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Abstract—Adaptive mesh refinement (AMR) numerical 

methods utilizing octree data structures are an important class of 

HPC applications, in particular the solution of partial differential 

equations. Much effort goes into the implementation of efficient 

versions of these types of programs, where the emphasis is often 

on increasing multi-node performance when utilizing GPUs and 

coprocessors. By contrast, our analysis aims to characterize these 

workloads on traditional CPUs, as we believe that single-

threaded intra-node performance of critical kernels is still a key 

factor for achieving   performance at scale. Especially irregular 

workloads such as AMR methods, however, exhibit severe 

underutilization on general purpose processors. 

In this paper, we analyze the single core performance of two 

state-of-the-art, highly scalable adaptive mesh refinement codes, 

one based on the Fast Multipole Method (FMM) and one based 

on the Finite Element Method (FEM), when running on a x86 

CPU. We examined both scalar and vectorized implementations 

to identify performance bottlenecks. We demonstrate that 

vectorization can provide a significant benefit in achieving high 

performance. The greatest bottleneck to peak performance is the 

high fraction of non-floating point instructions in the kernels. 

  

Keywords—HPC, PVFMM, MANGLL, irregular tree, PAPI, 

SIMD, AVX , adaptive mesh refinement, Fast Multipole Method, 
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I. INTRODUCTION 

Traditionally, performance analysis of scientific computing 
codes for partial differential equations has been focused on 
regular discretizations, such as the stencil based seven-point 
Laplacian operator. Such codes have a regular nested for-loop 
structure that is amenable to extensive optimizations. But such 
regular stencil codes are no-longer representative of  state-of-
the-art techniques and cannot be used to predict the 
performance of currently deployed codes. Current codes, 
typically employ high-order accurate discretization schemes 
and nonuniform spatial discretizations. Such discretizations are 
also known as adaptive mesh refinement methods (AMR). In 
this paper, we focus on AMR methods that use octrees. Other 
variants exist, but octree-based AMR methods have been 
shown to scale to thousands of cores and retain some of the 
nice properties of uniform spatial discretizations (e.g., memory 
access and precomputation of element operators). The two 
AMR methods we consider are the Fast Multipole Method 
(FMM) and the Finite Element Method (FEM) [1,2,3]. A key 
issue in obtaining good overall performance in these methods 
is their single-core performance. As such, in this paper we 

focus in detail on the performance of these two codes on a x86 
architecture. 

The two codes that we examine are PVFMM [1] for the 
FMM scheme and MANGLL [2] for the FEM scheme, both of 
which are optimized to achieve high performance on high-
performance computing clusters. PVFMM is a high-order 
solver used to solve N-body problems and elliptic partial 
differential equations (e.g., the Poisson problem) using the fast 
multipole method. MANGLL is a scalable adaptive high-order 
nodal discontinuous and continuous Galerkin discretization 
library for hexahedral elements. In this paper, we only test the 
MANGLL's discontinuous Galerkin method that is used for 
hyperbolic partial differential equations. Also, we only test 
PVFMM's V-list. Both algorithms are explained in greater 
detail in Section II. PVFMM and MANGLL are chosen as 
representative candidates for our analysis for three main 
reasons: 

 Hyperbolic and elliptic partial differential equations 
appear in a myriad of problems in science and 
engineering. By examining these two state-of-the-art 
codes for such problems we cover a significant portion 
of HPC workloads. 

 PVFMM and MANGLL implement different 
mathematical methods and target different classes of 
problems, but both use octrees and support highly non-
uniform discretizations. 

 They implement state-of-the-art algorithms and have 
scaled to 100s of thousands of cores. These two codes 
are being used to simulate problems in geosciences, 
energy, and life sciences. 

 
In performing a detailed analysis for these two workloads, 

this paper makes the following contributions: 
 

 A comprehensive performance analysis of the two 
octree codes for different parameter settings. 

 An analysis of the benefits of vectorization and 
programmer inserted prefetching.  

 A careful evaluation of performance bottlenecks for 
this class of applications, including reasons for stalls 
and deviation from peak performance. 

 

The rest of the paper is organized as follows: Section II 
briefly describes the core algorithms of PVFMM and 
MANGLL, with an emphasis on showing how irregular tree 
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topologies are used in two different kernels. In our analysis, we 
utilize CPUs with an Intel Sandy Bridge microarchitecture, and 
we give a brief introduction to this microarchitecture in Section 
III. Our experimental setup is explained in Section IV, and 
Section V contains the analysis of factors limiting 
performance. We conclude in Section VI. 

