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1. Introduction 
 
State-of-the-art high performance microprocessors contain tens of millions of transistors and operate at 
frequencies close to 2GHz. These processors perform several tasks in overlap, employ significant amounts 
of speculation and out-of-order execution, and other microarchitectural techniques, and are true marvels of 
engineering. Designing and evaluating these microprocessors is a major challenge, especially considering 
the fact that one second of program execution on these processors involves several billion instructions and 
analyzing one second of execution may involve dealing with tens of billion pieces of information. 
 
In general, design of microprocessors and computer systems involves several steps (i) understanding 
applications and workloads that the systems will be running (ii) innovating potential designs (iii) evaluating 
performance of the candidate designs, and  (iv) selecting the best design. The large number of potential 
designs and the constantly evolving nature of workloads have resulted in designs being largely adhoc. In 
this article, we investigate major techniques used in the performance evaluation  process. 
 
It should be noted that performance evaluation is needed at several stages of the design. In early stages, 
when the design is being conceived, performance evaluation is used to make early design tradeoffs.  
Usually, this is accomplished by simulation models, because building prototypes of state-of-the-art 
microprocessors is expensive and time consuming. Several design decisions are made before any 
prototyping is done.  Once the design is finalized and is being implemented, simulation is used to evaluate 
functionality and performance of subsystems. Later, performance measurement is done after the product is 
available in order to understand the performance of the actual system to various real world workloads and 
to identify modifications to incorporate in future designs. 
 
Performance evaluation can be classified into performance modeling and performance measurement, as 
illustrated in Table 1. Performance measurement is possible only if the system of interest is available for 
measurement and only if one has access to the parameters of interest. Performance measurement may 
further be classified into on-chip hardware monitoring, off-chip hardware monitoring, software monitoring 
and microcoded instrumentation.  Performance modeling is typically used when actual systems are not 
available for measurement or if the actual systems do not have test points to measure every detail of 
interest.  Performance modeling may further be classified into simulation modeling and analytical 
modeling. Simulation models may further be classified into numerous categories depending on the 
mode/level of detail of simulation.  Analytical models use probabilistic models, queueing theory, Markov 
models or Petri nets.  
 

Table 1. A Classification of Performance Evaluation Techniques 
 

Microprocessor On-chip Performance Monitoring Counters  
Off-chip Hardware Monitoring  
Software Monitoring 

 
Performance Measurement 

Micro-coded Instrumentation  
Trace Driven Simulation  
Execution Driven Simulation 
Complete System Simulation 
Event Driven Simulation 

 
 
Simulation 

Software Profiling 
Probabilistic Models 
Queuing Models 
Markov Models 

 
 
 
 
Performance Modeling 

 
Analytical Modeling 

Petri Net Models 
 
There are several desirable features that performance modeling/measurement techniques and tools should 
possess. 

• They must be accurate.  It is easy to build models that are heavily sanitized, however, such 
models will not be accurate. 
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• They must be non-invasive.  The measurement process must not alter the system or degrade 
the system's performance. 

• They must not be expensive.  Building the performance measurement facility should not cost 
significant amount of time or money. 

• They must be easy to change or extend. Microprocessors and computer systems constantly 
undergo changes and it must be easy to extend the modeling/measurement facility to include 
the upgraded system. 

• They must not need source code of applications. If tools and techniques necessitate source 
code, it will not be possible to evaluate commercial applications where source is not often 
available. 

• They should measure all activity including kernel and user activity. Often it is easy to build 
tools that measure only user activity. This was acceptable in traditional scientific and 
engineering workloads, however in database, web server, and Java workloads, there is 
significant operating system activity and it is important to build tools that measure operating 
system activity as well. 

• They should be capable of measuring a wide variety of applications including those that use 
signals, exceptions and DLLs (Dynamically Linked Libraries). 

• They should be user-friendly. Hard to use tools often are under-utilized.  Hard-to-use tools 
also result in more user error. 

• They should be fast.  If a performance model is very slow, long-running workloads which  
take hours to run may take days or weeks to run on the model. If an instrumentation tool is 
slow, it can be invasive. 

• Models should provide control over aspects that are measured. It should be possible to 
selectively measure what is required. 

• Models and tools should handle multiprocessor systems and multithreaded applications. Dual 
and quad-processor systems are very common nowadays. Applications are becoming 
increasingly multithreaded especially with the advent of Java, and it is important that the tool 
handles these. 

• It will be desirable for a performance evaluation technique to be able to evaluate the 
performance of systems that are not yet built. 

 
Many of these requirements are often conflicting. For instance, it is difficult for a mechanism to be fast and 
accurate. Consider mathematical models. They are fast, however, several simplifying assumptions go into 
their creation and often they are not accurate. Similarly it is difficult for a tool to be non-invasive and user-
friendly. Many users like graphical user interfaces (GUIs), however, most instrumentation and simulation 
tools with GUIs are slow and invasive. 
 
Benchmarks and metrics to be used for performance evaluation have always been interesting and 
controversial issues. There has been a lot of improvement in benchmark suites since 1988. Before that 
computer performance evaluation has been largely with small benchmarks such as kernels extracted from 
applications (eg: Lawrence Livermore Loops), Dhrystone and Whetstone benchmarks, Linpack, Sorting, 
Sieve of Eratosthenes, 8-queens problem, Tower of Hanoi, etc. [1]. The Standard Performance Evaluation 
Cooperative (SPEC) consortium and the Transactions Processing Council (TPC) formed in 1988 have made 
available several benchmark suites and benchmarking guidelines to improve the quality of benchmarking. 
Several state-of-the-art benchmark suites are described in section 4. 
 
Another important issue in performance evaluation is the choice of performance metric. For a system level 
designer, execution time and throughput are two important performance metrics. Execution time is 
generally the most important measure of performance. Execution time is the product of the number of 
instructions, cycles per instruction (CPI) and the clock period. Throughput of an application is a more 
important metric, especially in server systems. In servers that serve the banking industry, airline industry, 
or other  similar business, what is important is the number of transactions that could be completed in unit 
time.  Such servers, typically called transaction processing systems use transactions per minute (tpm) as a 
performance metric. MIPS (Millions of Instructions Per Second) and MFLOPS (Million of Floating Point 
Operations Per Second) have been very popular measures of performance in the past. Both of these are very 
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simple and straightforward to understand and hence have been used often, however, they  do not contain all 
three components of program execution time and hence are incomplete measures of performance. There are 
also several low level metrics of interest to microprocessor designers, in order to help them identify 
performance bottlenecks and tune their designs. Cache hit ratios, branch misprediction ratios, number of 
off-chip memory accesses, etc are examples of such measures. 
 
