
Performance Analysis of HPC Applications with

Irregular Tree Data Structures

Abstract—Adaptive mesh refinement (AMR) numerical

methods utilizing octree data structures are an important class of

HPC applications, in particular the solution of partial differential

equations. Much effort goes into the implementation of efficient

versions of these types of programs, where the emphasis is often

on increasing multi-node performance when utilizing GPUs and

coprocessors. By contrast, our analysis aims to characterize these

workloads on traditional CPUs, as we believe that single-

threaded intra-node performance of critical kernels is still a key

factor for achieving performance at scale. Especially irregular

workloads such as AMR methods, however, exhibit severe

underutilization on general purpose processors.

In this paper, we analyze the single core performance of two

state-of-the-art, highly scalable adaptive mesh refinement codes,

one based on the Fast Multipole Method (FMM) and one based

on the Finite Element Method (FEM), when running on a x86

CPU. We examined both scalar and vectorized implementations

to identify performance bottlenecks. We demonstrate that

vectorization can provide a significant benefit in achieving high

performance. The greatest bottleneck to peak performance is the

high fraction of non-floating point instructions in the kernels.

Keywords—HPC, PVFMM, MANGLL, irregular tree, PAPI,

SIMD, AVX , adaptive mesh refinement, Fast Multipole Method,

Finite Element Method

I. INTRODUCTION

Traditionally, performance analysis of scientific computing
codes for partial differential equations has been focused on
regular discretizations, such as the stencil based seven-point
Laplacian operator. Such codes have a regular nested for-loop
structure that is amenable to extensive optimizations. But such
regular stencil codes are no-longer representative of state-of-
the-art techniques and cannot be used to predict the
performance of currently deployed codes. Current codes,
typically employ high-order accurate discretization schemes
and nonuniform spatial discretizations. Such discretizations are
also known as adaptive mesh refinement methods (AMR). In
this paper, we focus on AMR methods that use octrees. Other
variants exist, but octree-based AMR methods have been
shown to scale to thousands of cores and retain some of the
nice properties of uniform spatial discretizations (e.g., memory
access and precomputation of element operators). The two
AMR methods we consider are the Fast Multipole Method
(FMM) and the Finite Element Method (FEM) [1,2,3]. A key
issue in obtaining good overall performance in these methods
is their single-core performance. As such, in this paper we

focus in detail on the performance of these two codes on a x86
architecture.

The two codes that we examine are PVFMM [1] for the
FMM scheme and MANGLL [2] for the FEM scheme, both of
which are optimized to achieve high performance on high-
performance computing clusters. PVFMM is a high-order
solver used to solve N-body problems and elliptic partial
differential equations (e.g., the Poisson problem) using the fast
multipole method. MANGLL is a scalable adaptive high-order
nodal discontinuous and continuous Galerkin discretization
library for hexahedral elements. In this paper, we only test the
MANGLL's discontinuous Galerkin method that is used for
hyperbolic partial differential equations. Also, we only test
PVFMM's V-list. Both algorithms are explained in greater
detail in Section II. PVFMM and MANGLL are chosen as
representative candidates for our analysis for three main
reasons:

 Hyperbolic and elliptic partial differential equations
appear in a myriad of problems in science and
engineering. By examining these two state-of-the-art
codes for such problems we cover a significant portion
of HPC workloads.

 PVFMM and MANGLL implement different
mathematical methods and target different classes of
problems, but both use octrees and support highly non-
uniform discretizations.

 They implement state-of-the-art algorithms and have
scaled to 100s of thousands of cores. These two codes
are being used to simulate problems in geosciences,
energy, and life sciences.

In performing a detailed analysis for these two workloads,

this paper makes the following contributions:

 A comprehensive performance analysis of the two
octree codes for different parameter settings.

 An analysis of the benefits of vectorization and
programmer inserted prefetching.

 A careful evaluation of performance bottlenecks for
this class of applications, including reasons for stalls
and deviation from peak performance.

The rest of the paper is organized as follows: Section II
briefly describes the core algorithms of PVFMM and
MANGLL, with an emphasis on showing how irregular tree

Ahmed Khawaja, Jiajun Wang, Andreas Gerstlauer, Lizy K. John
Department of Electrical and Computer Engineering

University of Texas at Austin

Austin, Texas

Email: akhawaja@utexas.edu

Dhairya Malhotra and George Biros
Institute for Computational Engineering and Science

University of Texas at Austin

Austin, Texas

Email: dmalhotra@ices.utexas.edu

topologies are used in two different kernels. In our analysis, we
utilize CPUs with an Intel Sandy Bridge microarchitecture, and
we give a brief introduction to this microarchitecture in Section
III. Our experimental setup is explained in Section IV, and
Section V contains the analysis of factors limiting
performance. We conclude in Section VI.

