
High-Level Synthesis of Approximate Hardware under Joint
Precision and Voltage Scaling

Seogoo Lee, Lizy K. John, and Andreas Gerstlauer
Department of Electrical and Computer Engineering, The University of Texas at Austin

{sglee, ljohn, gerstl}@utexas.edu

Abstract— In recent years, approximate computing has
emerged as a promising approach to trade off quality of
computed outputs for energy savings. In this paper, we present
an approximate high-level synthesis (AHLS) approach that
outputs a quality-energy optimized register-transfer-level imple-
mentation from an accurate high-level C description. Existing
AHLS work only considers switching activity for energy savings
under hardware approximations. By contrast, we aim to provide
a general AHLS solution that also considers voltage scaling
given a reduced processing time. To maximize voltage and
associated energy reductions, we include both operation-level
approximations by bit rounding and more aggressive operation
eliminations as approximation techniques. Optimally exploiting
scaling opportunities under such approximations requires tight
interaction with scheduling tasks. We address this problem by
combining an optimization pass that estimates the scheduling
impact of approximations with fast yet accurate quality-energy
models and an efficient optimization solver to find near-optimal
solutions constructively. Results show that when considering
voltage scaling, up to 24.5% higher energy savings can be
achieved compared to approaches that only consider switching
activity. Our heuristic solver is able to find solutions within 0.1%
of average energy savings compared to an exhaustive search, all
while being up to 1,400× faster than simulation-based methods.

I. INTRODUCTION

Approximate computing (AC) introduces quality as a new
design metric to be traded off for lower energy consumption
or better performance. At the custom hardware level, approx-
imations are achieved by reducing the precision of individual
datapath operations at the expense of accuracy in final outputs.
While many ad-hoc designs have been proposed for individual
applications, large design spaces and non-obvious tradeoffs
require systematic and effective approaches to automatically
derive quality-energy optimal implementations.

In this paper, we address the problem of approximate high-
level synthesis (AHLS). Our AHLS tool is concerned with
synthesizing a quality-energy optimized register-transfer level
(RTL) implementation of a high-level C description under
hardware approximations. For approximations at the hardware
level, both voltage and precision scaling approaches have been
explored. However, performing each indepedently is subop-
timal. Pure voltage over-scaling leads to timing violations,
which can cause unpredictable, early, and catastrophic er-
rors [8]. By contrast, energy savings in precision scaling stem
from logic simplifications, which reduce switching activity.
However, they also reduce logic delay, which can be exploited
to scale voltages without causing timing violations. Due to
the quadratic relationship of voltage to power, this often
has a higher impact on energy savings, but many existing
approaches ignore this aspect.

Some work [10, 6] includes voltage scaling as a secondary
consideration after precision scaling in a non-HLS context.
This, however, ignores their inherent and non-obvious in-

teractions. Under uniform voltage and iso-performance as-
sumptions, scaling opportunities arise from reductions in
critical path delay or clock latency, i.e. total processing time.
Especially the latter can have a large impact, but requires re-
scheduling coupled with scaling of precision or potentially
more aggressive source-level optimizations to enable chain-
ing or complete elimination of operations and clock cycles.
Likewise, for a given quality goal, optimal precision scaling
to minimize the critical path and thus maximize slack across
different operations and clock cycles requires a similarly tight
interaction with scheduling.

We formulate this problem in an HLS context as an
additional quality-energy optimization pass that uses mobility
information from an initial one-time scheduling to estimate
the latency reduction and voltage scaling impact of precision
scaling. We then pass the precision-optimized solution to
existing synthesis task, followed by final post-processing
optimizations that further re-balance operation precisions to
minimize the critical path in the scheduled design. Our opti-
mization flow is aided by a fast yet accurate, semi-analytical
quality and energy estimation pass that determines overall
quality degradations and energy savings in a control data flow
graph (CDFG) under both bit rounding and more aggressive
operation elimination approximations. Furthermore, we use
a statistical approach to capture input-dependence of quality
using one-time simulation only, and our latency and voltage
estimation requires only one final re-scheduling. Finally, we
propose a novel constructive optimization heuristic that is ef-
fective in finding near-optimal designs in a short runtime. We
integrate our optimizations into an existing HLS framework to
provide a comprehensive AHLS solution supporting general
C input descriptions under joint precision and voltage scaling.