II. CORE ALGORITHMS 

A. PVFMM 

The Fast Multipole Method is used to solve N-body 
problems.  It has optimal work complexity of O(N), for 
problems with N interacting particles.  However, the constants 
in the complexity estimate can be large.  There are several 
works [4,5,6,7], which give different algorithmic variations of 
the method and make trade-offs between applicability of the 
algorithm to different problem types and efficiency.  Here, we 
analyze the variant described in Ying et. al [4], which is 
applicable to many different problems and is also very 
efficient.  However, even with a work efficient algorithm, it is 
still necessary to have an optimal implementation.  Below, we 
briefly describe the main features of the PVFMM 
implementation.  For a more detailed discussion, we refer the 
interested readers to Malhotra and Biros [1]. 

The PVFMM implementation constructs an octree based 
partitioning of the computational domain.  Next, interactions 

between octree nodes are computed.  There are broadly two 
interaction types, near and far interactions.  Near interactions 
are computed directly through kernel evaluation for particle 
problems and dense matrix-vector products for volume 
potential problems.  These interactions have high arithmetic 
intensity, however, kernel evaluations are generally costly and 
can involve computing fractional powers and transcendental 
functions.  Hardware support for evaluating such functions will 
be necessary to improve performance.  Until such hardware 
support becomes available, there is very little which can be 
done to improve performance of these interactions. 

The far-field interactions in PVFMM involve computing a 
complex-valued Hadamard product.  The Hadamard product 
computation, if done naively, can have very low arithmetic 
intensity (Figure 1: left).  The PVFMM implementation uses a 
novel data rearrangement, interleaving the vectors (source and 
target) for sibling octants to form stacks of vectors of length 
8.  All 8x8 interactions between two sibling groups can then be 
evaluated as a stack of matrix-vector products where the 
matrices are 8x8.  Several such interactions (in the same 
direction) can be combined and represented as a stack of 
matrix-matrix products, evaluated in a level-by-level fashion 
(Figure 1: right).  The small matrix-matrix products are 
carefully tuned and implemented efficiently using AVX and 
SSE vector intrinsics (which correspond to 4-wide and 2-wide 
vectorized x86 instructions, respectively). 

Figure 1: (Left) Naïve Hadamard product computing one interaction at a time. (Right) Optimized Hadamard product evaluated as stack of matrix-matrix 

products. Matrix width (block size) is a tuning parameter dependent on the cache size. 

Figure 2: Overview of the Sandy Bridge microarchitecture. The unified scheduler is connected to the 6 uop issue ports. Adapted from [12].  



 Blocks of octants sorted in Morton order are processed one 
at a time.  Interactions in all possible directions are computed 
while keeping one layer of the stack in cache, thus reusing the 
source and target vectors already loaded from the main 
memory.  The block size (width of matrices) is a tuning 
parameter, which depends on the cache size of the 
processors.  The implementation also uses OpenMP parallelism 
along the height of the stack, allowing for the utilization of all 
cores on multi-core systems. 

B. MANGLL 

MANGLL is a library designed for solving scalable 
adaptive high-order discretizations for hexahedral elements on 
top of the octree data structure. It can be used in simulations of 
convection in the Earth’s mantle, global seismic wave 
propagation, and melting of the Antarctic ice sheet. One of its 
main contributions is supporting dynamic parallel adaptive 
mesh refinement and coarsening (through an interface to the 
p4est library [8]), which is essential for numerical solutions of 
the partial differential equations (PDEs) arising in many 
multiscale physical problems [9].  

The adaptive spatial data-structure used in the MANGLL 
code is a general, unstructured hexahedral mesh. The mesh is 
refined using one octree data-structure per hexahedron (thus, 
the term “forest of octrees”) [10]. Octrees are axis-aligned. 
Given this arrangement, when mapping an octree to a problem 
domain, the recursive subdivision of octrees corresponds to 
subdivision of the mapped domain. Hence, such a subdivision 
generates a mesh which can be used for the discretization and 
numerical solution of a PDE. Recursive octree divisions 
support efficient octree-based adaptivity of the mesh. 

 The essential concept that makes octree-based AMR 
methods parallel at a large-scale is the space-filling curve, 
identified by the traversal of an octree across its leaves. By 
connecting the space-filling curve between octrees, a total 
ordering of all octants in the domain is generated. The total 
ordering can be used for fast binary search, finding any of Np 
local octants in O(log Np) steps. 

