interesting and
controversial issues. There has been a lot of impnem¢ in benchmark suites since 1988. Before that
computer performance evaluation has been largely withl dgrachmarks such as kernels extracted from
applications (eg: Lawrence Livermore Loops), Dhrystong fhetstone benchmarks, Linpack, Sorting,
Sieve of Eratosthenes, 8-queens problem, Tower of Hatwi[1]. The Standard Performance Evaluation
Cooperative (SPEC) consortium and the TransactiomseBsing Council (TPC) formed in 1988 have made
available several benchmark suites and benchmarking guislétirimprove the quality of benchmarking.
Several state-of-the-art benchmark suites are desdrnitsegttion 4.

Another important issue in performance evaluation isctigéce of performance metric. For a system level
designer, execution time and throughput are two importanbrpeshce metrics. Execution time is
generally the most important measure of performaBgecution time is the product of the number of
instructions, cycles per instruction (CPI) and the lclperiod. Throughput of an application is a more
important metric, especially in server systems. Inesarthat serve the banking industry, airline industry,
or other similar business, what is important is thmber of transactions that could be completed in unit
time. Such servers, typically called transaction gseing systems use transactions per minute (tpm) as a
performance metric. MIPS (Millions of InstructionsrFecond) and MFLOPS (Million of Floating Point
Operations Per Second) have been very popular measygegasmance in the past. Both of these are very



simple and straightforward to understand and hence haveubedroften, however, they do not contain all
three components of program execution time and hence araptete measures of performance. There are
also several low level metrics of interest to micomessor designers, in order to help them identify
performance bottlenecks and tune their designs. Cathaties, branch misprediction ratios, number of
off-chip memory accesses, etc are examples of such measu

Another major problem is the issue of reporting penfamce with a single number. A single number is easy
to understand and easy to be used by the trade press. el benchmarks also make it necessary to
find some kind of a mean. Arithmetic Mean, GeometricaMand Harmonic Mean are three ways of
finding the central tendency of a group of numbers, howetvehould be noted that each of these means
should be used in appropriate conditions depending on theenaftuthe numbers which need to be
averaged. Simple arithmetic mean can be used to findgeveracution time from a set of execution times.
Geometric mean can be used to find the central tendehnyetrics that are in the form of ratios (eg:
speedup) and harmonic mean can be used to find the centraidgmdeneasures that are in the form of a
rate (eg: throughput). Cragon [2] and Smith [3] discussisieeof the appropriate mean for a given set of
data. Cragon [2] and Patterson and Hennessy [4] illustea®ral mistakes one could possibly make while
finding a single performance number.

The rest of this article is organized as follows. $&c describes performance measurement techniques
including hardware on-chip performance monitoring counters omopmacessors. Section 3 describes
simulation and analytical modeling of microprocessors @wdputer systems. Section 4 presents several
state-of-the-art benchmark suites for a variety ofkleads. Due to limitations of space in this article, we
describe some typical examples of tools and techniquepravitle the reader with pointers for more
information.

2. Performance M easur ement

Performance measurement is used for understanding sysi&nase already built or prototyped. There are
two major purposes performance measurement can servaing this system or systems to be built (ii)
tune the application if source code and algorithms tilubes changed. Essentially, the process involves (i)
understanding the bottlenecks in the system that hashbhgkrii) understanding the applications that are
running on the system and the match between the feattitb® system and the characteristics of the
workload, and, (iii) innovating design features thatl wiploit the workload features. Performance
measurement can be done via the following means:

* Microprocessor on-chip performance monitoring counters

»  Off-chip hardware monitoring

*  Software monitoring

* Microcoded instrumentation

2.1 On-chip Performance M onitoring Counters

All state-of-the-art high performance microprocessacluding Intel's Pentium Il and Pentium 1V, IBM's
POWER 3 and POWER 4 processors, AMD's Athlon, Compaglisadland Sun's UltraSPARC processors
incorporate on-chip performance monitoring counters wicaih be used to understand performance of
these microprocessors while they run complex, realdwodrkloads. This ability has overcome a serious
limitation of simulators, that they often could not execcomplex workloads. Now, complex run time
systems involving multiple software applications can éwaluated and monitored very closely. All
microprocessor vendors nowadays release informatidhednperformance monitoring counters, although
they are not part of the architecture.

For illustration of on-chip performance monitoring, wese the Intel Pentium processors. The
microprocessors in the Intel Pentium contain two peréorce monitoring counters. These counters can be
read with special instructions (eg: RDPMC) on the msoe The counters can be made to measure user
and kernel activity in combination or in isolation. variety of performance events can be measured using
the counters [50]. For illustration of the nature af #vents that can be measured, Table 2 lists a small
subset of the events that can be measured on the Pétlitiuddhile more than 200 distinct events can be



measured on the Pentium IlIl, only 2 events can be unegsimultaneously. For design simplicity, most
microprocessors limit the number of events that casiimeiltaneously measured to 4 or 5. At times,
certain events are restricted to be accessible brdygh a particular counter. These steps are necessary t
reduce the overhead associated with on-chip performapnné&aring. Performance counters do consume
on-chip real estate. Unless carefully implemented, ¢hayalso impact the processor cycle time.