A. Related Work

There exists only limited work on AC in HLS flows.
The authors in [7] propose an integer linear programming
(ILP) formulation with a statistical precision scaling model
integrated into traditional scheduling and binding tasks. How-
ever, the use of linear quality and energy models limits
consideration of general application and hardware behavior.
The approach only supports dataflow graphs without control
flow, and does not consider voltage scaling.

Other approaches apply hardware approximations in the
form of independent pre- or post-synthesis tasks [3, 6, 13].
At the source level, the authors in [3] combine simulation
and analysis for quality estimation with parameterized ALU
models using gate-level synthesis for energy estimation. Re-
cent work [6] presents analytical quality and energy modeling
techniques that avoid simulation and synthesis overhead, in-
cluding an energy cost function that considers voltage scaling.
These approaches use generic meta-heuristics for solving
the optimization problem, which suffer from complexity and
optimality issues. Such generic heuristic solvers have an issue
that can easily fall into local minima. The work in [13, 10]

Code Generation

Front-End Parsing

C source codes for design and testbench

Verilog RTL for design, testbench, and approximated binary

AC library

Utility

functions

Optimization
setup

(decision var. &

output req.)
IR

mobility info.

optimal solution

sched.
Slack

balanc.

Profiling

Optim.

solver

Pre-sched.

binding

Energy

est.

Pre-Proc.

Quality/

Energy

Optim.

data stat.

Synthesis

IR

operation delay info.

Quality scaling

Laten.

est.

Fig. 1. Overview of our high-level synthesis (HLS) flow.

performs post-processing optimizations of an existing RTL
description. They identify approximations at the logic level
through iterative simulation and synthesis of structural [13] or
behavioral [10] HDL code. All these approaches assume that
a baseline design is given. As such, they do not perform true
AHLS and ignore interactions with scheduling and binding.
B. Overview

Fig. 1 shows our proposed AHLS flow. Inputs are the C
source code of the accurate design, its testbench, a quality-
energy configuration including decision variables defining
what data and operations to approximate, and a quality re-
quirement for computed results. The output is an approximate
RTL implementation that minimizes energy consumption
while meeting the given quality constraint.

Area and delay values of approximate hardware units under
different approximation levels are given in an AC library.
We support precision reduction by rounding as hardware
approximation mechanism. We also utilize more aggressive
operation eliminations, which can be considered an extreme
form of rounding that removes all data bits and completely
eliminates operations. We currently consider AC libraries and
applications with adders and multipliers only. Extension to
other operations will be targeted in future work.

Our tool first converts the given C code into an intermediate
representation (IR) using standard front-end optimizations. In
a following pre-processing step, we perform simulation and
pre-scheduling to collect data statistics and mobility informa-
tion for all operations. The actual quality-energy optimization
is performed by our heuristic solver. It uses a quality scaling
model together with latency and energy estimates determined
using the mobility and data statistics collected during the
pre-processing step. The precision-optimized solution with
updated operation delays is then passed to the scheduler,
which finds a latency-minimized design under given resource
constraints. A post-synthesis optimization step further re-
balances precision and timing slack across clock cycles to
minimize the critical path and maximize voltage scaling.
Finally, the best solution is passed to the binding step, and
the final Verilog RTL code and testbench are generated.

II. PRE-PROCESSING

Using a given testbench, we first run a C simulation of
the accurate design to obtain statistical information about
the application data under user-provided stimuli. We insert
a profiling function at each input and output of all interme-

diate operations to capture values of associated variables and
calculate their means µ and variances σ2 later used in our
quality estimation. We similarly profile branch probabilities.

We further perform an ASAP and ALAP pre-scheduling of
the accurate design to obtain mobility information for each
operation. We run both ASAP and ALAP with user-provided
resource constraints on the number of arithmetic operators
and memory ports.

III. QUALITY-ENERGY OPTIMIZATION

Quality and energy optimization is at the core of our AHLS
tool. Formally, the optimization problem is to minimize
energy cost under quality constraints:

min
s
E(s), s.t.∀j : Qj(s) ≤ Qrj . (1)

Here, s is a vector (s0, . . . , sN−1) of decision variables
si, and Qrj , 0 ≤ j < M are the quality constraints at
different computation outputs provided by the user. A decision
variable si is the number of rounded bits at the i-th approx-
imation point. By default, our tool automatically identifies
approximation points to round off data for all inputs and all
internal multiplier outputs, which affect the entire application
and double the number of bits, respectively. The user can
optionally specify the approximation points manually. As
input to the tool, the user can define groups of approximation
points in the C source code that will share the same number
of rounding bits. Each group maps to a decision variable.
A. Quality Scaling