Another major problem is the issue of reporting performance with a single number. A single number is easy 
to understand and easy to be used by the trade press. Use of several benchmarks also make it necessary to 
find some kind of a mean. Arithmetic Mean, Geometric Mean and Harmonic Mean are three ways of 
finding the central tendency of a group of numbers, however, it should be noted that each of these means 
should be used in appropriate conditions depending on the nature of the numbers which need to be 
averaged. Simple arithmetic mean can be used to find average execution time from a set of execution times. 
Geometric mean can be used to find the central tendency of metrics that are in the form of ratios (eg: 
speedup) and harmonic mean can be used to find the central tendency of measures that are in the form of a 
rate (eg: throughput).  Cragon [2]  and Smith [3] discuss the use of the appropriate mean for a given set of 
data. Cragon [2] and Patterson and Hennessy [4] illustrate several mistakes one could possibly make while 
finding a single performance number.  
 
The rest of this article is organized as follows. Section 2 describes performance measurement techniques 
including hardware on-chip performance monitoring counters on microprocessors. Section 3 describes 
simulation and analytical modeling of microprocessors and computer systems. Section 4 presents several 
state-of-the-art benchmark suites for a variety of workloads.  Due to limitations of space in this article, we 
describe some typical examples of tools and techniques and provide the reader with pointers for more 
information. 
 
2.  Performance Measurement 
 
Performance measurement is used for understanding systems that are already built or prototyped. There are 
two major purposes performance measurement can serve: (i)  tune this system or systems to be built (ii) 
tune the application if source code and algorithms can still be changed. Essentially, the process involves (i) 
understanding the bottlenecks in the system that has been built (ii) understanding the applications that are 
running on the system and the match between the features of the system and the characteristics of the 
workload, and,  (iii) innovating design features that will exploit the workload features. Performance 
measurement can be done via the following means: 

• Microprocessor on-chip performance monitoring counters 
• Off-chip hardware monitoring 
• Software monitoring 
• Microcoded instrumentation 

 
2.1 On-chip Performance Monitoring Counters  
 
All state-of-the-art high performance microprocessors including Intel's Pentium III and Pentium IV, IBM's 
POWER 3 and POWER 4 processors, AMD's Athlon, Compaq's Alpha, and Sun's UltraSPARC processors 
incorporate on-chip performance monitoring counters which can be used to understand performance of 
these microprocessors while they run complex, real-world workloads. This ability has overcome a serious 
limitation of simulators, that they often could not execute complex workloads. Now, complex run time 
systems involving multiple software applications can be evaluated and monitored very closely. All 
microprocessor vendors nowadays release information on their performance monitoring counters, although 
they are not part of the architecture.  
 
For illustration of on-chip performance monitoring, we use the Intel Pentium processors. The 
microprocessors in the Intel Pentium contain two performance monitoring counters. These counters can be 
read with special instructions (eg: RDPMC) on the processor. The counters can be made to measure user 
and kernel activity in combination or in isolation.  A variety of performance events can be measured using 
the counters [50]. For illustration of the nature of the events that can be measured, Table 2 lists a small 
subset of the events that can be measured on the Pentium III.  While more than 200 distinct events can be 
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measured on the Pentium III, only 2 events can be measured simultaneously. For design simplicity, most 
microprocessors limit the number of events that can be simultaneously measured to 4 or 5.  At times, 
certain events are restricted to be accessible only through a particular counter.  These steps are necessary to 
reduce the overhead associated with on-chip performance monitoring.  Performance counters do consume 
on-chip real estate.  Unless carefully implemented, they can also impact the processor cycle time.  
 

Table 2. Examples of events that can be measured using performance monitoring counters 
 on an Intel Pentium III processor 

EVENT Description of Event Event Number in 
Hex 

DATA_MEM_REFS  All loads and stores from/to memory  43H 
DCU_LINES_IN   Total lines allocated in the data cache unit  45H 
IFU_IFETCH   Number of instruction fetches (cacheable and 

uncacheable) 
80H 

IFU_IFETCH_MISS  Number of instruction fetch misses   81H 
ITLB_MISS   Number of Instruction TLB misses   85H 
IFU_MEM_STALL  Number of cycles instruction fetch is stalled for 

any reason 
86H 

L2_IFETCH   Number of L2 instruction fetches 28H 
L2_LD    Number of L2 data loads  29H 
L2_ST    Number of L2 data stores  2AH 
L2_LINES_IN   Number of lines allocated in the L2  24H 

L2_RQSTS   Total number of L2 requests 2EH 
INST_RETIRED   Number of instructions retired C0H 
UOPS_RETIRED  Number of  micro-operations retired  C2H 
INST_DECODED  Number of instructions decoded D0H 
RESOURCE_STALLS  Number of cycles in which there is a resource 

related stall  
A2H 

MMX_INSTR_EXEC  Number of MMX Instructions Executed  B0H 
BR_INST_RETIRED  Number of branch instructions retired  C4H 
BR_MISS_PRED_RETIRED Number of mispredicted branches retired  C5H 

BR_TAKEN_RETIRED  Number of taken branches retired   C9H 

BR_INST_DECODED  Number of branch instructions decoded  E0H 
BTB_MISSES  
  

Number of branches for which BTB did not 
predict 

E2H 

 
There are several tools available to measure performance using performance monitoring counters. Table 3 
lists some of the available tools. Intel's Vtune software may be used to perform measurements using the 
Intel processor performance counters [5]. The P6Perf utility is a plug in for Windows NT performance 
monitoring [6].  The Compaq DIGITAL Continuous Profiling Infrastructure (DCPI) is a very powerful tool 
to profile programs on the Alpha processors [7,8]. The performance monitor perf-mon is a small hack that 
uses the on-chip counters on UltraSPARC-I/II processors to gather statistics [9]. Packages like Vtune 
perform extensive post-processing and present data in graphical forms. However, some times, extensive 
post-processing can result in tools that are somewhat invasive. PMON [10] is a counter reading software 
written by Juan Rubio of the Laboratory for Computer Architecture at the University of Texas. It provides a 
mechanism to read specified counters with minimal or no perceivable overhead. All these tools measure 
user and operating system activity. Since everything on a processor is counted, effort should be made to 
have minimal or no other undesired process running during experimentation. This type of performance 
measurement can be done on binaries, and no source code is desired.  
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Table 3. Software packages for performance counter measurement 

Tool Platform Reference 
VTune IA-32  http://developer.intel.com/software/products/vtune/vtune_oview.htm 
P6Perf IA-32 http://developer.intel.com/vtune/p6perf/index.htm 
PMON IA-32 http://www.ece.utexas.edu/projects/ece/lca/pmon 
DCPI Alpha http://www.research.digital.com/SRC/dcpi/ 

http://www.research.compaq.com/SRC/dcpi/ 
Perf-mon UltraSPARC http://www.sics.se/~mch/perf-monitor/index.html 

 
2.2 Off-chip hardware measurement 
 
Instrumentation using hardware means can also be done by attaching off-chip hardware, two examples of 
which are described in this section.  
 
