
Copyright

by

Madhavi Gopal Valluri

2005

The Dissertation Committee for Madhavi Gopal Valluri

certifies that this is the approved version of the following dissertation:

A Hybrid-Scheduling Approach for

Energy-Efficient Superscalar Processors

Committee:

Lizy John, Supervisor

Jacob A. Abraham

Margarida F. Jacome

Stephen W. Keckler

Kathryn S. McKinley

A Hybrid-Scheduling Approach for

Energy-Efficient Superscalar Processors

by

Madhavi Gopal Valluri, B.E., M.Sc(Engg), M.S.E

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

May 2005

To my family

Acknowledgments

It gives me immense pleasure to thank the many people who made this thesis

a reality for me.

This work would not have been possible without the relentless support

and encouragement offered by my thesis supervisor Prof. Lizy John. I thank

her for all the valuable insights and the constant guidance she provided during

the course of my doctoral studies. I would also like to thank members of my

dissertation committee, Prof. Jacob Abraham, Prof Margarida Jacome, Prof.

Steven Keckler and Prof. Kathryn McKinley, for taking the time and effort

to help me improve this dissertation. Prof. McKinley, with whom I have

collaborated very closely, provided invaluable assistance during the final year

of this work.

I thank all my friends within and outside UT for making my stay in

Austin thoroughly enjoyable. I especially owe a great deal to many current

and former LCA members for creating an excellent environment in the lab.

Aashish, Ajay, Byeong, Hari, Hareesh, Lloyd, Rob, Sean, Shiwen, Yue, Juan,

Tao, Ravi, Deepu, and Ramesh have all sat through countless practice talks

and provided critical technical assistance. Several people outside of LCA have

also helped me with my experimental setup. Particularly, Rodric Rabbah,

Ramdas Nagarajan, Nitya Ranganathan and Satish Pillai have provided sig-

nificant assistance with the compiler framework.

I have benefited immeasurably from my association with two amazing

people. Randy and Heather, my colleagues at UT, have also become close

friends over the years. With Randy, I have enjoyed numerous technical, non-

v

technical and even philosophical discussions over several hundred pots of tea.

I am still amazed by Heather’s incredible patience and positive attitude. She

always found ways to help me even during her busiest times. I will cherish

these friendships forever.

I am indeed fortunate to have wonderful parents and a terrific brother

who have always believed in me. They have made me what I am today. I

thank everyone in my immediate and extended family, including members of

Indupinni’s and my husband’s family, for their affection and constant encour-

agement.

Finally, I would like to thank (although a simple thanks is not nearly

enough!) my husband and best friend for his unconditional love and support.

He was the pillar of strength that helped me persevere through all the vagaries

of graduate school. I am truly grateful to him for the innumerable things he

has done for me over the past few arduous years.

Madhavi Gopal Valluri

The University of Texas at Austin

May 2005

vi

A Hybrid-Scheduling Approach for

Energy-Efficient Superscalar Processors

Publication No.

Madhavi Gopal Valluri, Ph.D.

The University of Texas at Austin, 2005

Supervisor: Lizy John

The management of power consumption while simultaneously deliv-

ering acceptable levels of performance is becoming a critical task in high-

performance, general-purpose micro-architectures. Nearly a third of the en-

ergy consumed in these processors can be attributed to the dynamic scheduling

hardware that identifies multiple instructions to issue in parallel. The energy

consumption of this complex logic structure is projected to grow dramatically

in future wide-issue processors.

This research develops a novel Hybrid-Scheduling approach that syner-

gistically combines the advantages of compile-time instruction scheduling and

dynamic scheduling to reduce energy consumption in the dynamic issue hard-

ware. This approach is predicated on the key observation that all instructions

and all basic-blocks in a program are not equal; some blocks are inherently

easy to schedule at compile-time, whereas others are not. In this scheme,

vii

programs are thus partitioned into low power “static regions” and high power

“dynamic regions”. Static regions are regions of the program for which the

compiler can generate schedules comparable to the dynamic schedules created

by the run-time hardware. These regions bypass the dynamic issue units and

execute on specially designed low-power, low-complexity hardware.

An extensive evaluation of the proposed scheme reveals that the Hybrid-

Scheduling approach wherein instructions are routed to a scheduling engine

tuned to a region’s characteristics can provide substantial reduction in pro-

cessor energy consumption while concurrently preserving high levels of perfor-

mance.

viii

Contents

Acknowledgments v

Abstract vii

List of Tables xiii

List of Figures xv

Chapter 1 Introduction 1

1.1 Why does power dissipation matter? 2

1.2 Power dissipation in superscalar processors 3

1.3 Solutions to reduce power dissipation 7

1.4 The Hybrid-Scheduling solution 8

1.5 Thesis statement . 12

1.6 Dissertation contributions . 12

1.7 Organization of the dissertation 13

Chapter 2 Impact of Compiler Optimizations on Power: A Pre-

liminary Evaluation 15

2.1 Evaluating impact of performance optimizations on power . . 16

2.1.1 Experimental setup . 18

2.1.2 Results . 19

2.2 Compiler optimizations for reducing power dissipation 26

2.3 Summary . 27

ix

Chapter 3 The Hybrid-Scheduling Approach 29

3.1 S-Regions . 29

3.2 Identifying S-Regions through quantitative analysis of region

schedule quality . 32

3.2.1 Impact of anti- and output- dependences on static sched-

ules . 33

3.2.2 Impact of unresolved alias edges 33

3.2.3 Impact of cache misses 34

3.2.4 Selecting and annotating S-Regions 35

3.3 Hardware support for S-Regions 35

3.3.1 Low reorder issue queue 37

3.3.2 Power and complexity analysis of the low reorder issue

queue . 39

3.3.3 High reorder issue queue 40

3.4 Advantages of the Hybrid-Scheduling approach 41

3.5 Summary . 42

Chapter 4 SPHINX: A Combined Compiler/Simulator Frame-

work 43

4.1 The SPHINX compiler . 43

4.1.1 Configuring Trimaran to support superscalar execution 46

4.2 The SPHINX simulator . 49

4.2.1 Power estimation in SPHINX 51

4.3 Summary . 52

Chapter 5 Experimental Evaluation of the Hybrid-Scheduling

Scheme 54

x

5.1 Benchmarks . 54

5.2 Processor configurations . 55

5.3 Distribution of LRR and HRR blocks 58

5.4 Energy consumption results 60

5.5 Performance results . 61

5.6 Improving the performance of the reorder-sensitive issue queue 62

5.7 Design space exploration of the reorder-sensitive issue queue . 65

5.8 Comparing out-of-order issue queue and reorder-sensitive issue

queue configurations . 71

5.9 Comparing a dynamic dependence-based FIFO scheme with the

Hybrid-Scheduling approach 72

5.10 Evaluation of the block selection heuristics 75

5.11 Discussion . 81

5.12 Summary . 82

Chapter 6 Hybrid-Scheduling for Media and Scientific Programs 83

6.1 Overview . 83

6.2 S-Regions in media and scientific programs 85

6.3 The Dual-Mode Hybrid-Scheduling microarchitecture 91

6.4 Experimental Setup . 98

6.4.1 Benchmarks . 98

6.4.2 Evaluation framework 98

6.5 Workload characterization . 102

6.5.1 Variability with input 106

6.6 Experimental results . 107

6.6.1 Combining the generic and the Dual-Mode Hybrid-Scheduling

microarchitectures . 109

xi

6.6.2 Hybrid-Scheduling versus in-order issue 110

6.6.3 Comparing Dual-Mode Hybrid-Scheduling with dynamic

resource adaptation schemes 111

6.7 Summary . 113

Chapter 7 Related Research 115

7.1 Compile-time techniques to reduce issue queue power 115

7.2 Run-time techniques to lower issue queue power 116

7.3 Reusing dynamic schedules . 117

7.4 Complexity-effective issue queues 117

Chapter 8 Future Work 119

8.1 Using compiler assistance to lower power dissipation in various

hardware units . 119

8.2 Hybrid-Scheduling in multi-core processors 120

8.3 “Compile for power” switch 121

Chapter 9 Conclusions 123

Bibliography 127

Vita 138

xii

List of Tables

1.1 Power dissipation trends in the Alpha processor family 2

2.1 Baseline processor configuration 18

2.2 Effects of standard optimizations in cc and gcc on power dissi-

pation and total energy consumption 21

2.3 Individual optimizations on Compress 23

2.4 Individual optimizations on li 23

2.5 Individual optimizations on saxpy 23

2.6 Individual optimizations on su2cor 23

2.7 Individual optimizations on swim 24

2.8 Individual optimizations on go 24

4.1 High-Level HMDES parameters 50

5.1 Benchmarks and inputs. 55

5.2 Baseline out-of-order issue processor configuration 56

5.3 Power distribution for different hardware structures in the base-

line processor. The power breakdowns represent the maximum

power per unit. 57

5.4 Activity-based power distribution for gzip. 57

5.5 Baseline reorder-sensitive issue queue parameters 58

5.6 Instruction overlap from different blocks 58

5.7 Static distribution of LRR and HRR blocks for threshold values

FDth = 5% and CMth = 0.1%. 59

xiii

5.8 Dynamic distribution of LRR and HRR blocks for threshold

values FDth = 5% and CMth = 0.1%. 59

5.9 Dependence distance in terms of number of basic blocks. The

first column (= 0) accounts for all dependences that occur within

the same block. 63

5.10 Cache hit rates and load dependence statistics 65

5.11 Percentage performance degradation when all instructions in

the program are dispatched to LR queue. The LR queue used

consists of four 4-wide FIFOs with 8 entries each. 81

6.1 Processor configuration . 100

6.2 Power distribution for different hardware structures in the base-

line processor. 101

6.3 Activity-based power distribution for jpeg. 101

6.4 Static mode structures . 101

6.5 S-Region characteristics in media and scientific applications . . 103

6.6 Hybrid-Scheduling approach versus in-order execution. All val-

ues are normalized with respect to out-of-order execution results.111

6.7 IPC of different program regions 112

6.8 Resource occupancy of different regions in programs 113

xiv

List of Figures

1.1 Energy breakdown in typical superscalar processors. The out-

of-order issue hardware accounts for a nearly a third of the

processor power budget. 4

1.2 Typical out-of-order issue superscalar processor. Shaded por-

tions represent logic units that facilitate dynamic issue. 6

1.3 Illustrative example. (a) Example basic block (b) Dynamic

schedule (c) Compiler schedule when the block has an unre-

solved memory dependence and (d) Compiler schedule when

there are no unresolved memory dependences. 9

1.4 High-level view of the Hybrid-Scheduling scheme 11

3.1 Block selection algorithm . 36

3.2 High-level view of the proposed Hybrid-Scheduling scheme . . 37

3.3 Low-Reorder (LR) issue queue 39

4.1 SPHINX compiler/simulator framework 44

5.1 Normalized issue queue energy consumption 61

5.2 Normalized total energy consumption 61

5.3 Normalized execution time . 62

5.4 Normalized execution time for different saturating counters . . 63

5.5 Normalized issue queue energy consumption for different satu-

rating counters . 65

xv

5.6 Normalized total energy consumption for different saturating

counter values. 66

5.7 Percentage performance degradation, issue queue energy reduc-

tion and total processor energy reduction for varying FIFO con-

figurations, averaged over all benchmarks. The issue widths ex-

amined are 2,3 and 4. The number of FIFOs vary from 2 to 8.

The number of rows per FIFO is set to 8. 67

5.8 Percentage performance degradation, issue queue energy reduc-

tion and total processor energy reduction for varying FIFO con-

figurations. The number of FIFOs vary from 2 to 8. The Issue

widths of FIFOs are 3 and 4. The number of rows per FIFO is

4, 8 or 16. 68

5.9 Percentage performance degradation of the Hybrid-Scheduling

scheme for several different FIFO configurations. Each config-

uration has the same number of total FIFO entries. Configura-

tions are represented as a combination LxMxN, where L is the

number of rows per FIFO, M is the width of the FIFO and N

is the number of FIFOs. 70

5.10 Performance results of different reorder-sensitive and conven-

tional issue queue configurations for varying queue sizes. For

the ROS schemes, queue size corresponds to the HR queue size.

Results shown are averaged over all benchmarks. 71

5.11 Issue queue energy results of different ROS and conventional

issue queue configurations for varying queue sizes. For the ROS

schemes, queue size corresponds to the HR queue size. Results

shown are averaged over all benchmarks. 72

xvi

5.12 Performance results of the baseline out-of-order issue processor,

Hybrid-Scheduling scheme and the dynamic dependence-based

FIFO scheme. For the dynamic schemes, n indicates the addi-

tional pipeline stages required by the steering logic. 76

5.13 Performance results of the baseline out-of-order issue processor,

Hybrid-Scheduling scheme and the dynamic dependence-based

FIFO scheme. For the dynamic schemes, n indicates the addi-

tional pipeline stages required by the steering logic. 77

5.14 Percentage of instructions in the LR queue and performance

degradation for different L1-L2 miss costs (averaged over all

benchmarks). Costs expressed as X1-Y1, where X1 is the effec-

tive L1 miss cost and Y1 is the L2 miss cost in cycles. CMth is

fixed at 5%. 78

5.15 Percentage of instructions in the LR queue and performance

degradation for different block selection thresholds (for bench-

mark compress). Thresholds represented as FDth-CMth. . . . 80

6.1 Algorithm for selecting loop-level S-Regions 85

6.2 The Dual-Mode Hybrid-Scheduling microarchitecture 92

6.3 Structures used in the static mode 93

6.4 Exception handling unit for static mode. N is the number of

instructions issued every cycle. 97

6.5 Framework for evaluating the Dual-Mode Hybrid-Scheduling

scheme. 99

6.6 Distribution of S-Regions in decreasing order of the program

time spent in the region. 104

6.7 Energy and Energy-Delay improvements 108

xvii

6.8 Performance degradation in the benchmarks 108

6.9 Energy improvements in different hardware structures 109

6.10 A Multi-Mode Hybrid-Scheduling scheme 110

xviii

Chapter 1

Introduction

Continuing advances in the semiconductor technology have provided tremen-

dous performance gains in general-purpose microprocessors. The remarkable

improvements are not only due to the high clock rates afforded by smaller pro-

cess technologies but also due to innovations in architectural techniques. The

ability to pack more transistors on the die has allowed today’s processors to

include large multi-level caches for alleviating memory bottlenecks. In addi-

tion, modern microprocessors employ complex techniques such as out-of-order

execution, dynamic register renaming, control speculation and data value spec-

ulation, to achieve high performance. These features extract instruction-level

parallelism (ILP) in programs to substantially reduce program execution time.

While these sophisticated architectural techniques and small feature sizes have

fueled unprecedented levels of performance improvements over the years, they

have at the same time introduced new challenges. Relative to previous genera-

tions, microprocessors today exhibit higher transistor switching activity rates

and higher leakage currents. Increased activity on the chip is causing power

dissipation to grow significantly from one generation of microprocessors to

the next, despite using advanced processor technologies with reduced supply

voltages. Table 1.1 shows the power dissipation trends of four generations of

Alpha processors [2, 26, 43]. The table shows power dissipation increasing

almost linearly with frequency, with power exceeding 100 Watts at 1 GHz in

the Alpha 21364 [43].

1

Table 1.1: Power dissipation trends in the Alpha processor family
21064 21164 21264 21364

Transistor Count (Mill) 1.68 9.3 15.2 100
Die Size (cm2) 2.33 2.99 3.14 3.5
Process Technology (um) 0.75 0.50 0.35 0.18
Power Supply Vcc (Volts) 3.3 3.3 2.2 1.5
Avg. Power Dissipation (W) 30 50 72 >100
Avg. Supply Current (Amps) 9.1 15.2 32.7 66.6
Design Frequency (MHz) 200 300 600 1000
Instruction Issue/Cycle 2 4 6 6
Execution Flow In-order In-order Out-of-Order Out-of-Order
L1I-L1D-L2 (KB) 8-8 8-8-96 64-64 64-64-1536

1.1 Why does power dissipation matter?

High power dissipation and energy consumption in the processor present sev-

eral formidable challenges.

• Power dissipated in the processor is converted into heat. Heightened

temperatures on the processor die can severely impact circuit reliability

due to increased electro-migration and hot-electron degradation effects.