Table 2. Examples of events that can be measured pmifggmance monitoring counters
on an Intel Pentium Il processor

EVENT Description of Event Event Number in
Hex
DATA_MEM_REFS All loads and stores from/to memory 43H
DCU_LINES_IN Total lines allocated in the data cachi¢ u 45H
IFU_IFETCH Number of instruction fetches (cacheahtel a80H
uncacheable)
IFU_IFETCH_MISS Number of instruction fetch misses 81H
ITLB_MISS Number of Instruction TLB misses 85H
IFU_MEM_STALL Number of cycles instruction fetch ised for | 86H
any reason
L2_IFETCH Number of L2 instruction fetches 28H
L2 LD Number of L2 data loads 29H
L2 ST Number of L2 data stores 2AH
L2_LINES_IN Number of lines allocated in the L2 24H
L2 _RQSTS Total number of L2 requests 2EH
INST_RETIRED Number of instructions retired COH
UOPS_RETIRED Number of micro-operations retired C2H
INST_DECODED Number of instructions decoded DOH
RESOURCE_STALLS Number of cycles in which there isegourcel A2H
related stall
MMX_INSTR_EXEC Number of MMX Instructions Executed BOH
BR_INST_RETIRED Number of branch instructions retired C4H
BR_MISS_PRED_RETIRED Number of mispredicted branchéwdet C5H
BR_TAKEN_RETIRED Number of taken branches retired C9H
BR_INST_DECODED Number of branch instructions decoded OHE
BTB_MISSES Number of branches for which BTB did npoE2H
predict

There are several tools available to measure peafoceusing performance monitoring counters. Table 3
lists some of the available tools. IntéVaine software may be used to perform measurements using the
Intel processor performance counters [5]. H&®erf utility is a plug in for Windows NT performance
monitoring [6]. The Compaq DIGITAL Continuous ProfilingrastructurgDCPI) is a very powerful tool

to profile programs on the Alpha processors [7,8]. Théopeance monitoperf-mon is a small hack that
uses the on-chip counters on UltraSPARC-I/Il processmrgather statistics [9]. Packages like Vtune
perform extensive post-processing and present data in gaafiims. However, some times, extensive
post-processing can result in tools that are somewlvasive.PMON [10] is a counter reading software
written by Juan Rubio of the Laboratory for Computerhitecture at the University of Texas. It provides a
mechanism to read specified counters with minimal or moepable overhead. All these tools measure
user and operating system activity. Since everything oro@egsor is counted, effort should be made to
have minimal or no other undesired process running during exgatiation. This type of performance
measurement can be done on binaries, and no sources cliéred.



Table 3. Software packages for performance counter mezasnt

Tool Platform Reference

VTune IA-32 http://developer.intel.com/software/produdtsie/vtune _oview.htm

P6Perf IA-32 http://developer.intel.com/vtune/p6perf/index.htm

PMON IA-32 http://www.ece.utexas.edu/projects/ece/lca/pmon

DCPI Alpha http://www.research.digital.com/SRC/dcpi/
http://www.research.compaq.com/SRC/dcpi/

Perf-mon UltraSPARC | http://www.sics.se/~mch/perf-manfihdex.html

2.2 Off-chip har dwar e measur ement

Instrumentation using hardware means can also be donttabliiag off-chip hardware, two examples of
which are described in this section.

SpeedTracer from AMD: AMD developed this hardware tracing platform to aid indksign of their x86
microprocessors. When an application is being tracedtaber interrupts the processor on each instruction
boundary. The state of the CPU is captured on eachpteand then transferred to a separate control
machine where the trace is stored. The trace emta@itually all valuable pieces of information forcha
instruction that executes on the processor. Operaggtgra activity can also be traced. However, tracing in
this manner can be invasive, and may slow down the maceslthough the processor is running slower,
external events such as disk and memory accesselsagiien in real time, thus looking very fast to the
slowed-down processor. Usually this issue is addressed bytiagljtise timer interrupt frequency. Use of
this performance monitoring facility can be seen ierfén [11] and Bhargava[12].

Logic Analyzers. Poursepanj and Christie [13] use a Tektronix TLA 700 logic aeely@ analyze 3D
graphics workloads on AMD-K6-2 based systems. Detailed kgalyzer traces are limited by restrictions
on sizes and are typically used for the most importaniosacof the program under analysis. Preliminary
coarse level analysis can be done by performance miagitoounters and software instrumentation.
Poursepanj and Christie used logic analyzer traces fw aeins of frames which covered a second or two
of smooth motion [13].

2.3 Software M onitoring

Software monitoring is often performed by utilizing architeal features such as a trap instruction or a
breakpoint instruction on an actual system, or on aopq@é. The VAX processor from Digital (now
Compagq) had a T-bit that caused an exception after evdrydtisn. Software monitoring used to be an
important mode of performance evaluation before the adfemn-chip performance monitoring counters.
The primary advantage of software monitoring is theg @&asy to do. However, disadvantages include that
the instrumentation can slow down the application. Meeheead of servicing the exception, switching to a
data collection process, and performing the necessaigdrean slow down a program by more than 1000
times. Another disadvantage is that software monitosstems typically only handle the user activity.

2.4 Microcoded | nstrumentation

Digital (now Compagq) used microcoded instrumentation taiolitaces of VAX and Alpha architectures.
The ATUM tool [14] used extensively by Digital in the 1at880s and early 1990s uses microcoded
instrumentation. This is a technique lying between trappiformation on each instruction using
hardware interrupts (traps) or software traps. Thénigagystem essentially modified the VAX microcode
to record all instruction and data references in arves portion of memory. Unlike software monitoring,
ATUM could trace all processes including the operatirsjesy. However, this kind of tracing is invasive,
and can slow down the system by a factor of 10 withoutidireg the time to write the trace to the disk.



3. Performance M odeling

Performance measurement as described in the previousnseah be done only if the actual system or a
prototype exists. It is expensive to build prototypesemly stage evaluation. Hence one needs to resort to
some kind of modeling in order to study systems yet tbuié Performance modeling can be done using
simulation models or analytical models.

