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Basic Belief

• There are bottlenecks that exist in modern 
computer systems, which if precisely 
unveiled, will lead to appropriate 
architectures and architectural 
enhancements.
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Media Workload Characterization Example –
Study on effectiveness of MMX- using Discrete 

Cosine Transform (DCT)

Pentium II without MMX Pentium II with MMX 
 

Clocks Eff. Comp. Clocks Eff. Comp. 

Maximum compiler 
optimizations 3500 0.15 2375 0.24 (6%) 

Ideal case ≈512 1 ≈128 4 (100%) 
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Media Workload Characterization Example –
Study on effectiveness of MMX- using Discrete 

Cosine Transform (DCT)

Pentium II without MMX Pentium II with MMX

Clocks IPC Eff. Comp. Clocks IPC Eff. Comp.

Maximum compiler
optimizations 3500 1.47 0.15 2375 1.04 0.24 (6%)

Perfect memory
System (prefetching) 2737 1.88 0.20 1578 1.56 0.36 (9%)

Ideal case ≈512 - 1 ≈128 - 4 (100%)
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Only the instructions shown in red are MMX computations. All 
other instructions are simply supporting these computations.

Pentium III – SIMD code for Discrete Cosine Transform (DCT)

lea ebx, DWORD PTR [ebp+128] load/address overhead
mov DWORD PTR [esp+28], ebx  load/address overhead
$B1$2:
xor eax, eax address overhead
move dx, ecx address overhead
lea edi, DWORD PTR [ecx+16] load/address overhead
mov DWORD PTR [esp+24], ecx load/address overhead
$B1$3:
movq mm1, MMWORD PTR [ebp] load overhead
pxor mm0, mm0 initialization overhead
pmaddwd mm1, MMWORD PTR [eax+esi] True Computation
movq mm2, MMWORD PTR [ebp+8] load overhead
pmaddwd mm2, MMWORD PTR [eax+esi+8] True Computation
add eax, 16address overhead
paddw mm1, mm0 True Computation
paddw mm2, mm1 True Computation
movq mm0, mm2 load related overhead
psrlq mm2, 32 SIMD reduction overhead
povd ecx, mm0 SIMD load overhead
movd ebx, mm2 SIMD load overhead
add ecx, ebx SIMD conversion Overhead
mov WORD PTR [edx], cx store overhead
add edx, 2 address overhead
cmp edi, edx branch related overhead
jg $B1$3 loop branch overhead
$B1$4:
move cx, DWORD PTR [esp+24] load/address overhead
add ebp, 16 address overhead
add ecx, 16 address overhead
move ax, DWORD PTR [esp+28] load/address overhead
cmp eax, ebp branch related overhead
jg $B1$2 loop branch overhead
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Breakdown of dynamic instructions
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• Approximately 75%-85% of dynamic instructions are 
supporting
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The MediaBreeze architecture focuses on the parallelism in the 
supporting instructions rather than the actual media computations.
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Performance of MediaBreeze

• The MediaBreeze architecture gives up to 
27X performance on DSP kernels and up to 
2X on media applications over the best 
SIMD performance.
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Area, power, and timing implications of  
MediaBreeze

• Area – 0.31 mm2 (overall chip area increase is 0.3%)

• Power – 430 mW at 1 GHz (less than 1% of the overall 
processor power

• Timing – Overall pipeline depth is not increased.
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Simple Solutions

Elegant Solutions
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Power Aware Adaptive 
Architectures

Detects phases during program 
execution and adapts hardware 
characteristics to suit features of 
the phase
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OS Energy DissipationOS Energy Dissipation
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OS Power & Performance TradeoffOS Power & Performance Tradeoff

0

0.2

0.4

0.6

0.8

pmak
e

gcc
vo

rte
x

se
ndm

ail
file

man db
jes

s
jav

ac jac
k

postg
re

s.s
ele

ct

postg
re

s.u
pd

ate
osb

oot
AVGN

or
m

al
iz

ed
 E

ne
rg

y.
D

el
ay

Sampling based Adaptation (Window Size: 2048-cycle)
Sampling based Adaptation (Window Size: 128-cycle)
Routine based Adaptation