SpeedTracer from AMD: AMD developed this hardware tracing platform to aid in the design of their x86 
microprocessors. When an application is being traced, the tracer interrupts the processor on each instruction 
boundary. The state of the CPU is captured on each interrupt and then transferred to a separate control 
machine  where the trace is stored. The trace contains virtually all valuable pieces of information  for each 
instruction that executes on the processor. Operating system activity can also be traced. However, tracing in 
this manner can be invasive, and may slow down the processor. Although the processor is running slower, 
external events such as disk and memory accesses still happen in real time, thus looking very fast to the 
slowed-down processor. Usually this issue is addressed by adjusting the timer interrupt frequency. Use of 
this performance monitoring facility can be seen in Merten [11] and Bhargava[12]. 
 
Logic Analyzers: Poursepanj and Christie [13] use a Tektronix TLA 700 logic analyzer to analyze 3D 
graphics workloads on AMD-K6-2 based systems.  Detailed logic analyzer traces are limited by restrictions 
on sizes and are typically used for the most important sections of the program under analysis. Preliminary 
coarse level analysis can be done by performance monitoring counters and software instrumentation. 
Poursepanj and Christie used logic analyzer traces for a few tens of frames which covered  a second or two 
of smooth motion [13]. 
 
2.3 Software Monitoring  
 
Software monitoring is often performed by utilizing architectural features such as a trap instruction or a 
breakpoint instruction on an actual system, or on a prototype. The VAX processor from Digital (now 
Compaq) had a T-bit that caused an exception after every instruction. Software monitoring used to be an 
important mode of performance evaluation before the advent of on-chip performance monitoring counters. 
The primary advantage of software monitoring is that it is easy to do. However, disadvantages include that 
the instrumentation can slow down the application.  The overhead of servicing the exception, switching to a 
data collection process, and performing the necessary tracing can slow down a program by more than 1000 
times.  Another disadvantage is that software monitoring systems typically only handle the user activity. 
 
2.4 Microcoded Instrumentation 
 
Digital (now Compaq) used microcoded instrumentation to obtain traces of VAX and Alpha architectures. 
The ATUM tool [14] used extensively by Digital in the late 1980s and early 1990s uses microcoded 
instrumentation. This is a technique lying between  trapping information on each instruction using 
hardware interrupts (traps) or software traps.  The tracing system essentially modified the VAX microcode 
to record all instruction and data references in a reserved portion of memory. Unlike software monitoring, 
ATUM could trace all processes including the operating system.  However, this kind of tracing is invasive, 
and can slow down the system by a factor of 10 without including the time to write the trace to the disk.  
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3. Performance Modeling 
 
Performance measurement as described in the previous section can be done only if the actual system or a 
prototype exists. It is expensive to build prototypes for early stage evaluation. Hence one needs to resort to 
some kind of modeling in order to study systems yet to be built. Performance modeling can be done using 
simulation models or analytical models.  
 
3.1 Simulation 
 
Simulation has become the defacto performance modeling method in the evaluation of microprocessor 
architectures. There are several reasons for this. The accuracy of analytical models in the past has been 
insufficient for the type of design decisions computer architects wish to make (for instance, what kind of 
caches or branch predictors are needed). Hence cycle accurate simulation has been used extensively by 
architects. Simulators  model existing or future machines or microprocessors. They are essentially a model 
of the system being simulated, written in a high level computer language such as C or Java, and running on 
some existing machine. The machine on which the simulator runs is called the host machine and the 
machine being modeled is called the target machine.  Such simulators can be constructed in many ways.  
 
Simulators can be functional simulators or timing simulators. They can be trace driven or execution driven 
simulators.  They can be simulators of components or that of the complete system. Functional simulators 
simulate functionality of the target processor, and in essence provide a component similar to the one being 
modeled. The register values of the simulated machine are available in the equivalent registers of the 
simulator. In addition to the values, the simulators also provide performance information in terms of cycles 
of execution, cache hit ratios, branch prediction rates, etc. Thus the simulator is a virtual component 
representing the microprocessor or subsystem being modeled plus a variety of performance information.  
 
If performance evaluation is the only objective, one does not need to model the functionality. For instance, 
a cache performance simulator does not need to actually store values in the cache; it only needs to store 
information related to the address of the value being cached. That information is sufficient to determine a 
future hit or miss. While it is nice to have the values as well, a simulator that models functionality in 
addition to performance is bound to be slower than a pure performance simulator. Register Transfer 
Language (RTL) models used for functional verification may also be used for performance simulations, 
however, these models are very slow for performance estimation with real world workloads, and hence are 
not discussed in this article. 
 
3.1.1 Trace  Driven Simulation 
 
Trace-driven simulation consists of a simulator model whose input is modeled as a trace or sequence of 
information representing the instruction sequence that would have actually executed on the target machine. 
A simple trace driven cache simulator needs a trace consisting of address values. Depending on whether the 
simulator is modeling a unified instruction or data cache, the address trace should contain addresses of 
instruction and data references. 
 
