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Abstract

Efficient instruction and data caches are extremely important for achieving good performance from modern high performance processors.
Conventional cache architectures exploit locality, but do so rather blindly. By forcing all references through a single structure, the cache’s
effectiveness on many references is reduced. This paper presents a selective caching scheme for improving cache performance, implemented
using a cache assist namely the annex cache. Except for filling a main cache at cold start, all entries come to the cache via the annex cache. A
block from the annex cache gets swapped with a main cache block only if it has been referenced twice after the conflicting main cache block
was referenced. Essentially, low usage items are not allowed to create conflict misses in the main cache. Items referenced only rarely will be
excluded from the main cache, eliminating several conflict misses and swaps. The basic premise is that an item deserves to be in the main
cache only if it can prove its right to exist in the main cache by demonstrating locality. The annex cache has some of the features of a victim
cache (N.P. Jouppi, Improving direct-mapped cache performance by the addition of a small fully associative cache and buffers, Proceedings
of the International Symposium on Computer Architecture, 1990, pp. 364–373) but the processor can access annex cache entries directly, i.e.
annex cache entries can bypass the main cache. Thus it combines the features of victim caches and cache exclusion schemes. Extensive
simulation studies for annex and victim caches using a variety of SPEC programs are presented in this paper. Annex caches were observed to
be significantly better than conventional caches, better than victim caches in certain cases, and comparable to victim caches in other cases.
q 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

While designing cache systems, there are several trade-
offs involving mapping schemes, replacement strategies,
fetch policies etc. The average access time for a memory
reference in a system with cache depends on the hit-rate (or
the miss-rate) and the miss penalty. Hence, improving cache
performance involves minimizing the miss-rate and the miss
penalty. Increasing the block size often reduces the miss-
rate, however this results in increasing the miss penalty. The
miss-rate can also be reduced by increasing the cache size,
and/or the associativity of the cache. However, it is difficult
to significantly increase the cache size or associativity while
matching the cache hit access time to the clock speeds of
modern fast processors. Many current microprocessors run
at clock speeds ranging from 500 to 700 MHz, and

Gigahertz microprocessors are on the way. It is extremely
difficult to design large associative caches with hit-access
times that match such clock speeds. Small direct-mapped
caches are preferred under these conditions. Direct-mapped
caches perform better than set-associative caches when the
access time costs for hits are considered [1]. Direct-mapping
is the only cache configuration where the critical path is
merely the time required to access a RAM. But they have
more conflict misses due to their lack of associativity. This
paper deals with improving the performance of direct-
mapped instruction caches using cache bypassing or selec-
tive caching.

One flaw associated with the conventional caching
mechanism is that it exploits locality in a blind manner.
Since all references are forced through the cache, every
miss will result in a new block of information entering the
cache. This new block of information could be a piece of
rarely used data, but it may replace a piece of heavily used
data and result in additional misses. Thus high usage
instructions with a long live-range may be knocked off by
infrequent instructions, resulting in increased miss-rates and
lower cache performance. It is our hypothesis that the cache
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miss problem can be alleviated by excluding infrequent
instructions from the cache. The annex cache implements
bypassing or cache exclusion for infrequent items. Except
for filling a main cache at cold start, all entries come to the
cache via the annex cache. An entry from the annex cache
gets swapped with a main cache entry only if it has been
referenced twice after the conflicting main cache entry was
referenced. Essentially, low usage items are not allowed to
create conflict misses in the main cache. Items referenced
only once or twice will be excluded from the main cache,
eliminating several conflict and capacity misses. The basic
premise here is that an item deserves to be in the cache only
if it can prove its right to exist in the cache.

1.1. Related research

To deal with the high miss-rates in direct mapped caches,
designers and architects have developed various schemes
that combine fast access with greater associativity by either
providing pseudo-associativity or by having a fast direct-
mapped primary section together with a secondary section
of higher associativity. Some examples of schemes to
improve performance of direct mapped caches are victim
caches [1], hash–rehash caches [2], column-associative
caches [3], MRU caches [4], half-and-half caches [5],
conflict-avoiding caches [6], and pollution control caches [7].

A victim cache [1], is a small fully associative cache of
typically no more than 16 blocks. If a block in the main
direct-mapped cache has to be replaced, that entry (called
the victim) is transferred to the victim cache. The intent is
that the next time there is a need for this entry, it can be
accessed from the victim cache faster than if it would have
been only in the next lower level of cache. During eviction
of a victim from the main cache, if the desired block is in the
victim cache, then that block swaps places with the victim
during the second cycle.