II. CORE ALGORITHMS

A. PVFMM

The Fast Multipole Method is used to solve N-body
problems. It has optimal work complexity of O(N), for
problems with N interacting particles. However, the constants
in the complexity estimate can be large. There are several
works [4,5,6,7], which give different algorithmic variations of
the method and make trade-offs between applicability of the
algorithm to different problem types and efficiency. Here, we
analyze the variant described in Ying et. al [4], which is
applicable to many different problems and is also very
efficient. However, even with a work efficient algorithm, it is
still necessary to have an optimal implementation. Below, we
briefly describe the main features of the PVFMM
implementation. For a more detailed discussion, we refer the
interested readers to Malhotra and Biros [1].

The PVFMM implementation constructs an octree based
partitioning of the computational domain. Next, interactions

between octree nodes are computed. There are broadly two
interaction types, near and far interactions. Near interactions
are computed directly through kernel evaluation for particle
problems and dense matrix-vector products for volume
potential problems. These interactions have high arithmetic
intensity, however, kernel evaluations are generally costly and
can involve computing fractional powers and transcendental
functions. Hardware support for evaluating such functions will
be necessary to improve performance. Until such hardware
support becomes available, there is very little which can be
done to improve performance of these interactions.

The far-field interactions in PVFMM involve computing a
complex-valued Hadamard product. The Hadamard product
computation, if done naively, can have very low arithmetic
intensity (Figure 1: left). The PVFMM implementation uses a
novel data rearrangement, interleaving the vectors (source and
target) for sibling octants to form stacks of vectors of length
8. All 8x8 interactions between two sibling groups can then be
evaluated as a stack of matrix-vector products where the
matrices are 8x8. Several such interactions (in the same
direction) can be combined and represented as a stack of
matrix-matrix products, evaluated in a level-by-level fashion
(Figure 1: right). The small matrix-matrix products are
carefully tuned and implemented efficiently using AVX and
SSE vector intrinsics (which correspond to 4-wide and 2-wide
vectorized x86 instructions, respectively).

Figure 1: (Left) Naïve Hadamard product computing one interaction at a time. (Right) Optimized Hadamard product evaluated as stack of matrix-matrix

products. Matrix width (block size) is a tuning parameter dependent on the cache size.

Figure 2: Overview of the Sandy Bridge microarchitecture. The unified scheduler is connected to the 6 uop issue ports. Adapted from [12].

 Blocks of octants sorted in Morton order are processed one
at a time. Interactions in all possible directions are computed
while keeping one layer of the stack in cache, thus reusing the
source and target vectors already loaded from the main
memory. The block size (width of matrices) is a tuning
parameter, which depends on the cache size of the
processors. The implementation also uses OpenMP parallelism
along the height of the stack, allowing for the utilization of all
cores on multi-core systems.

B. MANGLL

MANGLL is a library designed for solving scalable
adaptive high-order discretizations for hexahedral elements on
top of the octree data structure. It can be used in simulations of
convection in the Earth’s mantle, global seismic wave
propagation, and melting of the Antarctic ice sheet. One of its
main contributions is supporting dynamic parallel adaptive
mesh refinement and coarsening (through an interface to the
p4est library [8]), which is essential for numerical solutions of
the partial differential equations (PDEs) arising in many
multiscale physical problems [9].

The adaptive spatial data-structure used in the MANGLL
code is a general, unstructured hexahedral mesh. The mesh is
refined using one octree data-structure per hexahedron (thus,
the term “forest of octrees”) [10]. Octrees are axis-aligned.
Given this arrangement, when mapping an octree to a problem
domain, the recursive subdivision of octrees corresponds to
subdivision of the mapped domain. Hence, such a subdivision
generates a mesh which can be used for the discretization and
numerical solution of a PDE. Recursive octree divisions
support efficient octree-based adaptivity of the mesh.

 The essential concept that makes octree-based AMR
methods parallel at a large-scale is the space-filling curve,
identified by the traversal of an octree across its leaves. By
connecting the space-filling curve between octrees, a total
ordering of all octants in the domain is generated. The total
ordering can be used for fast binary search, finding any of Np
local octants in O(log Np) steps.

III. SANDY BRIDGE MICROARCHITECTURE

Our studies are conducted on the Stampede system at
TACC (Texas Advanced Computing Center) [11]. It comprises
over 6,400+ compute nodes, each containing two 8-core Xeon
E5-2680 processors and a Xeon Phi MIC coprocessor. The
Xeon E5-2680 processors feature the Sandy Bridge
microarchitecture, which was Intel's first to implement the
AVX (Advanced Vector Extensions) ISA extensions. AVX, as
implemented on Sandy Bridge, doubles the width of packed
vector operations and allows 8 double precision FLOPs/cycle,
which at a core frequency of 2.7 GHz provides a theoretical
capability of 21.6 GFLOPS/core.