Further, heat generated by the processor must be removed from the sur-

face of the die. Increased heat thus complicates cooling and packaging.

For high-performance processors, cooling costs are rising at $1-3 or more

per Watt of heat dissipated [9, 53].

• High-performance general-purpose processors are being increasingly used

in the portable devices such as laptops where battery life is at a pre-

mium. While semiconductors and devices track Moore’s law and double

in functionality every 18 months, the capacity of rechargeable batteries

increases at a rate of only 5% to 10% per year [17]. The increase in bat-

tery capacity is thus outstripped by the increasing dynamic and leakage

power in processors, leading to shorter battery lifetimes.

2

• Data centers typically collocate a large number of servers in one location.

One of the essential tasks in such a facility is to ensure that the comput-

ing equipment is cooled down effectively. Heating, ventilation and air

conditioning (HVAC) are thus critical components of all major data cen-

ters. Noted as one of the most costly operational expenses, HVAC has

been estimated to account for 40% to 60% of power use in data centers,

while servers account for only 20% [33].

• Increased power dissipation has significant impact on the environment.

The worldwide total power dissipation of processors in PCs was 160

megawatts in 1992, growing to 9000 megawatts by 2001 [43]. In the

same vein, 8% of US electicity in 1998 was attributed to the Internet

and is expected to grow to about 30% by 2020 [43].

Due to all the above detriments, power dissipation and energy consump-

tion have emerged as first-order constraints in the design of future micropro-

cessors.

1.2 Power dissipation in superscalar proces-

sors

Figure 1.1 shows the distribution of power dissipated in various hardware struc-

tures for several recent superscalar microprocessors. The figure shows that

dynamic scheduling hardware (also known as the out-of-order issue logic), ac-

counts for a significant portion of the power budget. The energy consumption

of the out-of-order issue logic accounts for nearly one-third of the overall en-

ergy in existing processors [11] [22] [26] and is projected to grow substantially

in future processors [68][69].

3

Pentium Pro

Fetch
22%

Rest
15%

Dcache
11%

FPU
8%

IALU
14%

OOO Issue
31%

Alpha 21264

MMMU
11%

Rest
15%

Caches
21%

FPU
14%

IALU
14%

OOO Issue
25%

Alpha 21464 Exec
22%

Mem
26%

Fetch
6%

OOO Issue
46%

Figure 1.1: Energy breakdown in typical superscalar processors. The out-
of-order issue hardware accounts for a nearly a third of the processor power
budget.

The dynamic issue hardware is useful for extracting ILP in applications.

In the presence of complex and unpredictable control-flow in programs, even

the best compilers frequently fail to expose sufficient ILP in the program. The

dynamic scheduler analyzes a sequential stream of instructions and identifies

independent instructions to issue in parallel. The hardware scheduler has

run-time knowledge regarding program input data and control flow and can

thus handle dependences that are unknown to the compiler. Consequently,

schedules generated by the out-of-order issue logic are in general superior to

compiler-generated schedules.

The logic that facilitates dynamic issue consists of several elaborate

4

hardware structures such as the issue queue, reorder buffer, load-store queue

and register renaming units (shown in Figure 1.2).

The issue queue (also known as the issue window) is used for holding

decoded instructions while they await their operand values. In each cycle,

a few instructions whose dependences have been satisfied are selected from

this queue and issued to the function units. Since state-of-the-art superscalar

processors issue multiple instructions each cycle, issue queues are typically

fully associative buffers with multiple entries and multiple ports. The issue

queue also consists of wakeup and select logic blocks. These logic units are not

only acknowledged to be large power sinks [69], but have also been identified

as key structures limiting the operating frequency of the processor [46].

The wakeup logic is responsible for waking up instructions waiting for

their operands to become available. In each cycle, completing instructions

typically broadcast the identities of their destination registers (called tags) to

all waiting instructions in the issue queue. Each instruction entry in the issue

queue compares these results with the source operands of the instruction to

determine its readiness to issue. The wakeup logic thus requires a large number

of ports and complex circuitry to compare operands values. Increasing the

number of ports on queue structures not only leads to considerable degradation

of access latencies but also increases energy consumption substantially [8, 52].

The select logic is responsible for choosing instructions to execute from

a pool of ready instructions. The complexity and power dissipation of this

logic grows linearly with the size of the issue queue.

In superscalar machines with out-of-order issue logic instructions can be

issued in an order other than the original program order and hence require a

mechanism to the maintain the precise program state. Most processors utilize

a reorder buffer (ROB) for this task. The ROB typically stores instruction

5

Cache
Instr Instr

Buffer Rename
Decode

File
FP Reg

FP Issue

Queue

Queue

FP

Units
Functional

Units
Functional

Cache
Data M

em
or

y
In

te
rf

ac
e

Int/ld Issue INT/LD

Reorder Buffer

INT Reg
File

Figure 1.2: Typical out-of-order issue superscalar processor. Shaded portions
represent logic units that facilitate dynamic issue.

identities such as the instruction PC (program counter) and operand tags. In

some architectures, the speculative values of registers (i.e., values of registers

for instructions still in the imprecise state) are held in the ROB as well [70].

While instructions issue and even complete in any order, they commit their

changes to the register file only in their correct program order. Much like the

issue queue, the ROB is also a highly associative queue with multiple entries

and multiple ports. Separate ports are required for (a) establishing the ROB

entries, (b) reading out part of an ROB entry when the valid data value for

the most recent entry for an architectural register is read out and (c) reading

out all of a ROB entry at the time of committing an instruction.

In several architectures, rather than storing the speculative values in the

reorder-buffer, the values are stored in a separate physical register file [26, 29].

This register file also requires multiple ports, at least two read and one write

port per instruction issued each cycle.

Modern superscalar processors also provide run-time memory disam-

6

biguation to enable out-of-order issue of load and store instructions. The out-

of-order issue logic therefore also includes an associative Load-Store Queue

(LSQ) to maintain load/store dependences.

Thus, the out-of-order issue logic consists of several multi-ported and

associative complex hardware structures that are accessed multiple times each

cycle. These power-hungry structures cause the out-of-order issue logic to

be a chief energy sinks in modern superscalar processors. Furthermore, the

power consumption of this hardware is projected to grow quadratically with

increasing issue widths and window sizes in future processors [69].

1.3 Solutions to reduce power dissipation

In the past, high power dissipation in superscalar processors was addressed pri-

marily at the circuit-level. Clock gating, power supply reduction, smaller pro-

cess technology, low swing buses and state-of-the-art packaging are all exam-

ples of techniques that are traditionally applied to alleviate the power/energy

bottlenecks [26]. However, conventional circuit-level techniques have reached

their limits as the demand for processors with higher clock speeds and denser

transistor counts continues to raise. Recently, power optimizations at the ar-

chitecture and software-level (i.e., compiler, operating system, and application)

have begun to receive increasing attention.

A host of architectural-level solutions that target different units have

been suggested. These techniques range from alternate complexity-effective

hardware structures [1, 69] to techniques that lower energy consumption by

dynamically reconfiguring hardware resources in the processor based on run-

time program requirements [14, 22, 25, 30, 47].

Compilers for desktop and server systems are traditionally not exposed

7

to the energy details of the processor. These compilers are tuned primarily

for performance and occasionally for code size. However, with the heightening

power dissipation problem, it has become to imperative to engage all compo-

nents of the system to aid in reducing processor power and complexity. With

a few exceptions, power-aware compiling for out-of-order issue processors is a

largely unexplored area of research [31, 61, 63, 64, 65],

There are several key benefits that a compile-time approach can offer.

Static techniques can often be applied orthogonally to hardware techniques,

making it possible to simplify the logic beyond what is achievable with hard-

ware techniques alone [63, 64, 65]. Additionally, the compiler has accurate

information regarding the region to be executed in the near future and hence

allows energy saving optimizations to be applied at finer granularities when

compared to run-time hardware techniques [31, 61, 63, 64, 65].

1.4 The Hybrid-Scheduling solution

This dissertation presents a Hybrid-Scheduling scheme that uses both compiler

analysis and micro-architectural innovation to lower energy consumption in su-

perscalar processors. This cooperative hardware/software technique attempts

to harness the work done by the compile-time instruction scheduler to reduce

energy consumption in the power-hungry out-of-order logic units of superscalar

processors.

The instruction scheduling phase in the compiler reorders and packages

instructions into groups of parallel instructions. The function of the static

scheduler is identical to that of the dynamic hardware scheduler. Generally,

static schedules are of an inferior quality when compared to dynamic sched-

ules since the compile-time scheduler is limited by unknown memory latencies,

8

Cycle 2 Instr (2)

Cycle 3 Instr (3)

Cycle 4 Instr (4)

Cycle 5

Cycle 6 Instr (5)

Cycle 1 Instr (1)

Assumed operation latencies
LD/ST − 2 cyclesALU − 1 cycles,

.
5. add R4, R9, R10

3. stq R1, 0(R15)

2. sub R5, R2, R1

1. add R1, R1, R5

4. ldq R9, 8(R24)

(a) Example Basic Block

(b) Dynamic Schedule

Cycle 1 Instr (1) Instr (4)

Cycle 2 Instr (2)

Cycle 3 Instr (3) Instr (5)

Case 2: R15 & R24 are starting addresses
of two arrays a & b; no aliasing problem

Case 1: R15 & R24 depend on input

data; Potential address aliasing;
cannot be resolved statically

Cycle 1 Instr (1) Instr (4)

Cycle 2 Instr (2)

Cycle 3 Instr (3) Instr (5)

(d) Compiler Schedule (Case 2)

(c) Compiler Schedule (Case 1)

Figure 1.3: Illustrative example. (a) Example basic block (b) Dynamic sched-
ule (c) Compiler schedule when the block has an unresolved memory depen-
dence and (d) Compiler schedule when there are no unresolved memory de-
pendences.

unknown control flow, limited architectural registers and unresolved memory

aliases. However, close examination of several media, scientific and general-

purpose programs, reveals that although portions of programs suffer from the

above impediments, a significant number of program basic blocks are free of

memory misses, false-dependences and unresolved alias edges [63][65]. Con-

sequently, the static schedules of these blocks are near-optimal, and are not

very different from their corresponding dynamic schedules. A simple example

is shown in Figure 1.3.

Consider the case where the compiler is unable to resolve the addresses

of two potentially independent load and store operations statically (case 1).

The instruction scheduler adds a data-dependence edge between these opera-

tions and forces them to execute sequentially. The dynamic scheduling issue

logic however has run-time knowledge and the ability to dynamically disam-

biguate the addresses and can schedule the load operation ahead of the store

9

if they are independent. For this case, the compiler-generated schedule (Fig-

ure 1.3(c)) is significantly worse than the schedule achieved by the dynamic

issue logic (Figure 1.3(b)). On the other hand, consider the case wherein

the compiler is able to resolve the addresses statically (case 2), there is no

difference between the compiler-generated schedule (Figure 1.3(d)) and the

dynamic schedule. Thus, in blocks where the compiler has perfect knowledge,

instructions do not require dynamic reordering and can potentially issue in

their statically-scheduled order.

In the Hybrid-Scheduling paradigm, programs are thus divided into

low power “static regions”, called S-Regions and high power “dynamic re-

gions”. The compiler, with the help of profile-guided hints, estimates the

reorder requirements of each region and classifies basic-blocks/regions that

can be scheduled in an efficient manner statically as S-Regions. S-Regions

bypass the dynamic issue hardware in the processor and execute on specially

designed low-power, low-complexity hardware. A high-level view of the pro-

posed scheme is shown in Figure 1.4. The Hybrid-Scheduling architecture thus

saves energy consumption while preserving high levels of performance by using

aggressive and power-hungry scheduling hardware for application regions that

warrant it, while facilitating low energy execution for structured regions that

do not need such hardware.

This dissertation presents two variations of the Hybrid-Scheduling ar-

chitecture. The generic Hybrid-Scheduling scheme caters to a diverse set of

applications and exploits static schedules at a basic-block level to reduce en-

ergy consumption and complexity of the issue queue. The proposed Hybrid-

Scheduling micro-architecture uses a novel issue queue structure that provides

two separate issue queues for static and dynamic blocks. The Dual-Mode

Hybrid-Scheduling architecture, on the other hand, provides two separate is-

10

Function

Low
File

Units

Phys.

Decode/RenameFetch Data Cache

Queue

Queue

Register

Order
Out−of

Power

Regions
Dynamic

Static
Regions

Figure 1.4: High-level view of the Hybrid-Scheduling scheme

sue modes. This scheme is particularly suitable for regular applications such

as media and scientific, where, the execution time is typically dominated by

regular loops. For well-understood structures such as loops, the compiler can

exploit and enhance parallelism with the help of aggressive optimizations such

as loop unrolling, software pipelining and trace scheduling. The Dual-Mode

Hybrid-Scheduling scheme exploits compile-time schedules at these larger,

loop-level granularities to reduce energy consumption in several microarchi-

tectural components in out-of-order issue hardware including the issue queue,

reorder buffer, rename logic, branch predictor and the instruction cache. With

nominal increase in design complexity and chip area, the generic and Dual-

Mode Hybrid-Scheduling micro-architectures can also potentially be combined

for larger overall energy savings. Such a trade-off can be particularly useful in

general-purpose desktop systems which cater to diverse application domains

such as integer, media and scientific.

11

1.5 Thesis statement

By combining the advantages of both compile-time static scheduling and run-

time dynamic scheduling, energy consumption in out-of-order issue superscalar

processors can be significantly reduced while simultaneously delivering accept-

able levels of performance.

1.6 Dissertation contributions

This dissertation makes several key contributions:

• An in-depth evaluation of the effectiveness of several state-of-the-art

compile-time optimizations in reducing power is presented. This study

provides insight into how typical performance optimizations impact power

dissipation in superscalar processors. Further, an analysis of several ex-

isting power-aware compiler optimizations in the context of out-of-order

issue processors is provided along with a discussion on the limitations of

current techniques and areas for improvement.

• The Hybrid-Scheduling technique is based on the observation that not

all instructions in a program require the same amount of dynamic re-

ordering. The necessary compiler heuristics for evaluating the quality of

static schedules are developed.

• A Hybrid-Scheduling micro-architecture is proposed and evaluated. The

proposed Hybrid-Scheduling scheme utilizes a unique Reorder-Sensitive

issue queue structure to exploit the varying dynamic scheduling require-

ment of basic blocks and lowers power dissipation and complexity of the

dynamic issue hardware.

12

• A variation of the Hybrid-Scheduling scheme that is particularly suit-

able for regular applications such as media and scientific applications is

presented. These applications typically contain large contiguous regions

that can be classified as S-Regions. Considering S-Regions at larger

granularities offers opportunities to simplify the hardware requirements

dramatically. A complete description and evaluation of the compiler

heuristics and micro-architectural details are provided.

• A combined compiler/simulator framework called SPHINX is developed

for evaluating the proposed scheme. SPHINX integrates a detailed out-

of-issue processor simulator that is largely based on Simplescalar’s sim-

outorder simulator with the Trimaran 2.0 [72] compiler framework. The

tool also incorporates power models derived from Wattch [11] in the

simulator to estimate power. The SPHINX framework thus provides a

unified platform for exploring a range of software and hardware tech-

niques for low power.

1.7 Organization of the dissertation

This dissertation is organized as follows:

Chapter 2 provides a detailed evaluation of the effectiveness of several

several state-of-the-art compile-time optimizations in reducing processor power

dissipation. This study identifies potential limitations and areas of improve-

ment in existing optimizations.

Chapter 3 presents an an overview of the proposed Hybrid-Scheduling

scheme. The chapter first describes the basic qualities of an S-Region and de-

velops the compiler heuristics to quantitatively identify S-Regions. S-Regions

13

require inherently less complex resources. The hardware requirements of S-

Regions are discussed next. Finally, some of the unique advantages of the

Hybrid-Scheduling approach are summarized.

Chapter 4 describes the SPHINX compiler/simulator framework in de-

tail. Chapter 5 provides an evaluation of the Hybrid-Scheduling scheme using

the SPHINX framework. Power dissipation and performance results of the

scheme along with a an evaluation of the compiler heuristics are presented.

Media and scientific applications are important applications in the desk-

top and server computing markets respectively. The execution time of these

applications is dominated by a few regular loops. Chapter 6 presents a Dual-

Mode Hybrid-Scheduling scheme in the context of regular applications. A

detailed evaluation of the proposed micro-architecture and the compiler heuris-

tics is also provided.