The MRU cache [4], resulted from the observation that in a
set-associative cache, the vast majority of hits within a set
involve the most recently used (MRU) member of that set.
In an MRU cache, during a read, all tags in the set are
compared simultaneously, but the MRU block in that set is
sent out immediately. If the tag for this item does not match the
address tag, the data is invalidated. If any of the tags matches,
then that block is latched into the output buffer making it the
new MRU element of that set. Thus an MRU hit has an access
time of one cycle, and a non-MRU hit takes two cycles.

In the aforementioned cache enhancements, some
accesses take two cycles and some only one cycle. A simple
way to combine fast access with better associativity is to
read a direct-mapped cache twice. The hash-rehash cache
[2], and the column-associative cache [3], exploit this prin-
ciple. If a read misses on the first cycle, a second read is
done using a different hashing function. If the second try is a
hit, the first and second blocks are swapped. In the column-
associative cache, a rehash bit is kept along with each tag,
indicating whether that corresponding block represents a

primary hit or a rehash hit. This bit is used to limit the
swapping in order to reduce thrashing effects.

Half-and-half caches [5], are on-chip caches where half
of the main cache area is used as an assist cache with the
victim cache algorithm. Or in other words, one half of the
cache is direct-mapped and the other half is associative.
Theobald et al. found that in such a case where the assist
cache is as big as the primary cache, the assist cache can
simply be 2-way or 4-way set associative rather than fully-
associative.

The conflict-avoiding cache [6], is based on polynomial
modulus functions and demonstrates that pseudo-randomly
indexed caches are effective in performance terms and prac-
tical from an implementation viewpoint. Pollution control
caching from Walsh and Board [7] is another effort to
improve performance of caches by controlling pollution of
caches by non-conventional replacement algorithms.

Typically whenever there is a cache miss, the newly
requested information enters the cache. Cache bypassing
schemes typically passes the information directly from the
lower layers in the memory hierarchy avoiding replacement
of existing elements in the cache. McFarling [8] proposed a
mechanism to dynamically decide whether an instruction
causes conflicts and should be excluded from the cache.
The decision whether an instruction should be replaced
when a competing instruction is needed or whether the
competing instruction should directly be passed on to the
processor bypassing the cache is made by a special finite-
state-machine (FSM) in conjunction with two or more state
bits associated with each cache block. Gonzalez et al. [9]
presented a dual data cache with independent parts for
managing spatial and temporal locality. The dual data
cache make use of a ‘locality prediction table’ to delay
caching something until a benefit in terms of locality can
be predicted.

Cache bypassing has also been studied in the past by Chi
and Dietz [10], Abraham et al. [11], and others. Chi and
Dietz [10] showed that bypassing the cache can avoid
cache pollution and improve performance for data loads
and stores. Abraham et al. [11] showed thatlabeled load/
store instructions can be used to optimize cache behavior.
Their HPL PlayDoh architecture provides explicit control of
the memory hierarchy and supports prefetching of data to
any level in the hierarchy. Each load instruction is tagged
with a specifier corresponding to the cache or main memory.

Bershad et al. [12] introduced another cache assist, the
Cache Miss LookAside Buffer to record a history of cache
misses and dynamically remap pages by using a software
policy in the operating system’s virtual memory manage-
ment system. Temam and Drach [13] presented the concept
of largevirtual cache linesto exploit spatial locality and a
bounce-back cacheto exploit more temporal locality.

1.2. Contributions

The annex cache can directly pass the data to the
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processor bypassing the main cache, thereby eliminating
the need for swapping in many cases. In the victim
cache, every hit in the victim cache is accompanied
by a swap between the main cache and the victim
cache. In the annex cache, swaps are performed only for
references that have demonstrated locality. Other references
that hit in the annex cache are directly passed to the proces-
sor. In most studies on victim cache and half-and-half
caches, it is assumed that the swap happens in a single
cycle even if the block size is 32 or 64 bytes. In order for
the swap to happen in a single cycle, a wide datapath
between the main and victim cache would be required.
But if the swap data path is not as wide as the cache
block size, several cycles will be needed to actually perform
the swap.