Cachesim5 and Dinero IV are examples of  cache simulators for memory reference traces. Cachesim5 
comes from Sun Microsystems along with their Shade package [15]. Dinero IV [16] is available from the 
University of Wisconsin, Madison. These simulators are not timing simulators. There is no notion of 
simulated time or cycles, only references.  They are not functional simulators. Data and instructions do not 
move in and out of the caches. The primary result of simulation is hit and miss information. The basic idea 
is to simulate a memory hierarchy consisting of various caches. The various parameters of each cache can 
be set separately (architecture, mapping policies, replacement policies, write policy,  statistics). During 
initialization, the configuration to be simulated is built up, one cache at a time, starting with each memory 
as a special case. After initialization, each reference is fed to the appropriate top-level cache by a single 
simple function call. Lower levels of the hierarchy are handled automatically. One does not need to store a 
trace while using cachesim5, because Shade can directly feed the trace into cachesim5. 
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Trace driven simulation is simple and easy to understand. The simulators are easy to debug. Experiments 
are repeatable because the input information is not changing from run to run. However, trace driven 
simulation has two major problems: 

1. Traces can be prohibitively long if entire executions of some real-world applications are 
considered. The storage needed by the traces may be prohibitively large. Trace size is proportional 
to the dynamic instruction count of the benchmark. 
2. The traces do not represent the actual stream of processors with branch predictions. Most trace 
generators generate traces of only completed or retired instructions in speculative processors. Hence 
they do not contain instructions from the mispredicted path.  

 
The first problem is typically solved using  trace sampling and trace reduction techniques. Trace sampling 
is a method to achieve reduced traces. However, the sampling should be performed in such a way that the 
resulting trace is representative of the original trace. It may not be sufficient to periodically sample a 
program execution. Locality properties of the resulting sequence may be widely different from that of the 
original sequence. Another technique is to skip tracing for a certain interval, then collect for a fixed interval 
and then skip again. It may also be needed to leave a warm up period after the skip interval, to let the 
caches and other such structures to warm up [17].  Several trace sampling techniques are discussed by 
Crowley and Baer [18].  The QPT trace collection system [19] solves the trace size issue by splitting the 
tracing process into a trace record generation step and a trace regeneration process. The trace record has a 
size similar to the static code size, and the trace regeneration expands it to the actual full trace upon 
demand.   
 
The second problem can be solved by reconstructing the mispredicted path [20]. An image of the 
instruction memory space of the application is created by one pass through the trace, and thereafter fetching 
from this image as opposed to the trace. While 100% of the mispredicted branch targets may not be in the 
recreated image, studies show that more than 95% of the targets can be located. 
 
3.1.2 Execution Driven Simulation 
 
There are two meanings in which this term is used by researchers and practitioners. Some refer to 
simulators that take program executables as input as execution driven simulators. These simulators utilize 
the actual input executable and not a trace. Hence the size of the input is proportional to the static 
instruction count and not the dynamic instruction count. Mispredicted branches can be accurately simulated 
as well.  Thus these simulators solve the two major problems faced by trace-driven simulators. The widely 
used Simplescalar simulator [21] is an example of such an execution driven simulator. With this tool set, 
the user can simulate real programs on a range of modern processors and systems, using fast execution-
driven simulation. There is a fast functional simulator and a detailed, out-of-order issue processor that 
supports non-blocking caches, speculative execution, and state-of-the-art branch prediction. 
 
Some others consider execution driven simulators to be simulators that rely on actual execution of parts of 
code on the host machine (hardware acceleration by the host instead of simulation) [22]. These execution 
driven simulators do not simulate every individual instruction in the application. Only the instructions that 
are of interest are simulated. The remaining instructions are directly executed by the host computer. This 
can be done when the instruction set of the host is the same as that of the machine being simulated. Such 
simulation involves two stages. In the first stage or preprocessing, the application program is modified by 
inserting calls to the simulator routines at events of interest. For instance, for a memory system simulator, 
only memory access instructions need to be instrumented. For other instructions, the only important thing is 
to make sure that they get performed and that their execution time is properly accounted for.  The 
advantage of execution driven simulation is speed. By directly executing most instructions at the machine's 
execution rate, the simulator can operate orders of magnitude faster than cycle by cycle simulators that 
emulate each individual instruction.  Tango, Proteus and FAST are examples of such simulators [22]. 
 
3.1.3 Complete system simulation  
 
Many execution and trace driven simulators only simulate the processor and memory subsystem. Neither 
I/O activity nor operating system activity is handled in simulators like Simplescalar. But in many 
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workloads, it is extremely important to consider I/O and operating system activity. Complete system 
simulators are complete simulation environments that model hardware components with enough detail to 
boot and run a full-blown commercial operating system.  The functionality of the processors, memory 
subsystem, disks, buses, SCSI/IDE/FC controllers, network controllers, graphics controllers, CD-ROM, 
serial devices, timers, etc are modeled accurately in order to achieve this. While functionality stays the 
same, different microarchitectures in the processing component can lead to different performance. Most of 
the complete system simulators use microarchitectural models that can be plugged in and out. For instance, 
SimOS [23], a popular complete system simulator provides a simple pipelined processor model and an 
aggressive superscalar processor model. SimOS and SIMICS [24,25] can simulate uniprocessor and 
multiprocessor systems. Table 4 lists popular complete system simulators. 
 

Table 4. Examples of complete system simulators 
 
Simulator Information Site Instruction Set Operating System 
SimOS Stanford University 

http://simos.stanford.edu/ 
MIPS SGI IRIX 

SIMICS Virtutech 
http://www.simics.com 
http://www.virtutech.com 
 

PC, SPARC and Alpha Solaris 7 and 8, Red Hat 
Linux 6.2 (both x86, 
SPARC V9, and Alpha 
versions), Tru64 (Digital 
Unix 4.0F), and 
Windows NT 4.0 

Bochs http://bochs.sourceforge.net  X86  Windows Windows 95, 
Windows NT, Linux, 
FreeBSD 

 
 
3.1.4 Stochastic Discrete Event Driven Simulation 
 
It is possible to simulate systems in such a way that the input is derived stochastically rather than as a 
trace/executable from an actual execution. For instance, one can construct a memory system simulator in 
which the inputs are assumed to arrive according to a Gaussian distribution. Such models can be written in 
general purpose languages such as C, or using special simulation languages such as SIMSCRIPT. 
Languages such as SIMSCRIPT have several built-in primitives to allow quick simulation of most kinds of 
common systems.  There are built-in input profiles, resource templates, process templates, queue structures, 
etc. to facilitate easy simulation of common systems. An example of the use of event-driven simulators 
using  SIMSCRIPT may be seen in the performance evaluation of multiple-bus multiprocessor systems in 
Kurian et. al [26,27]. 
 