3.1 Simulation

Simulation has become the defacto performance modelgthaah in the evaluation of microprocessor
architectures. There are several reasons for this.atleuracy of analytical models in the past has been
insufficient for the type of design decisions computehisgcts wish to make (for instance, what kind of
caches or branch predictors are needed). Hence oyoleade simulation has been used extensively by
architects. Simulators model existing or future machdnemicroprocessors. They are essentially a model
of the system being simulated, written in a high leeehputer language such as C or Java, and running on
some existing machine. The machine on which the sioulruns is called the host machine and the
machine being modeled is called the target machineh Simulators can be constructed in many ways.

Simulators can be functional simulators or timing simask&tThey can be trace driven or execution driven
simulators. They can be simulators of componentdatr df the complete system. Functional simulators
simulate functionality of the target processor, andsgerce provide a component similar to the one being
modeled. The register values of the simulated machinevaitalsle in the equivalent registers of the
simulator. In addition to the values, the simulatdss arovide performance information in terms of cycles
of execution, cache hit ratios, branch predictionsiattc. Thus the simulator is a virtual component
representing the microprocessor or subsystem beinglesbpleis a variety of performance information.

If performance evaluation is the only objective, one du#sneed to model the functionality. For instance,
a cache performance simulator does not need to actiatly values in the cache; it only needs to store
information related to the address of the value beichearh That information is sufficient to determine a
future hit or miss. While it is nice to have the valasswell, a simulator that models functionality in
addition to performance is bound to be slower than a performance simulator. Register Transfer
Language (RTL) models used for functional verificationyraéso be used for performance simulations,
however, these models are very slow for performanamatsdn with real world workloads, and hence are
not discussed in this article.

3.1.1 Trace Driven Smulation

Trace-driven simulation consists of a simulator madebse input is modeled as a trace or sequence of
information representing the instruction sequence that waaid actually executed on the target machine.
A simple trace driven cache simulator needs a tragsisting of address values. Depending on whether the
simulator is modeling a unified instruction or data eadhe address trace should contain addresses of
instruction and data references.

Cachesim5 and Dinero IV are examples of cache simslébo memory reference traces. Cachesimb
comes from Sun Microsystems along with their Shadegupeckl5]. Dinero IV [16] is available from the
University of Wisconsin, Madison. These simulators moé timing simulators. There is no notion of
simulated time or cycles, only references. Theynatdunctional simulators. Data and instructions do not
move in and out of the caches. The primary result of sitioal is hit and miss information. The basic idea
is to simulate a memory hierarchy consisting oiows caches. The various parameters of each cache can
be set separately (architecture, mapping policies, gepiant policies, write policy, statistics). During
initialization, the configuration to be simulated is buift, one cache at a time, starting with each memory
as a special case. After initialization, each refezesded to the appropriate top-level cache by a single
simple function call. Lower levels of the hierarchg &iandled automatically. One does not need to store a
trace while using cachesim5, because Shade can direetitlie trace into cachesimb.



Trace driven simulation is simple and easy to undedstahe simulators are easy to debug. Experiments
are repeatable because the input information is not charfiging run to run. However, trace driven
simulation has two major problems:
1. Traces can be prohibitively long if entire executimissome real-world applications are
considered. The storage needed by the traces may beifivehjiblarge. Trace size is proportional
to the dynamic instruction count of the benchmark.
2. The traces do not represent the actual stream oégsors with branch predictions. Most trace
generators generate traces of only completed or retisaictions in speculative processors. Hence
they do not contain instructions from the mispredictzith.p

The first problem is typically solved using trace sangphnd trace reduction techniques. Trace sampling
is a method to achieve reduced traces. However, thdisgmnshould be performed in such a way that the
resulting trace is representative of the originaldrdt may not be sufficient to periodically sample a
program execution. Locality properties of the resulting secpiemay be widely different from that of the
original sequence. Another technique is to skip tracing artain interval, then collect for a fixed interval
and then skip again. It may also be needed to leaverm wp period after the skip interval, to let the
caches and other such structures to warm up [17]. Sdvaca sampling techniques are discussed by
Crowley and Baer [18]. The QPT trace collection exys{19] solves the trace size issue by splitting the
tracing process into a trace record generation sté@drace regeneration process. The trace record has a
size similar to the static code size, and the tragemeration expands it to the actual full trace upon
demand.

The second problem can be solved by reconstructing theredised path [20]. An image of the
instruction memory space of the application is createghieypass through the trace, and thereafter fetching
from this image as opposed to the trace. While 100% ahikpredicted branch targets may not be in the
recreated image, studies show that more than 95% of tretstaan be located.

3.1.2 Execution Driven Simulation

There are two meanings in which this term is used bgarebers and practitioners. Some refer to
simulators that take program executables as input as exechiiven simulators. These simulators utilize
the actual input executable and not a trace. Henceiteeo$ the input is proportional to the static
instruction count and not the dynamic instruction coltigpredicted branches can be accurately simulated
as well. Thus these simulators solve the two majoblems faced by trace-driven simulators. The widely
used Simplescalar simulator [21] is an example of suokxaaution driven simulator. With this tool set,
the user can simulate real programs on a range of mquecessors and systems, using fast execution-
driven simulation. There is a fast functional simuladod a detailed, out-of-order issue processor that
supports non-blocking caches, speculative execution, atedaftthe-art branch prediction.