Chapter 7 briefly reviews previous contributions in areas related to the

Hybrid-Scheduling scheme. Chapter 8 provides some directions for future re-

search and finally, Chapter 9 presents the main conclusions of this dissertation.

14

Chapter 2

Impact of Compiler

Optimizations on Power: A

Preliminary Evaluation

This chapter provides a detailed evaluation of the effectiveness of several exist-

ing compile-time optimizations in reducing processor power dissipation. The

objectives of this study are to identify potential limitations and areas of im-

provement in current optimizations. The first section of the chapter examines

the impact of standard performance optimizations on processor power. Cur-

rent compiler optimizations are tuned primarily for performance; they are

not exposed to the energy details of the underlying processor. However, an

interesting question is - if programs are compiled for performance, are they

automatically compiled for low power? Further, there have been several com-

piler optimizations proposed for reducing power dissipation in VLIW (Very

Long Instruction Word) and in-order issue processors. The second part of

the chapter examines several of these optimizations for their applicability to

modern out-of-order issue superscalar processors.

A key observation from this study is that optimizations that typically

enhance parallelism in programs increase power dissipation despite an improve-

ment in performance [62]. Further, the study also reveals that optimizations

such as common-subexpression elimination and dead-code elimination, that

15

improve program performance by reducing the total number of instructions

executed lower the total energy consumption as well [62].

2.1 Evaluating impact of performance optimiza-

tions on power

Many compilers today contain fairly advanced performance optimizations that

are fully exposed to different features of the target machine such as available

function units, issue width of the processor, available memory ports, etc. How-

ever, compilers are not provided with appropriate power dissipation models for

different hardware structures, and hence, programs are typically not compiled

for low power. Nevertheless, it is interesting to examine the impact of perfor-

mance optimizations on processor power. This section presents a quantitative

study of several state-of-the-art optimizations in DEC Alpha’s cc and gcc com-

pilers on power dissipation in superscalar processors. Standard optimization

levels in these compilers along with several individual optimizations are eval-

uated. A brief description of the optimizations is presented first.

Standard optimization levels

-O0 No optimizations performed. Only variables declared register are allo-

cated in registers.

-O1 Many local optimizations and global optimizations are performed.

These include recognition and elimination of common subexpressions, copy

propagation, induction variable elimination, code motion, test replacement,

split lifetime analysis, and some minimal code scheduling.

-O2 This level performs inline expansion of static procedures. Additional

16

global optimizations that improve speed (at the cost of extra code size), such

as integer multiplication and division expansion (using shifts), loop unrolling,

and code replication to eliminate branches are also performed. Loop unrolling

is not performed in gcc at this level.

-O3 Includes all -O2 optimizations and also performs inline expansion of

global procedures performed.

-O4 Software pipelining, an aggressive instruction scheduling technique used

for exploiting instruction-level parallelism (ILP) in loops is performed. Vec-

torization of some loops on 8-bit and 16-bit data is also done. This level also

invokes a scheduling pass which inserts NOP instructions to improve schedul-

ing. This optimization level is supported only in the cc compiler.

The standard optimization levels in both the cc and gcc compilers in-

clude very similar optimizations. Additionally, in both compilers, the opti-

mizations that increase the ILP in a program are in levels -O2 and higher.

Individual optimizations

The individual optimizations examined are basic-block scheduling, loop un-

rolling, function inlining, and aggressive global scheduling in the gcc compiler.

All the individual optimizations are applied in addition to optimizations per-

formed at -O1.

-fschedule-insns This optimization performs basic-block list-scheduling. It

is run after local register allocation.

-fschedule-insns2 This option invokes aggressive global scheduling before

and after global register allocation. Postpass scheduling (when scheduling is

done after register allocation) minimizes the pipeline stalls due to the spill

instructions introduced by register allocation.

17

Table 2.1: Baseline processor configuration

Feature Attributes
Issue Units 32 entry Register Update Unit

16 entry Load Store Queue
Fetch/Decode/Issue/Commit width - 4

Cache 32KB 4-way L1 Dcache (1-cycle hit), 32KB DM L1
Hierarchy Icache (1-cycle hit), 512KB 4-way L2 (20-cycle hit)
Memory 40 cycles memory latency
Branch Pred. 2K combinational predictor
Function 4 integer ALUs, 4 FP ALUs Units, 2 integer multiply
units units, 2 FP multiply units, 2 load/store units

-finline-functions Integrates all simple functions into their callers. The

compiler heuristically decides which functions are simple enough to be worth

integrating in this way.

-funroll-loops Perform the optimization of loop unrolling for loops whose

number of iterations can be determined at compile time or run time.

2.1.1 Experimental setup

This section quantitatively examines the performance optimizations on a typ-

ical out-of-order issue processor and isolates the optimizations that are par-

ticularly beneficial for mitigating processor power and energy consumption in

contemporaneous superscalar processors.

The processor configuration used for this study is provided in Table 2.1

and the experiments are conducted within the Wattch 1.0 simulator frame-

work [11]. Wattch is an architectural simulator that estimates CPU energy

consumption. The power/energy estimates are based on a suite of parame-

terizable power models for various hardware structures in the processor and

on the resource usage counts. The power models are interfaced with Sim-

18

pleScalar [13]. Sim-outorder, SimpleScalar’s out-of-order issue simulator has

been modified to keep track of which unit is being accessed in each cycle and

record the total energy consumed for an application. The power models for

the technology parameters of .35um process, 600MHz and 5V. With these pa-

rameters, the processor dissipates a maximum power of 78 Watts. Unused

units dissipate 10% of their maximum power. This corresponds to the static

power dissipated when there is no activity in unit. More details on the Wattch

simulator can be found in Chapter 4 of this dissertation and also in the Wattch

technical paper [11]. The different compiler optimizations are evaluated for six

benchmarks. The benchmarks used are: three SpecInt95 benchmarks, namely

compress, go and li, two SpecFp95 benchmarks su2cor and swim, and saxpy,

a toy benchmark.

2.1.2 Results

The following subsections present a detailed analysis of the results obtained.

First the influence of standard optimizations on energy and power is discussed,

following which the effects of individual optimizations on power are outlined.

Influence of standard optimizations on energy

Table 2.2 shows the results obtained when the benchmarks are compiled with

different standard optimizations levels. The results of all optimizations are

presented relative to the results of optimization level -O0. For example, the

percentage of instructions executed by a benchmark optimized with option

-O2 is given by:

% of Insts Executed by ProgO2 =
of Insts Executed by ProgO2

of Insts Executed by ProgO0

∗ 100

19

Table 2.2 shows that the number of instructions committed drops dras-

tically from optimization -O0 to -O1, and also drops significantly in codes

optimized with -O2 and -O3. There is however a very marginal increase in the

number of instructions in compress. In codes optimized with the -O4 option,

the number of instructions increases due to the extra NOPs code generated

for scheduling.

The reduction in number of instructions directly influences execution

time. The performance improvement is significant in -O1 when compared to

-O0, sometimes as high as 73% (swim). Options -O2, -O3 also lead to signifi-

cant improvement over -O1. For example, an 8% improvement can be seen in

li with -O2 optimization. In some benchmarks like saxpy the improvement is

only about 0.6%. Optimizations -02, -O3 improve performance in compress

even though the number of instructions increases.

The energy consumed by a program is directly proportional to the num-

ber of instructions. In all benchmarks, the energy consumption decreases when

the total number of instructions executed decreases. Note that although -02,

-O3 improve performance in compress, the energy consumed is higher. This

is primarily because of the higher number of instructions executed at these

optimization levels, i.e., the amount of “work done” is higher. Hence, if pro-

grams are required to be compiled for reducing energy consumption without

sacrificing performance, optimizations such as common sub-expression elimi-

nation, induction variable elimination and unrolling that reduce the number

of instructions executed should be applied.

20

Table 2.2: Effects of standard optimizations in cc and gcc on power dissipation
and total energy consumption

Benchmark opt level Energy Exec Time Insts Avg Power IPC
O0 100.00 100.00 100.00 100.00 100.00
O1 74.48 81.55 81.52 91.33 99.96

compress O2 75.13 81.44 82.04 92.25 100.73
O3 75.13 81.44 82.04 92.25 100.73
O4 79.01 82.77 86.11 95.45 104.03
O0 100.00 100.00 100.00 100.00 100.00
O1 66.20 64.13 68.94 103.23 107.50

go O2 62.62 61.31 63.01 102.14 102.78
O3 62.62 61.31 63.01 102.14 102.78
O4 63.67 62.19 63.75 102.38 102.51
O0 100.00 100.00 100.00 100.00 100.00
O1 81.32 83.66 83.18 97.20 99.42

li O2 79.60 75.97 82.97 104.78 109.21
O3 79.60 75.97 82.97 104.78 109.21
O4 85.71 77.89 90.96 110.05 116.78
O0 100.00 100.00 100.00 100.00 100.00
O1 97.38 100.24 92.49 97.15 92.27

saxpy O2 97.69 99.38 92.49 98.30 93.07
O3 97.69 99.38 92.49 98.30 93.07
O4 98.31 99.27 92.84 99.02 93.51
O0 100.00 100.00 100.00 100.00 100.00
O1 42.09 51.04 33.21 82.46 65.06

su2cor O2 40.99 47.52 33.10 86.28 69.67
O3 40.99 46.37 33.10 87.65 71.38
O0 100.00 100.00 100.00 100.00 100.00
O1 30.10 36.64 20.01 82.15 54.63

swim O2 28.93 34.01 19.05 85.06 56.01
O3 28.93 34.01 19.05 85.06 56.01

Influence of standard optimizations on power

Table 2.2 shows that although the number of instructions and the number of

execution cycles for a program reduces at higher optimization levels, the num-

21

ber of instructions do not reduce sufficiently to keep the instructions per cycle

(IPC) constant. IPC of programs typically increases at optimization levels -O2

and higher. The primary reason is that most optimizations that increase IPC

such as instruction scheduling and loop unrolling are included at these levels.

Power dissipated is the amount of work done in one cycle which is directly

proportional to the IPC. Hence, optimizations that increase IPC, directly in-

crease the power dissipated. Instruction scheduling and other -O2, -O3 opti-

mizations are suitable for performance improvement but are not suitable for

systems where power dissipation is a concern. These are some optimizations

that can be significantly improved exposing the power consumption details of

the underlying processing units. Note, IPC in -O0 is high because of the poor

quality of code produced. Unoptimized codes usually feature a large number of

independent (although superfluous) instructions. These instructions increase

the IPC of the program without accomplishing useful work. Another inter-

esting observation from Table 2.2 is that since optimizations such as common

subexpression elimination improve code by reducing instructions rather than

increasing available parallelism, IPC does not increase in -O1 codes.

Influence of individual optimizations on energy and power

Tables 2.3 to 2.8 show the results for experiments on different individual opti-

mizations and their impact on processor power/energy. The results are shown

for each benchmark separately. The tables show the performance, power, and

energy for each of the optimizations relative to performance, power, and energy

of code with -O0. Since the optimizations are applied over the -O1 option, all

results are compared to results of the programs with optimization level. The

effects of the instruction scheduling are discussed first.

22

Table 2.3: Individual optimizations on Compress

opt level Energy Exec Time Insts Power IPC
O0 100.0 100.0 100.0 100.0 100.0
O1 67.66 74.68 60.46 90.60 80.95

inline-func 67.69 74.68 60.46 90.63 80.95
sched-instr2 68.82 74.94 63.21 91.82 84.35
sched-instr 66.66 73.47 59.83 90.72 81.43
unroll-loops 66.84 74.19 59.90 90.09 80.74

Table 2.4: Individual optimizations on li

opt level Energy Exec Time Insts Power IPC
O0 100.00 100.00 100.00 100.00 100.00
O1 70.91 74.67 66.18 94.96 88.63

inline-func 71.02 73.14 68.00 97.11 92.97
sched-instr2 69.56 66.65 68.33 104.36 102.52
sched-instr 69.56 66.65 68.33 104.36 102.52
unroll-loops 66.05 59.91 68.19 110.24 113.81

Table 2.5: Individual optimizations on saxpy

opt level Energy Exec Time Insts Power IPC
O0 100.00 100.00 100.00 100.00 100.00
O1 96.78 98.56 96.21 98.19 97.61

inline-func 96.78 98.56 96.21 98.19 97.61
sched-instr2 97.07 97.14 96.27 99.93 99.11
sched-instr 96.79 98.52 96.15 98.24 97.60
unroll-loops 96.87 98.72 95.97 98.13 97.21

Table 2.6: Individual optimizations on su2cor

opt level Energy Exec Time Insts Power IPC
O0 100.00 100.00 100.00 100.00 100.00
O1 42.09 51.04 33.21 82.47 65.07

inline-func 42.06 51.01 33.21 82.46 65.11
sched-instr2 42.49 50.36 34.02 84.38 67.55
sched-instr 40.90 47.79 33.30 85.58 69.67
unroll-loops 40.17 48.35 31.17 83.08 64.46

23

Table 2.7: Individual optimizations on swim

opt level Energy Exec Time Insts Power IPC
O0 100.00 100.00 100.00 100.00 100.00
O1 30.06 36.64 20.02 82.02 54.64

inline-func 30.06 36.64 20.02 82.02 54.64
sched-instr2 30.91 36.39 20.53 84.92 56.41
sched-instr 29.83 35.11 20.32 84.95 57.86
unroll-loops 29.29 35.38 18.19 82.80 51.43

Table 2.8: Individual optimizations on go

opt level Energy Exec Time Insts Power IPC
O0 100.00 100.00 100.00 100.00 100.00
O1 40.97 42.75 42.65 95.83 99.77

inline-func 40.92 42.78 42.58 95.64 99.54
sched-instr2 43.07 44.01 45.25 97.87 102.82
sched-instr 43.52 44.89 46.52 96.96 103.63
unroll-loops 39.38 41.95 39.30 93.88 93.69

The -fschedule-instr optimization does simple basic block list-scheduling

and -fschedule-instr2 does aggressive global scheduling. Both options are ex-

pected to increase the IPC and hence the power. It can be seen that IPC goes

up in most benchmarks, in some benchmarks up to 4.6% (in su2cor). Corre-

spondingly, the power dissipation also increases considerably, in some bench-

marks by as much as 10%. The aggressive scheduler (in option -fschedule-

instr2) increases register pressure. Increased register pressure introduces a

significant number of spill instructions, thereby increasing the total number of

instructions executed and correspondingly the total energy consumed. The in-

crease in number of instructions and energy consumption are up to 3.52% and

2.14% respectively. Thus, aggressive instruction scheduling not only increases

processor power but also has a significant impact on total energy consumption.

This optimization requires significant improvements before it can be used in

systems where power dissipation and energy consumption are a concern.

24

Loop unrolling is a good optimization for reducing energy consumption

because the number of instructions reduce significantly. However, reducing the

energy does not necessarily reduce instantaneous power. For instance, in li, the

power goes up by 10%. Unrolling increases the size of the basic block, allowing

the compiler to increase the overlap of instructions. This leads to an increase

in the number of simultaneous operations being executed; note that the IPC

in li increases dramatically by 25%. However, this observation is not consis-

tent among all the benchmarks, in many benchmarks, there is no increase in

IPC. This is because the target architecture has a good branch predictor and

automatically performs unrolling in hardware for all programs, hence dilut-

ing the impact of specific software unrolling optimizations. Function inlining

reduces the number of instructions and hence the total energy consumption.

However, in the benchmarks studied, only go shows a very marginal decrease

in the number of instructions and energy consumption.

This simple study on the state-of-the-art performance optimizations

makes two key observations. The first is that energy consumption reduces

when the optimizations reduce the number of instructions executed by the

program, i.e., when the amount of work done is less. Optimizations such

as common subexpression elimination, reduce the energy consumed while im-

proving performance. Any new optimization technique can be effective in

reducing energy only if unnecessary work can be eliminated. Additionally, an-

other key observation made is that power dissipation is directly proportional

to the average IPC or performance of the program. Optimizations such as

instruction scheduling, which increase parallelism in the code, increase power

dissipation. Hence, instruction scheduling algorithms need to be modified to

be make them power-aware. In the following subsection, several compiler op-

timizations specifically designed for lowering power are examined.