McFarling’s finite-state-machine [8] to implement cache
bypassing uses two bits to capture the reference pattern, the
sticky bit and the hit-last bit. The hit-last-bit has to be
updated even when the block is not in the primary cache.
The scheme we propose employs only one extra bit that is
associated with every block in the cache. Recently there has
been studies suggesting the use of two-level exclusive
on-chip caches [14]. Our algorithm works very well
with on-chip multi-layer caches, makes more efficient
use of the on-chip cache space, reduces the hardware
complexity of the swapping hardware, and reduces the over-
head associated with cache exclusion compared to McFar-
ling’s scheme. McFarling [8] investigated the effectiveness
of cache bypassing but did not compare it with victim cach-
ing. According to that paper,victim caches work well for
data references where the number of conflicting items may
be small. For instruction references, there are usually many
more conflicting items than a victim cache can hold. This is
where dynamic exclusion is most effective. But no
quantitative results comparing victim caches with selec-
tive caching was presented in [8] or other research on
selective caching [10,11]. We perform a quantitative
comparison of direct-mapped, set-associative, victim
and annex caches. Topham et al. [6] presented a poly-
nomial mapping scheme that yields better performance than
conventional mapping schemes, however no performance
comparison with any of the pseudo-associative caches or
assist caches was provided.

Major contributions of this paper include extensive simu-
lation results that demonstrate the impact of bypassing in a
cache assist. Although annex caches are clearly superior to
conventional caches, the improvement over victim caches is
not dramatic. Irrespective of this, the results in the paper are
valuable because it demonstrates what kind of performance
can be obtained by incorporating bypassing in a cache assist
like the victim cache.

In Section 2, the proposed annex caching scheme is
described. In Section 3, a quantitative analysis of the perfor-
mance of the selective caching scheme based on trace-
driven simulation is presented. Section 4 presents summary
and concluding remarks.

2. The annex cache

In this section, we describe the proposed cache assist,
Annex Cache (Fig. 1). Just like in victim and half-and-
half caches, the main cache is direct mapped and the assist
cache has higher associativity. In general two-level caching,
the second level is typically off-chip, but in the annex cache,
both levels are on-chip as in Theobald et al.’s half-and-half
caches [5] and Jouppi and Wilton’s split-level caches [14].

In victim cache, the cache assist is meant to hold the items
that would otherwise be displaced from the cache. But if the
conflicting entries in the main cache and the assist cache are
referenced alternately, each access would result in a swap
between the main and the assist cache. The annex cache
eliminates such continuous swapping. One of the entries
will be accessed from the main cache and the other entry
will be directly accessed from the assist cache. The assump-
tion is that a mechanism exists for the assist cache entries to
be fed directly to the processor bypassing the main cache.
We name the assist cache with the above properties as the
annex cache.

The annex cache may be viewed as a “qualifying station”
or as an “entry-level cache”, where the references have to
prove themselves to be eligible to enter the main cache. It
may also be viewed as a “double-hit victim cache”, where
the swapping of the main and assist cache occurs only at the
second reference to an assist-cache entry with no interven-
ing reference to the conflicting main cache entry.

The proposed scheme works in the following manner.
Each time the upper cache is probed, the annex cache is
probed as well. If a miss occurs in the upper cache, but
the address hits in the annex cache, then the main cache
can be reloaded in the next cycle from the annex cache (if
desired). This replaces a long off-chip miss penalty with a
short 1-cycle on-chip miss. This arrangement satisfies the
requirement that the critical path is not worsened, since the
annex cache itself is not in the normal critical path of
processor execution.

Every cache block has a priority bit in addition to the
valid bit. If there is a hit, the data is read from the main
cache and the priority bit is set to 1. If there is a miss, the
annex cache is searched. If there is a hit in the annex cache,
the annex and main cache entries are swapped or the data is
read directly from the annex cache depending on the priority
bits of the conflicting elements. The details of the algorithm
are presented in Fig. 2. If an instruction is kept in the main
cache despite a conflict, it will be replaced the next time a
conflicting instruction is executed unless the original
instruction is executed first. The algorithm basically intro-
duces some inertia in replacing an item from the main
cache. An item gets promoted to the main cache only if it
has proven its right to exist there by showing high usage
from the annex. One aspect of annex caches is that they
violate inclusion properties [15] in cache hierarchies. As
in victim caching, no item appears both in the main cache
and the annex cache.
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2.1. Algorithm

The annex cache operates as follows:

1. In the first cycle, the cache reads the tags and data of the
relevant block in the primary cache and in the annex
cache. The data from the primary cache is latched into
the output buffer becoming available at the end of the
first cycle.