3.1.5 Program Profilers 
 
There are a class of tools called software profiling tools, which are similar to simulators and performance 
measurement tools. These tools are used to generate traces, to obtain instruction mix, and a variety of 
instruction statistics. They can be thought of as software monitoring on a simulator. They input an 
executable and decode and analyze each instruction in the executable. These program profilers can be used 
as the front end of simulators. A popular program profiling tool is Shade for the UltraSparc [15].  
 
Shade 
 
SHADE is a fast instruction-set simulator for execution profiling. It is a simulation and tracing tool that 
provides features of simulators and tracers in one tool. Shade analyzes the original program instructions 
and cross-compiles them to sequences of instructions that simulate or trace the original code. Static cross-
compilation can produce fast code, but purely static translators cannot simulate and trace all details of 
dynamically linked code. One can develop a variety of  'analyzers' to process the information generated by 
Shade and create the performance metrics of interest. For instance, one can use shade to generate address 
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traces to feed into a cache analyzer to compute hit-rates and miss rates of cache configurations. The shade 
analyzer cachesim5 does exactly this.  
 
Jaba 
 
Jaba [46] is a Java Bytecode Analyzer developed at the University of Texas for tracing Java programs. 
While Java programs can be traced using shade to obtain profiles of native execution, Jaba can yield 
profiles at the bytecode level.  It uses JVM specification 1.1. It allows the user to gather information about 
the dynamic execution of a Java application at the Java bytecode level. It provides information on 
bytecodes executed, load operations, branches executed, branch outcomes, etc. Use of this tool can be 
found in [47]. 
 
A variety of profiling tools exist for different platforms. In addition to describing the working of Shade, 
Cmelik et. al [15] also compares Shade to several other profiling tools for other platforms. A popular one 
for the x86 platform is Etch [51]. Conte and Gimarc [52] is a good source of information to those interested 
in creating profiling tools.  
 
3.2  Analytical Modeling 
 
Analytical performance models, while not popular for microprocessors are suitable for evaluation of large 
computer systems.  In large systems where details cannot be modeled accurately for cycle accurate 
simulation, analytical modeling is an appropriate way to obtain approximate performance metrics. 
Computer systems can generally be considered as a set of hardware and software resources and a set of 
tasks or jobs competing for using the resources. Multicomputer systems and multiprogrammed systems are 
examples.  
 
Analytical models rely on probabilistic methods, queuing theory, Markov models, or Petri nets to create a 
model of the computer system.  A large body of literature on analytical models of computer exists from the 
1970s and early 1980s. Heidelberger and Lavenberg [28] published an article summarizing research on 
computer performance evaluation models. This article contains 205 references, which cover all important 
work on performance evaluation until 1984. Readers interested in analytical modeling should read this 
article.  
 
Analytical models are cost-effective because they are based on efficient solutions to mathematical 
equations. However, in order to be able to have tractable solutions, often, simplifying assumptions  are 
made regarding the structure of the model. As a result, analytical models do not capture all the detail 
typically built into simulation models. It is generally thought that carefully constructed analytical models 
can provide estimates of average job throughputs and device utilizations to within 10% accuracy and 
average response times within 30% accuracy. This level of accuracy while insufficient for 
microarchitectural enhancement studies, is sufficient for capacity planning in multicomputer systems, I/O 
subsystem performance evaluation in large server farms, and in early design evaluations of multiprocessor 
systems. 
 
There has not been much work on analytical modeling of microprocessors. The level of accuracy needed in 
trade off analysis for microprocessor structures is more than what typical analytical models can provide. 
However, some effort into this arena came from  Noonburg and Shen [29] and Sorin et. al [30]. Those 
interested in modeling superscalar processors using analytical models should read Noonburg et. al's work 
[29] and Sorin et. al's work [30].  Noonburg et. al used a Markov model to model a pipelined processor.  
Sorin et. al used probabilistic techniques to processor a multiprocessor composed of superscalar processors. 
Queuing theory is also applicable to superscalar processor modeling, as modern superscalar processors 
contain instruction queues in which instructions wait to be issued to one among a group of functional units.  
 
4. Workloads and Benchmarks 
 
Benchmarks used for performance evaluation of computers should be representative of applications that are 
run on actual systems. Contemporary computer applications include a variety of applications, and different 
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benchmarks are appropriate for systems targeted for different purposes.  Table 5 lists several popular 
benchmarks for different classes of workloads.  
 

Table 5. Popular benchmarks for different categories of workloads 
Workload Category Example Benchmark Suite 

SPEC CPU 2000 [31] 
Java Grande Forum Benchmarks [32] 
SciMark [33] 

 
Uniprocessor  

ASCI [34] 
SPLASH [35] 

 
 
CPU Benchmarks 

Parallel Processor 
NASPAR [36] 
MediaBench [37] 
EEMBC benchmarks [38] 

Multimedia 
Embedded 
Digital Signal Processing BDTI benchmarks [39] 

SPECjvm98 [31] Client side 
CaffeineMark [40] 
SPECjBB2000 [31] Server side 
VolanoMark [41] 
Java Grande Forum Benchmarks [32] 

 
 
Java 

Scientific 
SciMark [33] 
TPC-C [42] OLTP (On-Line Transaction 

Processing) TPC-W [42] 
TPC-H [42] 

 
Transaction Processing  

DSS (Decision Support 
Systems) TPC-R [42] 

SPEC web99 [31] 
TPC-W [42] 

 
Web Server  

VolanoMark [41] 
With commercial database TPC-W [42] Electronic commerce 
Without commercial database SPECjBB2000 [31] 

Mail-server SPECmail2000 [31] 
Network File System SPEC SFS 2.0 [31] 

SYSMARK [43] 
Ziff Davis WinBench [44] 

 
Personal Computer 

3DMarkMAX99 [45] 
  
  
4.1 CPU Benchmarks 
 
SPEC CPU2000 is the industry-standardized CPU-intensive benchmark suite. The System Performance 
Evaluation Cooperative (SPEC) was founded in 1988 by a small number of workstation vendors who 
realized that the marketplace was in desperate need of realistic, standardized performance tests. The basic 
SPEC methodology is to provide the benchmarker with a standardized suite of source code based upon 
existing applications that has already been ported to a wide variety of platforms by its membership. The 
benchmarker then takes this source code, compiles it for the system in question. The use of already 
accepted and ported source code greatly reduces the problem of making apples-to-oranges comparisons 
SPEC designed CPU2000 to provide a comparative measure of compute intensive performance across the 
widest practical range of hardware. The implementation resulted in source code benchmarks developed 
from real user applications. These benchmarks measure the performance of the processor, memory and 
compiler on the tested system. The suite contains  14 floating point programs written in C/Fortran and 11 
integer programs (10 written in C and 1 in C++). The SPEC CPU2000 benchmarks replace the SPEC89, 
SPEC92 and SPEC95 benchmarks. 
 