The core can decode and retire up to 4 instructions per
cycle, giving a maximum IPC (instructions per cycle) of 4.
Sandy Bridge features a large 168 entry reorder buffer (ROB)
and a unified scheduler featuring 54 reservation stations to
enable a large out of order execution window. Register files
with 144 floating-point and 160 integer entries enable the
entire instruction window to be all floating point, all integer, or
a combination of the two[12]. As shown in Figure 2, Sandy
Bridge uses a unified scheduler to issue up to 6 micro-

operations(uops) over 6 issue ports, with each port providing
access to multiple functional units. Floating-point multiply and
add operations are issued on two separate ports that are also
connected to the integer vector units. Each of these two ports
can issue a 256-bit operation (producing 4 double precision
floating-point numbers in a single vector) per cycle, providing
a theoretical peak of 8 FLOPs/cycle. Two additional ports are
for memory loads and have separate address generation units
and 128-bit data paths. The address generation units are shared
with the store port. A single AVX vector operation that
requires a memory operand thereby requires both load units to
provide the memory operand. Finally there is a dedicated store
port that can leverage both of the address generation units from
the load ports. Overall, this means that during peak
performance, the core is able to issue both a floating-point
multiply and add, two loads, a store, and an integer operation
all in a single cycle. This only occurs during peak bursts and is

PAPI Event Name Event Description

PAPI_TOT_CYC Total execution cycles

INSTRUCTION_RETIRED
Instructions executed and retired by

the processor

BR_INST_RETIRED Branch instructions retired

L1-DCACHE-LOADS Total data memory reads

L1-DCACHE-LOAD-MISSES Read misses in the L1 data cache

L1-DCACHE-STORES Total data memory writes

L1-DCACHE-STORE-MISSES Write misses in the L1 data cache

PAPI_L2_DCA
Data memory reads and writes to the

L2 cache

PAPI_L2_DCH Data access hits in the L2 cache

PAPI_DP_OPS
Double precision floating point

instructions

SIMD_FP_256:PACKED_DOUBLE
SIMD floating point instructions

operating on 4 double precision floats

FP_COMP_OPS_EXE:

SSE_FP_PACKED_DOUBLE

SIMD floating point instructions

operating on 2 double precision floats

PAPI_FP_INS Scalar floating point instructions

UOPS_DISPATCHED_PORT:

PORT_X

Micro-operations dispatched over port

X, where X is 0,1,2,3,4,5

RESOURCE_STALLS:X

Cycles stalled due to X, where X is

ROB, load buffer, store buffer,

reservation station

Variant Description

PVFMM Basic Features no blocking, unvectored

PVFMM Blocked Blocked, unvectored

PVFMM SSE Blocked, two wide vectored

PVFMM AVX Blocked, four wide vectored

MANGLL -l 5 -N 4
Compiler optimized, octree forest level of 5,

polynomial degree of 4

MANGLL AVX -l 5 -N 4
Four wide manually vectored, octree forest level

of 5, polynomial degree of 4

MANGLL -l 4 -N 7
Compiler optimized, octree forest level of 4,

polynomial degree of 7

MANGLL AVX -l 4 -N 7
Four wide manually vectored, octree forest level

of 4, polynomial degree of 7

MANGLL -l 3 -N 11
Compiler optimized, octree forest level of 3,

polynomial degree of 11

MANGLL AVX -l 3 -N 11
Four wide manually vectored, octree forest level

of 3, polynomial degree of 11

Table 1: PVFMM and MANGLL variants and a brief description.

Table 2: List of PAPI events used in the analysis and brief descriptions of
what they measure. Events that start with the PAPI are preset events and the
others are provided through PAPI's native interface.

possible because x86 instructions are cached in micro-
operation form after the initial decode. The retire width is 4 and
hence the peak IPC is limited to 4. The capability to issue more
than 4 uops per cycle does not violate the maximum of 4
retired IPC, but is necessary for x86 instructions that translate
into multiple uops. This capability also enables compensation
for cycles when less than 4 micro-operations are issued. Each
core has its own L1 and L2 caches, with a shared L3 between
all cores. The L1 cache is divided into two 32KB 8-way
associative instruction and data caches. The L2 cache is a
256KB unified cache, while the shared L3 cache is 20 MB.
Overall, these cores are capable of providing high performance
for highly vectorized workloads.

IV. EXPERIMENTAL SETUP

Both PVFMM and MANGLL are capable of scaling to
multiple cores/nodes, but since we are trying to measure and
improve single core performance, we limited execution to a
single core. Both programs were built using the Intel C
Compiler (ICC) which provides compiler intrinsics for vector
instructions that make it easier to code kernels leveraging these
capabilities. ICC is capable of auto-vectorizing code if certain
criteria are met to guarantee the correctness of the produced
code. In total, we evaluated 4 variants of PVFMM and 2
variants of MANGLL. Each variant of MANGLL was run with
three different pairs of input parameters. The pairs consist of an
initial octree forest level (denoted as the -l argument) and the
polynomial degree (denoted as the -N parameter). PVFMM did
not exhibit a sensitivity to its input parameters (both for a given
variant and between variants), so their variations are not
reported in this paper. The studied variants for PVFMM and
MANGLL are listed in Table 1.

