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Abstract—By integrating multiple cores in a single chip,
Chip Multiprocessors (CMP) provide an attractive approach to
improve both system throughput and efficiency. This integration
allows the sharing of on-chip resources which may lead to de-
structive interference between the executing workloads. Memory-
subsystem is an important shared resource that contributes
significantly to the overall throughput and power consumption.
In order to prevent destructive interference, the cache capacity
and memory bandwidth requirements of the last level cache have
to be controlled. While previously proposed schemes focus on
resource sharing within a chip, we explore additional possibilities
both inside and outside a single chip. We propose a dynamic
memory-subsystem resource management scheme that considers
both cache capacity and memory bandwidth contention in large
multi-chip CMP systems. Our approach uses low overhead, non-
invasive resource profilers that are based on Mattson’s stack
distance algorithm to project each core’s resource requirements
and guide our cache partitioning algorithms. Our bandwidth-
aware algorithm seeks for throughput optimizations among
multiple chips by migrating workloads from the most resource-
overcommitted chips to the ones with more available resources.
Use of bandwidth as a criterion results in an overall 18%
reduction in memory bandwidth along with a 7.9% reduction in
miss rate, compared to existing resource management schemes.
Using a cycle-accurate full system simulator, our approach
achieved an average improvement of 8.5% on throughput.

I. INTRODUCTION

Chip Multiprocessors (CMP) have become an attractive
architecture to leverage system integration by providing ca-
pabilities on a single die that would have previously occupied
many chips across multiple small systems [16]. To achieve
high efficiency and throughput, CMPs heavily rely on sharing
resources among multiple cores. Under high capacity pressure,
conventional greedy resource sharing policies lead to destruc-
tive interference [3], unfairness [15] and eventually lack of
Quality-of-Service (QoS) [6], [15], i.e., lacking the ability to
guarantee a certain performance or fairness level. In addition,
CMPs are widely deployed in large server systems. These
large systems typically utilize virtualization where many inde-
pendent small and/or low utilization servers are consolidated
[23]. Under such environment the resource sharing problem is
extended from the chip-level to the system-level, and there-
fore system-level resources, like main memory capacity and
bandwidth, have to be considered for the appropriate sharing
policies. Consequently, to design the most effective future
systems for such computing resources, effective resource man-
agement policies are critical not only in mitigating chip-level

contention, but also in improving system-wide performance
and fairness.

A great deal of research has recently been proposed on har-
nessing the shared resources at a single CMP chip level. The
primary focus has been to control contention on the resources
that most affect performance and execution consistency, that is
the shared last-level cache (LLC) capacity [6], [8], [9], [15],
[19], [20], [22], and the main memory bandwidth [21]. To
address LLC contention, the proposed techniques partition the
LLC cache capacity and allocate a specific portion to each
core or execution thread. Such private partitions provide in-
terference isolation and therefore can guarantee a controllable
level of fairness and QoS. There are both static [8], [15] and
dynamic partitioning algorithms proposed [9], [19], [20], [22]
that use profiled workload information to make a decision on
cache capacity assignment for each core/thread. On the other
hand, to address the memory bandwidth contention problem,
fair queuing network principles [21] have been proposed.
Those techniques are based on assigning higher priorities on
bandwidth use either to the most important applications (for
QoS) or to the tasks that are close to missing a deadline (for
fair use). In addition, machine learning techniques have also
been employed in managing multiple interacting resources in
a coordinated fashion [2]. Such methods require a hardware
implemented artificial neural network to dynamically configure
the appropriate partitions for different resources.

Prior work monitoring schemes can be classified into trial-
and-error and prediction-based configuration exploration.
Trial-and-error systems are based on observing the behavior
of the system under various configurations while predictive
systems are able to concurrently infer how the system will
perform under many configurations. As the state space of the
system grows, predictive schemes have inherent scalability
advantages. Examples of representative predictive schemes
that have been proposed in the past are the one from Zhou
et al. [29] for main memory and Qureshi et al. [22] for LLC
caches. Both are based on Mattson’s stack distance algorithm
[17] and are able to provide miss rate predictions of multiple
LLC configurations in parallel. While these proposals provide
reasonable speed-ups by solving the memory capacity assign-
ment, they neglect the role of memory bandwidth constraints
and system-level optimizations opportunities.

Virtualization systems are most effective when multiple
CMP processors are aggregated into a large compute resource.



In such environments, optimization opportunities exist in the
ability to dispatch/migrate jobs targeting full system utiliza-
tion. Limiting optimizations to a single chip can produce sub-
optimal solutions. Therefore, while previous methods have
shown good gains within a single chip, we explore additional
possibilities in the context of large multi-chip CMP systems.

In this paper, we propose a dynamic, bandwidth-aware,
memory-subsystem resource management scheme that pro-
vides improvements beyond previous single chip solutions.
Our solution aims at a global resource management scheme
that takes into account: @) the need of low overhead, predictive
non-invasive profilers that are able to capture the temporal
behavior of applications and therefore guide our resource
management algorithm, b) the limited available main mem-
ory bandwidth per chip and the performance degradation of
the overall system when executing applications with over-
commited memory bandwidth requirements, and finally c) the
hierarchical nature of large CMP computer systems. In partic-
ular, the contributions of this paper are as follows:

1) We propose a low overhead, non-invasive, hardware pro-
filer implementation based on Mattson’s stack distance al-
gorithm (MSA) [17] that can effectively project memory
bandwidth requirements of each core in addition to cache
capacity requirements that previous papers have proposed
[22]. Our implementation requires approximately 1.4% of
the size of an 8MB LLC and introduces an Effective error
of only 3.6% in bandwidth and 1.3% in cache capacity
profiling. This MSA profiler can guide our fine-grained
dynamic resource management scheme and allow us to
make projections of capacity and bandwidth requirements
under different LLC partition allocations.