2. The tag from the main cache and theK tags from the
annex (annex isK-way set associative) are compared
against the appropriate bits of the address.

3. If the tag from the main cache matches the address, then a
main cache hit occurs (path 8 in Fig. 2). The priority of
the main cache entry is updated to be high. The search in
the annex cache is immediately cancelled so that it can be
used again in the next cycle. If the tag from the main
cache does not match, the annex search has to be
continued.

4. If there was no main cache hit and if one of the tags from
the annex matches, an annex-cache hit occurs. The data
is read directly from the annex if the conflicting main
cache entry has a high priority (path 7 in Fig. 2) or if the
annex cache entry has a low priority (path 4). Otherwise,
the data is loaded into the main cache (path 2) or
swapped with the conflicting main cache entry (path 5).

5. If all tag comparators mismatch, the data is in the main
memory. When the data returns from the main memory,
it is placed in the main cache if the corresponding main
cache block has no valid data (path 1); otherwise it is
placed in the annex cache (paths 3 and 6).

In the different paths, the different priority bits are set as
shown in Fig. 2.

2.2. Tuning of the algorithm

1. At cold start should items come through the annex or
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directly? In our algorithm, we investigated the effect of
bringing in items to the main cache always through the
annex cache. As expected, it was not good because the
main cache is left empty and is underutilized.

2. When an entry reaches the main cache at cold start,
should its priority be low or high? Since the item reached
the main cache without establishing locality, we assigned
low priority and on experimentation with both priorities,
our choice was seen to be better.

3. How soon should an item in the annex be allowed to enter
the main cache?

If the inertia is high, there will be too many initial misses
and performance is expected to be low. This was confirmed
experimentally also. According to the current algorithm, in
(AB3), referenceB will get cached at the second access toB.
This choice results in several swaps in the sequence
(ABC)10, By increasing the inertia, we could avoid any
swaps between the main cache and the annex cache in
(ABC)10, but then there are increased misses in sequences
such as (AB3). Even in the current algorithm, there will be
only half the number of swaps in annex compared to victim
or half-and-half cache for the sequence (ABC)10. When an
item reaches the annex the first time, currently we set its
priority to be high because it was just referenced. Initially
we used to set it to be low, which increases the time to reach
main cache if it has strong locality, but higher priority was
seen to be better.

2.3. Illustration for simple sequences

Let us examine how effective this scheme will be, for
some simple reference patterns also used by McFarling [8]
to illustrate his dynamic cache exclusion scheme.

2.3.1. Conflict within loops
Consider a case where two referencesA andB within a

single loop map to the same location in the cache. If the loop
is executed 10 times, the memory access pattern may be
represented as (AB)10, where the superscript denotes the
frequency of usage of the particular instruction. If we
allow both instructions to enter the cache, the two instruc-
tions will knock each other out of the cache and neither hits.
Hence the behavior of a conventional cache is

�AmBm�10

whereAm denotes that referenceA is a miss. A subscript h
would indicate a hit. In this case, the miss-rate of a conven-
tional cache is

Mconv� 100%

Now let us consider the behavior of a victim cache to this
sequence. In the conventional cache,A would be replaced
by B and every reference would be a miss. In the victim
cache, the whenA gets replaced byB, A would be put into
the victim cache; hence after the initial miss toA and B,
there are no further misses. The main cache misses will be

filled from the victim cache. Let us useAh-v to represent that
A is a hit in the victim cache andAh-m to represent thatA is a
hit in the main cache. A miss in both the victim as well as
main caches will be represented asAm. The behavior of a
victim cache is

AmBm�Ah-vBh-v�9

The aggregate miss-rate is

Mvictim � 10%

The hit-rate of the main cache is

Hmain� 0%

The hit-rate of the victim is

Hvictim � 90%

Percentage of references that result in swaps between the
main cache and the cache assist is

Swapsvictim � 90%

Now let us consider the behavior of the proposed annex
cache to this sequence. In the case of annex,A gets in the
main cache and stays there. The referenceB will be moved
from the annex cache to the main cache only after two
successive references without any intermediate reference
to A. Since there are no two successive references toB, B
stays in the annex cache all the time andA stays in the main
cache eliminating the swaps between the two caches. Let us
useAh-a to represent a hit in the annex cache andAh-m to
represent a hit in the main cache. The behavior of the annex
cache is

AmBm�Ah-mBh-a�9

The aggregate miss-rate is

Mannex� 10%

The hit-rate of the main cache is

Hmain� 45%

The hit-rate of the annex cache is

Hannex� 45%

Percentage of references that result in swaps between the
main cache and the cache assist is

Swapsannex� 0%

Thus it is seen that both annex and victim caches are
significantly better than the conventional cache. Although
the aggregate miss ratios for annex and victim are the same,
victim caching involves swapping for 90% of the references
whereas annex caching reduces the swapping to none.