Given a candidate solution s, we estimate its quality degra-
dation Qj(s), and at the same time identify operations that
can be eliminated from an accurate input design. Optimally
identifying operations to eliminate is closely related to quality
estimation since it depends strongly on data and error statis-
tics. We determine operation elimination by regarding it as an
extreme form of bit rounding: At each approximation point,
if the number of rounding bits s at an approximation point
makes the rounding error larger than the data to be rounded,
not using the data gives a smaller error than rounding off s
bits. In this case, the error becomes the data itself, and the
data after the approximation becomes zero, which provides
opportunities for further downstream operation eliminations.

For quality estimation, we employ a semi-analytical ap-
proach similar to [6], but our approach is different in three
key aspects: we support control flow, we consider joint bit
rounding and operation elimination, and we account for
mutual dependences among individual errors.

Fig. 2 shows our quality estimation for an example of two
multiplications and one addition having three approximation
points, each mapped to a decision variable. We traverse a
given input design’s CDFG in a breadth-first order from the
first operation. During this graph traversal, we run an error
generation function at every approximation point, and an error
propagation function at every operation. Each sub-function
computes three values, error statistics (ER), data statistics
(D), and the number of rounded, zero-valued bits (ZB). Error
and data are represented by their signal power, i.e. µ2 + σ2.

The error generation function is applied at the i-th ap-
proximation point where we round off data by si bits as
summarized in Table I. We model a basic rounding error as an
additive and uniformly-distributed error with a mean of zero
and variance σ2

R,s = 1/12×22s [6], but with two exceptions.
For basic bit rounding, the output error ERO,i is σ2

R,si
, the

RND RND

RND

s1 s2

s3

{ER1, D1,ZB1}

{ER5, D5,ZB5}

{ER6, D6,ZB6} {ER7, D7,ZB7}

{ER8, D8,ZB8}

. . .br

Phi

. . .

pb

DP,1 DP,2

DP,3

DI ZBIs

{ERI1, DI1, ZBI1}

Error generation

Error propagation

DP

{ERI2, DI2, ZBI2}

{ERO, DO, ZBO}

{ERO, DO, ZBO}

{ER9, D9,ZB9}{P
b
E
R

9
,P

b
D

9
}

{E
R

1
,D

1
,E
R

2
,D

2
,.
..
}

Fig. 2. Quality Estimation.

TABLE I: SUMMARY OF ERROR GENERATION.
Condition ERO DO ZBO

if ZB I > s 0 DI ZB I

else if σ2
R,si

> DI,i DI 0 bw
otherwise σ2

R,s DI s

output data power DO,i remains unchanged, and the number
of zero-valued lower bits ZBO,i is set to si. By contrast,
if ZB I,i in the input is larger than si, all bits are already
zeros. Thus, there is no additional error generated by rounding
si bits, no change in the output data, and ZBO,i becomes
ZB I,i. Finally, if si is large enough to make σ2

R,si
> DI,i,

we approximate the data to zero and trigger elimination of
subsequent operations, where the error becomes the input
data itself, the output data becomes zero, and all the bits
corresponding to the native bitwidth of the i-th operation
output (bwi) become zero-valued bits.

The error propagation function defines how generated er-
rors propagate through adders and multipliers, and it identifies
operation eliminations. For the k-th operation, we apply a
basic mean and variance propagation method from [6] to
compute ERO,k. We also update DO,k and ZBO,k as shown
in Table II. For DO,k, the data statistics DP,k obtained
during profiling of the k-th operation’s output are normally
propagated into the next operation. However, if either input is
previously approximated to zero, the other input is propagated
for an adder or the output becomes zero for a multiplier, and
we mark this operation as eliminated.

In case of control flow, when the quality estimator encoun-
ters a Phi instruction matching branch b and using a result
r from a previous basic block, it multiplies the result’s error
ERr and data statistics Dr by the previously profiled branch
probability pb, and propagates these adjusted values to the
successor. ZBr values are passed through unchanged.