2) We propose a system-wide optimization of resource allo-
cation and job scheduling. Our scheme aims to achieve
overall system throughput optimization by identifying
over-utilized chips, in terms of memory bandwidth and/or
cache capacity requirements. For those chips, a set of job
migrations is able to balance the utilization of resources
across the whole platform leading to improved through-
put. Based on our experiments, our bandwidth-aware
scheme is able to achieve a reduction of 18% reduction in
memory bandwidth along with a 7.9% reduction in miss
rate and an average 8.5% increase in IPC, compared to
single chip optimization policies.

To the best of our knowledge, this is the first proposed
scheme that systematically combines memory bandwidth and
cache capacity requirements for memory-subsystem resource
management in large multi-chip CMP systems, looking for
optimizations within and beyond a single chip.

The rest of the paper is organized as follows. Section II
states our baseline multi-chip CMP design. In Section III we
elaborate on our proposed Bandwidth-aware cache partitioning
scheme. Section IV describes the simulation and evaluation
methodology and reports our experimental results. Finally,
Section V presents the related work in the literature.
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TABLE I. Single-Chip CMP parameters

Memory Subsystem Core Characteristics
64 KB, 2-way
L1 Data & associative, 3 cycles Clock 4 GHz
Inst. Cache access time, 64 Bytes Frequency
block size, Pseudo-LRU
8 MB (16 x 512KB
banks), 8-way 30 stages /
L2 Cache associative, 10-70 cycles Pipeline 4-wide fetch
bank access, 64 Bytes / decode
block size, Pseudo-LRU
Reorder
11\‘/[;?;);}, 260 cycles Buffer / 11531?1{664
Y Scheduler 1e8
Direct
Memory Branch YAGS /
Bandwidth 64 GB/s Predictor indirect 256
entries
Memory Size 4 GB of DRAM
Outstanding
Requests 16 requests / core

II. BASELINE SYSTEM ARCHITECTURE

Fig. 1 demonstrates an example of server construction in
a large CMP environment where machine racks are filled
with high density machines. In such systems, the servers are
typically comprised of 2 to 4 packaged chips, with each chip
being a CMP. In our baseline system, each CMP features 8
cores sharing a DNUCA-like [1] cache design as our LLC.
Work can be partitioned and migrated as needed, based on
scheduling and load balancing algorithms.

The rightmost part of Fig. 1 (Single CMP) demonstrates
our baseline CMP system. The selected LLC contains 16
physical banks with each cache bank configured as an 8-
way set associative cache. The overall LLC capacity was set
to 8MB. An alternative logical interpretation of the cache
architecture is as a 128-way equivalent cache separated in
sixteen 8-way set associative cache banks. The eight cache
banks physically located next to a core are called Local banks
and the rest are the Center banks. Table I includes the basic
system parameters selected for our baseline system.

III. BANDWIDTH-AWARE RESOURCE MANAGEMENT

A. Applications’ Resource Profiling

In order to dynamically profile the memory-subsystem re-
source requirements of each core, we implemented a predic-
tion scheme that is able to estimate both cache misses and
memory bandwidth requirements. This prediction scheme is



contrasted against typical profiling models in that we estimate
resource behavior of all possible configurations concurrently,
as opposed to profiling the currently configured resources.
Our prediction model is based on Mattson’s stack distance
algorithm (MSA), which was initially proposed by Mattson
et al. [17] for reducing the simulation time of trace-driven
caches. More recently, hardware-based MSA algorithms have
been used for CMP system resource management [22], [29].

To predict memory access behavior in addition to cache miss
rates we extend previously proposed hardware solutions [22],
[29]. Specifically, our scheme predicts the memory write traffic
produced by the eviction of modified lines in a write-back
cache. In the following subsections, we first present a brief
description of the baseline MSA algorithm for profiling LLC
misses followed by the description of the additional structures
needed to predict the memory bandwidth requirements.

1) MSA-based Profiler for LLC Misses: MSA is based on
the inclusion property of the commonly used Least Recently
Used (LRU) cache replacement policy. Specifically, during any
sequence of memory accesses, the content of an N sized cache
is a subset of the content of any cache larger than N. To
create a profile for a K-way set associative cache we need
K+1 counters, named Counter; to Counterg 1. Every time
there is an access to the monitored cache we increment only
the counter that corresponds to the LRU stack distance where
the access took place. Counters from Counter; to Counterg
correspond to the Most Recently Used (MRU) up to the LRU
position in the stack distance, respectively. If an access touches
an address in a cache block that was in the i-th position of
the LRU stack distance, we increment the Counter; counter.
Finally, if the access ends up being a miss, we increment the
Counterg 1. The Hit Counter of Fig. 2 demonstrates such a
MSA profile for bzip2 of SPEC CPU2006 suite [26] running
on an 8-way associative cache. The application in the example
shows a good temporal reuse of stored data in the cache since
the MRU positions have a significant percentage of the hits
over the LRU one. The graph of Fig. 2 can change accordingly
to each application’s spatial and temporal locality.
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Fig. 2. Example of misses and bandwidth MSA histograms of bzip2

2) MSA-based Profiler for Memory Bandwidth: In addition
to capacity misses, we augmented the MSA circuit to estimate
the required memory bandwidth. There are two components
that must be addressed: a) read bandwidth due to cache fills,

and b) write bandwidth due to cache evictions (dirty wrife-
backs to memory). The bandwidth needed for fetching data
from main memory required by a cache miss (cache fills) can
be derived from the previously described MSA circuit. The
number of misses estimated by MSA is proportional to the
needed memory bandwidth to fetch the missed data with each
miss representing a cache-line of bandwidth.