Several methods of collecting performance metrics were
considered, including gprof [13], VTune [14], and OProfile
[15]. We ultimately decided to use PAPI (Performance API)
[16] for the following reasons: PAPI collects low level
performance metrics in a relatively non-intrusive manner.
PAPI builds on hardware counters, which increases accuracy
and reproducibility while minimizing the overhead of
collecting data. PAPI is susceptible to measuring events that
occur as a result of other programs, which we aimed to
minimize by using reserved nodes and repeated measurements.
The first step in our work was to identify a subset of
measurable events (summarized in Table 2) that would allow
us to analyze relevant performance characteristics.

Note that, due to the fact that vectorized and unvectorized
operations are counted differently, we were required to use
different events to measure floating-point operations. One of
the sanity checks we used was that we instrumented each
program at the source code level to keep track of how many
operations should have been executed. These numbers were
compared with the PAPI results to validate the execution.

V. RESULTS

A. Floating Point Performance

The primary metrics for assessing overall performance are
total execution time and the fraction of theoretical peak
floating-point performance achieved during a run. Table 3
summarizes the floating point performance for PVFMM and

MANGLL. Percent of peak is calculated based on the
theoretical maximum of 8 double precision floating point
operations per cycle (FLOPs/cycle) in Sandy Bridge based
CPUs. Normalized running time is calculated as the ratio of the
number of cycles executed by each variant over the fastest
variant. The variants were sorted in order of increasing
performance (percentage of peak). There is a direct correlation
between sustained floating point performance and total
execution time.

PVFMM in general outperforms all MANGLL variants.
The fastest executing PVFMM variant (PVFMM AVX) is 3x
faster than the fastest MANGLL variant (MANGLL AVX -l 3
-N 11). PVFMM greatly benefits from blocking, prefetching,
and vectorization. The basic PVFMM variant represents a
naive implementation and runs 4.93 times slower than the
hand-optimized AVX variant. The super-linear increase in
performance when going from a blocked, non-vectorized
PVFMM to a SSE PVFMM is due to prefetching [21]. The
SSE/AVX PVFMM variants have programmer inserted
prefetches for selected data structures.

The hand-optimized AVX variants of MANGLL either
achieve a minor performance increase or a slight degradation in

Variant
FLOPs/

cycle

Percent of

Peak

Normalized

Running Time

PVFMM Basic 1.05 13.1 % 4.93

PVFMM Blocked 1.44 18.0 % 3.46

PVFMM SSE 2.95 36.9 % 1.65

PVFMM AVX 4.86 60.8 % 1.00

Variant
FLOPs/

cycle

Percent of

Peak

Normalized

Running Time

MANGLL AVX -l 5 -N 4 1.10 13.8 % 2.75

MANGLL -l 5

-N 4
1.14 14.3 % 2.67

MANGLL -l 4

-N 7
1.33 16.6 % 1.87

MANGLL AVX -l 4 -N 7 1.42 17.8 % 1.75

MANGLL

-l 3 -N 11
1.44 18.0 % 1.06

MANGLL AVX -l 3 -N 11 1.52 19.0 % 1.00

Variant IPC
Normalized Instruction

Count

PVFMM Basic 2.14 4.88

PVFMM Blocked 2.56 4.09

PVFMM SSE 3.04 2.32

PVFMM AVX 2.16 1.00

Variant IPC
Normalized Instruction

Count

MANGLL -l 5 -N 4 1.94 3.05

MANGLL AVX -l 5 -N 4 1.80 2.90

MANGLL -l 4 -N 7 1.90 2.09

MANGLL AVX -l 4 -N 7 1.75 1.79

MANGLL -l 3 -N 11 1.97 1.23

MANGLL AVX -l 3 -N 11 1.70 1.00

Table 4: PVFMM (top) and MANGLL (bottom) instructions/cycle.

Table 3: PVFMM (top) and MANGLL (bottom) floating-point

performance and normalized execution times.

performance. The MANGLL program appears to gain little to
no benefit from vectorization. The instruction count decreases
by approximately 20% for each AVX variant of MANGLL,
whereas in the PVFMM code it is reduced by 4x (see Table 4).
Floating-point performance of vectorized MANGLL variants
achieves at best approximately a 10% increase. In comparing
between different MANGLL parameter sets, we can see that in
all cases, floating-point performance is increasing with an
increasing polynomial degree.

B. Instructions per Cycle

Secondary to execution time and raw floating point
performance, we measured the total number of cycles and
instructions executed by each kernel. As mentioned previously,
Sandy Bridge is a 4-wide superscalar machine, which means
that the maximum achievable IPC (instructions per cycle) is 4.
Table 4 lists the IPC and normalized instruction counts for all
variants.