We use a signal-to-noise ratio (SNR) quality metric for
all constraints Qrj in our framework. For each constrained
output j, we compute its SNR from the estimated data and
error power as Qj = Dj/ERj .
B. Latency Estimation

Timing gains from approximations can contribute not only
to reduced critical path delays, but, depending on scheduling,
also to reductions in latency, i.e. the total clock cycle length.
Both reductions can be exploited for voltage scaling and
hence energy savings under a constant performance goal.
Note that we apply uniform voltage scaling for the com-
plete hardware block, and we do not scale voltage down
to a level that causes timing violations. In general, not all
approximations lead to a latency reduction in the scheduled
design. We use mobility information from pre-processing, and
operation elimination annotations from the quality scaling

TABLE II: SUMMARY OF ERROR PROPAGATION.
Operation ERO DO ZBO

Adder ERI1 + ERI2

DI2, if DI1 = 0
DI1, if DI2 = 0
DP, otherwise

min(ZB I1,ZB I2)

Mult.

DP,
if DI1 = 0 and DI2 = 0
ERI1DI2 + ERI2DI1,

otherwise

0, if DI1 = 0 or DI2 = 0
DP, otherwise ZB I1 + ZB I2

1 cycle

reduction

No cycle

reduction

1 cycle

reduction

Case 1 Case 2

Case 3

Fig. 3. Operation elimination and cycle reduction.

pass to estimate clock cycle reductions. This will in turn help
drive the optimization solver towards solutions that eliminate
operations on the latency-critical CDFG path.

Fig. 3 shows three examples of operation eliminations.
Operations with zero mobility will not always reduce latency
by one cycle when eliminated. For the first and third cases
shown in Fig. 3, the elimination can reduce clock cycles
by the eliminated operation itself (case 1) or its successor
(case 3), both of which have zero mobility. By contrast,
even though the eliminated operation has zero mobility, the
second case does not contribute to a cycle reduction due to
another operation scheduled in the same cycle. Our latency
estimator accounts for all such cases. When there are multiple
operations eliminated, we traverse the graph in breadth-first
order to successively check the cycle reduction and update
the mobility of the remaining operations.

C. Energy Model
Energy savings can come from both reduced switching

activity and voltage. To estimate switching activity, we use an
area-proportional model in units of 1-bit full adders similar
to [5]. Estimation of voltage reductions requires accurately
capturing the relationships between (1) an approximation and
processing time T (s), and (2) processing time and voltage
V (T). We obtain T (s) = dcrit(s) × L(s) as the product
of critical path delay across all clock cycles dcrit(s) and
previously estimated latency L(s) under approximations s.
To estimate dcrit(s), we capture the relationship between
precision and delay of individual arithmetic units d(s) from
gate-level synthesis of all adders and multipliers under dif-
ferent approximation levels s. Finally, for V (T), we adopt
the approach from [6], where we run HSPICE simulations of
all standard cells under different voltage levels, and then fit
a quadratic function to model voltage V as a function of T .
We capture these relationships in an AC library.

With this, our estimated energy cost function becomes
E(s) = V 2

ref/V (T (s))2 ×
∑

j∈M SW j . Here, Vref is the
nominal voltage, SW j is the estimated switching activity
of operation j from the AC library, and M is the total
number of operations. During quality-energy optimization,
we only consider the estimated latency in computing T (s)
and E(s), and we use the critical path delay of the accurate
design obtained from pre-scheduling. In general, pre-synthesis
estimation of critical path delays under approximations is
difficult in the presence of operation elimination and chaining.
We instead consider the actual dcrit(s) during post-synthesis
slack-balancing optimizations.

AC options

s0 = {0, 1, ... , K0}

s1 = {0, 1, ... , K1}

Next RND’s AC

candidate generation

...

{s0,s1}={2,3}

{s0,s1}={0,0}

Quality

Infeasible

candidates

s0={2}

Energy

saving

s0={0}RNDs0

RNDs1

...
...

Fig. 4. Breadth-first search with early termination.

D. Optimization Solver
We introduce an efficient heuristic for solving the inher-

ently non-linear quality-energy integer optimization problem
in eq. (1). Existing general meta-heuristics, such as random
greedy searches [10] or simulated annealers [6] have funda-
mental limitations on efficiency and optimality, and do not
capture optimization-specific features.