2.3.2. Conflict between inner and outer loops
Now let us consider another case where there is a conflict

between a reference inside a loop with another reference
outside the inner loop. If the outer loop is executed 10
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times and the inner loop is executed 10 times in each outer
loop, the memory access pattern may be represented as
�A10B�10

: The behavior of a conventional cache would be

�AmA9
hBm�10

and the miss-rate of a conventional cache is

Mconv� 18%

Now let us consider the behavior of a victim cache to this
sequence. In the conventional cache,A would be replaced
by B and the first reference toA in every inner loop and the
reference toB in the outer loop would be a miss. In the
victim cache, whenA gets replaced byB, A would be put
into the victim cache; hence after the initial miss toA andB,
there are no further misses. The main cache misses will be
filled from the victim cache. The behavior of a victim cache
may be represented as

AmB9
h-mBm�Ah-vA

9
h-mBh-v�9

The aggregate miss-rate is

Mvictim � 2=110� 1:8%

The hit-rate of the main cache is

Hmain� 81:8%

The hit-rate of the victim is

Hvictim � 16:4%

Percentage of references that result in swaps between the
main cache and the cache assist is

Swapsvictim � 16:4%

Now let us consider the behavior of the proposed annex
cache to this sequence. In the case of annex,A gets in the
main cache and stays there. The referenceB will be moved
from the annex cache to the main cache only after two
successive references without any intermediate reference
to A. Since there are no two successive references toB, B
stays in the annex cache all the time andA stays in the main
cache eliminating the swaps between the two caches. The
behavior of the annex cache may be represented as

AmA9
h-mBm�A10

h-mBh-a�9

The aggregate miss-rate is

Mannex� 2=110� 1:8%

The hit-rate of the main cache is

Hmain� 90%

The hit-rate of the annex cache is

Hannex� 8:2%

Percentage of references that result in swaps between the
main cache and the cache assist is

Swapsannex� 0%

Thus one may observe that there are more main cache hits
although the aggregate miss ratio stays the same. It may also
be observed that there are no swaps in annex whereas 16.4%
of the accesses result in swaps in the case of victim caching.

2.3.3. Conflict between loops
Now let us consider another case where there is a conflict

between a reference inside two different loops. If there is
such a conflict and there is a memory access pattern such as
(A10B10)10. The behavior of a conventional cache would be

�AmA9
hBmB9

h�10

and the miss-rate of a conventional cache is

Mconv� 10%

Now let us consider the behavior of a victim cache to this
sequence. In the conventional cache,A would be replaced
by B and the first reference toA in every loop and the first
reference toB in every loop would be a miss. In the victim
cache, whenA gets replaced byB, A would be put into the
victim cache; hence after the initial miss toA andB, there
are no further misses. The main cache misses will be filled
from the victim cache. The behavior of a victim cache is
represented as

AmA9
h-mBmB9

h-m�Ah-vA
9
h-mBh-vB

9
h-m�9
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Table 1
Basic characteristics of the traces—length of the instruction trace, length of the data trace, number of distinct instructions referenced and number of distinct
data elements referenced are indicated

Benchmarks Total I-refs. Total D-refs. Unique I-refs. Unique D-refs.

alvinn 29038411 6689213 1329 54780
compress 8636179 2843636 1748 116425
doduc 29775327 13221528 23497 7657
ear 29984540 5767488 5487 69773
eqn 1181058 467730 2414 42253
espresso 28918812 6864863 16575 18911
ora 18806280 5921107 6077 3028
swm 29442094 7093038 6114 858676
tomcatv 21305640 11953113 5051 15607
xli 30000001 18408337 5073 19337
interleaved 221 million 73 million 70951 1164194



The aggregate miss-rate is

Mvictim � 2=200� 1%

The hit-rate of the main cache is

Hmain� 90%

The hit-rate of the victim is

Hvictim � 9%

Percentage of references that result in swaps between the
main cache and the cache assist is