III. SANDY BRIDGE MICROARCHITECTURE 

Our studies are conducted on the Stampede system at 
TACC (Texas Advanced Computing Center) [11]. It comprises 
over 6,400+ compute nodes, each containing two 8-core Xeon 
E5-2680 processors and a Xeon Phi MIC coprocessor. The 
Xeon E5-2680 processors feature the Sandy Bridge 
microarchitecture, which was Intel's first to implement the 
AVX (Advanced Vector Extensions) ISA extensions. AVX, as 
implemented on Sandy Bridge, doubles the width of packed 
vector operations and allows 8 double precision FLOPs/cycle, 
which at a core frequency of 2.7 GHz provides a theoretical 
capability of 21.6 GFLOPS/core. 

The core can decode and retire up to 4 instructions per 
cycle, giving a maximum IPC (instructions per cycle) of 4. 
Sandy Bridge features a large 168 entry reorder buffer (ROB) 
and a unified scheduler featuring 54 reservation stations to 
enable a large out of order execution window. Register files 
with 144 floating-point and 160 integer entries enable the 
entire instruction window to be all floating point, all integer, or 
a combination of the two[12]. As shown in Figure 2, Sandy 
Bridge uses a unified scheduler to issue up to 6 micro-

operations(uops) over 6 issue ports, with each port providing 
access to multiple functional units. Floating-point multiply and 
add operations are issued on two separate ports that are also 
connected to the integer vector units. Each of these two ports 
can issue a 256-bit operation (producing 4 double precision 
floating-point numbers in a single vector) per cycle, providing 
a theoretical peak of 8 FLOPs/cycle. Two additional ports are 
for memory loads and have separate address generation units 
and 128-bit data paths. The address generation units are shared 
with the store port. A single AVX vector operation that 
requires a memory operand thereby requires both load units to 
provide the memory operand. Finally there is a dedicated store 
port that can leverage both of the address generation units from 
the load ports. Overall, this means that during peak 
performance, the core is able to issue both a floating-point 
multiply and add, two loads, a store, and an integer operation 
all in a single cycle. This only occurs during peak bursts and is 

PAPI Event Name Event Description 

PAPI_TOT_CYC Total execution cycles 

INSTRUCTION_RETIRED 
Instructions executed and retired by 

the processor 

BR_INST_RETIRED Branch instructions retired 

L1-DCACHE-LOADS Total data memory reads 

L1-DCACHE-LOAD-MISSES Read misses in the L1 data cache 

L1-DCACHE-STORES Total data memory writes 

L1-DCACHE-STORE-MISSES Write misses in the L1 data cache 

PAPI_L2_DCA 
Data memory reads and writes to the 

L2 cache 

PAPI_L2_DCH Data access hits in the L2 cache 

PAPI_DP_OPS 
Double precision floating point 

instructions 

SIMD_FP_256:PACKED_DOUBLE 
SIMD floating point instructions 

operating on 4 double precision floats 

FP_COMP_OPS_EXE: 

SSE_FP_PACKED_DOUBLE 

SIMD floating point instructions 

operating on 2 double precision floats 

PAPI_FP_INS Scalar floating point instructions 

UOPS_DISPATCHED_PORT: 

PORT_X 

Micro-operations dispatched over port 

X, where X is 0,1,2,3,4,5 

RESOURCE_STALLS:X 

Cycles stalled due to X, where X is 

ROB, load buffer, store buffer, 

reservation station 

Variant Description 

PVFMM Basic Features no blocking, unvectored 

PVFMM Blocked Blocked, unvectored 

PVFMM SSE Blocked, two wide vectored 

PVFMM AVX Blocked, four wide vectored 

MANGLL -l 5 -N 4 
Compiler optimized,  octree forest level of 5, 

polynomial degree of 4 

MANGLL  AVX -l 5 -N 4 
Four wide manually vectored,  octree forest level 

of 5, polynomial degree of 4 

MANGLL -l 4 -N 7 
Compiler optimized,  octree forest level of 4, 

polynomial degree of 7 

MANGLL AVX -l 4 -N 7 
Four wide manually vectored,  octree forest level 

of 4, polynomial degree of 7 

MANGLL -l 3 -N 11 
Compiler optimized,  octree forest level of 3, 

polynomial degree of 11 

MANGLL AVX -l 3 -N 11 
Four wide manually vectored,  octree forest level 

of 3, polynomial degree of 11 

Table 1: PVFMM and MANGLL variants and a brief description.  