Some others consider execution driven simulators ®iralators that rely on actual execution of parts of
code on the host machine (hardware acceleration bydsieinstead of simulation) [22]. These execution
driven simulators do not simulate every individual indtarcin the application. Only the instructions that
are of interest are simulated. The remaining instructawesdirectly executed by the host computer. This
can be done when the instruction set of the ho$teésame as that of the machine being simulated. Such
simulation involves two stages. In the first stag@raprocessing, the application program is modified by
inserting calls to the simulator routines at evefrfiteterest. For instance, for a memory system sitou)
only memory access instructions need to be instrumeRtedther instructions, the only important thing is
to make sure that they get performed and that their eractithe is properly accounted for. The
advantage of execution driven simulation is speed. Byttirexkecuting most instructions at the machine's
execution rate, the simulator can operate orders of magnfaster than cycle by cycle simulators that
emulate each individual instruction. Tango, Proteus and Fek&Examples of such simulators [22].

3.1.3 Complete system simulation

Many execution and trace driven simulators only simulaeprocessor and memory subsystem. Neither
I/O activity nor operating system activity is handled simulators like Simplescalar. But in many



workloads, it is extremely important to consider 1/O amkrating system activity. Complete system
simulators are complete simulation environments that hioalelware components with enough detail to
boot and run a full-blown commercial operating systefthe functionality of the processors, memory
subsystem, disks, buses, SCSI/IDE/FC controllers, mkteontrollers, graphics controllers, CD-ROM,
serial devices, timers, etc are modeled accuratelyderdo achieve this. While functionality stays the
same, different microarchitectures in the processimgpcment can lead to different performance. Most of
the complete system simulators use microarchitectuvdkefs that can be plugged in and out. For instance,
SimOS [23], a popular complete system simulator providesngle pipelined processor model and an
aggressive superscalar processor model. SimOS and SIJ2€35] can simulate uniprocessor and
multiprocessor systems. Table 4 lists popular compisters simulators.

Table 4. Examples of complete system simulators

Simulator Information Site Instruction Set Operatingt&m

SimOS Stanford University MIPS SGI IRIX
http://simos.stanford.edu/

SIMICS Virtutech PC, SPARC and Alpha Solaris 7 and 8, Red Hat
http://www.simics.com Linux 6.2 (both x86,
http://www.virtutech.com SPARC V9, and Alpha

versions), Tru64 (Digita
Unix 4.0F), and
Windows NT 4.0

Bochs http://bochs.sourceforge.net X86 Windows Windows | 95,
Windows NT, Linux,
FreeBSD

3.1.4 Stochastic Discrete Event Driven Smulation

It is possible to simulate systems in such a way tthatinput is derived stochastically rather than as a
trace/executable from an actual execution. For instamee,can construct a memory system simulator in
which the inputs are assumed to arrive according to a faawistribution. Such models can be written in
general purpose languages such as C, or using special tsimul@nguages such as SIMSCRIPT.
Languages such as SIMSCRIPT have several built-in fprésito allow quick simulation of most kinds of
common systems. There are built-in input profiles, uestemplates, process templates, queue structures,
etc. to facilitate easy simulation of common systefs example of the use of event-driven simulators
using SIMSCRIPT may be seen in the performance ewatuat multiple-bus multiprocessor systems in
Kurian et. al [26,27].

3.15 Program Profilers

There are a class of tools called software profiloas, which are similar to simulators and performance
measurement tools. These tools are used to geneaass,trto obtain instruction mix, and a variety of
instruction statistics. They can be thought of as soéwaonitoring on a simulator. They input an
executable and decode and analyze each instruction @xdicatable. These program profilers can be used
as the front end of simulators. A popular program prafitool is Shade for the UltraSparc [15].

Shade

SHADE is a fast instruction-set simulator for executpofiling. It is a simulation and tracing tool that
provides features of simulators and tracers in one tdald& analyzes the original program instructions
and cross-compiles them to sequences of instructionsithatate or trace the original code. Static cross-
compilation can produce fast code, but purely static fxtors cannot simulate and trace all details of
dynamically linked code. One can develop a variety agllaers' to process the information generated by
Shade and create the performance metrics of interesingtance, one can use shade to generate address



traces to feed into a cache analyzer to computatdsrand miss rates of cache configurations. The shade
analyzercachesim5 does exactly this.

Jaba

Jaba [46] is a Java Bytecode Analyzer developed at ttieckdity of Texas for tracing Java programs.
While Java programs can be traced using shade to obtaifeprof native execution, Jaba can yield
profiles at the bytecode level. It uses JVM specificat..1. It allows the user to gather information wtbo

the dynamic execution of a Java application at the Igtacode level. It provides information on
bytecodes executed, load operations, branches executed, branomes, etc. Use of this tool can be
found in [47].

A variety of profiling tools exist for different platfors. In addition to describing the working of Shade,
Cmelik et. al [15] also compares Shade to several qitoditing tools for other platforms. A popular one
for the x86 platform is Etch [51]. Conte and Gimarc [524igood source of information to those interested
in creating profiling tools.

3.2 Analytical Modeling

Analytical performance models, while not popular for wpcocessors are suitable for evaluation of large
computer systems. In large systems where details cdoimnahodeled accurately for cycle accurate
simulation, analytical modeling is an appropriate wayotwain approximate performance metrics.
Computer systems can generally be considered as a Batdviare and software resources and a set of
tasks or jobs competing for using the resources. Mulfeder systems and multiprogrammed systems are
examples.

Analytical models rely on probabilistic methods, queuingrheldlarkov models, or Petri nets to create a
model of the computer system. A large body of literatur@nalytical models of computer exists from the
1970s and early 1980s. Heidelberger and Lavenberg [28] publishedic® summarizing research on
computer performance evaluation models. This articleatest205 references, which cover all important
work on performance evaluation until 1984. Readers interéstedalytical modeling should read this
article.