25

2.2 Compiler optimizations for reducing power

dissipation

There have been several instruction scheduling techniques suggested for reduc-

ing power dissipation in the processor core. Tiwari et al. [59] suggest enhanc-

ing the instruction selection module of code generators in the compiler. At

compile-time, code generators accept an intermediate representation (in the

form of a directed acyclic graph) of each basic block in the source code. Using

pattern matching and dynamic programming, the compiler tries to find a cover

for the directed acyclic graphs in terms of the specified instruction patterns in

such a way that the overall cost is minimized. The cost function used in most

compilers in the number of execution cycles, but Tiwari et al. modify it to

include energy costs to obtain a code generator that targets energy consump-

tion. Su et al. [56] proposed cold scheduling, wherein, instructions are assigned

priority based on some pre-determined power cost and use a generic list sched-

uler to schedule the instructions. The power cost of scheduling an instruction

depends on the instruction it is being scheduled after. This corresponds to

the switching activity on the control path. Toburen et al. [60] propose an-

other power-aware scheduler which schedules as many instructions as possible

in a given cycle until the energy threshold of that cycle is reached. Once that

precomputed threshold is reached, scheduling proceeds to the next time-step

or cycle. The main disadvantage of these instruction scheduling techniques is

that they are designed primarily for VLIW or in-order issue processors. These

techniques are not applicable in modern out-of-order issue processors since in-

structions can be issued in any order. The ordering performed by the compiler

is likely to be changed by the run-time hardware.

26

Significant work has been done in reducing energy consumption in the

memory. Most techniques achieve a reduction in energy through innovative

architectural techniques and compiler involvement [28, 55]. and [28]. In [28],

the authors suggest the use of an L-cache. An L-cache is a small cache which

is placed between the I-cache and CPU. The L-cache is very small (holds a few

basic blocks), hence consumes less energy. The compiler selects appropriate

basic blocks to place in the L-cache. These techniques reduce thus power dis-

sipation in programs while delivering high levels of performance by matching

hardware configurations and program regions. Another approach to reduce

memory energy is Gray code addressing [55]. This form of addressing reduces

the bit switching activity in the instruction address path. Bunda et al. [12]

and Asanovic [4] investigated the effect of energy-aware instruction sets. These

techniques would involve the compiler even earlier in the code generation pro-

cess. The work by Bunda et al [12] concentrates on reducing memory energy,

and Asanovic [4] investigates new instructions to reduce energy in the mem-

ory, register files and pipeline stages. These new instruction sets expose the

compilers directly to the energy details of the processor and can help gener-

ate energy-efficient code at the outset of the compiling process. However, due

to legacy code issues, introducing new instructions is not a widely accepted

solution in the desktop and server processor markets.

2.3 Summary

The key observations from the study on the state-of-the-art performance opti-

mizations are that while these optimizations are capable of delivering tremen-

dous improvements in program performance, many of these optimizations are

not always appropriate in systems where the design goals include reducing

27

power dissipation and energy consumption. Specifically, optimizations that

typically enhance parallelism in programs (such as instruction scheduling and

loop unrolling), notably increase power dissipation even though the total exe-

cution time of programs is reduced. Further, although there have been power-

aware instruction schedulers suggested for VLIW and in-order issue processors,

there have no techniques specifically suggested for out-of-order issue proces-

sors. Another observation made by this study is that optimizations such as

common subexpression elimination, an optimization used to eliminate redun-

dant computations in the program and reduce the energy consumed while

concurrently improving performance.

The Hybrid-Scheduling approach uses these lessons to effectively reduce

power in the out-of-order issue units of the processor. The scheme reuses the

compiler-generated schedules in applicable regions and eliminates an inherent

redundancy in the system and significantly reduces energy consumption in the

processor. Further, by using low power issue hardware, the Hybrid-Scheduling

technique reduces power without sacrificing performance. This technique is

particularly applicable in out-of-order issue processors where many of the pre-

viously proposed power-aware compiler optimizations have been ineffective.

28

Chapter 3

The Hybrid-Scheduling

Approach

This chapter provides a detailed description of the Hybrid-Scheduling scheme

proposed in this dissertation. Hybrid-Scheduling synergetically combines the

strengths of both compile-time instruction scheduling and dynamic scheduling

to alleviate processor power and hardware complexity without significantly

sacrificing performance. In the Hybrid-Scheduling paradigm, regions of code

that can be scheduled well statically, issue and execute in the order prescribed

by the compiler with minimal hardware support. In this scheme, programs

are thus divided into low power “static regions”, called S-Regions and high

power “dynamic regions”. This chapter first describes the basic qualities of

an S-Region and develops the compiler analysis to quantitatively identify S-

Regions. S-Regions require inherently less complex resources. The hardware

requirements of S-Regions are discussed next. Finally, several unique advan-

tages of the scheme are summarized.

3.1 S-Regions

An S-Region could be a basic block or a larger code region such as a loop,

hyperblock [39], superblock [40] or subroutine.

There are several important criteria that must be satisfied before the

29

compiler can select a given program region as a candidate S-Region [63, 65].

• The region should exhibit ILP (instruction level parallelism)

that is visible and exploitable at compile-time

S-Regions bypass the dynamic scheduling logic, hence it is critical that

the compiler generates schedules comparable to the schedules generated

by the out-of-order issue logic for these parts of the code. The com-

piler typically makes conservative optimization decisions when there it

has insufficient information regarding program control and data-flow.

For example, hard-to-predict branches limit optimizations such as hy-

perblock, superblock formation, creating shorter basic blocks and thus

leaving fewer opportunities to exploit parallelism. Code sequences with-

out hard-to-predict branches thus make suitable S-Region candidates.

Compilers are restricted in the amount of inter-procedural analysis and

optimizations that can be performed. Regions without function/system

calls are also examples of good S-Region candidates.

• Regions with few false register dependences are desirable.

The number of registers exposed to the compile-time register allocator

is limited by the number of bits available in the instruction format for

operand encoding. Most architectures use 32 general-purpose registers.

Due to the limited number of available registers, the register allocator

often has to assign the same register to independent instructions. This

reuse of registers could result in anti- and output- dependences, which

in turn limit the instruction scheduler’s reordering opportunities.

Dynamically scheduled processors do not suffer from this limitation since

they are able to employ dynamic register renaming to remap architec-

30

tural registers to hardware physical registers. With register renaming,

each instruction entering the pipeline is assigned a new physical register.

The number of hardware physical registers in a processor is considerably

higher than the number of architectural registers exposed to the static

scheduler (more than twice). Elimination of false-dependences allows the

out-of-order issue scheduler greater flexibility in selecting instructions for

issue each cycle. Regions that have no or few false dependences are good

S-Region candidates, since the quality schedule of the compiler schedule

for such regions is comparable to that of the schedule created by the

run-time hardware.

• Regions with few memory aliases are desirable.

The compiler must make conservative decisions when there are unre-

solved memory addresses in the code. When the compiler can not re-

solve the addresses of two memory operations, it adds a dependence edge

between the operations and forces them to execute sequentially. Since

out-of-order issue processors typically employ run-time memory disam-

biguation, a given static schedule may perform poorly compared to its

equivalent dynamic schedule if the compiler respects dependences that

actually do not occur during execution. Memory aliases limit the avail-

able ILP at compile-time and thus regions with a large number of aliases

are not suitable S-Region candidates.

• Regions should have few memory misses.

Due to the absence of dynamic scheduling in static mode, it is difficult

to hide cache miss latencies by instruction overlap. Regions with no

memory misses or regions with regular access patterns that are amenable

31

to techniques such as prefetching are thus suitable candidates for static

mode issue.

• Regions should contribute significantly to the execution time.

The Hybrid-Scheduling scheme introduces a few additional hardware

structures to the conventional superscalar processor to support low-

power issue of S-Regions. This overhead of additional hardware, the

potential performance loss due to use of simpler hardware, and the com-

pilation time overhead are not justified if the program spends an insignif-

icant amount of the program execution time in S-Regions. In such cases,

the energy reduction will not be sizable and further, the overheads of

the scheme might in fact degrade performance and/or power dissipation

significantly.

3.2 Identifying S-Regions through quantitative

analysis of region schedule quality

The role of the compiler in the Hybrid-Scheduling scheme is to identify basic-

blocks with inherently low dynamic reorder requirements. As noted in the

previous section, for a given basic-block (i.e, a sequence of data-dependent

instructions with no control-flow dependence between them), there are three

primary impediments to achieving good schedules at compile-time: (a) false-

dependences (b) unresolved memory aliases and (c) non-uniform load latencies.

Instructions within such blocks will require dynamic reordering to hide pipeline

stalls. This section describes in detail how the compiler, with the help of

profile-time statistics, evaluates the impact of the above constraints on the

schedule quality of a block.

32

3.2.1 Impact of anti- and output- dependences on static

schedules

A critical path in a basic-block is defined as the path wherein instructions

exhibit zero scheduling freedom or slack. Critical paths in the block are com-

puted by considering only true data dependences. The longest critical path in

a basic-block represents the minimum schedule that can be achieved by the

compiler. The degradation of the schedule quality due to anti- and output-

dependences can be estimated by comparing the length of this path to the

actual schedule achieved by the static instruction scheduler. If the anti- and

output- dependence edges impact the schedule, the schedule length of the

block (Sched len) will be larger than the maximum critical path (CPmax).

Such a block will clearly require dynamic reordering support. The degrada-

tion in schedule quality caused by anti- and output- dependences (SDfd) can

be estimated as:

SDfd =
Sched len − CPmax

CPmax

∗ 100 (3.1)

Note, Equation 3.1 conservatively assumes that with a sufficiently large

physical register file, the dynamic issue logic can remove all the false depen-

dences.

3.2.2 Impact of unresolved alias edges

The impact of aliases on the static schedule is estimated by profiling all load

and store dependences in a basic-block. All the memory dependences within

a block that occur during program execution are profiled and for every pair

33

of memory operations that are dependent each time they occur during ex-

ecution (always occurs), the memory dependence edge is converted to a true

data-dependence edge during the computation of the critical path. The critical

path then reflects this true memory dependence. Consequently, Equation 3.1

estimates the potential schedule degradation due to both false data depen-

dences and false memory dependences.

3.2.3 Impact of cache misses

Load misses usually pose a serious performance bottleneck to in-order issue

of instructions since it is not possible to hide the empty cycles with other

independent instructions. Even if the load miss is known at compile-time, it

is difficult for the static scheduler to find sufficient additional instructions in

a single basic block to fill all issue slots, particularly since modern superscalar

processors have very wide issue and large cache miss latencies. The impact of

cache misses (SDcm) on a given basic-block schedule is estimated using profile

data on the average number of L1 misses (L1misses) and L2 misses (L2misses)

per block. The estimated performance degradation is given by:

SDcm =
L1misses ∗ L1effective cost + L2misses ∗ L2effective cost

CPmax

∗ 100 (3.2)

The effective costs in Equation 3.2 represent the fraction of the cache

miss latency that the out-of-order issue logic can hide. The effective cost is

different from the actual latency of a cache miss (usually lower). It is a complex

function of miss latencies, issue queue size, issue width and available ILP in

the program. Larger issue queues can potentially hide a larger fraction of the

miss stalls. The effective costs are identified empirically in this work.

34

3.2.4 Selecting and annotating S-Regions

After the estimated schedule degradation due to false dependences (SDfd) and

cache misses (SDcm) are computed, a block can be selected as a static block if

both SDfd and SDcm are less than certain threshold values, FDth and CMth

respectively. These threshold values are the tuning handles for the block se-

lection heuristics and represent the acceptable performance degradation levels

tolerated by the user.

There are several means to convey the block reordering requirement

to the underlying microarchitecture. Most processors have a few unused in-

structions that can be used as marker instructions. For example, the Alpha

processor has unused floating point load operations that can be used as marker

instructions. Additionally, it is also possible to directly encode the annota-

tions into the unused bits of each instruction, which is particularly feasible

in processors that use 64-bit instructions. This will completely eliminate the

need for special marker instructions. This work assumes that the compiler an-

notations are conveyed to the hardware using marker instructions. Figure 3.1

shows a summary of the block selection heuristics.

3.3 Hardware support for S-Regions

The previous section showed how the compiler can identify blocks that require

less dynamic scheduling. This section presents a novel issue queue design that

exploits the varying requirement of basic blocks to significantly alleviate the

complexity and power of the issue logic.

Instructions belonging to static regions, i.e., blocks for which the com-

piler can perform near-optimal scheduling can potentially be issued in their

35

record L1 miss rate, L2 miss rate;

for each basic block {

record pairs of dependent memory operations;
}

for each basic block {

for each ’always_occurs’ memory edge {

}

Compute CP_max;

Compute SD_cm;

Select block as static block;
else

if (SD_fd < FD_th && SD_cm < CM_th)

Select block as dynamic block;

Profile Collection Phase

Profile Analysis Phase

Compute SD_fd;

Annotate block with marker instruction;
}

convert to true dependence edge;

Figure 3.1: Block selection algorithm

statically scheduled order. However, in today’s wide-issue processors, it is not

sufficient if the instructions within basic blocks are scheduled perfectly. In-

structions from different blocks must be overlapped to fill the available issue

slots. Thus, instructions in a program require two forms of reordering namely

intra-block reordering and inter-block overlap. Static regions do not require

intra-block instruction reordering but require inter-block overlap to limit per-

formance loss. Blocks where the compiler is limited by artificial dependences

and memory misses will require both intra-block and inter-block reordering.

Based on the inherent reordering requirement, static regions or blocks can also

be called Low Reorder Required (LRR) blocks. All blocks requiring both intra-

36

Function

Low

High

File
Units

Phys.

Decode/RenameFetch Data Cache

Queue

Queue

Blocks
LRR

HRR
Blocks

Register

Reorder

Reorder

Figure 3.2: High-level view of the proposed Hybrid-Scheduling scheme

and inter-block reordering, i.e., blocks corresponding to dynamic regions are

called High Reorder Required (HRR) blocks.

In the Hybrid-Scheduling scheme, there are two separate issue queues

for LRR and HRR blocks. Blocks are directed to different queues based on

their reordering requirement, i.e., the issue logic is now Reorder-Sensitive [65].

Since HRR blocks require considerable reordering, conventional dynamic issue

logic which is typically fully associative is most appropriate for these blocks.

LRR blocks however use a novel low complexity, low power FIFO based that

provides only inter-block overlap. The different issue queues for LRR and HRR

blocks are called the Low Reorder (LR) issue queue and the High Reorder (HR)

issue queue respectively. In each cycle, instructions are selected from either

the out-of-order issue queue or the heads of the FIFOs for execution. The total

number of instructions issued in each cycle is limited to the issue width of the

processor. Figure 3.2 presents a high-level view of this proposed scheme.

3.3.1 Low reorder issue queue

The LR queue as shown in Figure 3.3, consists of several FIFO buffers, with

each buffer as wide as the average ILP available in a basic block. At run-time,

each new LRR block is directed to one of these buffers. Instructions can be

37

written only into the tail pointer of each buffer and can only be read from the

head of the queue. In each cycle, instructions from the heads of the FIFOs

can be selected for execution. Since there are multiple queues, instructions

from different LRR blocks can be overlapped (Figure 3.3). Instructions in

each basic block are therefore issued in their statically-scheduled order but

are overlapped with instructions from successive basic blocks. For each LRR

block, a FIFO is selected in a round-robin fashion. Each new block is directed

to a different FIFO. The number of FIFOs can be chosen at design time based

on the extent of overlap seen during execution for the target workloads. For

example, experiments on an 8-way conventional out-of-order issue processor

with a 128-entry issue queue, revealed that in nearly 70% of execution cycles,

instructions are issued from at most three consecutive basic blocks. Three

FIFO buffers will be able to thus capture a significant portion of the required

inter-block overlap between LR blocks.

The LR queue is conceptually similar to the region-slip-enabled issue

buffer proposed by Spadini et al. [54]. Their proposed mechanism uses a FIFO-

based issue buffer that allows a block’s schedule to ‘slip’ into the schedule of a

previous block. However, the disadvantage of the region-slip buffer is that it is

a monolithic structure requiring a large number of entries and ports, making

the power consumption of the buffer excessively high. Further, similar to other

data-prescheduling based issue queues [1, 15, 20, 41, 42, 46, 48, 37], the region-

slip buffer requires additional pipeline stages to identify a suitable buffer entry

for each instruction. In contrast, the proposed LR queue is designed to be low-

complexity and low-power.