Table 2: List of PAPI events used in the analysis and brief descriptions of 
what they measure. Events that start with the PAPI are preset events and the 
others are provided through PAPI's native interface.  



possible because x86 instructions are cached in micro-
operation form after the initial decode. The retire width is 4 and 
hence the peak IPC is limited to 4. The capability to issue more 
than 4 uops per cycle does not violate the maximum of 4 
retired IPC, but is necessary for x86 instructions that translate 
into multiple uops. This capability also enables compensation 
for cycles when less than 4 micro-operations are issued. Each 
core has its own L1 and L2 caches, with a shared L3 between 
all cores. The L1 cache is divided into two 32KB 8-way 
associative instruction and data caches. The L2 cache is a 
256KB unified cache, while the shared L3 cache is 20 MB. 
Overall, these cores are capable of providing high performance 
for highly vectorized workloads. 

IV. EXPERIMENTAL SETUP 

Both PVFMM and MANGLL are capable of scaling to 
multiple cores/nodes, but since we are trying to measure and 
improve single core performance, we limited execution to a 
single core. Both programs were built using the Intel C 
Compiler (ICC) which provides compiler intrinsics for vector 
instructions that make it easier to code kernels leveraging these 
capabilities. ICC is capable of auto-vectorizing code if certain 
criteria are met to guarantee the correctness of the produced 
code. In total, we evaluated 4 variants of PVFMM and 2 
variants of MANGLL. Each variant of MANGLL was run with 
three different pairs of input parameters. The pairs consist of an 
initial octree forest level (denoted as the -l argument) and the 
polynomial degree (denoted as the -N parameter). PVFMM did 
not exhibit a sensitivity to its input parameters (both for a given 
variant and between variants), so their variations are not 
reported in this paper. The studied variants for PVFMM and 
MANGLL are listed in Table 1. 

Several methods of collecting performance metrics were 
considered, including gprof [13], VTune [14], and OProfile 
[15]. We ultimately decided to use PAPI (Performance API) 
[16] for the following reasons: PAPI collects low level 
performance metrics in a relatively non-intrusive manner. 
PAPI builds on hardware counters, which increases accuracy 
and reproducibility while minimizing the overhead of 
collecting data. PAPI is susceptible to measuring events that 
occur as a result of other programs, which we aimed to 
minimize by using reserved nodes and repeated measurements. 
The first step in our work was to identify a subset of 
measurable events (summarized in Table 2) that would allow 
us to analyze relevant performance characteristics. 

Note that, due to the fact that vectorized and unvectorized 
operations are counted differently, we were required to use 
different events to measure floating-point operations. One of 
the sanity checks we used was that we instrumented each 
program at the source code level to keep track of how many 
operations should have been executed. These numbers were 
compared with the PAPI results to validate the execution. 

V. RESULTS 

A. Floating Point Performance 

The primary metrics for assessing overall performance are 
total execution time and the fraction of theoretical peak 
floating-point performance achieved during a run. Table 3 
summarizes the floating point performance for PVFMM and 

MANGLL. Percent of peak is calculated based on the 
theoretical maximum of 8 double precision floating point 
operations per cycle  (FLOPs/cycle) in Sandy Bridge based 
CPUs. Normalized running time is calculated as the ratio of the 
number of cycles executed by each variant over the fastest 
variant. The variants were sorted in order of increasing 
performance (percentage of peak). There is a direct correlation 
between sustained floating point performance and total 
execution time. 

PVFMM in general outperforms all MANGLL variants. 
The fastest executing PVFMM variant (PVFMM AVX) is 3x 
faster than the fastest MANGLL variant (MANGLL AVX -l 3 
-N 11). PVFMM greatly benefits from blocking, prefetching, 
and vectorization. The basic PVFMM variant represents a 
naive implementation and runs 4.93 times slower than the 
hand-optimized AVX variant. The super-linear increase in 
performance when going from a blocked, non-vectorized 
PVFMM to a SSE PVFMM is due to prefetching [21]. The 
SSE/AVX PVFMM variants have programmer inserted 
prefetches for selected data structures. 