The SSE variant of PVFMM did manage to achieve the
highest IPC of all three variants. This can be attributed to two
factors: each SSE intrinsic does more work per instruction than
the unvectored variant, and each SSE instruction (as we will
see in the follow subsection) is less likely to have a cache miss
compared to the AVX variant. Note, however, that the SSE
variant executes more than twice as many instructions as the
AVX variant leading to an overall lower performance despite
the higher IPC.

MANGLL’s IPC of about 2 instructions/cycle (irrespective

of variant) is overall lower than PVFMM’s. Sandy Bridge can

simultaneously dispatch up to six uops/cycle across its six

ports. The number of uops dispatched is determined by the

number of independent uops that are ready (source data is

available), the number of uops requiring the same issue port,

and the status of the execution units. To investigate the low

IPC of MANGLL, we further analyzed how many uops were

being dispatched every cycle. As Figure 3 demonstrates, 50 %

of the time only 2 or less uops are sent to execution units,

which hinders overall performance. We also see that execution

is stalled more than 10% of the time. Figure 3 shows that

PVFMM performed much better and issued 3 or more uops

nearly 50% of the time or better.

However, observing that more than half of the cycles use

less than 50 % of the port resources is a sign of inefficiency.

This is due to cycles being stalled during execution because of

pending cache loads, data dependencies, unavailable execution

units, and issue port conflicts (if two uops need to use the

same port). Port conflicts can be avoided, at the expense of

increased hardware costs, by either providing extra ports or

increasing the width of the ports. Such changes would be

beneficial to two AVX instructions trying to reference

memory in a single cycle. The inability to compensate for

some loss in performance might be greatly outweighed by the

hardware costs and, as we propose in the next section, can be

regained via different means.

C. Cache and Memory Performance

Caches are an important target when identifying
performance bottlenecks, which is why it was one of the main
areas of optimizations when PVFMM was implemented.

PVFMM relies on blocking and profile guided prefetching to
optimize cache performance. MANGLL currently does not
have manually inserted prefetching. The two primary metrics
to consider when analyzing cache performance are miss rate
and misses per instruction (MPI). Miss rate is the ratio of
misses to total accesses for a cache level. A miss at a given

Variant L1 Miss Rate L2 Miss Rate L3 Miss Rate

PVFMM Basic 9.10 % 11.55 % 4.44 %

PVFMM Blocked 5.47 % 81.5 % 4.76 %

PVFMM SSE 8.96 % 86.8 % 5.12 %

PVFMM AVX 16.39 % 76 % 7.40 %

MANGLL -l 5 -N 4 2.75 % 31.1 % 22.67 %

MANGLL AVX -l 5 -N 4 2.93 % 29.96 % 27.47 %

MANGLL -l 4 -N 7 4.18 % 17.49 % 25.89 %

MANGLL AVX -l 4 -N 7 2.23 % 27.39 % 31.25 %

MANGLL -l 3 -N 11 6.94 % 7.38 % 28.22 %

MANGLL AVX -l 3 -N11 5.56 % 8.60 % 31.94 %

Variant
L1

MPKI

L2

MPKI

L3

MPKI

Ideal

CPI

Ideal +

MCPI

PVFMM Basic 61.5 5.38 0.23 1.00 1.88

PVFMM Blocked 13.9 9.49 0.45 1.00 1.61

PVFMM SSE 20.6 14.4 0.74 0.50 0.97

PVFMM AVX 40.7 24.0 1.77 0.25 0.68

MANGLL -l 5 -N 4 11.9 3.71 0.84 1.00 1.44

MANGLL AVX -l 5 -N 4 12.8 3.84 1.05 0.25 1.49

MANGLL -l 4 -N 7 18.1 3.17 0.82 1.00 1.47

MANGLL AVX -l 4 -N 7 13.4 3.68 1.15 0.25 1.51

MANGLL -l 3 -N 11 30.7 2.26 0.64 1.00 1.53

MANGLL AVX -l 3 -N 11 33.2 2.86 0.91 0.25 1.63

Table 6: PVFMM and MANGLL cache misses per 1,000 instructions

(MPKI) and memory adjusted CPI estimate assuming L1 (data), L2, L3

miss latencies of 10, 40, 200 cycles.

Table 5: PVFMM and MANGLL L1 (data), L2, and L3 cache miss rates.

MANGLL has low L1 and L2 miss rates, but has fairly high L3 miss
rates. PVFMM has low L1 and L3 misses rates, but suffers from very

high L2 cache misses. Miss rates should always be considered with total

instruction count, as we have done in Table 6.