Analytical models are cost-effective because they amedan efficient solutions to mathematical
equations. However, in order to be able to have tractdigions, often, simplifying assumptions are
made regarding the structure of the model. As a resudlytical models do not capture all the detail
typically built into simulation models. It is generatlyought that carefully constructed analytical models
can provide estimates of average job throughputs and detilcations to within 10% accuracy and
average response times within 30% accuracy. This levelaafuracy while insufficient for
microarchitectural enhancement studies, is sufficientégracity planning in multicomputer systems, 1/0O
subsystem performance evaluation in large server famdsinaearly design evaluations of multiprocessor
systems.

There has not been much work on analytical modelingiafoprocessors. The level of accuracy needed in
trade off analysis for microprocessor structures aarthan what typical analytical models can provide.
However, some effort into this arena came from Noonlad) Shen [29] and Sorin et. al [30]. Those
interested in modeling superscalar processors using igaalytodels should read Noonburg et. al's work
[29] and Sorin et. al's work [30]. Noonburg et. al usedaaskig model to model a pipelined processor.
Sorin et. al used probabilistic techniques to processmuliprocessor composed of superscalar processors.
Queuing theory is also applicable to superscalar procesedeling, as modern superscalar processors
contain instruction queues in which instructions waltéassued to one among a group of functional units.

4, Workloads and Benchmar ks

Benchmarks used for performance evaluation of computeuddshe representative of applications that are
run on actual systems. Contemporary computer applicatichgle a variety of applications, and different
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benchmarks are appropriate for systems targeted foratiffqopurposes. Table 5 lists several popular
benchmarks for different classes of workloads.

Table 5. Popular benchmarks for different categoriegookloads

Workload Category Example Benchmark Suite

SPEC CPU 2000 [31]
Uniprocessor Java Grande Forum Benchmarks [32]
CPU Benchmarks SciMark [33]
ASCI [34]
Parallel Processor SPLASH [35]
NASPAR [36]

Multimedia MediaBench [37]
Embedded EEMBC benchmarks [38]
Digital Signal Processing BDTI benchmarks [39]

Client side SPECjvm98 [31]
CaffeineMark [40]
Java Server side SPECjBB2000 [31]
VolanoMark [41]
Scientific Java Grande Forum Benchmarks [32]
SciMark [33]

OLTP (On-Line Transaction TPC-C [42]

Transaction Processing| Processing) TPC-W [42]
DSS (Decision Suppott TPC-H [42]
Systems) TPC-R [42]
SPEC web99 [31]
Web Server TPC-W [42]
VolanoMark [41]
Electronic commerce | With commercial database TPC-W [42]
Without commercial database SPEC|BB2000 [31]
Mail-server SPECmail2000 [31]
Network File System SPEC SFS 2.0 [31]
SYSMARK [43]
Personal Computer Ziff Davis WinBench [44]

3DMarkMAX99 [45]

4,1 CPU Benchmarks

SPEC CPU2000 is the industry-standardized CPU-intensive benchmark. sthie System Performance
Evaluation Cooperative (SPEC) was founded in 1988 by a smaiber of workstation vendors who
realized that the marketplace was in desperate needlistie standardized performance tests. The basic
SPEC methodology is to provide the benchmarker withaadsirdized suite of source code based upon
existing applications that has already been ported tada variety of platforms by its membership. The
benchmarker then takes this source code, compiles ithéorsystem in question. The use of already
accepted and ported source code greatly reduces the probleraking apples-to-oranges comparisons
SPEC designed CPU2000 to provide a comparative measure plitsointensive performance across the
widest practical range of hardware. The implementatisnlted in source code benchmarks developed
from real user applications. These benchmarks mealserperformance of the processor, memory and
compiler on the tested system. The suite contains oadirfj point programs written in C/Fortran and 11
integer programs (10 written in C and 1 in C++). The SRIETD2000 benchmarks replace the SPEC89,
SPEC92 and SPEC95 benchmarks.

The Java Grande Forum Benchmark suite consists of three groups of benchmarks, microbenchmarks
that test individual low-level operations (eg: arithmetiast, create), Kernel benchmarks which are the
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heart of the algorithms of commonly used applications lfegpsort, encryption/decryption, FFT, Sparse
matrix multiplication, etc), and applications (eg: RayracMonteCarlo simulation, Euler equation
solution, Molecular dynamics, etc) [48]. These are compuensive benchmarks available in Java.

SciMark is a composite Java benchmark measuring the perfoemainnumerical codes occurring in
scientific and engineering applications. It consistsfieé¢ computational kernels: FFT, Gauss-Seidel
relaxation, Sparse matrix-multiply, Monte Carlo inteignat and dense LU factorization. These kernels are
chosen to provide an indication of how well the undegyiava Virtual Machines perform on applications
utilizing these types of algorithms. The problems saespurposely chosen to be small in order to isolate
the effects of memory hierarchy and focus on interk@®/JIT and CPU issues. A larger version of the
benchmark (SciMark 2.0 LARGE) addresses performance eofrttmory subsystem with out-of-cache
problem sizes.

ASCI The Accelerated Strategic Computing Initiative (ASCI) tloé Lawrence Livermore laboratories
contain several numeric codes suitable for evaluatiocoofpute intensive systems. The programs are
available from [34].

SPLASH The SPLASH suite was created by Stanford researcherslf3&}uite contains six scientific and
engineering applications, all of which are parallel Eapions.