The hand-optimized AVX variants of MANGLL either 
achieve a minor performance increase or a slight degradation in 

Variant 
FLOPs/

cycle 

Percent of 

Peak 

Normalized 

Running Time 

PVFMM Basic 1.05 13.1 % 4.93 

PVFMM Blocked 1.44 18.0 % 3.46 

PVFMM SSE 2.95 36.9 % 1.65 

PVFMM AVX 4.86 60.8 % 1.00 

Variant 
FLOPs/

cycle 

Percent of 

Peak 

Normalized 

Running Time 

MANGLL  AVX -l 5 -N 4 1.10 13.8 % 2.75 

MANGLL -l 5  

-N 4 
1.14 14.3 % 2.67 

MANGLL -l 4  

-N 7 
1.33 16.6 % 1.87 

MANGLL AVX -l 4 -N 7 1.42 17.8 % 1.75 

MANGLL  

-l 3 -N 11 
1.44 18.0 % 1.06 

MANGLL AVX -l 3 -N 11 1.52 19.0 % 1.00 

Variant IPC 
Normalized Instruction 

Count 

PVFMM Basic 2.14 4.88 

PVFMM Blocked 2.56 4.09 

PVFMM SSE 3.04 2.32 

PVFMM AVX 2.16 1.00 

Variant IPC 
Normalized Instruction 

Count 

MANGLL -l 5 -N 4 1.94 3.05 

MANGLL  AVX -l 5 -N 4 1.80 2.90 

MANGLL -l 4 -N 7 1.90 2.09 

MANGLL AVX -l 4 -N 7 1.75 1.79 

MANGLL -l 3 -N 11 1.97 1.23 

MANGLL AVX -l 3 -N 11 1.70 1.00 

Table 4: PVFMM (top) and MANGLL (bottom) instructions/cycle. 

 

Table 3: PVFMM (top) and MANGLL (bottom) floating-point 

performance and normalized execution times. 



performance. The MANGLL program appears to gain little to 
no benefit from vectorization. The instruction count decreases 
by approximately 20% for each AVX variant of MANGLL, 
whereas in the PVFMM code it is reduced by 4x (see Table 4). 
Floating-point performance of vectorized MANGLL variants 
achieves at best approximately a 10% increase. In comparing 
between different MANGLL parameter sets, we can see that in 
all cases, floating-point performance is increasing with an 
increasing polynomial degree. 

B. Instructions per Cycle 

Secondary to execution time and raw floating point 
performance, we measured the total number of cycles and 
instructions executed by each kernel. As mentioned previously, 
Sandy Bridge is a 4-wide superscalar machine, which means 
that the maximum achievable IPC (instructions per cycle) is 4. 
Table 4 lists the IPC and normalized instruction counts for all 
variants.  

The SSE variant of PVFMM did manage to achieve the 
highest IPC of all three variants. This can be attributed to two 
factors: each SSE intrinsic does more work per instruction than 
the unvectored variant, and each SSE instruction (as we will 
see in the follow subsection) is less likely to have a cache miss 
compared to the AVX variant. Note, however, that the SSE 
variant executes more than twice as many instructions as the 
AVX variant leading to an overall lower performance despite 
the higher IPC. 

MANGLL’s IPC of about 2 instructions/cycle (irrespective 

of variant) is overall lower than PVFMM’s. Sandy Bridge can 

simultaneously dispatch up to six uops/cycle across its six 

ports. The number of uops dispatched is determined by the 

number of independent uops that are ready (source data is 

available), the number of uops requiring the same issue port, 

and the status of the execution units. To investigate the low 

IPC of MANGLL, we further analyzed how many uops were 

being dispatched every cycle. As Figure 3 demonstrates, 50 % 

of the time only 2 or less uops are sent to execution units, 

which hinders overall performance. We also see that execution 

is stalled more than 10% of the time. Figure 3 shows that 

PVFMM performed much better and issued 3 or more uops 

nearly 50% of the time or better.  

However, observing that more than half of the cycles use 

less than 50 % of the port resources is a sign of inefficiency. 

This is due to cycles being stalled during execution because of 

pending cache loads, data dependencies, unavailable execution 

units, and issue port conflicts (if two uops need to use the 

same port). Port conflicts can be avoided, at the expense of 

increased hardware costs, by either providing extra ports or 

increasing the width of the ports. Such changes would be 

beneficial to two AVX instructions trying to reference 

memory in a single cycle. The inability to compensate for 

some loss in performance might be greatly outweighed by the 

hardware costs and, as we propose in the next section, can be 

regained via different means. 

C. Cache and Memory Performance 

Caches are an important target when identifying 
performance bottlenecks, which is why it was one of the main 
areas of optimizations when PVFMM was implemented. 