The Java Grande Forum Benchmark suite consists of three groups of benchmarks, microbenchmarks 
that test individual low-level  operations (eg: arithmetic, cast, create), Kernel benchmarks which are the 
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heart of the algorithms of commonly used applications (eg: heapsort, encryption/decryption, FFT, Sparse 
matrix multiplication, etc), and applications (eg: Raytracer, MonteCarlo simulation, Euler equation 
solution, Molecular dynamics, etc) [48]. These are compute intensive benchmarks available in Java. 
 
SciMark  is a composite Java benchmark measuring the performance of numerical codes occurring in 
scientific and engineering applications. It consists of five computational kernels: FFT, Gauss-Seidel 
relaxation, Sparse matrix-multiply, Monte Carlo integration, and dense LU factorization. These kernels are 
chosen to provide an indication of how well the underlying Java Virtual Machines perform on applications 
utilizing these types of algorithms. The problems sizes are purposely chosen to be small in order to isolate 
the effects of memory hierarchy and focus on internal JVM/JIT and CPU issues. A larger version of the 
benchmark (SciMark 2.0 LARGE) addresses performance of the memory subsystem with out-of-cache 
problem sizes. 
 
ASCI  The Accelerated Strategic Computing Initiative (ASCI)  of the Lawrence Livermore laboratories 
contain several numeric codes suitable for evaluation of compute intensive systems.  The programs are 
available from [34]. 
 
SPLASH The SPLASH suite was created by Stanford researchers [35]. The suite contains six scientific and 
engineering applications, all of which are parallel applications. 
 
The NAS Parallel Benchmarks (NPB) are a set of 8 programs designed to help evaluate the performance of 
parallel supercomputers. The benchmarks, which are derived from computational fluid dynamics (CFD) 
applications, consist of five kernels and three pseudo-applications. 
 
4.2 Embedded and Media Benchmarks 
                                                                                                                       
EEMBC Benchmarks 
 
The EDN Embedded Microprocessor Benchmark Consortium (EEMBC - pronounced embassy) was 
formed in April 1997 to develop meaningful performance benchmarks for processors in embedded 
applications. EEMBC is backed by the majority of the processor industry and has therefore established 
itself as the industry-standard, embedded processor benchmarking forum. EEMBC establishes benchmark 
standards and provides certified benchmarking results through the EEMBC Certification Labs (ECL) in 
Texas and California. The EEMBC's benchmarks comprise a suite of benchmarks designed to reflect real-
world applications, while it also includes some synthetic benchmarks. These benchmarks target the 
automotive/industrial, consumer, networking, office automation, and  telecommunications markets. More 
specifically, these benchmarks target specific applications that include engine control, digital cameras, 
printers, cellular phones, modems, and similar devices with embedded microprocessors. The EEMBC 
consortium dissected these applications and derived 37 individual algorithms that constitutes the  EEMBC's 
Version  1.0 suite of benchmarks.  
 
BDTI Benchmarks 
 
Berkeley Design Technology, Inc. (BDTI) is a technical services company that has focused exclusively on 
Digital Signal Processing since 1991. BDTI provides the industry standard BDTI Benchmarks™, a 
proprietary suite of DSP benchmarks. BDTI also develops custom benchmarks to determine performance 
on specific applications The benchmarks contain DSP routines such as FIR filter, IIR filter, FFT, dot-
product,  and Viterbi decoder. 
 
MediaBench  
 
The MediaBench benchmark suite consists of several applications belonging to the image processing, 
communications and DSP applications.   Examples of applications that are included are JPEG, MPEG, 
GSM, G.721 Voice compression, Ghostscript, ADPCM , etc. JPEG is the compression program for images, 
MPEG involves encoding/decoding for video transmission, Ghostscript is an interpreter for the Postscript 
language, and ADPCM is Adaptive differential pulse code modulation. The MediaBench is an academic 
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effort to assemble several media processing related benchmarks. An example of the use of these 
benchmarks may be found in  [49]. 
 
4.3 Java Benchmarks 
 
SPECjvm98 The SPECjvm98 suite consists of a set of programs intended to evaluate performance for the 
combined hardware (CPU, cache, memory, and other platform-specific performance) and software aspects 
(efficiency of JVM, the JIT compiler, and OS implementations) of the JVM client platform [31]. The 
SPECjvm98 uses common computing features such as integer and floating point operations, library calls 
and I/O, but does not include AWT (window), networking, and graphics. Each benchmark can be run with 
three different input sizes referred to as S1, S10 and S100.  The 7 programs are 
compression/decompression (compress), expert system (jess), database (db), Java compiler (javac), mpeg3 
decoder (mpegaudio), raytracer (mtrt) and a parser (jack). 
 
SPECjbb2000 (Java Business Benchmark) is SPEC's first benchmark for evaluating the performance of 
server-side Java.  The benchmark emulates an electronic commerce workload in a 3-tier system. The 
benchmark contains business logic and object manipulation, primarily representing the activities of the 
middle tier in an actual business server. It models a wholesale company with warehouses serving a number 
of districts. Customers initiate a set of operations such as placing new orders and checking the status of 
existing orders. It is written is Java, adapting a portable business oriented benchmark called pBOB written 
by IBM.  Although it is a benchmark that emulates business transactions, it is very different from the 
Transaction Processing Council (TPC) benchmarks.  There are no actual clients, but they are replaced by 
driver threads. Similarly, there is no actual database access. Data is stored as binary trees of objects.  
 
The CaffeineMark 2.5 is the latest in the series of CaffeineMark benchmarks. The benchmark suite 
analyses Java system performance in eleven different areas, nine of which can be run directly over the 
internet. It is almost the industry standard Java benchmark. The CaffeineMark can be used for comparing 
appletviewers, interpreters and JIT compilers from different vendors. The CaffeineMark benchmarks can 
also be used as a measure of Java applet/application performance across platforms.  
 