Figure 3: PVFMM and MANGLL breakdown of uops dispatched per

cycle. PVFMM AVX spends roughly 20% of its cycles without issuing any

uops which is indicative of full-window stalls caused by long latency cache
misses.

cache level results in an access to the next level cache (e.g. an
L3 cache miss results in a main memory access). Table 5 gives
the miss rates for all three cache levels for all PVFMM and
MANGLL variants. The PVFMM AVX variant had the worst
L1 cache miss rate, despite having the best performance
overall. With the exception of the basic PVFMM, most
PVFMM variants had high L2 miss rates. Across all variants,
PVFMM had low L3 miss rates. All MANGLL variants had
low L1 miss rates, which is significant because it translates into
less lower level (further from the CPU) cache accesses. This
means that despite MANGLL's L3 miss rate being relatively
high, the impact is minimal.

Comparing miss rates can be deceiving as they do not
factor in total number of accesses. MPI is a better metric for
determining the cache performance of an application, as it is
able to determine the relative significance of a miss. Table 6
presents the misses per 1,000 instruction (MPKI) for all
PVFMM and MANGLL variants. MPKI in MANGLL is
strongly dependent on the parameter set. The basic PVFMM
variant had poor L1 cache performance, suggesting that
PVFMM greatly benefitted from blocking and prefetching. In
order to approximate the effect of cache misses we calculated
the memory adjusted cycles per instruction (MCPI) as shown
in Table 6. This calculation was done assuming L1, L2, L3
miss latencies of 10, 40, 200 cycles [23]. Sandy Bridge does
feature memory bank interleaving that does expose memory
level parallelism that we have not considered. The MCPI
shows that the AVX variant of PVFMM is impacted the most
from cache misses. We also see this trend for all AVX variants
of MANGLL. However, unlike in vectorized PVFMM
variants, the AVX MANGLL variants were not consistently
better or worse than their regular counterparts. The MCPI of
vectorized variants suggests to us that cache performance
needs to be improved to better accommodate wider
vectorization. It still needs to be explored if MANGLL can
benefit from manually inserted prefetching.

D. Instruction Mix

We categorized uops as either branches, loads, stores,
floating-point, or other operations. We determined that using
uops provided a clearer picture of the types of operations that

were being executed internally, especially in regards to the
other category. Uops that would fall under the other category
are primarily ALU type operations that would be used to
calculate addresses. We had to use different PAPI events to
measure floating-point uops based on the variant under
analysis. This was done due to the fact that PAPI treats
vectored and unvectored floating-point uops differently (it also
differentiates between 128-bit and 256-bit SIMD floating-point
operations).

Figure 4 presents the uop mixes for PVFMM and
MANGLL. The X-axis corresponds to the type of uop and the
Y-axis is the fraction of the total uop count accounted for by
that instruction type. For both programs, branches account for
about 2% to 6% of the uop mix, which results in very high
instruction locality and large basic blocks, exposing a large
amount of instruction level parallelism. This low fraction of
branch uops is typical of most scientific workloads. Loads
accounted for about 23% of the uops in all PVFMM variants
except the basic variant, in which over 48% of the uops being
loads. This demonstrates that PVFMM greatly benefits from
blocking, which is responsible for a drastic reduction in load
uops. For MANGLL, loads accounted for a narrower range

Variant

Fraction

FP

Fraction

Supporting

Instructions

Supporting

Instructions/

Floating-point

PVFMM Basic 0.45 0.55 1.22

PVFMM Blocked 0.56 0.44 0.79

PVFMM SSE 0.49 0.51 1.04

PVFMM AVX 0.56 0.44 0.79

MANGLL -l 5 -N 4 0.24 0.76 3.17

MANGLL AVX -l 5 -N 4 0.22 0.78 3.55

MANGLL -l 4 -N 7 0.27 0.73 2.70

MANGLL AVX -l 4 -N 7 0.25 0.75 3.00

MANGLL -l 3 -N 11 0.35 0.65 1.86

MANGLL AVX -l 3 -N 11 0.20 0.80 4.00

Figure 4: PVFMM and MANGLL uop mix.

Table 7: PVFMM and MANGLL floating-point to support instruction
comparison. PVFMM manages to achieve high performance due to having

a high fraction of floating-point operations. MANGLL suffers due to

having a significantly higher fraction of supporting instructions compared
to floating-point operations.

between 35% and 44% of the total uop mix. The MANGLL
variant with the highest load percentage is the hand-optimized
MANGLL AVX -l 3 -N 11 variant, which means that some
extra work (more support operations) is introduced to allow
vectorization to take place. All other MANGLL variants had
very similar load percentages. Since manually vectorizing
MANGLL resulted in only marginal performance gains, this
suggests that vectorization gains can be negated by the
additional overhead that is introduced in the process. For both
applications, stores accounted for substantially less of the
instruction count than loads. We again see that blocking
benefited PVFMM by cutting down the store percentage from
8.5% to 5% or less. In all MANGLL variants, stores accounted
for between 4% to 9% of the total uop mix, which, similarly to
PVFMM, is much less than the load percentage. Other uops in
PVFMM accounted for 7% to 25% of the uop mix in all
variants. In all MANGLL variants, other uops accounted for
approximately 25 to 50 % of the uop mix. Overall MANGLL
had a much higher proportion of non-floating-point uops when
compared to PVFMM.