Another approach to achieving inter-block overlap is to employ com-

piler optimizations such as trace scheduling [21], hyperblock scheduling [39]

or superblock scheduling [40]. However, as shown by Spadini et al. [54], the

38

1 2 3 4

5

To Function Units

6 7 8 9

10 11
tail

head

FIFO1 FIFO2 FIFOnblock 1

block 2

Basic blocks in program

1 2 3 4
5

6 7 8 9
10 11

Figure 3.3: Low-Reorder (LR) issue queue

cycle-time degradation due to block boundaries remains unacceptably high de-

spite aggressive optimizations. Hence, a hardware hardware approach is more

suitable.

3.3.2 Power and complexity analysis of the low reorder

issue queue

The power consumption of the LR buffers is significantly low. Each FIFO re-

quires a small number of ports (typically 2) since instructions are written only

into the head pointer location and read from the tail pointer. The complexity

of the LR queue is also inherently low since it is FIFO based. There are no

complex CAM structures or global signals for instruction wake-up. Instruc-

tions at the heads of the FIFOs check a small table to see if their operands

are ready [46]. Alternatively, in compacting-style queues, only the head entry

of the issue queue can have CAMs to compare operand tags [58, 68].

A majority of the previously proposed techniques reduce complexity of

the issue queue by limiting the number of candidate instructions to be consid-

39

ered for issue [1, 15, 20, 41, 42, 46, 48, 37]. These techniques typically consist

of a pre-scheduling phase wherein the data-dependences of instructions are an-

alyzed. Instructions are typically held in a separate buffer and are considered

for issue in their approximate data-flow order [1, 15, 20, 41, 42, 48, 37]. In

some cases, after the pre-scheduling phase, instructions are steered to different

low-complexity FIFOs based on their dependences with older instructions in

the queues [1, 46, 48]. While these techniques indeed alleviate the complexity

of the issue logic, they often require extra hardware and/or the addition of

a few pipeline stages. In the Hybrid-Scheduling scheme, since the necessary

analysis is performed statically, there are no extraneous hardware structures

or pipeline stages required for steering instructions to different queues.

3.3.3 High reorder issue queue

The HR queue in the reorder-sensitive issue queue caters to instructions that

require considerable dynamic reordering and hence is fully associative similar

to the conventional out-of-order issue queue. However, note that in the block

selection heuristics, blocks with a large number of cache misses are automati-

cally deemed as HRR blocks. Consequently, the available ILP in these blocks

is limited. The HR buffer can thus be small and have a less aggressive issue

width. Since the wakeup logic has a quadratic dependence on issue width, the

effective complexity of the HR queue is greatly reduced.

Thus, by identifying inherent requirements of different basic-blocks in a

program, the reorder-sensitive issue logic can use smaller and simpler hardware

structures for energy-efficient processing of instructions. The following section

summarizes several advantages of the Hybrid-Scheduling scheme.

40

3.4 Advantages of the Hybrid-Scheduling ap-

proach

The Hybrid-Scheduling scheme offers several key benefits.

• Removes inherent redundancy in the system

In processors with dynamic scheduling logic, the hardware searches for

parallel instructions, irrespective of whether the compiler-generated sched-

ule is perfect or not. The Hybrid-Scheduling architecture uses aggressive

and power-hungry scheduling hardware for program regions that warrant

it, while facilitating low energy, low complexity execution for structured,

regular regions that do not require such hardware.

• Allows us to apply hardware power saving techniques orthogonally

Another favorable aspect of the proposed scheme is that during the ex-

tremely low ILP phases of the program, several previously proposed dy-

namic resizing schemes [5, 22, 47, 30, 16, 61, 31] can be applied or-

thogonally to the HR queue (associative queue) for larger overall energy

savings in the processor. Further, Chapter 6 shows how the Hybrid-

Scheduling scheme can be particularly effective in regions where the re-

cently proposed dynamic microprocessor resource adaptation schemes,

such as: [14][22][25][30][47], have been less effective.

• Does not require a significant change in the ISA

The Hybrid-Scheduling scheme does not require a significant change in

the instruction set architecture (ISA) of the underlying processor. At the

most, one new instruction will need to be introduced (marker instruction)

to convey the block classification to the hardware.

41

• Highly suitable for clustering

Hybrid-Scheduling is naturally amenable to clustering. Since basic blocks

are a logical sequence of dependent instructions, the maximum number

of data dependences are expected to occur between instructions within

a basic block. Thus, the LR queue and the HR queue can be separated

into different clusters without significantly impacting performance.

• LR and HR queues can be optimized separately.

An important advantage of the split-issue scheme proposed is that the

two queues can be optimized separately. For example, each cluster can be

clocked at different frequencies. The LR queue is extremely simple and

can clock faster than a large monolithic associative queue. An additional

benefit is that LRR blocks contain fewer cache misses. Hence, the relative

increase in memory latency due to increased processor clock frequency

will not adversely affect the performance.

3.5 Summary

This chapter presented the complete compiler-level and micro-architectural

details of the Hybrid-Scheduling scheme. Subsequent chapters present

a detailed evaluation of this technique and show that it can lead to

substantial improvement in processor energy consumption with only a

minimal loss in performance.

42

Chapter 4

SPHINX: A Combined

Compiler/Simulator Framework

This dissertation develops a unique framework called SPHINX to evaluate

the proposed Hybrid-Scheduling scheme. SPHINX integrates a detailed out-of-

issue processor simulator that is largely based on Simplescalar’s sim-outorder

simulator with the Trimaran 2.0 [72] compiler framework. The SPHINX sim-

ulator incorporates power models derived from Wattch [11] to estimate power

dissipation in the processor. The SPHINX framework thus provides a unified

platform for exploring a range of software and hardware techniques for low

power.

4.1 The SPHINX compiler

An overview of the SPHINX tool is shown in Figure 4.1. SPHINX has been

developed within the Trimaran framework. Trimaran is a compiler infrastruc-

ture for supporting state-of-the-art research in compiling for Instruction Level

Parallel (ILP) architectures. Trimaran is oriented towards EPIC (Explicitly

Parallel Instruction Computing) architectures, and supports compiler research

in what are typically considered to be “back end” techniques such as instruc-

tion scheduling, register allocation, and machine-dependent optimizations.

43

IMPACT

ELCOR

OOO simulator

Simulator Results

Profile Analyzer

HPL−PD Machine

Description

Parameters
Compiler

Power Models

Simulator
Parameters

+

EMULIB

Modified Trimaran Modules

Our Additions

to CodegenProfile Stats

CODEGEN

C Program

Existing Trimaran Modules

Figure 4.1: SPHINX compiler/simulator framework

The Trimaran compiler infrastructure comprises of the following com-

ponents:

• A machine description facility, mdes, for describing ILP architectures.

• A parameterized ILP architecture called HPL-PD.

• A machine description language called HMDES that allows the user to

develop a machine description for the HPL-PD processor in a high-level

language.

• A compiler front-end (IMPACT) for C that performs parsing, type check-

ing, and a large suite of high-level (i.e. machine independent) classical

and instruction-level parallelism optimizations.

• A compiler back-end (ELCOR) that performs instruction scheduling,

register allocation, and machine-dependent optimizations.

44

• An extensible intermediate program representation (IR) which has both

an internal and textual representation, with conversion routines between

the two. The textual language is called “Rebel”. This IR supports mod-

ern compiler techniques by representing control flow, data and control

dependence, and many other attributes.

• An integrated Graphical User Interface (GUI) for configuring and run-

ning the Trimaran system. The GUI includes tools for the graphical

visualization of the program intermediate representation and of the per-

formance results.

The Trimaran infrastructure is typically used for designing, implement-

ing, and testing new compilation modules to be incorporated into the EL-

COR back end. These new modules may augment or replace existing ELCOR

modules. Although there are several compiler infrastructures available to the

research community, Trimaran is especially useful for the following reasons:

• It is especially geared for ILP research.

• It provides a rich compilation framework. The parameterized ILP ar-

chitecture (HPL-PD) space allows the user to experiment with machines

that vary considerably in the types of functional units and register files

modeled.

• The modular nature of the compiler back end and the single intermedi-

ate program representation used throughout the compiler back-end (EL-

COR) makes the construction and insertion of new compilation modules

into the compiler especially easy.

• The framework is already populated with a large number of existing

compilation modules, providing leverage for new compiler research and

45

supporting meaningful experimentation. Some of the important opti-

mization modules include loop unrolling, hyperblock formation [39], su-

perblock formation [40] and predication [3].

4.1.1 Configuring Trimaran to support superscalar ex-

ecution

The HPL-PD machine description mainly supports EPIC (Explicitly Parallel

Instruction Computing) style instruction execution. An example of a pro-

cessor family which employs this design philosophy is the Itanium family of

processors [71]. In EPIC, the compiler decides and explicitly indicates to the

hardware which instructions will be executed together. Individual instructions

are arranged in ‘bundles’ or ‘packets’ by the compiler. All the instructions in

a bundle are guaranteed to be independent and can be issued to the function

units in parallel. A bundle is typically called a MultiOP instruction in the

HPL-PD machine description.

HPL-PD supports two forms MultiOP instructions, namely: MultiOP-P

and MultiOP-S. The MultiOP-P semantics requires that the correct execution

is guaranteed only if all the operations in the instruction are issued simultane-

ously. The compiler can schedule code with the assurance that all operations

in one instruction will be issued simultaneously. For instance, the compiler can

schedule two mutually anti-dependent copy operations, which together imple-

ment an exchange copy, in the same instruction. Without this assurance, the

exchange copy would have had to be implemented as three copy operations

that require two cycles. Thus, the MultiOP-P semantics permits admissible

dependences between operations (i.e., anti- and output- dependences) to be

bi-directional across the instruction.

46

MultiOP-P semantics pose a problem with respect executing instruc-

tions sequentially and also inhibit compatibility across a family of machines

with differing amount of functional units. When code that was generated for

a machine with a certain width (i.e., number of functional units) has to be

executed by a narrower machine, the narrow processor must necessarily issue

the MultiOP instructions semi-sequentially one portion at a time. Unless care

is taken, this could potentially violate MultiOP-P semantics and lead to in-

correct results. For example, if the aforementioned copy operations are issued

at different times, the intended exchange copy is not performed.

The other variation, called MultiOP-S semantics, simplifies sequential

execution by excluding bi-directional dependences across a MultiOP instruc-

tion. MultiOP-S instructions can still be issued in parallel, but they can also

be issued sequentially from left to right. The compiler ensures that admissible

dependences between operations in a MultiOP-S instructions occur only from

left to right. The MultiOP-S instruction style which will effectively generate a

sequential stream of instructions is used for supporting a superscalar machine

in the SPHINX framework.

Further, the HPL-PD machine description language (HMDES) can be

used to define a contemporary superscalar processor. In Trimaran, a multitude

of machine description aspects can varied including the register file type and

size, number and type of function units, operation latencies etc. For example,

Table 4.1 shows how some of the important high-level HMDES parameters can

be used to define a typical 8-issue superscalar processor.

As seen in Table 4.1, the HPL-PD machine supports different register

file types including conventional types such as the general-purpose and floating

point. Additionally, HPL-PD allows four other types of register files:

47

• Predicate Registers: Predicated or guarded execution refers to the

conditional execution of operations based on a boolean-valued source

operand, called a predicate. Predicated execution is an efficient method

typically used in VLIW and EPIC architectures to handle conditional

branches present in a program. Many superscalar architectures also al-

low some form conditional execution. For example, the conditional move

instructions facilitate conditional execution in the Alpha family of pro-

cessors. HPL-PD provides support for predicated execution with a pred-

icate register file (single-bit entries), several forms of predicate defining

instructions and predicated versions of all instructions. The SPHINX

simulator provides the micro-architectural support required for predi-

cated execution.

• Rotating Registers: The HPL-PD architecture supports both static

and rotating registers. Most register files are partitioned into static and

rotating portions with differing numbers of registers. The static registers

are conventional registers; the rotating registers logically shift in register

address space every time the rotating register base (RRB) is decremented

by certain loop-closing branches. Rotating registers are typically used

for efficient implementation of software pipelining in the processor. The

SPHINX simulator currently does not support rotating registers.

• Branch Target Registers: In the HPL-PD architecture, branches

are performed in multiple steps. Special prepare-to-branch (PBR) in-

structions that hold the target address of a branch in one of the branch

target registers usually precede a branch instruction. These instructions

can potentially be used to provide hints regarding branch prediction

to the target architecture. BTR registers are accessed only by PBR

48

instructions. The BTR file contains only replicates of values that are

already held in the general-purpose register (GPR) file; it does not ex-

tend the GPR file in any way. Further, branch hints are not supported

in SPHINX.

• Control Registers: Control registers provide a uniform scheme to

access internal state within the processor. Some of the control registers

are the PC (instruction counter), PSW (Processor Status Word) and

RRB (Register Relocate Base for rotating registers). A complete list

can be found in the HPL PD technical report [32].

Table 4.1 shows how the Trimaran HMDES parameters can be used to

define a superscalar processor. The Trimaran modules use these parameters

for implementing machine-specific optimizations.

There are certain HPL-PD features that are not currently supported in

the SPHINX simulator. They include branch hints, rotating registers, mem-

ory transfer instructions and data speculative instructions (LDV and SDV

instructions).

4.2 The SPHINX simulator

The code generator module CodeGen in SPHINX (Figure 4.1) converts the

program from its intermediate program representation into instructions that

can be executed on a virtual HPL-PD machine. The emulation library Emulib

of Trimaran contains an interpreter and a set of emulation routines for the

HPL-PD virtual machine. The interpreter generates a sequential trace of in-

structions that feed into a detailed out-of-order issue simulator. The out-of-

order simulator (OOO Simulator) in SPHINX is a heavily modified version

49

Table 4.1: High-Level HMDES parameters

Feature Attributes
Integer GPRs 32

Floating Point GPRs 32
Predicate Registers 32

Branch Target Registers 16
Rotating Registers None
Control Registers None

Issue Width 8
Function Units 6 IALU, 1-cycle latency

2 FPALU, 3-cycle latency
4 IMULT, 2-cycle latency
1 FPMULT, 10-cycle latency
2 LD/ST, 2-cycle latency

of Simplescalar’s sim-outorder simulator. The important differences between

sim-outorder and the SPHINX implementation are as follows:

1. Sim-outorder uses a combined issue queue and reorder buffer organiza-

tion called Register Update Unit (RUU) for tracking instructions through

the pipeline. The RUU is replaced with a separate issue queue and

physical register file as found in contemporary architectures such as the

Pentium 4 processor [29].

2. BTR, predicate and control register files are included in the architecture.

3. Support for squashing predicated instructions in the issue stage if their

predicate operand is false, has been added. Additionally, for predicated

code executing on a dynamically scheduled machine, it is possible to have

multiple instructions guarded by different predicate registers writing into

one architectural register [67]. In the simulator, it is assumed that such

conflicts are perfectly resolved.

50

The SPHINX simulator further incorporates the branch predictor and

cache modules used in sim-outorder. These modules can be used to define a

variety of complex, multi-level branch predictors and cache hierarchies.

4.2.1 Power estimation in SPHINX

The power/energy estimates in the simulator are based on the suite of pa-

rameterizable power models in Wattch 1.0 [11]. In CMOS microprocessors,

dynamic power consumption (Pd) is the main source of power consumption,

and it is defined as: Pd = CVdd
2af , where, C is the load capacitance, Vdd is

the supply voltage and f is the clock frequency. The activity factor a, is a

fraction between 0 and 1 indicating how often clocks lead to switching activity

on average. Wattch power models are estimates of the capacitance values of

different micro-architectural units based on the circuit style and the transistor

sizings. Vdd and f depend on the assumed process technology. The power mod-

els are provided for the .35um process technology. Models for different process

technologies can be obtained by using appropriate scaling factors provided in

Wattch. Power models for different microarchitectural units are constructed

using one or more of the following parameterizable models: RAM-based array

structures, CAM-based array structures, complex logic blocks and clock. For

example, the issue queue structure is constructed using RAM models for hold-

ing the data and CAM models for tags. More details on these models can be

found in the Wattch technical paper [11]. The activity factor is set based on

the circuit-style. For circuits that pre-charge and discharge on every cycle (i.e.,

double-ended array bitlines) an a of 1 is used. The activity factors for certain

critical subcircuits (i.e., single-ended array bitlines) are measured from the

benchmark programs using the architectural simulator. For complex circuits,

51

where it is difficult to measure activity factors with a high-level simulator, a

base activity factor of 0.5 is assumed.