PVFMM relies on blocking and profile guided prefetching to 
optimize cache performance. MANGLL currently does not 
have manually inserted prefetching. The two primary metrics 
to consider when analyzing cache performance are miss rate 
and misses per instruction (MPI). Miss rate is the ratio of 
misses to total accesses for a cache level. A miss at a given 

Variant L1  Miss Rate L2  Miss Rate L3 Miss Rate 

PVFMM Basic 9.10 % 11.55 % 4.44 % 

PVFMM Blocked 5.47 % 81.5 % 4.76 % 

PVFMM SSE 8.96 % 86.8 % 5.12 % 

PVFMM AVX 16.39 % 76 % 7.40 % 

MANGLL -l 5 -N 4 2.75 % 31.1 % 22.67 % 

MANGLL  AVX -l 5 -N 4 2.93 % 29.96 % 27.47 % 

MANGLL -l 4 -N 7 4.18 % 17.49 % 25.89 % 

MANGLL AVX -l 4 -N 7 2.23 % 27.39 % 31.25 % 

MANGLL  -l 3 -N 11 6.94 % 7.38 % 28.22 % 

MANGLL AVX -l 3 -N11 5.56 % 8.60 % 31.94 % 

Variant 
L1 

MPKI 

L2 

MPKI 

L3 

MPKI 

Ideal 

CPI 

Ideal + 

MCPI 

PVFMM Basic 61.5 5.38 0.23 1.00 1.88 

PVFMM Blocked 13.9 9.49 0.45 1.00 1.61 

PVFMM SSE 20.6 14.4 0.74 0.50 0.97 

PVFMM AVX 40.7 24.0 1.77 0.25 0.68 

MANGLL -l 5 -N 4 11.9 3.71 0.84 1.00 1.44 

MANGLL  AVX -l 5 -N 4 12.8 3.84 1.05 0.25 1.49 

MANGLL -l 4 -N 7 18.1 3.17 0.82 1.00 1.47 

MANGLL AVX -l 4 -N 7 13.4 3.68 1.15 0.25 1.51 

MANGLL -l 3 -N 11 30.7 2.26 0.64 1.00 1.53 

MANGLL AVX -l 3 -N 11 33.2 2.86 0.91 0.25 1.63 

Table 6: PVFMM and MANGLL cache misses per 1,000 instructions 

(MPKI) and memory adjusted CPI estimate assuming L1 (data), L2, L3 

miss latencies of 10, 40, 200 cycles. 

Table 5: PVFMM and MANGLL L1 (data), L2, and L3 cache miss rates. 

MANGLL has low L1 and L2 miss rates, but has fairly high L3 miss 
rates. PVFMM has low L1 and L3 misses rates, but suffers from very 

high L2 cache misses. Miss rates should always be considered with total 

instruction count, as we have done in Table 6. 

Figure 3: PVFMM and MANGLL breakdown of uops dispatched per 

cycle. PVFMM AVX spends roughly 20% of its cycles without issuing any 

uops which is indicative of full-window stalls caused by long latency cache 
misses. 



cache level results in an access to the next level cache (e.g. an 
L3 cache miss results in a main memory access). Table 5 gives 
the miss rates for all three cache levels for all PVFMM and 
MANGLL variants. The PVFMM AVX variant had the worst 
L1 cache miss rate, despite having the best performance 
overall. With the exception of the basic PVFMM, most 
PVFMM variants had high L2 miss rates. Across all variants, 
PVFMM had low L3 miss rates. All MANGLL variants had 
low L1 miss rates, which is significant because it translates into 
less lower level (further from the CPU) cache accesses. This 
means that despite MANGLL's L3 miss rate being relatively 
high, the impact is minimal.   

Comparing miss rates can be deceiving as they do not 
factor in total number of accesses. MPI is a better metric for 
determining the cache performance of an application, as it is 
able to determine the relative significance of a miss. Table 6 
presents the misses per 1,000 instruction (MPKI) for all 
PVFMM and MANGLL variants. MPKI in MANGLL is 
strongly dependent on the parameter set. The basic PVFMM 
variant had poor L1 cache performance, suggesting that 
PVFMM greatly benefitted from blocking and prefetching. In 
order to approximate the effect of cache misses we calculated 
the memory adjusted cycles per instruction (MCPI) as shown 
in Table 6. This calculation was done assuming L1, L2, L3 
miss latencies of 10, 40, 200 cycles [23]. Sandy Bridge does 
feature memory bank interleaving that does expose memory 
level parallelism that we have not considered. The MCPI 
shows that the AVX variant of PVFMM is impacted the most 
from cache misses. We also see this trend for all AVX variants 
of MANGLL. However, unlike in vectorized PVFMM 
variants, the AVX MANGLL variants were not consistently 
better or worse than their regular counterparts. The MCPI of 
vectorized variants suggests to us that cache performance 
needs to be improved to better accommodate wider 
vectorization.  It still needs to be explored if MANGLL can 
benefit from manually inserted prefetching. 