To project the write-back bandwidth, we exploit the follow-
ing property. In our MSA structure, hits to dirty lines indicate a
write-back operation if the cache capacity allocation is smaller
than its stack distance. Essentially, the store data must have
been written back to memory and re-fetched since the cache
lacked the capacity to hold the dirty data. This process is
complicated in that only one write-back per store should be
accounted for. To track these possible write-backs to memory
we propose the following structure.

For each cache line tracked in the MSA structure we add
a Dirty Bit and a Dirty Stack Distance indicator (register).
In addition, we add a dirty line access counter, named Dirty
Counter for each cache way. The Dirty Stack Distance is used
to track the largest stack distance at which a dirty line has been
accessed. We cannot simply update the DirtyCounter access
counter on each hit of a dirty line, since this will give multiple
counts for one store. In addition, we cannot reset the Dirty
Bit on an access, since a future access to the same line at
a greater stack distance must be accounted for in the dirty
access counters. Essentially, we must track the greatest stack
distance that each store is referenced. Pseudocode 1 describes
how we update the Dirty Bits, Dirty Counters and Dirty Stack
Distance registers.

Pseudocode 1 Write-back dirty access hardware description

if (access is a hit) {/* Handling Dirty Counters & Dirty Stack Distance */

hit_distance <= stack distance of hit

hit_dirty <= dirty bit set in hit entry

dirty_stack_distance <= dirty distance value in hit entry

if (hit_dirty and(hit_distance > dirty_stack_distance)) {
DirtyCounter[dirty_stack_distance] - -;
DirtyCounter[hit_distance] ++;
dirty_stack_distance = hit_distance;

} else{ /* access is a miss */
/* Hanlde deallocation of evicted line */
DirtyCounter[dirty_stack_distance] - -;
K+1_Counter++;
/* Handle new line allocation */
dirty_bit =0

/* Handling a store operation */

if (is_store) {
dirty_bit =1
dirty_stack_distance = 0

The dirty bit is only reset when the line is evicted from the
cache. At eviction time an additional counter (K + 1 counter
of Fig. 2) tracks the number of write-back operations. This
number gives the write-back rate for a cache size correspond-
ing to the maximum capacity tracked. The projection of write-
back rates can then be made from the DirtyCounters. For each
cache size projection, the sum of all counters larger than the
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Fig. 3. Example of MSA-based write-back bandwidth profiling

allocated size indicates the number of write-back operations
sent to main memory.

Fig. 3 demonstrates how we track the maximum stack
distance which a given store is referenced. In the example,
we start with a store to a previously allocated clean line. This
will set the Dirty Bit to 1, set the Dirty Stack Distance to
0, and increment the entry 0’ of the histogram. Essentially,
if the cache had no free capacity, the store operation would
immediately produce a write to memory. Following the store
operation, we show two load hits of the MSA structure. The
first hit is at a stack distance of 4. As such any cache that is
smaller than 4 ways would have not been able to contain the
store data. We then move the accounting for the store from
entry O to entry 4 of the histogram. As we detect a load that
hits entry 7, we must move the accounting to entry 7. If the
line is evicted, this line results in a write-back for any of the
captured sizes. The key insight shown here is that each store
will result in exactly one net increment across the histogram
and K+1 Counter (K+1 Counter of Fig. 2). Increments to
larger stack distances leading to the K+ Counter are more
powerful in that avoiding the write-back to memory requires
a larger cache assignment.

Overall, our MSA histograms allow us to make a prediction
for both the number of misses and the required memory
bandwidth dependent on the number of ways that a core is
assigned. An example of such an MSA profile is shown in
Fig. 2 where both MSA histograms and dirty evictions are
shown.

3) Examples of Real Applications’ Histograms: Fig. 4
demonstrates the three most representative categories of mem-
ory bandwidth requirements that we observed examining
SPEC CPU 2006 [26] suite. As we explained before, the
read bandwidth is highly correlated with cache miss rate and
therefore previous techniques indirectly account for it. From
the figure, milc features a write rate almost equal to the
read rate. In this workload, complex matrix data structures
are modified at each iteration, producing a high fraction
of modified data. In contrast, the calculix benchmark uses
cache blocking of matrix multiplications and dot product
operations to condense and contain store data within the cache.
As such, the memory traffic becomes read only beyond the

blocking size. As another example of the workload variation
we included gcc. In the gcc workload smaller caches produce
a more read dominated pattern, while larger caches become
write dominated. This behavior is due to the code generation
aspect. As the cache grows, data tables within the compiler
become cache-contained, leaving only the write-back traffic
of the generated code.
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B. Intra-Chip Partitioning Algorithm

Our Intra-chip cache capacity assignment policy is based
on the concept of Marginal-Utility [S]. This concept originates
from economic theory, where a given amount of resources (in
our case cache capacity) provides a certain amount of utility
(reduced misses for us). The amount of utility relative to the
resource is defined as the Marginal-Utility. Specifically, the
Marginal-Utility for n additional elements when ¢ of them
have already been used is defined as:



Utility_Rate(c + n) — Utility_Rate(c)
n

Maryg. Utility(n) = (1

The MSA histogram provides a direct way to compute
the Marginal-Utility for a given workload across a range of
possible cache allocations. We follow an iterative approach,
where at any point we can compare the Marginal-Utility of
all possible allocations of unused capacity. Of these possible
allocations, the maximum Marginal-Utility represents the best
use of an increment in assigned capacity. Our greedy algorithm
is shown in Algorithm 1. The general form of the algorithm
appears in [27] and later on modified by Qureshi et al. in [22]
for cache partitioning allocation.