TheNAS Paralld Benchmarks (NPB) are a set of 8 programs designedpekialuate the performance of
parallel supercomputers. The benchmarks, which are defiven computational fluid dynamics (CFD)
applications, consist of five kernels and three pseudo-atiplisa

4.2 Embedded and M edia Benchmarks
EEMBC Benchmarks

The EDN Embedded Microprocessor Benchmark Consortium @EM pronounced embassy) was
formed in April 1997 to develop meaningful performance bencksn&or processors in embedded
applications. EEMBC is backed by the majority of thecpssor industry and has therefore established
itself as the industry-standard, embedded processohimamking forum. EEMBC establishes benchmark
standards and provides certified benchmarking results thrinegglitEMBC Certification Labs (ECL) in
Texas and California. The EEMBC's benchmarks comprméta of benchmarks designed to reflect real-
world applications, while it also includes some syrithlenchmarks. These benchmarks target the
automotive/industrial, consumer, networking, office autéomatand telecommunications markets. More
specifically, these benchmarks target specific applicatitat include engine control, digital cameras,
printers, cellular phones, modems, and similar deviggls embedded microprocessors. The EEMBC
consortium dissected these applications and derived 37 indidtmithms that constitutes the EEMBC's
Version 1.0 suite of benchmarks.

BDTI Benchmarks

Berkeley Design Technology, Inc. (BDTI) is a techngadvices company that has focused exclusively on
Digital Signal Processing since 1991. BDTI provides the imgustandard BDTI Benchmarks™, a
proprietary suite of DSP benchmarks. BDTI also develops mubgnchmarks to determine performance
on specific applications The benchmarks contain DSPresitsuch as FIR filter, IIR filter, FFT, dot-
product, and Viterbi decoder.

M ediaBench

The MediaBench benchmark suite consists of several applis belonging to the image processing,
communications and DSP applications. Examples of applitathat are included are JPEG, MPEG,
GSM, G.721 Voice compression, Ghostscript, ADPCM ,JREG is the compression program for images,
MPEG involves encoding/decoding for video transmissioms®&tript is an interpreter for the Postscript
language, and ADPCM is Adaptive differential pulse codelutadion. The MediaBench is an academic
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effort to assemble several media processing relatedhbvemks. An example of the use of these
benchmarks may be found in [49].

4.3 Java Benchmarks

SPECjvm98 The SPECjvm98 suite consists of a set of programs intendadhtuate performance for the
combined hardware (CPU, cache, memory, and otheoptatfpecific performance) and software aspects
(efficiency of JVM, the JIT compiler, and OS implemeintas) of the JVM client platform [31]. The
SPECjvm98 uses common computing features such as integeroatidgflpoint operations, library calls
and I/O, but does not include AWT (window), networking, grabhics. Each benchmark can be run with
three different input sizes referred to as S1, S10 and S100he 7 programs are
compression/decompression (compress), expert systes), (lesabase (db), Java compiler (javac), mpeg3
decoder (mpegaudio), raytracer (mtrt) and a parser (jack).

SPECjbb2000 (Java Business Benchmark) is SPEC's first benchmar&viduating the performance of
server-side Java. The benchmark emulates an electtonimerce workload in a 3-tier system. The
benchmark contains business logic and object manipulationanily representing the activities of the
middle tier in an actual business server. It modelfalegale company with warehouses serving a number
of districts. Customers initiate a set of operatiamshsas placing new orders and checking the status of
existing orders. It is written is Java, adapting a ptethbsiness oriented benchmark called pBOB written
by IBM. Although it is a benchmark that emulates busiriemssactions, it is very different from the
Transaction Processing Council (TPC) benchmarks.reTaiee no actual clients, but they are replaced by
driver threads. Similarly, there is no actual datalbasess. Data is stored as binary trees of objects.

The CaffeineMark 2.5 is the latest in the series of CaffeineMark bench®safmhe benchmark suite
analyses Java system performance in eleven differeyats, nine of which can be run directly over the
internet. It is almost the industry standard Java loerack. The CaffeineMark can be used for comparing
appletviewers, interpreters and JIT compilers from wfie vendors. The CaffeineMark benchmarks can
also be used as a measure of Java applet/applicatianmpanfce across platforms.

VolanoMark is a pure Java server benchmark with long-lasting n&twonnections and high thread
counts. It can be divided into two parts: server anahlethough they are provided in one package. It is
based on a commercial chat server application, thendGlaat which is used in several countries world-
wide. The server accepts connections from the chattclihe chat client simulates many chat rooms and
many users in each chat room. The client continuoesigismessages to the server and waits for the server
to broadcast the messages to the users in the sameocha VolanoMark creates two threads for each
client connection. VolanoMark can be used to test botbdsped scalability of a system. In speed test, it is
run in an iterative fashion on a single machine. Inadifitly test, the server and client are run on separate
machines with high speed network connection.