Wattch also supports three different options for clock gating to disable

unused resources in the processor. Ideal clock gating assumes that the max-

imum power will be dissipated if any access occur in a given cycle, and zero

otherwise. The second possibility assumes that if only a portion of a unit’s

port are accessed, the power is scaled linearly according to the number of ports

being used. In the third clock gating scheme, power is scaled linearly with port

or unit usage, but unused units dissipate 10% of their maximum power. In

this dissertation, power and energy results corresponding to the third scheme

are always chosen since it is the most realistic of all schemes [11]. The Wattch

power models interface with the cycle-accurate simulator through resource us-

age counts. The simulator keeps track of the units accessed in each cycle to

estimate the total energy consumed.

The SPHINX simulator retains all the statistics generated by sim-outorder

and Wattch and further adds several statistics relevant to the Hybrid-Scheduling

scheme. SPHINX also consists of a profile analysis phase (Profile Analyzer)

which examines the profile statistics collected and analyzes the data. For ex-

ample, in the Hybrid-Scheduling scheme, the profile analyzer estimates the

degree of reordering required by each basic-block in the program. This infor-

mation is provided to the CodeGen module, which in turn annotates blocks

with appropriate marker instructions.

4.3 Summary

This chapter described the SPHINX evaluation tool in detail. SPHINX inte-

grates a compiler, micro-architectural simulator and power models into a single

52

platform enabling future research in a variety of areas including software, hard-

ware and cooperative hardware/software techniques for both performance and

power.

53

Chapter 5

Experimental Evaluation of the

Hybrid-Scheduling Scheme

This chapter presents an evaluation of the Hybrid-Scheduling scheme using the

SPHINX framework. The chapter first describes the benchmarks and baseline

processor configurations. The Hybrid-Scheduling scheme can potentially lead

to sizable energy savings in the processor core without significantly sacrificing

performance. Power dissipation and performance results of the scheme along

with a detailed evaluation of the compiler heuristics for selecting program

regions with dynamic scheduling requirements are also provided.

5.1 Benchmarks

General-purpose integer programs are less amenable to compile-time opti-

mizations due to the presence of hard-to-predict branches, pointer-intensive

memory accesses and extensive use of function and library calls. The Hybrid-

Scheduling scheme is thus evaluated for several integer benchmarks from the

SPEC CPU benchmark suite [73]. Table 5.1 shows the benchmarks and the

input sets used. All SPEC integer benchmarks that compiled and ran suc-

cessfully on Trimaran were chosen. The MinneSPEC reduced input set [35]

was used where applicable. The MinneSPEC workload is derived from the

standard SPEC CPU 2000 workload and allows computer architects to ob-

54

Table 5.1: Benchmarks and inputs.

Benchmark Profile Input Set Inputs for Perf.
Evaluation

compress 10000 q 2131 220000 q 2131
gzip mgred.random (train) lgred.random (ref)
li SPEC test SPEC train
mcf mgred.in (train) lgred.in (ref)
parser 2.1.dict mgred.in (train) 2.1.dict lgred.in (ref)
vortex SPEC test SPEC ref
vpr place mgred.net (train) place lgred.net (ref)

tain simulation results in a reasonable time using existing simulators. For the

benchmarks studied, the MinneSPEC profiles closely match the SPEC ref-

erence dataset program behavior. MinneSPEC inputs are not available for

the spec95 benchmarks and for vortex, the little-endian version of the input

set was not provided. The input data used by the compile-time analyzer to

classify blocks is different from the input set used to evaluate the proposed

technique, i.e., true profiling is used. For all benchmarks, a maximum of one

billion instructions are simulated.

5.2 Processor configurations

The configuration of the baseline processor is given in Table 5.2. The out-of-

order issue processor considered consists of an 8-wide, 128 entry issue queue.

Power models corresponding to the 0.18µ process at a 2V supply voltage and

1GHz operating frequency are employed in the simulator. Unused units dissi-

pate 10% of their maximum power [9].

Power distribution in different hardware structures in the baseline pro-

cessor are shown in Tables 5.2 and 5.3. The power breakdowns in Table 5.2

55

Table 5.2: Baseline out-of-order issue processor configuration

Feature Attributes
Issue Units IQ - 128 entries

LSQ - 64 entries
Physical registers - 128
Fetch/Decode/Issue/Commit width - 8

Cache 32KB 4-way L1 Dcache (2-cycle hit)
Hierarchy 32KB DM L1 Icache (1-cycle hit)

512KB 4-way L2 (20-cycle hit)
Memory 150 cycles memory latency
Branch Pred. 4K Gshare 15 cycles misprediction latency
Function 6 integer ALUs, 2 FP ALUs , 4 integer multiply
units units, 1 FP multiply units, 2 load/store units

represent the maximum power per unit. The maximum processor power for

the baseline configuration is 83W. The issue queue dissipates a peak power

of 18W, approximately 23% of the total power (this includes the power dis-

sipated in the clock nodes of the queue). Table 5.3 shows the average power

distribution among different structures based on the activity factors for the

benchmark gzip. Activity-based power dissipation also shows that the issue

queue expends a significantly large part of the total processor energy budget.

The issue queue accounts for nearly a quarter (24.7%) of the total energy

consumed on the processor [11] [22] [26].

The baseline Hybrid-Scheduling configuration has three 4-wide, 8-entry

FIFO-based LR buffers and an HR queue (see Table 5.5). The width of each

FIFO is restricted to four entries since in most blocks, the average ILP was

not higher than 4. The number of FIFOs was determined by measuring the

degree of overlap in the SPEC integer benchmarks. Table 5.6 shows the maxi-

mum distance between instructions issued in one cycle in terms of the number

of basic blocks. The results reveal that in nearly 70% of execution cycles,

56

Table 5.3: Power distribution for different hardware structures in the baseline
processor. The power breakdowns represent the maximum power per unit.

Unit Power Unit Power

BPred 3.40% LSQ 2.64%
IQ 16.5% Rename 0.80%

Reg. File 11.1% Res. Bus 6.2%
Func. Units 10.8% ICache 3.03%

DCache 6.5% Clock 35.1%
L2 Cache 3.6% Total 100%

Table 5.4: Activity-based power distribution for gzip.

Unit Power Unit Power

BPred 4.62% LSQ 2.0%
IQ 18.2% Rename 0.9%

Reg. File 13.5% Res. Bus 6.3%
Func. Units 5.9% ICache 4.8%

DCache 7.5% Clock 35.5%
L2 Cache 0.1% Total 100%

instructions are issued from at most three consecutive basic blocks. Hence,

three FIFOs should be sufficient to provide significant the overlap between

blocks. The baseline reorder-sensitive issue queue has 3 FIFOs. In subsequent

sections, power-performance trade-offs for several other configurations of the

reorder-sensitive issue queue are also evaluated.

The HR queue in the reorder-sensitive issue logic is an out-of-order issue

queue to allow aggressive reordering of instructions in HRR blocks. Due to

high cache miss rates of the blocks issued to the HR issue queue, these blocks

have inherently low ILP and hence do not require the full capability of an

8-way out-of-order issue queue. A 4-wide, 32-entry associative HR queue is

used in these experiments. In contrast to the baseline processor, 75% of the

entries in the reorder-sensitive issue logic are thus in FIFOs and the remaining

57

Table 5.5: Baseline reorder-sensitive issue queue parameters

Feature Attributes Values
Number of FIFOs 3

IW of FIFOs 4
Rows per FIFOs 8

LR Queue Number of Read Ports/FIFO 1
Number of Write Ports/FIFO 2

Peak Power per FIFO 0.7W
Issue Width 4

HR Queue Number of Entries 32
Peak Power of HR Queue 3.6W

Table 5.6: Instruction overlap from different blocks

of blocks ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 8
% cycles 52.6 61.4 70.1 74.7 79.7 82.7 100

25% of the entries are in a 4-wide, 32-entry associative issue queue. Note that

all the queues/buffers in the reorder-sensitive issue queue are significantly less

aggressive and smaller when compared to the baseline out-of-order issue queue.

5.3 Distribution of LRR and HRR blocks

Table 5.3 shows a detailed characterization of the benchmarks in terms of LRR

and HRR blocks. The block selection thresholds were set to 5%(FDth) and

0.1%(CMth). Section 5.10 presents an evaluation of the technique for several

other threshold values. Also note, the effective L1 and L2 miss costs are fixed

at 30 cycles (Section 5.10 also presents an evaluation of the technique for

several other effective costs).

The first three rows in Table 5.3 show the number of blocks statically

58

Table 5.7: Static distribution of LRR and HRR blocks for threshold values
FDth = 5% and CMth = 0.1%.

Benchmark compress gzip li mcf parser vortex vpr
of blocks where
SDcm > SDth 44 307 255 155 1156 1165 163
of blocks where
SDfd > FDth 51 290 539 93 1599 3287 736
of blocks
failed due to both 20 50 103 51 419 693 74
of HRR blocks 99 581 967 229 2666 5469 1122
of LRR blocks 93 307 277 160 1647 3113 728

classified as HRR blocks due to either a large number of cache misses, due

to a large number of false dependences or due to both impediments, respec-

tively. The following two rows provide the total number of HRR and LRR

blocks (static blocks) and show that even with low block selection thresholds,

a significant number of blocks qualify as LRR blocks.

Table 5.8 shows the distribution of dynamic instructions in terms of

HRR and LRR instructions. The results reveal that on average, 32% of all

dynamic instructions are directed to the LR queue (last row).

Table 5.8: Dynamic distribution of LRR and HRR blocks for threshold values
FDth = 5% and CMth = 0.1%.

Program Time compress gzip li mcf parser vortex vpr
In blocks where
SDcm > SDth 48.47% 45.66% 49.85% 58.89% 62.06% 57.87% 4.41%
In blocks where
SDfd > FDth 40.75% 25.45% 42.49% 9.84% 46.91% 62.25% 48.14%
In HRR blocks
failed due to both 21.79% 9.96% 23.92% 7.45% 31.05% 42.74% 2.30%

In HRR blocks 67.66% 62.55% 69.97% 61.28% 78.00% 78.15% 54.69%
In LRR blocks 32.34% 37.45% 30.97% 38.72% 22.00% 21.85% 45.31%

59

5.4 Energy consumption results

Figures 5.1 and 5.2 show normalized issue queue energy consumption and

total energy consumption of the Hybrid-Scheduling scheme with respect to

the baseline out-of-order issue queue. The Hybrid-Scheduling issue scheme

dramatically reduces the issue queue energy consumption on an average by

nearly 70%. Several factors contribute to the overall energy reduction.

First, as seen in Table 5.8, nearly 32% of the instructions are issued from

the LR FIFOs. The FIFOs consume low power since they require very few

ports. Since the fetch width of the processor is twice that of the FIFO width,

two write ports are required to dispatch instructions to each FIFO. Further,

since instructions are issued only from the head of the FIFO, it needs only

one read port. The peak power of each FIFO buffer is 0.7W while the peak

power of the 8-wide issue queue is 18W. The 32-entry HR queue in the reorder-

sensitive architecture is also significantly smaller than the baseline 128-entry

issue queue. More importantly, the issue width of the HR queue is half that of

the baseline issue queue. The HR queue thus has significantly fewer number

of ports than the baseline 8-wide issue queue. The number of dispatch (i.e.,

writing to the issue queue) ports on the HR queue is the same as in the baseline

queue since the fetch width of both configurations is the same. However, the

issue and wakeup (result-broadcast) ports are only four each. The total power

for this queue is only 2.7W.

The total power savings seen by the Hybrid-Scheduling scheme is ap-

proximately 18% (Figure 5.2). These results demonstrate that the Hybrid-

Scheduling scheme is highly effective in reducing the energy consumption in

superscalar processors.

60

compress gzip li mcf parser vortex vpr Average
0

0.2

0.4

0.6

0.8

1

Benchmarks

No
rm

ali
ze

d I
ss

ue
 Q

ue
ue

En

erg
y C

on
su

mp
tio

n
ooo−base hyb−base

Figure 5.1: Normalized issue queue energy consumption

compress gzip li mcf parser vortex vpr Average
0

0.2

0.4

0.6

0.8

1

Benchmarks

No
rm

ali
ze

d T
ota

l E
ne

rgy
 C

on
su

mp
tio

n

ooo−base hyb−base

Figure 5.2: Normalized total energy consumption

5.5 Performance results

Figure 5.3 shows the performance results of the scheme. The performance

degradation seen by the base Hybrid-Scheduling scheme (hyb-base in the fig-

ures) scheme is 11%. The performance degradation is significant because the

heuristics used to select blocks for issue in the LR queue are guided by lo-

calized estimates made at the basic-block level. Dependences between basic-

blocks, especially, between LRR blocks and HRR blocks are critical but are

not captured by the localized heuristics. When a cache miss is serviced, the

instructions waiting on the data can issue immediately if they are either in the

out-of-order issue queue or at the heads of FIFOs. However, if there several

dependences between LRR blocks and HRR blocks with cache misses, it is

61

unlikely that all the dependent instructions will be available at the heads of

the FIFOs.

5.6 Improving the performance of the reorder-

sensitive issue queue

Based on the observation that dependences between LRR blocks and HRR

blocks are important, an improvement to the reorder-sensitive issue logic is

provided wherein for each HRR block with a large number of cache misses, a

few subsequent consecutive blocks are directed to the out-of-order issue queue

irrespective of whether they are LRR blocks or HRR blocks. This helps capture

the immediate dependences between LRR blocks and HRR blocks with a large

number of cache misses. Note all HRR blocks need not have high miss rates;

some blocks are classified as HRR blocks due to false dependences.

The number of blocks redirected to the HR queue is controlled by a

simple saturating counter whose maximum value can be determined and set

for each benchmark. Table 5.9 shows the average distance between dependent

compress gzip li mcf parser vortex vpr Average
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Benchmarks

No
rm

ali
ze

d E
xe

cu
tio

n T
im

e

ooo−base hyb−base

Figure 5.3: Normalized execution time

62

Table 5.9: Dependence distance in terms of number of basic blocks. The first
column (= 0) accounts for all dependences that occur within the same block.

of blocks = 0 ≤ 1 ≤ 2 ≤ 3 ≤ 4 ≤ 7 ≤ 10
% dependences 83.6 92.6 96.0 97.5 98.4 98.7 99.9

compress gzip li mcf parser vortex vpr Average
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

No
rm

ali
ze

d E
xe

cu
tio

n T
im

e

ooo−base hyb hyb−1 hyb−2 hyb−3 hyb−10 hyb−inf

Figure 5.4: Normalized execution time for different saturating counters

instructions in number of basic blocks. The table shows that a significant

portion (92%) of all the data dependences between instructions extend to just

one basic-block and further, that nearly all data dependences (98%) between

instructions extend to a maximum of 4 basic blocks. Hence, the maximum

value of the saturating counter need not exceed 4. This value will ensure that

almost all dependences between HRR and LRR blocks are captured in the HR

queue.

Figure 5.4, 5.5, and 5.6 show the performance, issue queue energy sav-

ings and total energy savings of the Hybrid-Scheduling scheme for different

values of the saturating counter. Figure 5.4 shows that allowing one additional

block improves performance in many benchmarks. Increasing the counter value

to 2 captures almost all dependences and improves performance further. The

benchmark mcf particularly shows a good improvement for higher counter val-

ues. In benchmarks where the cache miss rates and consequently the number

63

of misses per block are high, it is important to have a higher counter value

since many of the dependences will be critical dependences. For example, Ta-

ble 5.10, shows that in mcf, as many as 11% of all instructions depend on

loads that miss in the cache, making a significant fraction of instruction de-

pendences critical. A bigger counter value captures more dependences and

hence performs better in mcf. However, increasing the counter value beyond

3 begins to provide diminishing returns. In fact, increasing the counter value

to a very large value begins to negatively impact performance and issue queue

energy since now too many blocks are diverted to the small HR queue leading

to increased dispatch stalls in the pipeline. Figure 5.4 shows that the overall

performance degradation reduces from 11% to 5.5% for 2 blocks and to 5% for

3 additional blocks directed to the HR queue. The percentage of instructions

issued from the LR queue reduces slightly from 30% to 26% on an average

(for 2 blocks) and to 25% for 3 blocks. Note that even for the best saturating

counter value, there is performance loss in the Hybrid-Scheduling scheme be-

cause the LR queue has a limited number of FIFOs, it does not provide the

ideal amount of inter-block overlap. Further, not all of the HRR blocks are

low ILP blocks. Some blocks that do not suffer from cache misses are also

directed to the HRR queue. These blocks are unnecessarily penalized by the

low issue HR queue.