Algorithm 1 Marginal-utility allocation algorithm

/* Initial */
num_ways_free = 128
best_reduction = 0
/* Repeat until all ways have been allocated to a core */
while (num_ways_free) {
for core = 0 to num_of_cores {
/* Repeat for the remaining un-allocated ways */
for assign_num = 1 to num_ways_free {
local_reduction = (MSA_hits(bank_assigned|core]
+assign_num) — MSA_hits(bank_assigned[core]))
/assign_num,;
/* keep the best reduction so far */
if (local_reduction > best_reduction) {
best_reduction = local_reduction;
save(core, assign_num);
}
}

retrieve(best_core,best_assign_num);
num_ways_free — = best_assign_num,;
bank_assigned|best_core]+ = best_assign_num;

Using Algorithm 1 as our guide we have implemented a
detailed Intra-chip partitioning algorithm. The algorithm
takes into consideration the ideal capacity assigned by Algo-
rithm 1 and the distributed nature of our DNUCA LLC design,
to assign specific cache-ways to each core. The algorithm is
based on a set of heuristics that are applied on the initial
ideal assignments to decide on the partitions placement. The
algorithm was proposed in [12] for a single CMP chip. The
heuristics, that are analyzed in more details in [12], are the
following:

1) Center cache banks are completely assigned to a specific
core. This enables efficient aggregations of multiple cache
banks.

2) If a core is assigned less than 8 ways (the size of a cache
bank), all the ways are assigned to a Local bank close to
it to keep a low access latency for the core.

3) Local cache banks can only be shared with an adjacent
core in order to provide low latency and minimal network
loads for data transfers.

To enforce the selected cache partitions, we modified the
typical design of a cache bank to support a fine-grain, cache-
way partitioning scheme as was proposed in [10]. According

to this scheme, each way of a cache bank can only belong
to one specific core. When a core suffers a cache miss, a
modified LRU replacement mechanism is used to select the
least recently used cache block that belongs to that specific
core, for replacement. Our approach is compared against the
scheme from Qureshi et al. in [22] enhanced for our CMP
DNUCA LLC, which from now on we call UCP+ (Utility-
based Cache Partitioning).

Each iteration of Algorithm 1 requires up to the num-
ber of available cache ways computations. As the cache
ways are allocated, the number of ways a core can receive
in each iteration reduces accordingly. Assuming the worst-
case assignment of ways to be one cache way per iteration
of the algorithm, its computational complexity is equal to
N+(N—-1)+..+41= Nx(N-1)/2 = O(N?/2),
where N is the maximum allowable number of cache ways
we can assign to a core. Moreover, since we assign cache
ways in a granularity of 8-ways for most of the cases, for
an equivalent of 128 ways LLC the N = 128ways/8 ~ 16.
Therefore the complexity of estimating the cache partitions in
our case is significantly less than the one needed by the Utility-
Based algorithm of Qureshi et al. [22] for a large CMP system
like our baseline. Finally, such complexity is less significant
because of the low frequency of these computations. As our
evaluation section shows, we use epochs of 100M cycles to
re-evaluate the LLC partitions and the evaluation can be done
off-line, minimizing the performance impact.

C. Inter-Chip Partitioning Algorithm

Our Inter-chip partitioning algorithm utilizes the non-
uniform marginal utilities of Intra-chip partitioning algorithm
and the bandwidth requirements of each core to find an
efficient workload schedule on the various available chips
within our system. Given a random workload assignment
among many CMP chips in a system, some chips are expected
to feature higher contention of cache capacity and memory
bandwidth than others. To mitigate this problem, we propose a
global partitioning algorithm that aims at lowering this system
level contention. Our approach first uses a global Marginal-
Utility assignment to guide migrations of work between the
chips in the system in an effort to relieve cache capacity
contention. This optimization step is combined with memory
bandwidth over-commit detection, which can potentially create
additional migrations. Each migration step is evaluated against
a heuristic so that the migration overhead is bounded with
respect to the expected execution speed gains. In the following
we describe the two basic steps of the algorithm.

1) Cache Capacity: First, we use the Marginal-Utility
allocation of Algorithm 1 to estimate an optimal resource
assignment for each core (ideal), assuming that each core can
freely use all of the available cache capacity in any chip.
This gives us an optimal resource assignment per core and
allows us to estimate the distance of the Intra-chip partitioning
algorithm assignment from the ideal one per core. Having
this information, we use Algorithm 2 to perform workload
swaps between chips following a greedy approach. In line 1



of the algorithm, we estimate the distance, in number of cache
ways, of each core’s capacity assignment from its ideal one.
Based on that we find the core with the worst cache-ways
assignment in each chip. Lines 3 and 4 find the chip and core
that has the biggest number of surplus ways in the system,
respectively. The surplus ways are the ways assigned to a core
that do not significantly contribute to the miss rate of the core’s
workload, based on our MSA profiler and their Marginal-
Utility analysis, and therefore can be reassigned with small
performance cost. Our greedy approach swaps (migrates) the
workloads of the worst and best identified cores (line 5) and
re-estimates the overall miss rate of the current assignment.
The whole process is repeated until the threshold based on
migration cost is reached (line 7).