E. Stalls

The final class of metrics we considered in our analysis

was cycles stalled and the correlation to CPI (cycles per

instruction). As Figure 5 shows, reservation station (RS) stalls

were the major source of stall cycles for both PVFMM and

MANGLL. Reservation station stalls are caused when a uop is

either waiting for a source operand or functional unit to

become available. The floating-point units are fully pipelined,

meaning a uop can be issued per port per cycle, which means

most of the RS stalls are due to waiting for source operands.

For all PVFMM variants these reservation stalls account for

the majority of all stalls. This leads us to believe that the two

primary factors holding PVFMM performance back are

inherent data dependencies and waiting for values from the

cache. The PVFMM AVX variant stalls more often than the

SSE variant, and due to the fact that it executes less cycles,

this means it spends more cycles stalled both in absolute and

relative terms. All MANGLL AVX variants exhibit similar

stalling behavior when compared to their non-AVX

counterparts.
In Figure 5, we attempt to explain the observed CPI using

the various stalls. The Sandy Bridge architecture has an ideal
CPI of 0.25 since the ideal IPC is 4. Hence if all stalls of an
instruction are added to the ideal CPI, one must get the
observed CPI if the stalls are not overlapped. We add the
various stalls per instruction and the resulting stalls per
instruction is plotted in Figure 5 along with the actual observed
CPI. In 9 out of 10 cases experimented, if the ideal CPI of 0.25
is added to the stalls per instruction, one can obtain the
observed CPI. Apparently there are some unaccounted stalls in
the base PVFMM code which we are further investigating. It
may also be noted that the stalls per instruction are about half
as much as the ideal CPI in PVFMM, whereas the stalls per
instruction in MANGLL are more than the ideal CPI (i.e. more
than 0.25). There is a lot of room for improvement in
MANGLL.

F. Access Execute Balance

The primary focus of our research was on analyzing
performance bottlenecks of PVFMM and MANGLL, such that
future studies can focus on architectural changes aimed at
increasing performance in these and similar workloads. Our
primary finding was that the dynamic instruction count
includes a large fraction of non-floating-point overhead
instructions, especially in MANGLL.

One may view the instruction stream as composed of the
core compute instructions and other instructions required to
support the compute process. For instance, the access
instructions are simply an outcome of the fact that the data is in
memory and needs to be brought into the processor to perform
the computation. The Decoupled Access Execute (DAE)
paradigm [17,18,19,20,21] treats all access instructions as
supporting instructions to the compute thread. Past research has
investigated the access-execute balance of programs [22]
separating the instruction stream into compute and supporting
threads. We present the access-execute balance of PVFMM
and MANGLL in Table 7, by taking a ratio of supporting and
compute instructions. It shows that 8 out of the 10
experimented codes have a high proportion of supporting
instructions compared to the core computing instructions.

In order for compute instructions to happen at peak speed,

the supporting instructions have to finish their tasks in perfect

overlap with the compute instructions. The supporting

instructions must also execute early enough to bring the data

into the registers in such a fashion that the compute instruction

Figure 5: PVFMM and MANGLL stall cycles, stalls per

instruction, and CPI.

does not have to wait. If the access instruction encounters a

cache miss, the register will not get the data in time for the

compute instruction to proceed without stalls.

The machine level parallelism available to support the

supporting instructions is also of issue. In the Sandy Bridge

architecture, 2 of the 6 uops are compute and hence 4 uops can

be of the supporting type. Hence the Sandy Bridge

architecture can take a maximum access execute imbalance of

2. However, Table 7 shows that the access-execute imbalance

of many of the codes studied are 2.5 or higher. In such codes

the supporting thread will consume more cycles than the

compute thread and hence peak flops cannot be obtained. The

SSE and AVX variants of PVFMM are well-balanced,

whereas MANGLL is very unbalanced explaining the

observed performance.

VI. CONCLUSION

This paper presents an analysis of the single-node

performance of two HPC applications with tree data structures,

PVFMM and MANGLL. Analysis of PVFMM demonstrates

that vectorization, cache tuning, and programmer inserted

prefetching can greatly increase performance. With these

optimizations, PVFMM achieves 61% of the peak flop rate of

8 double precision flops possible in the Intel Sandy Bridge

architecture. Vectorization in PVFMM places increased

pressure on the cache and results in a loss of some

performance. PVFMM represents a mature code base, while

MANGLL is relatively new. MANGLL is not fully vectorized

and ongoing effort is going into changing this. PVFMM scaled

well because the supporting non-compute instructions scaled

down with the reduction in floating-point instructions, which

unfortunately did not happen in MANGLL. Supporting

instructions comprised a large portion of the MANGLL kernel

and we believe significant code changes or architectural

changes are necessary to increase performance in light of this

finding.