The corresponding issue queue and total energy reduction are shown in

Figure 5.5 and Figure 5.6 respectively. These results show that the Hybrid-

Scheduling scheme can effectively reduce the power and complexity of the issue

logic hardware without significantly sacrificing performance.

64

Table 5.10: Cache hit rates and load dependence statistics

Statistic compress gzip li mcf parser vortex vpr

DL1 miss rate 8.2% 3.4% 3.9% 20.7% 2.2% 1.3% 1.2%

DL2 miss rate 20.6% 0.3% 5.7% 24.7% 18.2% 4.3% 0.6%

L1 misses/blk 0.05 0.11 0.09 0.46 0.10 0.05 0.00

L2 misses/blk 0.01 0.00 0.00 0.21 0.05 0.02 0.00

% instrs dep. 3.3% 2.12% 3.0% 10.7% 1.91% 1.31% 1.23%
on LD misses

5.7 Design space exploration of the reorder-

sensitive issue queue

The baseline reorder-sensitive issue queue evaluated in previous sections con-

sisted of an LR queue with three 4-wide FIFO buffers. This section presents

an evaluation of several different configurations of the reorder-sensitive issue

queue. Particularly, the number, size and widths of the FIFOs are varied.

The experimental results for this design space exploration are presented in

Figure 5.7 and Figure 5.8.

Figure 5.7 shows the percentage performance degradation, issue energy

saved and total energy saved for different number and widths of the FIFO

compress gzip li mcf parser vortex vpr Average
0

0.2

0.4

0.6

0.8

1

Benchmarks

No
rm

ali
ze

d I
ss

ue
 Q

ue
ue

En

erg
y C

on
su

mp
tio

n

ooo−base hyb hyb−1 hyb−2 hyb−3 hyb−10 hyb−inf

Figure 5.5: Normalized issue queue energy consumption for different saturating
counters

65

compress gzip li mcf parser vortex vpr Average
0.5

0.6

0.7

0.8

0.9

1

1.1

Benchmarks

No
rm

ali
ze

d E
ne

rgy
 C

on
su

mp
tio

n ooo−base hyb hyb−1 hyb−2 hyb−3 hyb−10 hyb−inf

Figure 5.6: Normalized total energy consumption for different saturating
counter values.

buffers. The widths (IW) examined are 2, 3 and 4. The numbers of FIFOs is

varied from 2 to 8. For this figure, the number of rows per FIFO was set to

8. The first row of graphs shows the performance degradation of the reorder-

sensitive configuration with respect to the baseline out-of-order issue configu-

ration. The figures show that for a given width of the FIFO, the performance

of the Hybrid-Scheduling scheme increases dramatically for increasing number

of FIFOs. The primary benefit of increased number of FIFOs is that more

inter-block overlap is provided. However, the disadvantage of the increasing

number of FIFOs is that the issue queue energy and the total energy saved

reduces, although the reduction in energy savings is not very severe. This

is because FIFO structures are inherently low-power and hence adding FIFOs

still provides a reasonable power-performance trade-off. Another disadvantage

of increased FIFOs is that the complexity of the issue logic increases. Partic-

ularly, the complexity of “waking up” instructions and selecting instructions

for issue increases since more instructions at the heads of the FIFOs need to

be examined.

For increasing issue widths of the FIFOs, the performance is signifi-

cantly improved. For example, a 4-wide 2 FIFO configuration results in 7%

66

2 4 6 8
0

2

4

6

8

10

12

14

16

Number of FIFOs

%
 P

er
fo

rm
an

ce
 D

eg
ra

da
tio

n

2 3 4 5
0

2

4

6

8

10

12

14

16

Number of FIFOs

%
 P

er
fo

rm
an

ce
 D

eg
ra

da
tio

n

2 3 4 5
0

2

4

6

8

10

12

14

16

Number of FIFOs

%
 P

er
fo

rm
an

ce
 D

eg
ra

da
tio

n

IW= 2 IW= 4IW= 3

2 4 6 8
60

62

64

66

68

70

72

74

76

78

80

Number of FIFOs

%
 Is

su
e

Q
ue

ue
 E

ne
rg

y
R

ed
uc

tio
n

2 3 4 5
60

62

64

66

68

70

72

74

76

78

80

Number of FIFOs

%
 Is

su
e

Q
ue

ue
 E

ne
rg

y
R

ed
uc

tio
n

2 3 4 5
60

62

64

66

68

70

72

74

76

78

80

Number of FIFOs

%
 Is

su
e

Q
ue

ue
 E

ne
rg

y
R

ed
uc

tio
n

IW = 2 IW = 4IW = 3

2 4 6 8
10

15

20

25

Number of FIFOs

%
 T

ot
al

 E
ne

rg
y

R
ed

uc
tio

n

2 3 4 5
10

15

20

25

Number of FIFOs

%
 T

ot
al

 E
ne

rg
y

R
ed

uc
tio

n

2 3 4 5
10

15

20

25

Number of FIFOs

%
 T

ot
al

 E
ne

rg
y

R
ed

uc
tio

n

IW = 2 IW = 3 IW = 4

Figure 5.7: Percentage performance degradation, issue queue energy reduction
and total processor energy reduction for varying FIFO configurations, averaged
over all benchmarks. The issue widths examined are 2,3 and 4. The number
of FIFOs vary from 2 to 8. The number of rows per FIFO is set to 8.

67

2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

Number of FIFOs

%
 P

er
fo

rm
an

ce
 D

eg
ra

da
tio

n

2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

Number of FIFOs

%
 P

er
fo

rm
an

ce
 D

eg
ra

da
tio

n

2 3 4 5
0

2

4

6

8

10

12

14

16

18

20

Number of FIFOs

%
 P

er
fo

rm
an

ce
 D

eg
ra

da
tio

n

IW = 3
IW = 4

Number of
 Rows = 4

Number of
 Rows = 8

Number of
Rows = 16

2 3 4 5
50

55

60

65

70

75

80

Number of FIFOs

%
 Is

su
e

Q
ue

ue
 E

ne
rg

y
R

ed
uc

tio
n

2 3 4 5
50

55

60

65

70

75

80

Number of FIFOs

%
 Is

su
e

Q
ue

ue
 E

ne
rg

y
R

ed
uc

tio
n

2 3 4 5
50

55

60

65

70

75

80

Number of FIFOs

%
 Is

su
e

Q
ue

ue
 E

ne
rg

y
R

ed
uc

tio
n

IW = 3
IW = 4

Number of
 Rows = 4

Number of
 Rows = 8

Number of
 Rows = 16

2 3 4 5
10

15

20

25

Number of FIFOs

%
 T

ot
al

 E
ne

rg
y

R
ed

uc
tio

n

2 3 4 5
10

15

20

25

Number of FIFOs

%
 T

ot
al

 E
ne

rg
y

R
ed

uc
tio

n

2 3 4 5
10

15

20

25

Number of FIFOs

%
 T

ot
al

 E
ne

rg
y

R
ed

uc
tio

n

IW = 3
IW = 4

Number of
 Rows = 4

Number of
 Rows = 8

Number of
 Rows = 16

Figure 5.8: Percentage performance degradation, issue queue energy reduction
and total processor energy reduction for varying FIFO configurations. The
number of FIFOs vary from 2 to 8. The Issue widths of FIFOs are 3 and 4.
The number of rows per FIFO is 4, 8 or 16.

68

performance degradation while a 2-wide 2 FIFO configuration causes the per-

formance to drop by as much as 15%.

Figure 5.8 plots the performance degradation, issue queue energy sav-

ings and total energy savings for varying number of rows per FIFO. The num-

ber of rows examined are 4, 8 and 16. The figure shows the results for the issue

widths 3 and 4, which correspond to the better performing configurations. The

figure shows that increasing the number of rows has a significant impact on

the performance degradation. For example, increasing the number of rows

per FIFO, decreases the performance degradation of the Hybrid-Scheduling

scheme from 18% for a 3-wide 2 FIFO configuration with 4 rows per FIFO

to 7% for 16 entries per FIFO. Note that in all cases, the issue queue and

the total energy consumption of the processor do not increase significantly,

indicating that FIFOs are indeed low overhead structures.

An interesting observation from Figure 5.7 and also in Figure 5.8 is

that the increasing issue width has lower impact when the number of FIFOs

is larger (Figure 5.7) or when the number of rows in each FIFO is higher

(Figure 5.8). This trend suggests that the total number of entries rather than

any individual parameter has the most impact on the overall performance of

the scheme.

Figure 5.9 shows several different configurations of the Hybrid-Scheduling

scheme but with each configuration having the same number of total FIFO en-

tries. The key observation from the figure is that in general, configurations

with larger number of FIFOs performs better than a configuration with fewer

FIFOs. For example, the figure shows that a 3-wide 5 FIFO with 4 rows per

FIFO configuration (Figure 5.9(a)) performs better than a 4-wide 2 FIFO with

16 rows per FIFO configuration (Figure 5.9(c), even though the total number

of entries in the former is half that of the latter. The configurations 16X3X2

69

compress gzip li mcf parser vortex vpr Average
0

2.5

5

7.5

10

12.5

15

17.5

20

22

Benchmarks

%
 P

er
fo

rm
an

ce
 D

eg
ra

da
tio

n

4X3X5 4X4X4 8X2X4 8X4X2

(a) 64 Entries

compress gzip li mcf parser vortex vpr Average
0

2.5

5

7.5

10

12.5

15

17.5

20

22

Benchmarks

%
 P

er
fo

rm
an

ce
 D

eg
ra

da
tio

n

8X2X6 8X3X4 8X4X3 16X3X2

(b) 96 Entries

compress gzip li mcf parser vortex vpr Average
0

2.5

5

7.5

10

12.5

15

17.5

20

Benchmarks

%
 P

er
fo

rm
an

ce
 D

eg
ra

da
tio

n

8X2X8 8X3X5 8X4X4 16X4X2

(c) 128 Entries

Figure 5.9: Percentage performance degradation of the Hybrid-Scheduling
scheme for several different FIFO configurations. Each configuration has the
same number of total FIFO entries. Configurations are represented as a com-
bination LxMxN, where L is the number of rows per FIFO, M is the width of
the FIFO and N is the number of FIFOs.

70

16 32 64 96 128
0.9

0.95

1

1.05

1.1

1.15

Queue Size

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

ooo−8way ros ooo−4way

Figure 5.10: Performance results of different reorder-sensitive and conventional
issue queue configurations for varying queue sizes. For the ROS schemes, queue
size corresponds to the HR queue size. Results shown are averaged over all
benchmarks.

(which indicates a 3-wide, 2 FIFO with 16 rows per FIFO scenario), and

16X4X2, which have the lowest number of FIFOs, are the worst performing

schemes. This is intuitive since larger number of FIFOs lend more inter-block

overlap. Further, configurations where the number of rows per FIFO or the

width of the FIFO is too low also cause significant performance degradation

(4X4X4, 8X2X4, 8X2X6).

5.8 Comparing out-of-order issue queue and

reorder-sensitive issue queue configurations

Figures 5.10 and 5.11 compare the Hybrid-Scheduling issue logic with 4 and

8-wide conventional queues for varying issue queue sizes. The results demon-

strate that reorder-sensitive issue queue configurations can consistently achieve

high performance (within 5% of an 8-wide out-of-order issue queue), while con-

suming significantly lower energy (close to a 4-wide out-of-order issue queue).

71

16 32 64 96 128
0

0.2

0.4

0.6

0.8

1

Queue Size

N
o

rm
al

iz
ed

 IQ
 E

n
er

g
y

ooo−8way ros ooo−4way

Figure 5.11: Issue queue energy results of different ROS and conventional issue
queue configurations for varying queue sizes. For the ROS schemes, queue
size corresponds to the HR queue size. Results shown are averaged over all
benchmarks.

5.9 Comparing a dynamic dependence-based

FIFO scheme with the Hybrid-Scheduling

approach

There have been several run-time schemes proposed for alleviating the com-

plexity of the issue logic. These techniques attempt to reduce the complexity

of critical issue logic tasks such as instruction wakeup and select. A ma-

jority of the previously proposed techniques reduce complexity of the issue

queue by limiting the number of candidate instructions to be considered for

issue [1, 15, 20, 41, 42, 46, 48, 37]. These techniques typically consist of a pre-

scheduling phase wherein the data-dependences of instructions are analyzed.

After the pre-scheduling phase, instructions are typically steered to various

low-complexity FIFOs based on their dependences with older instructions in

the queues [1, 46, 48].

While these techniques indeed alleviate the complexity of the issue logic,

72

they often require extra hardware and/or the addition of a few pipeline stages.

In the Hybrid-Scheduling work, since the necessary analysis is performed stat-

ically, the burden is shifted to the compiler, thereby eliminating the need for

any auxiliary hardware resources or pipeline stages.

This section compares the Hybrid-Scheduling scheme with a dynamic

scheme to alleviate complexity and power. Abella et al. [1] present a com-

prehensive analysis of several complexity-effective issue queues and show that

the FIFO-based scheme suggested by Palacharla et al. [46] is one of the best

performing schemes for integer programs. A brief description of the scheme is

provided first.

The scheme proposed by Palacharla et al. uses several single-issue FI-

FOs. Only the instructions at the head of each FIFO are considered for issue.

The scheme uses hardware logic to analyze dependences between instructions

to steer instructions to different FIFOs. Instructions are dispatched with the

following heuristics:

Let I be the instruction under consideration. Depending upon the avail-

ability of I’s operands, the following cases are possible:

• All the operands of I have already been computed and are residing in the

register file. In this case, I is steered to a new (empty) FIFO acquired

from a pool of free FIFOs.

• I requires a single outstanding operand to be produced by instruction

Isource residing in FIFO Fa. In this case, if there is no instruction behind

Isource in Fa then I is steered to Fa, else I is steered to a new FIFO.

• I requires two outstanding operands to be produced by instructions

Ileft and Iright residing in FIFOs Fa and Fb respectively. In this

73

case, apply the heuristic in the previous bullet to the left operand. If the

resulting FIFO is not suitable (it is either full or there is an instruction

behind the source instruction), then apply the same heuristic to the right

operand.

If all the FIFOs are full or if no empty FIFO is available then the

decoder/steering logic stalls. A FIFO is returned to the free pool when the

last instruction in the FIFO is issued. Initially, all the FIFOs are in the free

pool.

Dependence information between instructions is maintained in a table

called the SRC FIFO table. This table can be indexed using logical register

designators or physical register designators. If the table is indexed with logic

registers, then instruction steering could potentially be performed in paral-

lel with register renaming. However, since completing instructions have tags

which correspond to physical registers, updating this table each cycle is simpler

if it is indexed with the physical register designators. This avoids potential

translations through multiple tables.

The dynamic dependence-based scheme thus require several additional

hardware structures such as the SRC FIFO table, additional dependence logic

similar to the renaming logic for identifying the appropriate FIFO for each

instruction and other auxiliary structures to maintain occupancy status for

the FIFOs. Additionally, the steering logic, an inherently serial operation [41],

potentially requires one or more additional pipeline stages, especially in smaller

process technologies.

A detailed analysis by Abella et al. [1] shows that for integer programs,

having higher number of queues is better than more entries per queue. The

dynamic scheme used for comparison consists of 16 FIFOs with eight entries

74

each. Thus, the total number of entries in the dynamic scheme, the Hybrid-

Scheduling scheme and the out-of-order issue baseline are all 128 entries. Each

FIFO in the dynamic scheme consists of 8 write ports and 1 read port. Further,

power consumption of several axillary structures have been taken into account.