D. Instruction Mix 

We categorized uops as either branches, loads, stores, 
floating-point, or other operations. We determined that using 
uops provided a clearer picture of the types of operations that 

were being executed internally, especially in regards to the 
other category. Uops that would fall under the other category 
are primarily ALU type operations that would be used to 
calculate addresses. We had to use different PAPI events to 
measure floating-point uops based on the variant under 
analysis. This was done due to the fact that PAPI treats 
vectored and unvectored floating-point uops differently (it also 
differentiates between 128-bit and 256-bit SIMD floating-point 
operations). 

Figure 4 presents the uop mixes for PVFMM and 
MANGLL. The X-axis corresponds to the type of uop and the 
Y-axis is the fraction of the total uop count accounted for by 
that instruction type.  For both programs, branches account for 
about 2% to 6% of the uop mix, which results in very high 
instruction locality and large basic blocks, exposing a large 
amount of instruction level parallelism. This low fraction of 
branch uops is typical of most scientific workloads. Loads 
accounted for about 23% of the uops in all PVFMM variants 
except the basic variant, in which over 48% of the uops being 
loads. This demonstrates that PVFMM greatly benefits from 
blocking, which is responsible for a drastic reduction in load 
uops. For MANGLL, loads accounted for a narrower range 

Variant 

Fraction 

FP 

Fraction 

Supporting 

Instructions 

Supporting 

Instructions/ 

Floating-point 

PVFMM Basic 0.45 0.55 1.22 

PVFMM Blocked 0.56 0.44 0.79 

PVFMM SSE 0.49 0.51 1.04 

PVFMM AVX 0.56 0.44 0.79 

MANGLL -l 5 -N 4 0.24 0.76 3.17 

MANGLL AVX -l 5 -N 4 0.22 0.78 3.55 

MANGLL -l 4 -N 7 0.27 0.73 2.70 

MANGLL AVX -l 4 -N 7 0.25 0.75 3.00 

MANGLL -l 3 -N 11 0.35 0.65 1.86 

MANGLL AVX -l 3 -N 11 0.20 0.80 4.00 

Figure 4: PVFMM and MANGLL uop mix. 

Table 7: PVFMM and MANGLL floating-point to support instruction 
comparison. PVFMM manages to achieve high performance due to having 

a high fraction of floating-point operations. MANGLL suffers due to 

having a significantly higher fraction of supporting instructions compared 
to floating-point operations. 



between 35% and 44% of the total uop mix. The MANGLL 
variant with the highest load percentage is the hand-optimized 
MANGLL AVX -l 3 -N 11 variant, which means that some 
extra work (more support operations) is introduced to allow 
vectorization to take place. All other MANGLL variants had 
very similar load percentages. Since manually vectorizing 
MANGLL resulted in only marginal performance gains, this 
suggests that vectorization gains can be negated by the 
additional overhead that is introduced in the process. For both 
applications, stores accounted for substantially less of the 
instruction count than loads. We again see that blocking 
benefited PVFMM by cutting down the store percentage from 
8.5% to 5% or less.  In all MANGLL variants, stores accounted 
for between 4% to 9% of the total uop mix, which, similarly to 
PVFMM, is much less than the load percentage. Other uops in 
PVFMM accounted for 7% to 25% of the uop mix in all 
variants. In all MANGLL variants, other uops accounted for 
approximately 25 to 50 % of the uop mix. Overall MANGLL 
had a much higher proportion of non-floating-point uops when 
compared to PVFMM. 

E. Stalls 

The final class of metrics we considered in our analysis 

was cycles stalled and the correlation to CPI (cycles per 

instruction). As Figure 5 shows, reservation station (RS) stalls 

were the major source of stall cycles for both PVFMM and 

MANGLL. Reservation station stalls are caused when a uop is 

either waiting for a source operand or functional unit to 

become available. The floating-point units are fully pipelined, 

meaning a uop can be issued per port per cycle, which means 

most of the RS stalls are due to waiting for source operands. 