Our heuristic solver is inspired by gate-level buffer in-
sertion algorithms [11]. Starting from the decision variable
that is associated with the first operation in the CDFG, it
traverses the graph and greedily evaluates decision variables
in a breadth-first manner and thus in order of dependencies
as required by the quality model. (Fig. 4). When all possible
solution candidates for one decision variable are examined,
it prunes out infeasible candidates that violate given quality
constraints. In addition, to further reduce the search space,
the heuristic also prunes candidates that are dominated by
other solutions, i.e. it only leaves the dominating candidates
for evaluation at the next variable. After evaluation of the
last decision variable, it selects the minimum energy solution
as the final one. Although the heuristic can fall into local
minima, our results show that it provides candidates that
are very close to Pareto-frontiers from a full search, with a
dramatically reduced search complexity.

Algorithm 1 details our optimization heuristic. The algo-
rithm takes a CDFG G, a list of decision variables DecVars
and scheduling information Φ as input. It starts by initializing
the set of feasible and dominating solution candidates Cand
with a single all-zero vector of decision variables representing
an accurate design. It then processes decision variables in
breadth-first search order. For each decision variable, the
algorithm explores all possible values combined with every
partial solution in the candidate set found so far. Each new
candidate solution is evaluated for quality and energy, and
checked for feasibility against given quality constraints. Fi-
nally, the algorithm checks whether the solution is dominated
by any existing candidate, and added to the candidate set
otherwise. After processing the last decision variable, the
minimum energy solution is selected and returned.

While the heuristic itself searches for the single best
solution, it also saves near-optimal candidates within user-
specified energy and quality thresholds from the best one.
We pass this near-optimal solution set to our final synthesis
step as post-scheduler candidates for further slack balancing.

IV. SYNTHESIS
We run final scheduling and binding passes for the best so-

lution obtained from quality-energy optimization. We use pre-
characterized d(s) from the AC library to provide rounding-
adjusted operation delays to the scheduler. Furthermore, using
the scheduler output and near-optimal candidates collected
during optimization, we apply a post-scheduling slack bal-

Algorithm 1 Quality-energy optimization
1: procedure OPTIMIZER(G,DecVars ,Φ)
2: Initialize Cand ← {(0, . . . , 0)}
3: for all i ∈ DecVars in G’s BFS order do
4: S ← Cand
5: for all s ∈ S do
6: for si,min ≤ v ≤ si,max do
7: s(i)← v
8: q← Q(G, s)
9: e← E(G, s,Φ)

10: if ∃j : qj < Qrj then
11: continue
12: Dom← false
13: for all c ∈ Cand do
14: if ∀j : qj < Qj(G, c) ∧ e > E(G, c) then
15: Dom ← true
16: if not Dom then
17: Cand ← Cand ∪ {s}

return arg minc∈Cand E(G, c,Φ)

ancing optimization to determine if there exists any other
candidate that has a smaller dcrit and corresponding lower
energy. For each candidate s, we use updated d(s) to compute
the maximum delay over all chained operation sequences
in all clock cycles, and we choose the candidate with the
minimum critical path delay as the final synthesis solution.

V. EXPERIMENTS AND RESULTS
We have implemented our tool as additional optimization

passes integrated into Legup [1], an open-source C-to-RTL
HLS tool based on LLVM [4]. LegUp uses the scheduling
algorithm in [2], which is built on a linear programming (LP)
formulation. We used 4 different applications from [6] and the
SD-VBS benchmark suite [12]: idct is a 1D inverse discrete
cosine transform, gblur is a Gaussian filter, ifft is a 64-point
fast Fourier transform, and conv2d is a 2D convolution. All
examples are modified to use integer arithmetic. Data sets are
from JPEG and the SD-VBS benchmark suite [12]. We collect
near-optimal candidates for post-synthesis optimizations to
be within 100% of the best quality and energy solution.
Experiments are performed on an 2.67GHz Intel Core i7
machine using a Synopsys 32nm technology library.
A. Energy vs. Quality Tradeoffs

We first evaluate effectiveness of our quality-energy op-
timizations. Fig. 5 presents energy for different SNR con-
straints from 13 dB to 28 dB in 3 dB steps. Energy values
are from our model and normalized against the accurate
baseline design with different optimizations enabled, and with
or without considering voltage scaling (VS) when computing
final post-optimization energy savings. Evaluated optimiza-
tion levels include precision scaling only (PS [6]), precision
scaling with operation eliminations (PS+OE, similar to [9]),
and both scaling and elimination while also optimizing for
associated processing time, i.e. clock latency and critical
path reductions (PS+OE+TR, our work). We compare results
against a full search (SCH) that feeds all feasible solutions
into the scheduler to find the one having the smallest energy
under precision and voltage scaling.