Algorithm 2 Inter-Chip Capacity-based Workload Swapping

do {
for-each core in system-cores {
1 estimate core partition efficiency over ideal
2 find worst-core € system-core with largest deficiency

for-each chip in system-chips {
3 find best-chip € system-chips with largest surplus of ways
4 find best-core in best-chip with lowest capacity requirement

5 swap workloads of best-core with worst-core
6 estimate overall_miss_rate
7} while (overall_miss_rate — previous_miss_rate < threshold)

2) Memory Bandwidth: Using the proposed MSA-based
profiler we can predict the bandwidth requirements of a given
cache capacity assignment of each workload. An efficient
assignment of cache partitions by the Intra-chip partitioning
algorithm may end up having a very high memory band-
width requirement per chip. Such an assignment can therefore
saturate the available bandwidth. Note that the latency due
to bandwidth over-commit is non linear, typically following
an exponential relation with the network utilization. Our mi-
gration based Memory Bandwidth Over-commit algorithm
attempts to find combinations of workloads with high/low
bandwidth requirements. The workload with higher bandwidth
demands are shifted from over-committed chips to under-
committed chips. The swapping workloads must have similar
cache capacity assignments, within a small percentage differ-
ence (10% in our case), in order to allow such swapping. This
is necessary to guarantee that the migrations caused by the
memory bandwidth over-commit algorithm do not contradict
the assignments of the Intra-chip cache partitioning algorithm.
The process is repeated up to the point there is either no
bandwidth over-commited chips or additional swapping does
not offer any reduction in bandwidth usage. Fig. 5(a) shows an
example of how Memory Bandwidth Over-commit algorithm
works on a four-chips system case with each chip having
8 randomly selected workloads executing on it from SPEC
CPU2006 suite [26]. The Y-axis shows the stacked memory
bandwidth requirements per chip as it was projected by our
MSA-based profiler. The figure includes four steps of the
algorithm (steps Step 0 to Step 3). In the initial step Step
0, Chip 2 (C2) is assigned a set of workloads which memory
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(a) Memory Bandwidth Over-commit algorithm illustra-
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Step # Workload(Chiprpitiar — Chiprinat)
Step 0 Initial step, no swaps
Step 1 A(C2 — C3),B(C3 — C2)
Step 2 C(C2 — C0),D(C0 — C2)
Step 3 C(C0 — C2),B(C2 — C0)

(b) Workload swaps per step

Fig. 5. Four steps example of Memory Bandwidth Over-commit
algorithm for four chips (CO to C3)

bandwidth requirements exceed the available one. If this set of
workloads is executed on a single chip, the memory bandwidth
contention will slow down the chip, affecting the overall
throughput. The selected workloads are: lbm (A), calculix
(B), bwaves (C) and zeusmp (D). Note that zeusmp (D) has
very small memory bandwidth requirements. Table 5(b) shows
the migrations that the algorithm performs in order to find
a solution that satisfies the maximum bandwidth constraint.
As we can see from Step 3, the algorithm terminates with an
assignment that meets the bandwidth restriction for every chip.

3) Computational Overhead of Inter-chip algorithm: The
Inter-chip algorithm is based on both Algorithm 1 and Algo-
rithm 2 with the first being more computational demanding.
Therefore, the computational complexity is bounded by the
one of the Marginal-Utility algorithm which according to
Section III-B is equal to O(N?/2). In addition, Algorithm 2
investigates migration only among the chips that are over-
utilizing the memory bandwidth and the number of steps
is limited by a threshold. As in the case of the Intra-chip
algorithm, such computational complexity is less significant
because of the low frequency of computation. The evaluation
take place infrequently and can be done off-line, minimizing
the performance impact.

D. Overall Dynamic Scheme

Fig. 6 shows an outline of our framework for the proposed
hierarchical bandwidth-aware resource management scheme.
The dark shaded modules indicate our additions over a typical
large CMP system as the one described in Section II. Looking
at the single-chip level, each core has a dedicated Cache
Profiling circuit that tracks its shared resource (cache capacity
and memory bandwidth) requirements (description in Sec-
tion III-A). This profiling circuit is independent of the cache
subsystem and is able to non-invasively monitor the behavior
of an application running on a core. Each Cache Profiling
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circuit is unaware of the workloads executing on other cores
and assumes that the whole cache is available to the monitoring
core. The overall proposed dynamic scheme is based on the
notion of epochs. During an epoch, our MSA-based profiling
circuit constantly monitors the behavior of each core in every
CMP of the overall system. When an epoch ends, the profiled
data of each core are passed to the marginal-utility algorithm
to find the ideal cache capacity assignments for each core in
every individual CMP-chip. Those partitions are then given
to the Intra-chip cache partitioning algorithm for assigning
specific cache-ways to each core using the heuristics described
before. When each core has a specific cache partition assigned
to it, we look at a higher than a single chip level for further
optimizations in both cache capacity and memory bandwidth
usage. To accomplish that we use the cache capacity algorithm
of the Inter-chip partitioning scheme to find better cache
allocations among multiple chips. Following that, we use the
Memory bandwidth part of the same scheme to identify and
solve bandwidth over-committed chip. In the end, we perform
the necessary workload migrations and update the assigned
cache partitions to each chip. The whole process is repeated
at the end of the next epoch.

IV. EVALUATION

To evaluate our proposed scheme we utilized a full system
simulator, modeling an 8-core SPARCv9 CMP under Solaris
10 OS. Specifically, we used Simics [25] as the full sys-
tem functional simulator extended with Gems toolset [18] to
simulate a cycle-accurate out-of-order processor and memory
subsystem. The CMP-NUCA design was implemented in
Gems memory timing model (Ruby) extended with the support
of the fine-grain L2 cache partitioning scheme described in
Section IIl. The memory system timing model includes a
detailed, inter-core network using a MOESI cache coherence
protocol. Throughout the paper, the frequency of evaluating
and reallocating the L2 cache partitions on a simple chip was
set to a 100M cycle epoch.

We use SPEC CPU2006 [26] scientific benchmark suite,
compiled to SPARC ISA with peak compilation options,
to evaluate our proposed scheme. We fast forward all the

benchmarks for 1 billion instructions, and use the next 100M
instructions to warm up the CMP-NUCA L2 cache. Each
benchmark was simulated in our CMP-NUCA for a slice of
200M instructions after cache warm up. Table I includes the
basic system parameters that were used.