For all PVFMM variants these reservation stalls account for 

the majority of all stalls. This leads us to believe that the two 

primary factors holding PVFMM performance back are 

inherent data dependencies and waiting for values from the 

cache. The PVFMM AVX variant stalls more often than the 

SSE variant, and due to the fact that it executes less cycles, 

this means it spends more cycles stalled both in absolute and 

relative terms. All MANGLL AVX variants exhibit similar 

stalling behavior when compared to their non-AVX 

counterparts.  
In Figure 5, we attempt to explain the observed CPI using 

the various stalls. The Sandy Bridge architecture has an ideal 
CPI of 0.25 since the ideal IPC is 4. Hence if all stalls of an 
instruction are added to the ideal CPI, one must get the 
observed CPI if the stalls are not overlapped. We add the 
various stalls per instruction and the resulting stalls per 
instruction is plotted in Figure 5 along with the actual observed 
CPI. In 9 out of 10 cases experimented, if the ideal CPI of 0.25 
is added to the stalls per instruction, one can obtain the 
observed CPI. Apparently there are some unaccounted stalls in 
the base PVFMM code which we are further investigating. It 
may also be noted that the stalls per instruction are about half 
as much as the ideal CPI in PVFMM, whereas the stalls per 
instruction in MANGLL are more than the ideal CPI (i.e. more 
than 0.25). There is a lot of room for improvement in 
MANGLL. 

F. Access Execute Balance 

The primary focus of our research was on analyzing 
performance bottlenecks of PVFMM and MANGLL, such that 
future studies can focus on architectural changes aimed at 
increasing performance in these and similar workloads. Our 
primary finding was that the dynamic instruction count 
includes a large fraction of non-floating-point overhead 
instructions, especially in MANGLL.  

One may view the instruction stream as composed of the 
core compute instructions and other instructions required to 
support the compute process. For instance, the access 
instructions are simply an outcome of the fact that the data is in 
memory and needs to be brought into the processor to perform 
the computation. The Decoupled Access Execute (DAE) 
paradigm [17,18,19,20,21] treats all access instructions as 
supporting instructions to the compute thread. Past research has 
investigated the access-execute balance of programs [22] 
separating the instruction stream into compute and supporting 
threads. We present the access-execute balance of PVFMM 
and MANGLL in Table 7, by taking a ratio of supporting and 
compute instructions. It shows that 8 out of the 10 
experimented codes have a high proportion of supporting 
instructions compared to the core computing instructions.  

In order for compute instructions to happen at peak speed, 

the supporting instructions have to finish their tasks in perfect 

overlap with the compute instructions. The supporting 

instructions must also execute early enough to bring the data 

into the registers in such a fashion that the compute instruction 

Figure 5: PVFMM and MANGLL stall cycles, stalls per 

instruction, and CPI. 



does not have to wait. If the access instruction encounters a 

cache miss, the register will not get the data in time for the 

compute instruction to proceed without stalls.  

The machine level parallelism available to support the 

supporting instructions is also of issue. In the Sandy Bridge 

architecture, 2 of the 6 uops are compute and hence 4 uops can 

be of the supporting type. Hence the Sandy Bridge 

architecture can take a maximum access execute imbalance of 

2. However, Table 7 shows that the access-execute imbalance 

of many of the codes studied are 2.5 or higher. In such codes 

the supporting thread will consume more cycles than the 

compute thread and hence peak flops cannot be obtained. The 

SSE and AVX variants of PVFMM are well-balanced, 

whereas MANGLL is very unbalanced explaining the 

observed performance. 

VI. CONCLUSION 

This paper presents an analysis of the single-node 

performance of two HPC applications with tree data structures, 

PVFMM and MANGLL. Analysis of PVFMM demonstrates 

that vectorization, cache tuning, and programmer inserted 

prefetching can greatly increase performance. With these 

optimizations, PVFMM achieves 61% of the peak flop rate of 

8 double precision flops possible in the Intel Sandy Bridge 

architecture. Vectorization in PVFMM places increased 

pressure on the cache and results in a loss of some 

performance. PVFMM represents a mature code base, while 

MANGLL is relatively new. MANGLL is not fully vectorized 

and ongoing effort is going into changing this. PVFMM scaled 

well because the supporting non-compute instructions scaled 

down with the reduction in floating-point instructions, which 

unfortunately did not happen in MANGLL. Supporting 

instructions comprised a large portion of the MANGLL kernel 

and we believe significant code changes or architectural 

changes are necessary to increase performance in light of this 

finding. 
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