ACKNOWLEDGEMENTS

This material is based upon work supported by AFOSR

grants FA9550-12-10484 and FA9550-11-10339; and NSF

grants CCF-1337393, CCF-1117895, CCF-1218474, OCI-

1029022, and OCI-1047980; and by the U.S. Department of

Energy, Office of Science, Office of Advanced Scientific

Computing Research, Applied Mathematics program under

Award Numbers DE-SC0010518, DE-SC0009286, and DE-

FG02-08ER2585. Computing time on the Texas Advanced

Computing Centers Stampede system was provided by an

allocation from TACC and the NSF. Any opinions, findings,

and conclusions or recommendations expressed herein are

those of the authors and do not necessarily reflect the views of

the AFOSR or the NSF.

REFERENCES

[1] D. Malhotra and G. Biros. "A Distributed Memory Fast Multipole

Method for Volume Potentials." Institute for Computational Engineering
and Science, University of Texas at Austin.
padas.ices.utexas.edu/static/papers/pvfmm.pdf

[2] C. Burstedde, et al. "Scalable adaptive mantle convection simulation on
petascale supercomputers." Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing. 2008.

[3] C. Burstedde, et al. "Extreme-scale AMR." Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis. 2010.

[4] L. Ying, G. Biros, and D. Zorin. "A kernel-independent adaptive fast
multipole algorithm in two and three dimensions." Journal of
Computational Physics 196.2 (2004): 591-626.

[5] L. Greengard and V. Rokhlin. "A new version of the fast multipole
method for the Laplace equation in three dimensions." Acta numerica 6
(1997): 229-269.

[6] Z. Gimbutas and V. Rokhlin. "A generalized fast multipole method for
nonoscillatory kernels." SIAM Journal on Scientific Computing 24.3
(2003): 796-817.

[7] W. Fong and E. Darve. "The black-box fast multipole method." Journal
of Computational Physics 228.23 (2009): 8712-8725.

[8] C. Burstedde, L. Wilcox, and O. Ghattas. "p4est: Scalable algorithms for
parallel adaptive mesh refinement on forests of octrees." SIAM Journal
on Scientific Computing 33.3 (2011): 1103-1133.

[9] J. Diamond, et al. "Multicore optimization for ranger." TeraGrid
Conference. 2009.

[10] H. Sundar, et al. "Parallel geometric-algebraic multigrid on unstructured
forests of octrees." Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. 2012.

[11] “Stampede User Guide”. Texas Advanced Computing Center.
https://portal.tacc.utexas.edu/user-guides/stampede

[12] D. Kanter. "Intel's Sandy Bridge Microarchitecture."
www.realworldtechnolgoies.com, 2010.

[13] S. Graham, P. Kessler, and M. McKusick. "Gprof: A call graph
execution profiler." ACM Sigplan Notices. Vol. 17. No. 6. ACM, 1982.

[14] R. Malladi. "Using Intel® VTune™ Performance Analyzer
Events/Ratios & Optimizing Applications." (2009).

[15] J. Levon. "OProfile manual." Victoria University of Manchester (2004).

[16] P. Mucci, S. Browne, C. Deane, and G. Ho. "PAPI: A portable interface
to hardware performance counters." Proceedings of the Department of
Defense HPCMP Users Group Conference. 1999.

[17] J. Smith. "Decoupled access/execute computer architectures." ACM
SIGARCH Computer Architecture News. Vol. 10. No. 3. 1982.

[18] D. Talla and L. John. "Mediabreeze: a decoupled architecture for
accelerating multimedia applications." ACM SIGARCH Computer
Architecture News 29.5 (2001): 62-67.

[19] M. Farrens, P. Ng, and P. Nico. "A comparison of superscalar and
decoupled access/execute architectures." Proceedings of the 26th annual
International Symposium on Microarchitecture. 1993.

[20] J. Parcerisa and A. González. "The latency hiding effectiveness of
decoupled access/execute processors." Euromicro Conference.
Proceedings. 24th. Vol. 1. IEEE, 1998.

[21] A. Tondon. M.S. Thesis. "Performance Impact of Programmer-Inserted
Data Prefetches for Irregular Access Patterns with a Case Study of FMM
Vlist Algorithm", The University of Texas at Austin, December 2013.

[22] L. John, V. Reddy, P. Hulina, and L. Coraor. "Program balance and its
impact on high performance RISC architectures." Proceedings of the
International Conference on High-Performance Computer Architecture,
1995.

[23] D. Levinthal. "Performance analysis guide for Intel Core i7 processor
and Intel Xeon 5500 processors." Intel Performance Analysis
Guide (2009).