SciMark, see CPU Benchmarks, section 4.1
Java Grande Forum Benchmarks, see CPU Benchmarks, section 4.1
4.4 Transaction Processing Benchmarks

The Transaction Processing Council (TPC) is a nofitpcorporation founded in 1988 to define
transaction processing and database benchmarks andemidiate objective, verifiable TPC performance
data to the industry. The term transaction is ofterliegppo a wide variety of business and computer
functions. Looked at it as a computer function, a traisacbuld refer to a set of operations including disk
read/writes, operating system calls, or some forndath transfer from one subsystem to another. TPC
regards a transaction as it is commonly understooceibukiness world: a commercial exchange of goods,
services, or money. A typical transaction, as defimethe TPC, would include the updating to a database
system for such things as inventory control (goodslinaireservations (services), or banking (money). In
these environments, a number of customers or semresentatives input and manage their transactions
via a terminal or desktop computer connected to a databgsieally, the TPC produces benchmarks that
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measure transaction processing (TP) and database (EfB)rpance in terms of how many transactions a
given system and database can perform per unit of 8tge, transactions per second or transactions per
minute. The TPC benchmarks can be classified intdejoeies, On Line Transaction Processing (OLTP)
and Decision Support Systems (DSS). OLTP systems atkinsday-to-day business operations (airline
reservations, banks), and are characterized by large nwhbkents who continually access and update
small portions of the database through short runningdctions. Decision support systems are primarily
used for business analysis purposes, to understand busineds, taad for guiding future business
directions. Information from the OLTP side of theibess is periodically fed into the DSS database and
analyzed. DSS workloads are characterized by long runningegubat are primarily read-only and may
span a large fraction of the database. There are émohimarks that are active, TPC-C, TPC-W, TPC-R
and TPC-H. These benchmarks can be run with differentsiags, or scale factors. In the smallest case (or
scale factor =1), the data size is approximately 1 G. 8arlier TPC benchmarks, namely TPC-A, TPC-B,
and TPC-D have become obsolete.

TPC-C

TPC-C is an OLTP benchmarksithulates a complete computing environment where a
population of users executes transactions against a databhe benchmark is centered around the
principal activities (transactions) of a businessilsimo that of a world-wide wholesale supplier. The
transactions include entering and delivering orders, dézgpmpayments, checking the status of orders, and
monitoring the level of stock at the warehouses. Whigebénchmark portrays the activity of a wholesale
supplier, TPC-C is not limited to the activity of anytmandar business segment, but, rather represents any
industry that must manage, sell, or distribute a produstémice. TPC-C involves a mix of five concurrent
transactions of different types and complexity eithazcated on-line or queued for deferred execution.
There are multiple on-line terminal sessions. Thechmark can be configured to use any commercial
database system such as Oracle, DB2 (IBM) or Infor@ignificant disk input and output are involved.
The databases consist of many tables with a widetyeof sizes, attributes, and relationships. The queries
result in contention on data accesses and updates. TP&fGrmance is measured in new-order
transactions per minute. The primary metrics agetthnsaction rate (tpomC) and price per transaction
($/tpmC).

TPC-H

The TPC Benchmark™H (TPC-Haidecision support system (DSS) benchmark. It consists
of a suite of business oriented ad-hoc queries and concdatniodifications. The queries and the data
populating the database have been chosen to have broadryirwdde relevance. This benchmark is
modeled after decision support systems that examine largmeslof data, execute queries with a high
degree of complexity, and give answers to critical bgsinguestions. There are 22 queries in the
benchmark. The performance metric reported by TPC-t4lied the TPC-H Composite Query-per-Hour
Performance Metric (QphH@Size), and the TPC-H RAPmdbrmance metric $/QphH@Size One may
not perform optimizations based on apriori knowledge ofigaén TPC-H.

TPC-R

The TPC Benchmark™R (TPC-Raigecision support benchmark similar to TPC-H, but
which allows additional optimizations based on advancevlgtme of the queries. It consists of a suite of
business oriented queries and concurrent data modificatidissin TPC-H, there are 22 queries. The
performance metric reported by TPC-R is called the TPCdrmposite Query-per-Hour Performance
Metric (QphR@Size), and the TPC-R Price/Performanmetric, $/QphR@Size.

TPC-W

TPC Benchmark™ W (TPC-W) isransactional web benchmark. The workload simulates
the activities of a business oriented transactional webes in an electronic commerce environment. It
supports many of the features of the TPC-C benchmark andevasal additional features related to
dynamic page generation with database access and uptiaiktgple on-line browser sessions and on-line
transaction processing are supported. Contention oa datesses and updates are modeled. The
performance metric reported by TPC-W is the number el imteractions processed per second (WIPS).
Multiple web interactions are used to simulate the dgtofi a retail store, and each interaction is subject to
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a response time constraint. Different profiles casitreilated by varying the ratio of browsing and buying
i.e. simulating customers who are primarily browsing tiode who are primarily shopping.

45 Web server Benchmarks

SPECweb99 is the SPEC benchmark for evaluating the performand&afd Wide Web Servers. It
measures a system's ability to act as a web serVae initial effort from SPEC in this direction was
SPECweb96, but it contained only static workloads, meatiteg the requests were for simply
downloading web pages that do not involve any computationif Bae examines the use of the web, it is
clear that many downloads involve computation to generatéfhrmation the client is requesting. Such
web pages are referred to as dynamic web pages. SPECweh®®es dynamic web pages. The file
accesses are made to closely match today's real-wefbdserver access patterns. The pages also contain
dynamic ad rotation using cookies and table lookups.

VolanoMark See Java Benchmarks, section 4.3.
TPC-W See Transaction Processing Benchmarks, section 4.4

4.6 E-commerce benchmarks — see SPECjbb2000 in Java Benchmarks (section 4.3) and TRC-W
Transaction processing benchmarks (section 4.4)

4.7 Mail server benchmarks

SPECmail2001 is a standardized mail server benchmark designed teurgea system’s ability to act as a
mail server servicing email requests. The benchmark deaizes throughput and response time of a mail
server system under test with realistic network comorest disk storage, and client workloads. The
benchmark focuses on the ISP as opposed to Enterfasseat mail servers, with an overall user count in
the range of approximately 10,000 to 1,000,000 users. The goatniglite objective comparisons of mail
server products.