Feb 15, 2004 Lizy Kurian John, LCA, UT Austin, CAECW-7

Java Acceleration for General 
Purpose Processors

• What’s the biggest bottleneck to alleviate?
• Object-oriented nature?
• Translation
• Hardware Translator for Java Bytecodes
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The Java Hardware Interpreter

Java 
class file

Native 
executable

Fetch
bytecode 
translator Decode Execute

bytecodes

Native machine instructions

• No changes to processor core
– light-weight Java run time environment
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HardInt Performance
4-way performance
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• Hard-Int performs consistently better than the interpreter

• In JIT mode, significant performance boost in 4 of 5 
applications.
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Simple Solutions

Elegant Solutions
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Architect’s Treasure Chest

• Perhaps our treasure chest contains simple 
solutions to most problems we will 
encounter

• We need to be able to identify which is the 
right solution for the right problem

• Diagnosing the problem is the issue
• Workload characterization is the key to this 

diagnosis
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Are computer architects 
becoming like doctors 

prescribing medicines without 
diagnosing the disease?

Are we getting too excited with all 
the wonderful things a new medicine 

can do?
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Performance Evaluation
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If cars were benchmarked like 
computers

• Mileage chart might have looked like

28.3 mpgI-75
27.5 mpgI-95
26.6 mpgI-35
24.2 mpgI-90
25.3 mpgI-80
28.1 mpgI-20
27.2 mpgI-10
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International Routes

28 mpgJapan’s Hwy 142
30 mpgAutoBahn
24 mpgMadrid’s M-30
24 mpgI-90
25 mpgI-80
28 mpgI-20
27 mpgI-10
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And we would have asked 
questions like

• Did you drive on I-80 in the summer or 
winter?

• Was it night or day?
• When you drove through Austin on I-35, 

was a Longhorn football game going on?
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And in our car conferences, we 
would have accepted papers that

• Benchmarking results on most number of 
highways

• Benchmarked from end to end
• Benchmarked on highways in multiple 

weather conditions 
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Imagine running cars on

1790 milesI-75 (FL to MI)
1920 milesI-95 (Maine-FL)
1570 milesI-35 (TX to MN)
3020 milesI-90 (WA to MA)
2900 milesI-80 (CA to NJ)
1540 milesI-20 (TX to SC)

2460 milesI-10 (CA to FL)
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Abstracting these long roads

• CITY
• HIGHWAY
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If we look at our computer 
performance evaluation trends, 

aren’t we simply adding roads to 
the list? 
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Reducing Redundancy in 
Benchmarking

• SimPoint [Sherwood et. al]
• SMARTS [Wunderlich et. al]
• Benchmark clustering using PCA Analysis 

[Eeckhout et. al]
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SimPoint

• Sherwood, et al. ASPLOS 2002
• Sample selection: 

– Clustering analysis of Basic Block Vectors to 
identify representative chunks of instructions

• Sampling unit size: 100 million instructions
• Sample size: 3-10
• Warm up: No explicit warm-up
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SMARTS

• Wunderlich, et al. ISCA 2003
• Sample selection: 

– Selecting chunks evenly distributed in the instruction 
stream (systematic sampling) 

• Sampling unit size: 1,000 instructions
• Sample size:

– Depends on confidence interval requirement
– Thousands to tens of thousands
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SIMPOINT

• Analogous to realizing that no need to go all 
over I-10 from California to Florida, if 10 
miles around Phoenix, and 10 miles from 
San Antonio and 10 miles from El Paso are 
10 miles from the New Mexico desert are 
taken, that’s sufficient.
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SMARTS

• Randomly picking some miles from 
anywhere will do.

• No need for representative sampling
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Cluster analysis

• Linkage 
clustering

• K-means clustering
• Iterative algorithm
• Based on distance 

between program-
input pairs = 
linkage distance
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Rescaled PCA space: PC1 vs 
PC2  [Eeckhout]
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Dendrogram to select 
representatives [Eeckhout]



Feb 15, 2004 Lizy Kurian John, LCA, UT Austin, CAECW-7

Cluster Analysis and PCA 
[Eeckhout]

• Analogous to realizing that I-10 and I-20 
are very similar kinds of roads. Similarly I-
80 and I-90 are very similar. 
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Plot for the scores of L1 cache access behavior of SPECint2000 and 
SPECjvm98 benchmark suites
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The Return of Synthetic 
Benchmarks?