VolanoMark is a pure Java server benchmark with long-lasting network connections and high thread 
counts. It can be divided into two parts: server and client, although they are provided in one package. It is 
based on a commercial chat server application, the VolanoChat which is used in several countries world-
wide. The server accepts connections from the chat client. The chat client simulates many chat rooms and 
many users in each chat room. The client continuously sends messages to the server and waits for the server 
to broadcast the messages to the users in the same chat room.  VolanoMark creates two threads for each 
client connection. VolanoMark can be used to test both speed and scalability of a system. In speed test, it is 
run in an iterative fashion on a single machine. In scalability test, the server and client are run on separate 
machines with high speed network connection.  
 
SciMark, see CPU Benchmarks, section 4.1 
 
Java Grande Forum Benchmarks, see CPU Benchmarks, section 4.1 
 
4.4 Transaction Processing Benchmarks 
 
The Transaction Processing Council (TPC) is a non-profit corporation founded in 1988 to define 
transaction processing and database benchmarks and to disseminate objective, verifiable TPC performance 
data to the industry. The term transaction is often applied to a wide variety of business and computer 
functions. Looked at it as a computer function, a transaction could refer to a set of operations including disk 
read/writes, operating system calls, or some form of data transfer from one subsystem to another. TPC 
regards a transaction as it is commonly understood in the business world: a commercial exchange of goods, 
services, or money. A typical transaction, as defined by the TPC, would include the updating to a database 
system for such things as inventory control (goods), airline reservations (services), or banking (money). In 
these environments, a number of customers or service representatives input and manage their transactions 
via a terminal or desktop computer connected to a database. Typically, the TPC produces benchmarks that 
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measure transaction processing (TP) and database (DB) performance in terms of how many transactions a 
given system and database can perform per unit of time, e.g., transactions per second or transactions per 
minute. The TPC benchmarks can be classified into 2 categories, On Line Transaction Processing (OLTP) 
and Decision Support Systems (DSS). OLTP systems are used in day-to-day business operations (airline 
reservations, banks), and are characterized by large number of clients who continually access and update 
small portions of the database through short running transactions. Decision support systems are primarily 
used for business analysis purposes, to understand business trends, and for guiding future business 
directions.  Information from the OLTP side of the business is periodically fed into the DSS database and 
analyzed. DSS workloads are characterized by long running queries that are primarily read-only and may 
span a large fraction of the database. There are four benchmarks that are active, TPC-C, TPC-W, TPC-R 
and TPC-H. These benchmarks can be run with different data sizes, or scale factors. In the smallest case (or 
scale factor =1), the data size is approximately 1 GB. The earlier TPC benchmarks, namely TPC-A, TPC-B, 
and TPC-D have become obsolete. 
 
TPC-C 
                     TPC-C is an OLTP benchmark. It simulates a complete computing environment where a 
population of users executes transactions against a database. The benchmark is centered around the 
principal activities (transactions) of a business similar to that of a world-wide wholesale supplier. The 
transactions include entering and delivering orders, recording payments, checking the status of orders, and 
monitoring the level of stock at the warehouses. While the benchmark portrays the activity of a wholesale 
supplier, TPC-C is not limited to the activity of any particular business segment, but, rather represents any 
industry that must manage, sell, or distribute a product or service. TPC-C involves a mix of five concurrent 
transactions of different types and complexity either executed on-line or queued for deferred execution. 
There are multiple on-line terminal sessions. The benchmark can be configured to use any commercial 
database system such as Oracle, DB2 (IBM) or Informix. Significant disk input and output are involved. 
The databases consist of many tables with a wide variety of sizes, attributes, and relationships. The queries 
result in contention on data accesses and updates. TPC-C performance is measured in new-order 
transactions per minute.  The primary metrics are the transaction rate (tpmC) and price per transaction 
($/tpmC). 
                                                                                                                       
TPC-H 
                     The TPC Benchmark™H (TPC-H) is a decision support system (DSS) benchmark. It consists 
of a suite of business oriented ad-hoc queries and  concurrent data modifications. The queries and the data 
populating the database have been chosen to have broad industry-wide relevance. This benchmark is 
modeled after decision support systems that examine large volumes of data, execute queries with a high 
degree of complexity, and give answers to critical business questions. There are 22 queries in the 
benchmark. The performance metric reported by TPC-H is called the TPC-H Composite Query-per-Hour 
Performance Metric (QphH@Size), and the TPC-H Price/Performance metric,  $/QphH@Size. One may 
not perform optimizations based on apriori knowledge of queries in TPC-H. 
 
TPC-R 
                     The TPC Benchmark™R (TPC-R) is a decision support benchmark similar to TPC-H, but 
which allows additional optimizations based on advance knowledge of the queries.  It consists of a suite of 
business oriented queries and concurrent data modifications.  As in TPC-H, there are 22 queries. The 
performance metric reported by TPC-R is called the TPC-R Composite Query-per-Hour Performance 
Metric (QphR@Size), and the TPC-R Price/Performance metric, $/QphR@Size. 
                                                                                                                       
TPC-W 
                     TPC Benchmark™ W (TPC-W) is a transactional web benchmark. The workload simulates 
the activities of a business oriented transactional web server in an electronic commerce environment. It 
supports many of the features of the TPC-C benchmark and has several additional features related to 
dynamic page generation with database access and updates.  Multiple on-line browser sessions and on-line 
transaction processing are supported. Contention on data accesses and updates are modeled. The 
performance metric reported by TPC-W is the number of web interactions processed per second (WIPS). 
Multiple web interactions are used to simulate the activity of a retail store, and each interaction is subject to 
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a response time constraint.  Different profiles can be simulated by varying the ratio of browsing and buying 
i.e. simulating customers who are primarily browsing and those who are primarily shopping. 
 
4.5 Web server Benchmarks 
 
SPECweb99 is the  SPEC benchmark for evaluating the performance of World Wide Web Servers. It 
measures a system's ability to act as a web server.  The initial effort from SPEC in this direction was 
SPECweb96, but it contained only static workloads, meaning that the requests were for simply 
downloading web pages that do not involve any computation. But if one examines the use of the web, it is 
clear that many downloads involve computation to generate the information the client is requesting. Such 
web pages are referred to as dynamic web pages. SPECweb99 includes dynamic web pages.   The file 
accesses are made to closely match today’s real-world web server access patterns. The pages also contain 
dynamic ad rotation using cookies and table lookups.  
 
VolanoMark See Java Benchmarks,  section 4.3. 
 