Achievable energy savings depend on the application, target
SNR, and baseline design quality. The largest overall and
average gains over the evaluated SNR range are 50% and 30%
in the idct example. Results show that the energy gains from
voltage scaling are higher than savings due to reductions in
switching activity. The average gains across all examples and
SNRs with and without VS are 31% and 10%, respectively,
giving an average of 21% extra savings from voltage scaling.

15 20 25 30

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

N
o

rm
a
li

z
e
d

 E
n

e
rg

y

2.3%

24.6%

25%

SCH

PS

PS+OE

PS+OE+TR

x

w/o VS

w/ VS

(a) idct.

15 20 25 30

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

N
o

rm
a
li

z
e
d

 E
n

e
rg

y

6.2%

w/o VS

w/ VS

(b) gblur.

15 20 25 30

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

N
o

rm
a
li

z
e
d

 E
n

e
rg

y

w/o VS

w/ VS

(c) ifft.

15 20 25 30

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

N
o

rm
a
li

z
e
d

 E
n

e
rg

y

w/o VS

w/ VS

(d) conv2d.
Fig. 5. Normalized energy vs. target SNR for different optimizations with and without voltage scaling.

15 20 25 30
0

0.2

0.4

0.6

0.8

1

SNR (dB)

N
o

rm
.

e
n

e
rg

y
 s

a
v

in
g

Switchng act.

Clock cycles

Critical path slack

(a) idct.

15 20 25 30
0

0.2

0.4

0.6

0.8

1

SNR (dB)

N
o

rm
.

e
n

e
rg

y
 s

a
v

in
g

(b) gblur.

15 20 25 30
0

0.2

0.4

0.6

0.8

1

SNR (dB)

N
o

rm
.

e
n

e
rg

y
 s

a
v

in
g

(c) ifft.

15 20 25 30
0

0.2

0.4

0.6

0.8

1

SNR (dB)

N
o

rm
.

e
n

e
rg

y
 s

a
v

in
g

(d) conv2d.
Fig. 6. Decomposition of normalized energy savings for different target SNRs under all optimizations and with voltage scaling.

Comparing different optimizations, without VS there are
little to no benefits beyond precision scaling alone. As ex-
pected, processing time reductions do not contribute to energy
savings without voltage scaling. Even aggressive operation
eliminations only provide small gains of up to 2.3% in the
gblur example at 13 dB SNR. By contrast, our proposed
optimizations are effective in maximizing energy savings
when voltage scaling is considered. Compared to approaches
that only consider precision scaling (PS) [6], operation elim-
inations contribute to up to 25% additional savings at low
SNRs in all examples. The gains come from clock cycle
reductions that have a higher impact on processing time and
thus voltage savings than bit rounding alone. Note that the
ifft has savings even at high SNRs. This is due to constant
zero twiddle coefficients that give operation elimination op-
portunities regardless of SNR. When comparing PS+OE and
PS+OE+TR, we see benefits of optimizing for latency and
critical path delay reductions. The maximum difference is
24.6% at 19 dB in the idct. Overall, we observe that energy
reductions using PS+OE+TR are almost the same as in SCH,
i.e. our approach is able to find near-optimal solutions. The
largest difference is 6.2% at 19 dB in gblur.

We further study how energy savings decompose into gains
from reduced switching activity, clock cycles, and critical path
delay with all optimizations (PS+OE+TR) and voltage scaling
(VS) enabled (Fig. 6). Energy savings are normalized against
the maximum savings at the lowest SNR level. In all cases,
the gain from switching activity reductions is gradual and
proportional to SNR requirements. Overall voltage scaling
savings depend on the application itself, but in general, at high
SNR levels gains mostly come from critical path reductions,
while at low SNRs, they are from reduced clock cycles. Lower
SNR requirements open more opportunities for operation
elimination, which can result in more aggressive clock cycle
reductions compared to bit rounding only. Bit rounding can
also reduce clock cycles, but only when previously separated
operations can now be chained into one clock cycle. However,
such chaining opportunities are limited due to factors such as
memory accesses and graph dependencies. Again, the ifft has
clock cycle reductions even at high SNRs due to the constant
zero twiddle coefficients.