A framework to generate synthetic benchmarks that are:

•Representative of applications or user specifications

•Automatically generated

•Generated and executed using user parameters

•Source code and executables

•Portable to multiple hardware & simulation systems
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Statistical Simulation

•Statistical Simulation using Synthetic Traces
•Carl and Smith

•Nussbaum and Smith

•Oskin et al.: HLS

•Eeckhout et al.

•Executable code built from the workload characterization 
of well-correlated statistical simulation systems

•Automatic Benchmark Synthesis
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Synthetic Traces in Statistical 
Simulation

1. Collect global statistics
• Basic block size

• Instruction Mix

• Instruction Dependencies

• Branch predictability

• L1/L2 cache statistics

2. Generate basic blocks

3. Connect them together into a graph 
(HLS) or generate a trace

4. Execute in order, simulating cache 
misses and branch mispredicts
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Improving Correlation

Track information on a per basic block basis
•Basic block size

•Instruction sequences

•Merged dependency information

•Cache hit/miss information

•Branch predictability
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Summary by Benchmark Class
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Adding Structure: BB Maps
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•Multi-phase programs can benefit from simulation 
using a graph of basic block frequencies

•Programs are back-to-back two-loop combinations 
of the technical loops
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IPC from Synthetic Trace

0

0.5

1

1.5

2

2.5

gcc perl m88ksim ijpeg vortex compress go li

SS IPC
Synthetic IPC

Converted workload characteristics to C-code/ASM 
statements and run through SimpleScalar



Feb 15, 2004 Lizy Kurian John, LCA, UT Austin, CAECW-7

Use of statistical theory?

We architects – are we unwilling to 
use statistical theory?
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Normalized Standard Deviation (crafty)
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SimPoint

• Sherwood, et al. ASPLOS 2002
• Sample selection: 

– Clustering analysis of Basic Block Vectors to 
identify representative chunks of instructions

• Sampling unit size: 100 million instructions
• Sample size: 3-10
• Warm up: No explicit warm-up
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SMARTS

• Wunderlich, et al. ISCA 2003
• Sample selection: 

– Selecting chunks evenly distributed in the instruction 
stream (systematic sampling) 

• Sampling unit size: 1,000 instructions
• Sample size:

– Depends on confidence interval requirement
– Thousands to tens of thousands
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Normalized Standard Deviation (crafty)
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Estimating speedup
Required sample size
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(Comparing reduced data set:
Test of population median

• If the populations are the same, the population 
median/mean should be the same

• Wilcoxon signed rank test
Metrics Reduced data set p-value 

Test 0.06445 
Train 0.02734 

CPI on 8-way machine 

MinneSPEC 0.04883 
Test 0.03711 
Train 0.01953 

CPI on 16-way 
machine 

MinneSPEC 0.03711 
Test 1
Train 0.375 

Speedup (16-way vs. 
8-way) 

MinneSPEC 0.6953 
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Comparing reduced data set:
Test result

• None of the reduced data sets have the same 
population median CPI with reference data 
set

• All reduced data sets show same median 
speedup as the reference data set
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Future Workloads

Life, Death and Games
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Future Workloads – Life, Death 
and Games

• Life Science - Pharmaceuticals, Drug 
Discovery

• Death Science – Military Applications, 
Weapon Simulation, Crash Analysis, 
Scientific Computing

• Games – Multiplayer, Natural Language 
Recognition/Semantic Analysis
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Risk of missing truly innovative 
architectures?

Inventions in Search of Applications eg: Laser 

If workload characterization can lead to 
synthetic workloads of the future, endless 
future workloads can be synthesized that 
may lead to truly innovative architectures
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Workload Characterization: Can it save 
Computer Architecture and Performance 

Evaluation?

Possibly Yes.

Nothing else possibly can.



Feb 15, 2004 Lizy Kurian John, LCA, UT Austin, CAECW-7

Task is on us, the workload 
characterization community

We need to abstract program 
behavior into essential attributes 

which can help new architectures and 
performance evaluation
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