4.8 File Server Benchmarks
System File Server Version 2.0 (SFS 2.0) is SPEC’s benchmark for measuring NFS (NktWwde

System) file server performance across different verglatforms. It contains a workload that was
developed based on a survey of more than 1,000 file senvdifferent application environments.

4.9 PC Benchmarks
A variety of benchmarks are available, primarily froiff Davis, and Bapco to benchmark the Windows
based personal computer. Table 6 lists the most com@dreRchmarks. Ziff Davis Winstone and Bapco

SYSMARK are benchmarks that measure overall performahde the other benchmarks are intended to
measure performance of one subsystem such as vidediora one aspect such as power.
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Table 6. Popular personal computer benchmarks

Benchmark Description
Business Winstong A system-level, application-based benchmark that memsar®C's overall
[44] performance when running today's top-selling Windows-basedbit3

applications. It runs real 32-bit business applicatibnsuigh a series of scripte
activities and uses the time a PC takes to complete #uivities to produce it
performance scores. The suite includes five Microséfit©2000 applications
(Access, Excel, FrontPage, PowerPoint, and Word), BldtoProject 98,
Lotus Notes R5, NicoMak WinZip, Norton AntiVirus, and Bkpe
Communicator.

WinBench99 [44] | A subsystem-level benchmark that meastivesperformance of a PCjs
graphics, disk, and video subsystems in a Windows environment.
3DwinBench [44] Tests the bus used to carry informatidmwésen the graphics adapter and the
processor subsystem. Hardware graphics adapters, driaeds enhancing
technologies such as MMX/SSE are tested.

CD WinBench99| Measures the performance of a PC's CD-ROM subsystenchvimcludes the

AN

[44] CD drive, controller, and driver, and the systentcpssor
Audio WinBench| Measures the performance of a PC’s audio subsystem witicides the sound
99 [44] card and its driver, the processor, the DirectSoand DirectSound 3D

software, and the speakers.

Battery Mark [44] | Measures battery life on notebook conrsute
I-bench [44] A comprehensive, cross-platform benchmbask tests the performance and
capability of Web clients. The benchmark provides aesesf tests that measure
both how well the client handles features and the degreghich network
access speed affects performance.

Web Bench [44] Measures Web server software performapaeinning different Web serve
packages on the same server hardware or by running a giveb sevver
package on different hardware platforms.

=

NetBench [44] A portable benchmark program that measuneswvell a file server handles file
I/0O requests from clients. NetBench reports throughput anut cksponse time
measurements.

3Dmark MAX 99| From Futuremark Corporation. Is a nice 3D Benchmark whielasures 30

[45] gaming performance. Results are dependent on CPU, mantbitecture, and
the 3D Accelerator employed.

SYSMARK [43] Measures a system’s real-world performanten running typical business

applications. This benchmark suite comprises the retaitions of eigh
application programs and measures the speed with whicdysthem under tes
executes pre-determined scripts of user tasks typicallyprnpeetl when using
these applications. The performance times of the indiidipplications arg
weighted and combined into both category-based performanpessas well a
a single overall score. The application programs eyepldy SYSmark 32 are:
Microsoft Word 7.0 and Lotus WordPro 96 for word processingsrddoft
Excel 7.0 (for spreadsheet), Borland Paradox 7.0 (for daaba3orelDraw|
6.0 (for desktop graphics), Lotus Freelance Graphics 96 aiwoddft
Powerpoint 7.0 (for desktop presentation) and Adobe Pagemakeffo6.
desktop publishing).

—

on— &2

(=)

Techniques and tools for performance evaluation impraar Yy year. For instance, performance
monitoring counters were not available to the publitl &®97. Benchmarks get updated almost every
year. Those interested in experimental performance ei@iusthiould continuously monitor the state-of-
the-art. Table 7 provides sources for the benchmadaitied in this article. The references at the end can
provide new information on tools and benchmarks. Migopssor vendors are inclined to show off their
products in the best light, to projecting results for beraskmthat run well on their system, developing
special optimizations within their compilers just foretisake of improving benchmark scores, and
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stretching the benchmark's behavior while staying withe 'legal’ limits of the benchmark guidelines. It
is extremely important to understand benchmarks, theiuriegtand metrics used for performance
evaluation to really understand the performance results.

Table 7. Benchmark Web sites

Example Benchmark Suite Web site for moreinformation
SPEC CPU 2000 http://www.spec.org
Java Grande Forum Benchmarks http://www.epcc.ed.ac.ulymvde/
SciMark http://math.nist.gov/scimark?2
ASCI http://www.lInl.gov/asci_benchmarks/asci/asci_cod.html
NASPAR http://www.nas.nasa.gov/Software/NPB/
MediaBench http://www.cs.ucla.edu/~leec/mediabench/
EEMBC benchmarks http://www.eembc.org
BDTI benchmarks http://www.bdti.com/
SPECjvm98 http://www.spec.org
CaffeineMark http://www.pendragon-software.com/pendrago8/c
SPECjBB2000 http://www.spec.org
VolanoMark http://www.volano.com/benchmarks.html
TPC-C http://www.tpc.org
TPC-W http://www.tpc.org
TPC-H http://www.tpc.org
TPC-R http://www.tpc.org
SPEC web99 http://www.spec.org
SPECmail2000 http://www.spec.org
SPEC SFS 2.0 http://www.spec.org
SYSMARK http://www.bapco.com/
Ziff Davis Benchmarks http://www.zdnet.com/etestimgldilters/benchmarks
3DMarkMAX99 http://www.pcbenchmarks.com
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