From Figs. 5 and 6 we can observe the reasons for benefits
of considering the scheduling impact and optimizing for

latency and critical path reductions under voltage scaling.
For idct, gblur and ifft examples, clock cycle gains start
to appear or increase, and PS+OE and PS+OE+TR start
to differ at 16 ∼ 19 dB. In this intermediate SNR range,
there can exist multiple alternative approximation options. For
example, there can be two solution candidates with different
precision levels and two different operations out of which only
one can be eliminated. If only one of these two operations
contributes to a clock cycle reduction when eliminated and
the other candidate has overall lower switching activity, a
pure PS+OE approach will end up picking a globally non-
optimal solution. At lower SNRs, both operations will end
up being eliminated, and the difference disappears. At higher
SNRs, neither operation can be eliminated and there are no
differences between the approaches. For conv2d, differences
due to latency optimizations exist in an even wider range
from 13 dB to 25 dB. In addition, conv2d shows non-latency-
related PS+OE+TR versus PS+OE gains already at 28 dB.
These are due to benefits of our slack balancing optimizations.

B. Optimality

We further study Pareto-optimality of our heuristic solver.
Fig. 7 shows the candidates evaluated by a full search (SCH)
as compared these against the dominating Pareto set found by
our heuristic. Results show that the PS+OE+TR solutions are
very close to the true Pareto frontier. To quantify optimality,
we use the metric from [14], which averages the normalized
Euclidean distances between a solution in our set and its
closest Pareto front. The table in Fig. 7 also shows the Pareto
diversity as measured by the number of solutions in the Pareto
set. Results are shown for all examples at the 28 dB target.
Examples show no or only a small difference in distance of
less than 0.02 using the metric in [14]. For diversity, results
only differ by up to 7 fewer solutions (5.6%). Results confirm
that our dominating set is close to or, in case of idct and
conv2d, on the true Pareto front.

Final energy savings obtained from gate-level synthesis of
the accurate and approximated designs are shown in Table III.
Energy E of all designs is obtained by scaling dynamic
power numbers P reported by Synopsys DesignCompiler for
default switching activity at a nominal Vdd of 1.05V. Scaled
operating voltage V and final energy E of each approximate
design are determined using our V (T) model. Designs are

10
3

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Quality

E
n

e
rg

y
 s

a
v

in
g

Design # sol. SCH # sol. PS+VS+TR Dist. [14]
idct 28 28 0.0

gblur 57 57 0.0181

ifft 124 117 2.5e-7

conv2d 76 76 0.0

conv2d*

SCH

x idct

. ifft

+ gblur PS+OE+TR
Front

conv2d

idct

ifft

gblur

Fig. 7. Pareto-frontiers and Pareto optimality measures.

TABLE III: SYNTHESIS RESULTS.
Target SNR Design L [cyc] P [mW] V [V] E [J] SNR

idct 12 6.70 1.05 123.8 -
∞ gblur 10 5.72 1.05 51.5 -

ifft 128 10.98 1.05 14,238 -
conv2d 29 3.66 1.05 874.2 -

idct 12 6.43 1.04 118.77 (-4%) 32.7 dB
28 dB gblur 10 5.17 1.00 46.5 (-9.6%) 25.5 dB

ifft 124 10.46 0.94 10,138 (-28.8%) 30.1 dB
conv2d 29 2.20 0.97 725.65 (-17%) 33.7 dB

idct 5 0.31 0.81 5.81 (-95.3%) 16.2 dB
13 dB gblur 8 1.76 0.87 15.85 (-69.2%) 14.4 dB

ifft 92 3.03 0.83 3,926 (-72.4%) 15.2 dB
conv2d 21 0.7 0.79 230.52 (-73.6%) 13.2 dB

scaled to have the same performance as the accurate one. All
unscaled processing times are computed as the product of
latency L achieved by the Legup scheduler and the critical
path delay reported by DesignCompiler. Energy savings at
28 dB SNR range from 4% to 28.8%. At this SNR level,
energy gains are mostly from bit rounding. They are smaller
than in Fig. 5 due to bit rounding overhead not accounted
for in our estimation. Since the idct has a relatively lower
base signal power, less noise and only a smaller number
of approximated bits can be introduced for a given SNR
constraint. Using instead a more typical peak signal metric
and as compared to a floating-point reference, our fixed-point
idct has a PSNR of 48 dB at infinite SNR, and only a slightly
lower PSNR of 40 dB at 28 dB SNR.