In the remaining of the evaluation section we first demon-
strate the accuracy and overhead of our MSA profilers fol-
lowed by the evaluation and comparison of our proposed
scheme over one of the most promising cache partitioning al-
gorithms in the literature, the Utility-based Cache Partitioning
[22], extended to match our baseline system (UCP+).

A. MSA-profiler Implementation Overhead and Accuracy

The hardware overhead of the profiling structure is primarily
defined by the implementation of the necessary cache directory
tag shadow copy. These cache block tags are necessary for
identifying which cache block is assigned at each one of the hit
and dirty evictions counter pairs of Fig. 2. Additional overhead
is introduced by the implementation of the Hit Counters, Dirty
Counters and Dirty Stack Distance registers themselves for
each cache way, but since those counters are shared over all
the available cache-ways, their overhead is significantly lower
than the cache block tag information for every set.

A naive implementation would require a complete copy
of the cache block tags for each cache set in each one of
MSA profilers, which is prohibitively high. The overhead can
be greatly reduced using: a) partial hashed tags [13], b) set
sampling [14], and ¢) maximum assignable capacity reduction
techniques. With partial hashed tags one can use less than full
tags to identify the cache blocks assigned at each counter pair
thus reducing the storage overhead. Hashing is necessary to
reducing the aliasing problem of using less than full tags. set
sampling involves the profiling of a fraction of the available
cache sets and therefore it also reduces the number of stored
cache tags in the circuit. In addition, the maximum assignable
capacity approach assumes that the number of cache-ways that
can be assigned to each core is less than the overall number of
available cache-ways. In that case, the number of counter pairs
are reduced to the maximum number of assignable ways per
core. The first two reduction techniques are subject to aliasing,
which introduces errors and affects the overall accuracy of our
profiling circuit. In addition, the maximum assignable capacity
can potentially restrict the effectiveness of our partitioning
scheme by not dedicating bigger portions of a cache to a
specific core.

Fig. 7 demonstrates the errors introduced by partial hashed
tags and set sampling techniques in our MSA profilers, for
both misses and bandwidth, compared to their unrealistic full
implementations. Our analysis target is to find a configuration
that can significantly reduce the necessary overhead to a
realistic implementation with an acceptable error rate. The
errors estimated as an average error over the analysis of the
whole SPEC CPU2006 suite for a slice of 100M instructions
per benchmark using our detailed Gems implementation of
our scheme. The full implementation profilers are able to
accurately monitor the requirements and do not introduce any



errors since they keep all the necessary information from our
simulator. We provide two space exploration error analysis,
Absolute error and Effective error. The first one represents
the aliasing error of the actual raw data in the counters for
all configurations. On the other hand, the Effective error is
estimated over the information that our algorithms use to
estimate the Marginal-Utility of each cache way and reflects
the error that can lead to a different assignment decision for
Intra-chip algorithm and workload migration for Inter-chip
algorithm. Set sampling was selected to change from 1-in-2
up to 1-in-64 samples per cache set and partial hashed tags
changed from O (no partial tags) to 4096 (using only 12 bits
of address tags). To mitigate the aliasing problem, the partial
hashed tags use a randomly created network of XOR gates to
hash the partial tags. The XOR tree overhead is very small in
comparison to the necessary number of counters and only one
copy per MSA-profiler is necessary. There are two rules for
choosing a configuration and minimize the hardware overhead:
The hardware overhead is a) proportional to the size of partial
hashed tags , and b) inversely proportional to the set sampling.
Therefore, we ideally want to keep a small number of tag bits
and use a large number of set sampling.

From Fig. 7 we can clearly see that as the set sampling
number increases so does the error rate. In addition, an
increased number of partial hashed tags can significantly
improve the error rates especially for the case of Effective
error. For most cases a small number of partial hashed tags
introduce a significant error which indicated that we need
to choose a big number of bits in our tags. Fig. 7(a) and
Fig. 7(c) show that our estimation of misses is more sensitive
to the selected configuration that the memory bandwidth use,
introducing a variation in the absolute error. On the other hand,
Fig. 7(b) and Fig. 7(d) demonstrate the opposite trend for the
effective error. This is a strong indication that our algorithm’s
decisions are more sensitive to the bandwidth use and we
should choose a configuration that favors those decisions more.
Furthermore, for high number of partial tags and set sampling,
the effective errors are significantly smaller than the absolute
errors which allow us to be more elastic on the final selected
configuration, improving our overhead.

Taking all the previous trends into consideration we chose
to use 11 bit partial hashed tags (Tag hashing 2048) combined
with 1-in-32 set sampling. Such a configuration produced
average Absolute error rates of 6.4% for misses and 5%
for bandwidth. On the other hand, the Effective error was
estimated to be 1.3% for misses and 3.6% for bandwidth
compared to the profiling accuracy obtained using a full
tag implementation. Such error bounds are inline with other
set-sampling based monitor schemes like UMON [22] and
CacheScouts [30]. The first one concludes that 1-in-32 set-
sampling is enough for their profiler and the latter reports error
rates of 6% for their 1-in-128 set sampling of cache occupancy
for scientific workloads. To further improve overhead, our
Intra-chip partitioning assignment algorithm limits each core
to a maximum of 9/16 of the total cache capacity and therefore
the lru_pointer and the Dirty Stack Distance register sizes

Absolute Error (22)
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Fig. 7. MSA absolute and effective accuracy for different implemen-
tations

were set to 6 bits. The Hit and Dirty counters size was set
to 32 bits to avoid overflows during an epoch. Finally, we have
implemented the LRU stack distance of the MSA as a single
linked list with head and tail pointers. The cost for such a
structure is included in Table II. Overall, the implementation
overhead is estimated to be 117 kbits per profiler, which is
approximately 1.4% of our 8MB LLC cache design assuming
8 profilers.