TPC-W See Transaction Processing Benchmarks, section 4.4 
 
4.6 E-commerce benchmarks – see SPECjbb2000 in Java Benchmarks (section 4.3) and TPC-W in 
Transaction processing benchmarks (section 4.4) 
 
4.7 Mail server benchmarks 
 
SPECmail2001 is a standardized mail server benchmark designed to measure a system’s ability to act as a 
mail server servicing email requests. The benchmark characterizes throughput and response time of a mail 
server system under test with realistic network connections, disk storage, and client workloads. The 
benchmark focuses on the ISP as opposed to Enterprise class of mail servers, with an overall user count in 
the range of approximately 10,000 to 1,000,000 users. The goal is to enable objective comparisons of mail 
server products. 
 
4.8 File Server Benchmarks 
 
System File Server Version 2.0 (SFS 2.0) is SPEC’s benchmark for measuring NFS (Network File 
System) file server performance across different vendor platforms. It contains a workload that was 
developed based on a survey of more than 1,000 file servers in different application environments.  
 
4.9 PC Benchmarks  
 
A variety of benchmarks are available, primarily from Ziff Davis, and Bapco  to benchmark the Windows 
based personal computer. Table 6 lists the most common PC benchmarks. Ziff Davis Winstone and Bapco 
SYSMARK are benchmarks that measure overall performance while the other benchmarks are intended to 
measure performance of one subsystem such as video or audio or one aspect such as power. 
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Table 6.  Popular personal computer benchmarks 

Benchmark Description 
Business Winstone 
[44] 

A system-level, application-based benchmark that measures a PC's overall 
performance when running today's top-selling Windows-based 32-bit 
applications. It runs real 32-bit business applications through a series of scripted 
activities and uses the time a PC takes to complete those activities to produce its 
performance scores. The suite includes five Microsoft Office 2000 applications 
(Access, Excel, FrontPage,  PowerPoint, and Word), Microsoft Project 98, 
Lotus Notes R5,  NicoMak WinZip, Norton AntiVirus, and Netscape 
Communicator. 

WinBench99 [44] A subsystem-level benchmark that measures the performance of a PC’s 
graphics, disk, and video subsystems in a Windows environment.  

3DwinBench [44] Tests the bus used to carry information between the graphics adapter and the 
processor subsystem. Hardware graphics adapters, drivers, and enhancing 
technologies such as MMX/SSE are tested. 

CD WinBench99 
[44] 

Measures the performance of a PC’s CD-ROM subsystem, which includes the 
CD drive, controller, and driver, and the system processor 

Audio WinBench 
99 [44] 

Measures the performance of a PC’s audio subsystem, which includes the sound 
card and its driver, the processor, the DirectSound and DirectSound 3D 
software, and the speakers.  

Battery Mark [44] Measures battery life on notebook computers.  
I-bench [44] A comprehensive,  cross-platform benchmark that tests the performance and 

capability of Web clients. The benchmark provides a series of tests that measure 
both how well the client handles features and the degree to which network 
access speed affects performance. 

Web Bench [44] Measures Web server software performance by running different Web server 
packages on the same server hardware or by running a given  Web server 
package on different hardware platforms. 

NetBench [44] A portable benchmark program that measures how well a file server handles file 
I/O requests from clients. NetBench reports throughput and client response time 
measurements.  

3Dmark MAX 99 
[45] 

From Futuremark Corporation. Is a nice 3D Benchmark which measures 3D 
gaming performance.  Results are dependent on CPU, memory architecture, and 
the 3D Accelerator employed. 

SYSMARK [43] Measures a system’s real-world performance when running typical business 
applications. This benchmark suite comprises the retail versions of eight 
application programs and measures the speed with which the system under test 
executes pre-determined scripts of user tasks typically performed when using 
these applications. The performance times of the individual applications are 
weighted and combined into both category-based performance scores as well as 
a single overall score.  The application programs employed by SYSmark 32 are:  
Microsoft Word 7.0 and Lotus WordPro 96 for word processing, Microsoft 
Excel 7.0 (for spreadsheet),  Borland Paradox 7.0 (for database),  CorelDraw 
6.0 (for desktop graphics), Lotus Freelance Graphics 96 and Microsoft 
Powerpoint 7.0 (for desktop presentation) and Adobe Pagemaker 6.0 (for 
desktop publishing). 

 
Techniques and tools for performance evaluation improve year by year. For instance, performance 
monitoring counters were not available to the public until 1997. Benchmarks get updated almost every 
year. Those interested in experimental performance evaluation should continuously monitor the state-of-
the-art. Table 7 provides sources for  the benchmarks described in this article. The references at the end can 
provide new information on tools and benchmarks. Microprocessor vendors are inclined to show off their 
products in the best light, to projecting results for benchmarks that run well on their system, developing 
special optimizations within their compilers just for the sake of improving benchmark scores, and 
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stretching the benchmark's behavior while staying within the 'legal' limits of the  benchmark guidelines. It 
is extremely important to understand benchmarks, their features and metrics used for performance 
evaluation to really understand the performance results. 
 

Table 7. Benchmark Web sites 
 

Example Benchmark Suite Web site for more information 
SPEC CPU 2000  http://www.spec.org 
Java Grande Forum Benchmarks http://www.epcc.ed.ac.uk/javagrande/ 
SciMark http://math.nist.gov/scimark2 
ASCI http://www.llnl.gov/asci_benchmarks/asci/asci_code_list.html 
NASPAR http://www.nas.nasa.gov/Software/NPB/ 
MediaBench http://www.cs.ucla.edu/~leec/mediabench/ 
EEMBC benchmarks http://www.eembc.org 
BDTI benchmarks http://www.bdti.com/ 
SPECjvm98 http://www.spec.org 
CaffeineMark http://www.pendragon-software.com/pendragon/cm3 
SPECjBB2000 http://www.spec.org 
VolanoMark http://www.volano.com/benchmarks.html  
TPC-C http://www.tpc.org 
TPC-W http://www.tpc.org 
TPC-H http://www.tpc.org 
TPC-R http://www.tpc.org 
SPEC web99 http://www.spec.org 
SPECmail2000 http://www.spec.org 
SPEC SFS 2.0 http://www.spec.org 
SYSMARK http://www.bapco.com/ 
Ziff Davis Benchmarks http://www.zdnet.com/etestinglabs/filters/benchmarks 
3DMarkMAX99 http://www.pcbenchmarks.com 
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