Swapsvictim � 9%

Now let us consider the behavior of the proposed annex
cache to this sequence. ReferenceA enters the main cache.
For the first referencing ofB it enters the annex cache but
does not enter the main cache until the second reference.
Hence the annex cache algorithm slightly deteriorates the
performance by the extra inertia in lettingB enter the main
cache. The behavior of the annex cache may be represented
as

AmA9
h-mBmBh-aBh-m�A2

h-aA
8
h-mB2

h-aB
8
h-m�9

The aggregate miss-rate is

Mannex� 2=200� 1%

The hit-rate of the main cache is

Hmain� 80%

The hit-rate of the annex cache is

Hannex� 18%

Percentage of references that result in swaps between the
main cache and the cache assist is

Swapsannex� 9%

In this example, the annex cache algorithm does not reduce
the swaps between the main cache and the assist cache; it

even decreases the main cache hit ratio by the inertia in
letting entries go to the main cache.

3. Performance evaluation

In this section, we evaluate the performance of the annex
caching scheme using extensive trace-driven simulations on
several large real benchmark programs. Trace-driven simu-
lation has the advantage of fully and accurately reflecting
real instruction streams. We also compare the performance
to victim caching [1] and half-and-half caching [5].

3.1. Performance metrics

The performance measure best suited for the evaluation
of the proposed cache assist is effective memory access time
or total memory access time. Ifhm is the fraction of accesses
which hit in the main cache andha is the fraction of hits in
the assist cache andhsw is the number of hits in assist cache
accompanied by swaps,tm andta are the access times of the
main cache and assist cache,tsw is the penalty for swapping,
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Table 3
Total access times for the conventional cache, annex cache and victim
cache for a few reference patterns. A miss penalty of 40 cycles was assumed

Reference pattern Tconv Tannex Tvictim

1 �A10B�10 890 197 224
2 �A10B10�10 980 334 314
3 �ABB�10 810 119 144
4 �BAB�10 849 117 146
5 �AAAB�10 820 127 154
6 �ABC�10 1200 186 201
7 �ABB10�10 900 209 234
8 �BAB10�10 939 207 236
9 �AAAB10�10 911 265 245
10 �ABC10�10 1291 278 292
11 �A10B10C10D10E10�10 2450 2548 2450
12 �ABACADAEAF�10 4000 2089 2187
13 �AB�10 800 107 134

Table 2
Number of hits, misses and swaps in main cache and annex/victim caches for a few reference patterns

Reference pattern Hconv HMaina Hmainv Hitsa Hitsv Swa Swv

1 �A10B�10 90 99 90 9 18 0 18
2 �A10B10�10 180 161 180 37 18 19 18
3 �ABB�10 10 18 10 10 18 1 18
4 �BAB�10 9 19 9 9 19 0 19
5 �AAAB�10 20 29 20 9 18 0 18
6 �ABC�10 0 1 0 26 27 13 27
7 �ABB10�10 100 108 100 10 18 1 18
8 �BAB10�10 99 109 99 9 19 0 19
9 �AAAB10�10 111 92 111 37 18 19 18
10 �ABC10�10 91 89 91 29 27 11 27
11 �A10B10C10D10E10�10 450 401 450 49 0 49 0
12 �ABACADAEAF�10 0 49 0 0 49 0 49
13 �AB�10 0 9 0 9 18 0 18



and teff is the effective access time, then

teff � hm p tm 1 ha p ta 1 hsw p tsw 1 �1 2 hm 2 ha�
p miss penalty

We assume the main cache access timetm to be 1 cycle,
time for direct access of the assist cacheta to be 2 cycles and
the additional penalty for swappingtsw to be 1 cycle.

To facilitate easy comparison, we compute the improve-
ment in average memory access time (AMAT) as the ratio
of the effective access times without and with the cache
assist.

Improvement ratio� teff �with no cache assist�
teff �with cache assist�

3.2. Benchmarks and trace generation

The benchmarks consisted of several programs from the
SPEC92 suite,compress, xlisp, eqntott, espresso, doduc,
ora, swm256, ear, alvinnandtomcatv. In addition, we create
a trace interleaving various SPEC traces to simulate context
switches that would occur in a multiprogrammed environ-
ment. This trace is markedinterleavedin the graphs and
tables. The address traces were generated bypixie [16,17]
on a DEC5000 workstation which uses the MIPS R3000
processor. The SPEC programs were compiled with default
Make files and the pixified executables of the programs
were generated and traced. Table 1 illustrates the basic
characteristics of the traces such as their length, number
of unique instructions, number of unique data references,
etc.