At lower SNR = 13 dB, real savings are larger than
estimates in Fig. 5, ranging from 69.2% to 95.3%. This is
due to upper sign bits not considered in our model. Since our
model only accounts for switching activity of lower bits, gains
of eliminated operations are relatively lower than in reality.

We perform quality validation using simulations of the
approximated binaries generated by our tool. In all cases,
estimated SNRs track the true ones obtained from simulations
within a 6 dB range. SNR results for synthesized designs are
shown in Table III. Remaining errors are due to independence
and additiveness assumptions in our quality model.
C. Complexity and Runtime

Fig. 8 compares the complexity of our heuristic solver
versus SCH that only prunes out infeasible candidates. We
compare the number of candidates considered in the search as
the key measure of search complexity and optimization time.
We compare these against the size of the raw design space.
Our heuristic evaluates up to 7× fewer candidates than SCH,
and up to 252× fewer than the full design space.

idct gblur ifft conv2d
10

2

10
4

10
6

10
8

#
 o

f
c
o

n
si

d
e
re

d
 s

o
lu

ti
o

n
s

Design space

SCH

PS+OE+TR

of si Total time Total cand. Avg. time/SNR Agv. time/cand.

idct 3 14s 782 2.33s 17.9ms

gblur 5 16s 3,820 2.67s 4.2ms

ifft 4 184s 3,405 30.67s 54ms

conv2d 5 96s 8,054 15.83s 11.9ms

Fig. 8. Search complexity and runtime analysis of heuristic.

The table in Fig. 8 summarizes the runtime of our tool.
Overall, runtimes range between 14s and 184s for exploration
across all 6 SNR levels. This translates into 2.33s ∼ 30.67s
per execution of the tool for a single quality constraint, and
an average of 22ms per evaluation of one solution candidate.
By contrast, the work in [10] requires 30s for simulation- and
synthesis-based evaluation of every candidate. The work in [7]
uses an ILP formulation, which is known to be exponential
in complexity. Overall, this represents a significantly better
efficiency of our approach.

VI. SUMMARY AND CONCLUSIONS

In this paper, we propose an approximate C-to-RTL high-
level synthesis tool that jointly explores precision and voltage
scaling to maximize energy savings under a given quality
constraint. We apply a fast and accurate formulation of the
quality-energy optimization problem that combines a semi-
analytical, statistical quality model and an energy model con-
sidering savings in switching activity and scheduling impact
of voltage scaling with an efficient and effective heuristic
solver. Our tool can achieve near-optimal results with low
runtimes, demonstrating energy savings of, on average, more
than 77.6%. In the future, we plan to focus on improvements
in complexity of the heuristic solver, and consideration of
other forms of hardware/software approximations.

ACKNOWLEDGMENTS

This work is supported by an Intel grant.

REFERENCES
[1] A. Canis et al. LegUp: High-level synthesis for FPGA-based proces-

sor/accelerator systems. In FPGA, 2011.
[2] J. Cong and Z. Zhang. An efficient and versatile scheduling algorithm

Based on SDC formulation. In DAC, 2006.
[3] J. Huang et al. A methodology for energy-quality tradeoff using

imprecise hardware. In DAC, 2012.
[4] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong

program analysis & transformation. In CGO, 2004.
[5] D.-U. Lee et al. Accuracy-guaranteed bit-width optimization. IEEE

TCAD, 25(10), Oct 2006.
[6] S. Lee et al. Statistical Quality Modeling of Approximate Hardware.

In ISQED, 2016.
[7] C. Li et al. Joint precision optimization and high level synthesis for

approximate computing. In DAC, 2015.
[8] J. Miao et al. Modeling and synthesis of quality-energy optimal

approximate adders. In ICCAD, 2012.
[9] K. Nepal et al. ABACUS: A technique for automated behavioral

synthesis of approximate computing circuits. In DATE, 2014.
[10] K. Nepal et al. Automated high-level generation of low-power approx-

imate computing circuits. IEEE TETC, (99), 2016.
[11] L. P. P. P. van Ginneken. Buffer placement in distributed rc-tree

networks for minimal elmore delay. In ISCAS, 1990.
[12] S. K. Venkata et al. SD-VBS: The San Diego vision benchmark suite.

In IISWC, 2009.
[13] S. Venkataramani et al. SALSA: Systematic logic synthesis of approx-

imate circuits. In DAC, 2012.
[14] E. Zitzler et al. Performance assessment of multiobjective optimizers:

an analysis and review. IEEE TEVC, 7(2), April 2003.