TABLE II. Overhead of the proposed MSA profiler

Structure Name Overhead Equation Overhead
. Tag_width » Cache_ways * .
Tags Size (Sets/Set_sampling) 54 kbits
LRU Stack ((LRU_pointer x Cache_ways) + 27 kbits
Distance Head/Tail)*(Sets/Set_sampling) )
. . Cache_ways * .
Dirty Bits (Sets/Set_sampling) 2.25 kbits
Dirty Counters Cache_ways * Counter_size 4.5 kbits
Dirty Stack . S .
Distance Registers Cache_ways * Register_size 27 Kkbits
Hit Counters Cache_ways * Counter_size 2.25 kbits

B. Bandwidth-aware Resource Management Scheme

Analysis of computer systems in virtualization environments
is an important problem. In these systems an arbitrary mix
of work may share a server at any given time. The general
problem of performance analysis using benchmarks is
greatly compounded by the possible combinations of
workloads. In order to limit the state space, we base
our evaluation on the workloads of the SPEC CPU2006
integer and floating point benchmark suites. Even with



this limitation the possible combinations of the 29
workloads on our eight core target machine is very
large and equal to C(num_workloads + num_cores -
1,num_cores) = C(29 + 8-1,8) =30 million possible
workload combinations. Based on this very large state space,
we employ a Monte Carlo based approach for the evaluation
of our proposed scheme. The cache miss rates for the overall
system are estimated from projecting miss rates based on
MSA data collected from our detailed system simulations.
We used this method, to evaluate our proposed scheme over a
range of cache sizes and number of chips in the system. The
evaluation method was executed for 1000 random workload
assignments for each configuration and includes the following
steps: a) Collect MSA histograms from detailed simulations
for all workloads, b) Randomly select (with repetition) a
workload for each core in the simulated system and c)
Execute stand-alone Intra-chip algorithm (UCP+) and the
proposed Bandwidth-aware algorithm (BW-aware), that is
UCP+ combined with Inter-chip algorithms together. In the
following we first report the gains in LLC misses followed
by the gains in bandwidth use.

1) LLC misses: Fig. 8 shows the normalized cache miss rate
results from 2 to 16 CMP chips and LLC cache sizes of 4, 8
and 16MB. The first bar of Fig. 8(a) (Static-Even Partitions)
represents the miss rate for the static even partitions where
each core is statically allocated 1/8 of the cache capacity.
The next two bars show the relative miss rate of the UCP+
and BW-aware partitioning schemes, respectively. As we stated
before, the UCP+ is our implementation of the Utility-based
Cache Partitioning algorithm proposed by Qureshi et al. [22]
extended with a set of heuristics to support an 8-core CMP-
DNUCA system like our baseline one. According to the figure,
the average reduction provided by BW-aware is 25.7% over
the simple static-even partitions scheme. This is a signifi-
cant reduction considering the relatively small 1.4% storage
overhead of our MSA-based profiling structures. In addition,
Fig. 8(b) shows the additional miss rate reductions provided
by BW-aware algorithm over the UCP+’s scheme. From the
figure, we can see an average LLC misses reduction of 7.9%
taking into consideration all the configurations. Therefore, the
BW-aware scheme provides significant additional miss rate
reductions with no significant additional hardware over UCP+.
As the number of chips in the system increases, the BW-aware
algorithm shows improvement in the miss rate up to 8 chips
after which we observe diminishing returns. This indicates that
large SMP systems could contain the BW-aware algorithm
within its shared memory space and therefore avoid more
complex partition migrations across multiple servers. Finally,
the miss rate improvements are consistent across a reasonable
range of cache sizes, demonstrating a small improvement as
the LLC size increases. The increased size allows more surplus
of cache ways (see Algorithm 2) and therefore allows the Inter-
chip algorithm to find more candidates for swapping that can
potentially lead to a better mapping of the workloads to the
available chips.
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2 Chips 4.9% 5.6% 6.2%
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Fig. 8. Relative miss rate

2) Memory Bandwidth: To show the memory bandwidth
improvements we focus on the reduction of the average worst-
case chip memory bandwidth in the system during an epoch.
As our algorithm migrates bandwidth from the highly to
lightly loaded chips in the system, an average reduction of
bandwidth across all the chips is not relevant in determining
our performance. Instead we care for the cases that chips
feature long memory latencies due to overcommitted memory
bandwidth requirements. Fig. 9(a) includes the bandwidth
reductions achieved by using UCP+ and our proposed scheme
over the static-even partitions case. The UCP+ algorithm
reductions are only due to the reductions in the miss rate
achieved by the Marginal-Utility-based algorithm using our
MSA-profilers information and on average is equal to 19%
over the simple static case with even partitions. The addition
of the Inter-chip algorithm in our proposed BW-aware scheme
increases this reduction to an overall 36%. The additional
gains that our migration-based scheme can provide over the
UCP+ are shown in more details in the table of Fig. 9(b).
Overall, our scheme is able to provide an additional 18%
reduction in bandwidth over UCP+. As expected, the band-
width reduction is greater in the smaller cache configurations.
Essentially, the higher miss rates due to smaller caches results
in greater contention which provides greater opportunities for
improvement. In addition, as the number of chips in the
system increases, we are able to find more opportunities for
migrations as such the memory bandwidth reductions increase
significantly from 2 to 16 chips. The system size required for
good optimizations is comparable to that required by the cache
capacity optimizations, that is 8 to 16 chips. One artifact of
using average worst-case bandwidth is the upward trend of the
UCP+. As the number of chips in the simulation increases, the
expected worst-case bandwidth increases due to the random
nature of the workload selection.
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Cache Size per Chip
# of Chips 4MB 8MB 16MB
2 Chips 17.5% 8.6% 6.1%
4 Chips 21.3% 15.5% 19.6%
8 Chips 26.6% 20.8% 11.8%
16 Chips 30.1% 27.8% 14.1%