3.3. Configurations simulated

We used cache sizes of 4, 32 and 64 kbytes, with a block
size of 32 bytes. A victim cache or annex cache of 16 bytes
is added to the aforementioned main cache size. We also
performed simulations with half-and-half caches as
described in Theobald et al.’s paper [5]. Theobald et al.’s
half-and-half caches are multilayer on-chip caches where
the second layer is as fast as the first layer but there is no
inclusion. The second layer is associative and behaves like a
victim cache, except that in the original victim cache propo-
sals, the victim cache is extremely small. We performed
experiments with such half-and-half caches. We also
performed experiments with half-and-half caches where
the secondary half of the cache is treated as an annex
cache rather than a victim cache. We also performed experi-
ments with victim and annex caches of size 4 blocks also. A
miss penalty of 40 cycles is assumed considering the block
size of 32 bytes, and bus width of 64 bits.

3.4. Performance of synthetic sequences

Before performing experiments with SPEC programs, we
performed some experiments with a few synthetic trace
sequences similar to the examples described in the previous
section. Table 2 illustrates a few reference patterns and
details about the number of hits in main and annex and
victim caches. Although the aggregate miss-rates are same
for victim and annex caches, the performance is different
due to the difference in the number of swaps. This is clear
from the total access times presented in Table 3 for a miss
penalty of 40 cycles. From Table 3, it is seen that except
patterns 2, 9 and 11, all patterns yield improved perfor-
mance with the proposed annex caching policy. It may
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Fig. 3. Improvement in AMAT of annex and victim caches compared to conventional caches.



also be noted that both annex and victim perform signifi-
cantly better than conventional caches.

The improvement in access time for the benchmark
programs are presented in Fig. 3.

3.5. Performance of SPEC programs

The performance of annex caches for real programs will

depend on the actual memory referencing patterns in the
particular program. Fig. 4 illustrates the aggregate data
miss-rates in conventional direct-mapped caches, 2- and
4-way set-associative caches, annex caches of size 16
blocks, victim caches of size 16 blocks, half-and-half
caches with annex caching policy, half-and-half caches
with victim caching policy. In most cases, the annex caches
perform better than direct-mapped and even 2- or 4-way
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Fig. 4. Aggregate miss-rates in conventional, annex and victim caches for data traces.



set-associative caches. One benchmark in which annex has a
noticeably poor performance iscompress. In many cases the
miss ratios fall to zero and are not visible in the graphs. This
happens more frequently in the larger caches.

Fig. 5 illustrates the improvement in data access time
by using annex caches, victim caches, half-and-half
caches with annex caching policy, and half-and-half

caches with victim caching policy, in comparison to a
direct-mapped cache. The performance of 2- and 4-way
set associative caches are also presented for reference.
Annex caches are significantly better than conventional
direct-mapped and 2-way set-associative caches and in
most benchmarks, even better than 4-way set associative
caches. However, annex caches do not display any
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Fig. 5. Improvement in data access time for annex and victim caches compared to conventional caches.



dramatic improvement over victim caches as in the
synthetic sequences.

Fig. 6 illustrates the miss ratios and Fig. 7 illustrates the
improvement in access time for instruction traces. The
annex/victim cache size is 16 blocks. Annex caching
performs better than conventional direct-mapped, 2-way
and in most cases even 4-way set associative caches.

The significance of annex caching is greater at lower
cache sizes.

The aggregate improvement from all the benchmarks are
summarized in Table 4 for instruction and data traces. In this
table, we also present results from annex and victim caches
of size 4 blocks. Annex or victim caches of 4 block size are
not seen to out-perform set-associative caches. However,
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Fig. 6. Aggregate miss-rates in conventional, annex and victim caches for instruction traces.



one observation is that in instruction caching, the 4-block
annex cache is better than the 4-block victim cache. In data
caches, there really is no clear winner between the annex
and victim algorithms either in the annex/victim or the half-
and-half case. Half-and-half caching is a clear winner in the
case of instructions and winner with no significant advan-
tage in the case of data. While the improvement of annex

caching over victim caching is not particularly striking, it is
important to be aware of the performance improvement that
can be obtained by combining cache exclusion with victim
caching.

The major shortcoming of the annex cache is when its
size is small. If the annex cache is very small, it does not
allow references to go to the main cache. Many references
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Fig. 7. Improvement in instruction access time for annex and victim caches compared to conventional caches.



get knocked out from the annex cache itself due to conflicts
within the annex. This problem explains the deterioration in
performance obtained with 4-block annex caches at cache
sizes of 32 and 64 kbytes for data. The problem reduces
when the annex size is increased to 16 blocks. The most
common size for cache assists is 16 blocks and hence more
attention should be paid to the performance of the cache
assists which are 16 blocks large.

4. Summary and conclusion

In this paper, we presented the design of a cache assist
namely annex cache, that alleviates conflict misses and
implements selective caching. The annex cache cache
combines the features of Jouppi’s victim caches [1] and
McFarling’s cache exclusion schemes [8]. The performance
of the proposed annex cache was evaluated using trace-
driven simulation, for several programs in the SPEC bench-
mark suite. The performance of the annex cache is almost
always better than the equivalent conventional cache. We
also compared the performance of the annex cache to set-
associative caches and cache assists such as the victim cache
and half-and-half cache. In past research, McFarling [8]
investigated the effectiveness of cache bypassing but did
not compare it with victim caching. According to that
paper,victim caches work well for data references where
the number of conflicting items may be small. For instruc-
tion references, there are usually many more conflicting
items than a victim cache can hold. This is where dynamic
exclusion is most effective. But no quantitative results
comparing victim caches with selective caching was
presented in [8] or other research on selective caching
[10,11]. The quantitative comparison that is presented in
this paper illustrates that annex caches are significantly
better than conventional caches and comparable to victim
caches.
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Table 4
Aggregate improvement over all benchmarks

Configurations 4 kbytes 32 kbytes 64 kbytes

Data Annex (16 blocks) 1.839 1.037 0.999
Victim (16 blocks) 1.830 1.064 1.014
2-Way set-associative 1.337 1.077 1.054
4-Way set-associative 1.519 1.088 1.073
Half-and-half annex 1.877 1.039 1.046
Half-and-half victim 1.880 1.065 1.058
Annex (4 blocks) 1.279 0.914 0.89
Victim (4 blocks) 1.404 1.043 1.02

Instr. Annex (16 blocks) 1.225 1.200 1.006
Victim (16 blocks) 1.271 1.210 1.006
2-Way set-associative 1.211 1.255 1.036
4-Way set-associative 1.284 1.267 1.035
Half-and-half annex 1.322 1.220 1.026
Half-and-half victim 1.353 1.233 1.032
Annex (4 blocks) 1.053 1.057 1.0
Victim (4 blocks) 1.038 1.027 1.0



L.K. John et al. / Microprocessors and Microsystems 23 (1999) 537–551 551

Dr Lizy Kurian John is an Assistant Professor in
the Department of Electrical and Computer
Engineering, at the University of Texas at Austin,
since September 1996. She received her PhD in
Computer Engineering from the Pennsylvania
State University in 1993. She was on the faculty
of the Computer Science and Engineering
department at the university of South Florida
from 1993 to 1996. Her research interests
include high performance processor and memory
architectures, workload characterization and
program behavior studies, compiler optimization

for high performance processors, etc. Her research is supported by the
National Science Foundation, the State of Texas Advanced Technology
program, DELL Computer Corporation, IBM, AMD, Intel and Micro-
soft Corporations. She is recipient of an NSF CAREER award and a
Junior Faculty Enhancement Award from Oak Ridge Associated
Universities. She is a member of IEEE and its Computer Society and
ACM and ACM SIGARCH. She is also a member of Eta Kappa Nu, Tau
Beta Pi and Phi Kappa Phi.

Tao Li received his MS in computer science from
Beijing Institute of Data Processing Technology,
PR of China in 1996 and his BSE in Computer
Science and Engineering from Northwestern
Polytechnic University, PR of China in 1993,
respectively. He is a graduate research assistant
at the Laboratory for Computer Architecture,
Department of Electrical and Computer Engi-
neering, University of Texas at Austin since
September 1998. His research interests include
execution-driven simulation of computer archi-
tecture, cache and memory system design for

shared memory multiprocessors.

Akila Subramanian received her masters in
Computer Applications from the University of
Madras, India. She was a Masters Degree
student at the Computer Science and Engineer-
ing Department at the University of South Flor-
ida when this research was carried out.