(b) Avg. bandwidth use reduction of BW-aware over UCP+
Fig. 9. Relative bandwidth use

C. Detailed Simulation Case Study

We chose a set of experiments of the previous simulations
to validate the effectiveness on a full system simulation based
on Simics [25] and Gems [18]. We simulated an 8-chip
system with each chip being an 8-core CMP. We selected the
experiments randomly to validate our proposed scheme and
see its effectiveness on overall performance. We chose two
sets of 64 random assignments and run two experiments on
these sets. The first experiment uses only the UCP+ approach
which is equivalent to our Intra-chip partitioning algorithm.
For the second experiment we apply the multi-chip Inter-chip
partitioning algorithm (BW-aware) on each set in addition to
UCP+.

Figs. 10(a) and 10(b) show the IPC and MPKI (misses
per kilo instructions) comparison of UCP+ and BW-aware for
each chip for the first and second experiment sets, respectively.
The first set demonstrated an average improvement of 8.6%
in IPC and 15.3% in MPKI across all chips, mainly due to
bandwidth improvements on Chip 4 and Chip 7. The main
difference between the assignments of Chip 4 and Chip 7 for
the cases of UCP+ and BW-aware was moving bwaves and
mcf and replacing them with povray and calculix. Both bwaves
and mcf are, according to our MSA-based profiling, two of the
most demanding memory bandwidth benchmarks in the whole
suite and compared to them povray and calculix have very low
bandwidth requirements.

The second set of experiments showed an average im-
provement of 8.5% in IPC and 11% in MPKI. The main
contributor of this reduction are the workload migrations on
Chip 7. According to our profiling, Chip 7 was initially over-
utilizing the memory bandwidth creating a significant number
of misses. By applying the Inter-chip algorithm, bwaves and
gee workloads where swapped with zeusmp from Chip 2
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and gamess from Chip 6. Both zeusmp and gamess bench-
marks need a small percentage of memory bandwidth while
bwaves and gcc have both high memory bandwidth demands.
Therefore, such migrations enabled both the high-demanded
benchmarks to use the previously available bandwidth in Chip
2 and 6, and the previously saturated Chip 7, to allocate the
capacity and bandwidth to the rest of its workloads. Both of
these experiments validate the effectiveness of our algorithm
in improving both the cache miss rate and memory bandwidth
requirements in over-commited systems, and show IPC and
MPKI improvements close to the one estimated in the previous
section using the Monte-carlo approach.

V. RELATED WORK

Kim et al. [15] highlighted the importance of enforcing
fairness in CMP caching and proposed a set of fairness metrics
for optimization. However, their policies are analyzed using
only best static offline parameters and mechanisms. Suh et al.
[28] propose a dynamic L2 cache partitioning technique that
allocates the L2 cache resource at the granularity of cache
ways to improve system throughput. They employ a greedy
heuristic to allocate cache ways to the application that has the
highest incremental benefit from the assignment. Qureshi et al.
[22] improves Suh’s allocation policy by using cache utility
monitor (UMON) to estimate the utility of assigning additional
cache ways to an application. Both of them target at improving
the throughput of a single CMP system through reductions in
cache misses. Chang et al. [4] proposed time-sharing cache
partitions, which translates the problem of fairness to the
problem of scheduling in a time-sharing system. Jiang et
al. [11] demonstrate that co-scheduling on k-core (k > 2)
is NP-hard, and propose a greedy algorithm that schedules
jobs in the order of their sensitivity to cache contentions.
Our approach extends these papers by proposing a systematic



approach that considers main memory traffic in addition to
cache miss rate. In addition we seek system-level solutions
beyond a single chip in the context of large CMP systems.
Iyer et al. [10] proposed a framework for enforcing QoS
characteristics in a system based on trial-and-error approaches
to fit the QoS targets. That work was later on extended by
Zhao et al. [30] with a set of counters, named CacheScouts,
that monitored their QoS characteristics in a system and made
resource management decisions accordingly. We use non-
invasive MSA profilers that can predict resource requirements
for all different cache capacity assignments in parallel for
both misses and bandwidth use. Such prediction is important
for reconfigurable schemes in order to perform expensive
reconfiguration operations only when the benefit is predicted
to be important enough.

VI. CONCLUSIONS

Shared resource contention in CMP platforms has been
identified as a key performance bottleneck that is expected to
become worse as the number of cores on a chip continues to
scale to higher numbers. Our analysis shows that bandwidth-
aware optimizations at the system level provide significant
improvements over optimizations limited to a single chip
with very small additional hardware overhead. Our proposed
Bandwidth-aware partitioning scheme is able to provide on
average, 25.7% reduction in misses and 36% reduction in
worst-case bandwidth use compared to static-even LLC par-
titioning schemes. A comparison with a state-of-art cache
partitioning scheme showed an average 18% reduction in
memory bandwidth along with 7.9% reduction in the LLC
miss rate. In addition, our detailed simulation case studies
show that our resource management scheme can achieve an
average reduction of 8.5% in IPC and 13% in MPKI on
a 8-chip CMP system. These improvements over existing
techniques can justify the hardware overhead of our proposed
MSA-based profilers which was estimated to be 1.4% of our
baseline 8MB LLC.
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