The structures include the SRC FIFO table, FIFO tail table (to maintain

information about tail instructions), the counters to maintain occupancy status

of the FIFOs, and the dependence logic required to compute the correct FIFO

for each instruction.

Figures 5.12 and 5.13 show the performance and issue queue energy

consumption of the out-of-order issue baseline, the Hybrid-Scheduling scheme

and the dynamic dependence-based FIFO scheme. It can be seen that the

Hybrid-Scheduling scheme achieves higher reduction in issue queue energy

when compared to the dynamic scheme. Further, although in the ideal case,

i.e., when the dynamic scheme requires no additional pipeline stages, it per-

forms marginally better than the Hybrid-Scheduling scheme. However, in

realistic scenarios, the dynamic scheme requires additional pipeline stages for

steering instructions and thus exhibit lower performance when compared to

the Hybrid-Scheduling approach.

5.10 Evaluation of the block selection heuris-

tics

To compute the estimated schedule degradation due to cache misses (SDcm),

the compiler requires good estimates (effective costs) for the miss hiding capa-

bility of the out-of-order issue logic. The effective cost seen by an instruction

executing in its statically-scheduled order is usually smaller that the actual

75

ooo hyb dyn−0 dyn−1 dyn−2 dyn−3
0.9

0.925

0.95

0.975

1

1.025

1.05

1.075

1.1

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

Figure 5.12: Performance results of the baseline out-of-order issue processor,
Hybrid-Scheduling scheme and the dynamic dependence-based FIFO scheme.
For the dynamic schemes, n indicates the additional pipeline stages required
by the steering logic.

latency of a cache miss, since the hardware can not hide the complete cost of

the miss. The effective cost is a complex function of the cache miss latencies,

size of the issue queue, issue width of the processor and available ILP in the

program.

The effective L1 and L2 miss costs are empirically identified as shown in

Figure 5.14. At smaller estimated costs, a larger percentage of blocks qualify

as LRR blocks and hence a larger number of instructions are issued from the

LR queue. However, the performance loss is also prohibitively high, indicating

that the miss hiding capability of the out-of-order issue logic is being under-

estimated. As the assumed costs are progressively increased, the number of

instructions issued from the LR queue and the performance degradation de-

crease. The figure shows that assuming an L1 miss cost in the range of 20-30

cycles is a reasonable estimate for the L1 cost, since increasing the estimate

beyond this does not dramatically decrease the performance loss. Assuming

that the average IPC of integer programs on an 8-way machine is 3, a 30-cycle

76

ooo hyb dyn−0 dyn−1 dyn−2 dyn−3
0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 I

s
s
u

e
 Q

u
e

u
e

E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n

Figure 5.13: Performance results of the baseline out-of-order issue processor,
Hybrid-Scheduling scheme and the dynamic dependence-based FIFO scheme.
For the dynamic schemes, n indicates the additional pipeline stages required
by the steering logic.

cost can be roughly interpreted as the out-of-order issue queue being able to

hide about half the L1 miss latency (10 cycles) with 3 instructions issued each

cycle. Note that when executing on a fully in-order machine, where it is not

possible to hide any stalls due to cache misses at run-time, the cost would

be considerably higher. However, since the LR queue allows some degree of

overlap of instructions, the effective cycle-time cost is lower. It can also be

observed that since the number of L2 misses are considerably lower than the

number of L1 misses, the block selection heuristic is largely insensitive to the

L2 miss cost.

The compiler selects LRR blocks based on statically computed esti-

mates of the schedule quality degradation due to false dependences (SDfd)

and memory misses (SDcm). The compiler classifies a block as an LRR block

if its estimated schedule degradation due to false dependences and memory

misses (SDfd and SDcm) are less than their respective threshold values (FDth

and CMth). Figure 5.15 presents an evaluation of the sensitivity of the block

77

0

20

40

60

80

100

Effective L1−L2 Cost

%
 In

st
ru

ct
io

ns
 in

 L
R

 Q
ue

ue

0−
0

5−
5

10
−1

0

20
−2

0

20
−4

0

20
−8

0

30
−3

0

30
−6

0

60
−6

0

60
−1

20

10
00

−2
00

0

20
00

−2
00

0

0

5

10

15

20

25

30

35

40

Effective L1−L2 Cost

%
 P

er
fo

rm
an

ce
 D

eg
ra

da
tio

n

0−
0

5−
5

10
−1

0

20
−2

0

20
−4

0

20
−8

0

30
−3

0

30
−6

0

60
−6

0

60
−1

20

10
00

−2
00

0

20
00

−2
00

0

Figure 5.14: Percentage of instructions in the LR queue and performance
degradation for different L1-L2 miss costs (averaged over all benchmarks).
Costs expressed as X1-Y1, where X1 is the effective L1 miss cost and Y1 is the
L2 miss cost in cycles. CMth is fixed at 5%.

selection policy to varying threshold values. The figure shows the percentage

of dynamic instructions that are issued from the LR queue and the corre-

sponding performance degradation for different FDth and CMth values for the

benchmark compress (the sensitivity analysis is shown for only one benchmark

but all other benchmarks show largely similar trends.)

Larger threshold values indicate willingness to tolerate a larger perfor-

mance loss. With large threshold values the compiler selects more blocks for

78

issue in the LR queue. Since the LR queue is extremely simple and consumes

lower power when compared to the HR queue, the processor can operate in

a power-savings mode by setting large threshold values. Alternatively, set-

ting lower thresholds allows the processor to operate in a more performance-

sensitive mode. The actual performance degradation observed is lower than

the estimated performance degradation (indicated by the threshold values).

The reason for this is that the estimate is computed assuming the blocks will

be issued in a strictly in-order fashion. However, since instructions from the

heads of the FIFOs can issue in any order, the LR queue provides some degree

of overlap between blocks. Thus, a considerable portion of the cache miss stall

cycles are hidden in the reorder-sensitive issue queue.

An interesting observation from Figure 5.15 is that even when both

thresholds are set to 0, there are a significant number of instructions (32%)

that are selected for issue in the LR queue. For all benchmarks, on average,

approximately 30% of instructions qualify as LRR instructions. This indicates

that a large number of blocks do not contain any false dependences nor ex-

perience any memory misses. For these blocks, expending energy to reorder

instructions in hardware is wasteful since the compiler can generate efficient

schedules. The reorder-sensitive scheme removes this inherent redundancy by

providing the ability to harness compiler-generated schedules for these blocks.

Another important observation is that when the number of blocks is-

sued to the LR queue is very high, the performance degradation can be sig-

nificant. Table 5.11 shows the performance degradation experienced when all

instructions are directed to FIFOs. For this experiment, four 4-wide FIFO

buffers with eight entries in each, are used. These results underscore the im-

portance of dynamic scheduling and show that an “all FIFO” configuration

is not a viable alternative to fully associative queues. The Hybrid-Scheduling

79

0

20

40

60

80

100

Block Thresholds (CM
th

−FD
th

)

%
 In

st
ru

ct
io

ns
 in

 L
R

 Q
ue

ue

50
0−

50
0

20
0−

10
0

20
0−

50

20
0−

20

10
0−

20

10
0−

10

10
0−

5

50
−5

20
−5

10
−1 1−

1

0−
0.

5

0−
0.

2

0−
0

0
5

10
15
20
25
30
35
40
45
50

Block Thresholds (CM
th

−FD
th

)

%
 P

er
fo

rm
an

ce
 D

eg
ra

da
tio

n

50
0−

50
0

20
0−

10
0

20
0−

50

20
0−

20

10
0−

20

10
0−

10

10
0−

5

50
−5

20
−5

10
−1 1−

1

0−
0.

5

0−
0.

2

0−
0

Figure 5.15: Percentage of instructions in the LR queue and performance
degradation for different block selection thresholds (for benchmark compress).
Thresholds represented as FDth-CMth.

scheme combines the benefits of both FIFOs and fully associative queues in the

reorder-sensitive issue queue and by judiciously selecting appropriate blocks to

different scheduling queues limits performance loss while maximizing energy

reduction.

80

Table 5.11: Percentage performance degradation when all instructions in the
program are dispatched to LR queue. The LR queue used consists of four
4-wide FIFOs with 8 entries each.

compress gzip li mcf parser vortex vpr Average

29.5% 34.2% 31.3% 97.9% 30.5% 27.35% 36.8% 43%

5.11 Discussion

As with any profile-based approach, the performance of the Hybrid-Scheduling

scheme depends on how closely a program’s actual run-time tendencies match

those seen during specialization. The experiments presented in this chapter

demonstrate that the degradation is not significant even when the input data

is different from the profile input. However, it is desirable to have a protection

mechanism against the rare cases when the input data completely deviates

from the profile data. Unforeseen cache misses are particularly hazardous

since the LR queue is quite limited in its capacity to hide the miss penalty.

One attractive solution is to implement the reorder-sensitive scheme

within a hardware or software dynamic optimization framework [50, 74, 75, 76].

The dynamic optimizer could be used to monitor the behavior exhibited by the

running application and dynamically tune the heuristics to continually divert

blocks with cache miss rates to the fully-associative queue which is better

equipped to handle misses.

Another approach is to add some global loop-level or procedure-level

control over the localized issue policy used in the Hybrid-Scheduling scheme.

Prior work has shown that it is possible to predict the IPC of a program

statically with reasonable accuracy using simple compile-time analysis [61].

During execution of the program, the hardware could dynamically monitor

the IPC of important program hotspots. If the observed IPC is significantly

81

below the estimated IPC, the reorder-sensitive issue mode can be disabled and

instructions can default to the conventional out-of-order issue queue.

5.12 Summary

This chapter presented a detailed evaluation of the Hybrid-Scheduling scheme.

The experimental results demonstrate that the proposed scheme can reduce

energy consumption in the issue queue dramatically by 70% on average. The

issue queue expends a significant portion of the total energy in wide-issue pro-

cessors. Consequently, the Hybrid-Scheduling scheme on average saves 18%

of the total processor power without significant performance loss. Addition-

ally, the proposed issue hardware is significantly less complex when compared

to a conventional monolithic out-of-order issue queue. The low complexity

and improved power margins can be leveraged to operate the processor at a

considerably higher frequencies.

82

Chapter 6

Hybrid-Scheduling for Media

and Scientific Programs

Media and scientific applications are important applications in the desktop

and server computing markets respectively. The execution time of these appli-

cations is dominated by regular loops. For well-understood structures such as

loops, the compiler can exploit and enhance parallelism with the help of several

aggressive optimizations such as loop unrolling, software pipelining and trace

scheduling. These programs thus exhibit tremendous potential for applying

the Hybrid-Scheduling technique.

This chapter presents Hybrid-Scheduling in the context of such regu-

lar applications. Considering S-Regions at larger, loop-level granularities offers

opportunities to simplify the hardware requirements dramatically. The profile-

driven compiler analysis for identifying and selecting loop-level S-Regions is

described first, followed by a description of the Hybrid-Scheduling micro-

architecture for these types of applications. A detailed evaluation of the pro-

posed scheme is also presented.

6.1 Overview

Program execution time in media and scientific applications is typically domi-

nated by regular loops. Loops are highly amenable to several compile-time ILP

83

(instruction-level parallelism) optimizations. The loops in these applications

also exhibit regular, predictable memory access patterns [49]. Regions with

regular access patterns are amenable to techniques such as prefetching and

are thus suitable candidates for static issue. Further, these loops are typically

long-running, thus creating long contiguous S-Regions.

In the context of Hybrid-Scheduling, the primary advantage of loop-level

S-Regions is that the compiler can create large basic-blocks using optimiza-

tions such as loop unrolling and can enhance the available ILP using aggres-

sive instruction scheduling optimizations such as software pipelining and trace

scheduling. With large basic blocks and ample available ILP, the compiler can

find sufficient number of instructions to fill a significant number of the issue

slots in the pipeline. Thus, loop-level S-Regions do not require “inter-block

overlap”(Chapter 3) and can issue in their statically-scheduled order with

minimal hardware support for long durations [63].

In this derivative of the Hybrid-Scheduling scheme, rather than sup-

porting two differing types of issue queues, there are two distinct modes of

execution. In this Dual-Mode (DM) Hybrid-Scheduling microarchitec-

ture, the processor runs in the superscalar mode with dynamic scheduling until

a special instruction that indicates the beginning of an S-Region is detected.

At this point, the out-of-order issue engine is shut down, and the processor

switches to a VLIW-like static mode in which instruction packets scheduled by

the compiler are issued sequentially in consecutive cycles with minimal hard-

ware support. Energy is conserved primarily by reducing the work done in the

out-of-order issue logic.

This chapter describes the compiler and micro-architectural details of

the Dual-Mode Hybrid-Scheduling scheme. The heuristics for identifying loop-

level S-Regions are described first.

84

Profile Collection Phase

for each loop region {

Profile Analysis Phase

for each loop region {

Compute PD_sw; // performance degradation due to switching overhead

Compute PD_cm; // performance degradation due to cache misses

if (PD_sw + PD_sc + PD_cm < PD_th){

Select loop as S−region;

Annotate S−Regions with marker instructions;
}

}

}

record L1 miss rate, L2 miss rate;

record Duration D;
record Iteration counts of innermost loop nests I1 and I2;

Compute PD_ss; // performance degradation due to imperfect static scheduling

Figure 6.1: Algorithm for selecting loop-level S-Regions

6.2 S-Regions in media and scientific programs

Chapter 3 discussed the compiler heuristics for identifying S-Regions at the

basic-block level. The heuristics required for selecting S-Regions at loop-level

granularity are similar. Figure 6.1 summarizes the algorithm for selecting S-

Regions are that suitable for the Dual-Mode Hybrid-Scheduling architecture.

The primary goal is to choose loops that provide energy reduction with mini-

mum performance degradation when issued in the statically-scheduled order.

Applications are profiled for several characteristics to estimate the per-

formance degradation caused due to the following: (a) switching overhead (PDsw),

85

(b) imperfect schedules (PDss) and (c) cache misses (PDcm). Specifically, for

each S-Region i, the following statistics are collected during profiling:

• Duration of each S-Region (Di)

• Average number of L1 misses for each S-Region (L1i)

• Average number of L2 misses for each S-Region (L2i)

• Iteration count of loop (for each nest-level: I1i, I2i, I3i,..)

Step 1: Estimating cost of switching overhead PDsw

S-Regions should have long durations since there is an overhead for switch-

ing between the two independent execution modes. The overhead incurred is

mainly the time required to drain (and prime) the superscalar pipeline when

entering (and exiting) the static mode. With long running S-Regions, this cost

becomes negligible. For example, for the processor configuration described in

Section 6.6, the penalty for switching between the static mode and dynamic

modes of execution is observed to be approximately 20-30 cycles. By setting

the smallest duration of S-Regions to 500 cycles, the performance drop due to

the switching overhead (PDsw) can be limited to to approximately 5%. PDsw

can be computed as:

PDsw =
Switchingpenalty

Di

(6.1)

86

Step 2: Estimating performance degradation due to imperfect static

schedules PDsc

Unresolved memory addresses or memory aliases and insufficient registers often

restrict the static scheduler from deriving optimal schedules. However, the

media and scientific programs examined in this study exhibited virtually no

memory aliases and false register dependences. The number of memory aliases

were limited since the primary data structures used in these programs were

arrays with regular data access patterns. For such arrays, the compiler can

typically disambiguate the memory addresses statically. The number of false

dependences within the loops were also few. There were two main reasons

for this. First, the Alpha compiler used in the experiments employed is a

sophisticated register allocator to efficiently use the 32 architectural registers

in the Alpha ISA. Further, there are few live-in and live-out values in the loops,

implying that almost all 32 registers are typically available for use within the

S-Regions.

Although false data and memory dependences are minimal, other im-

pediments such as integral schedule length restrictions still limit the compile-

time instruction scheduler. Indeed, the primary cause for performance degra-

dation was the integral schedule length limitation faced by compile-time sched-

ulers (i.e., the schedule length of a basic block is restricted to be an integer

value). For example, consider a simple singly-nested media loop that contains

42 instructions. Since the loop is highly parallel, the ideal schedule if the tar-

get architecture can issue four instructions each cycle is 42/4 = 10.5 cycles

(assuming there are sufficient functional units). However, the final schedule

achieved by the static schedule is d10.5e = 11 cycles, since the compiler can-

not assume non-integral schedule lengths. Two issue slots of every 40 are left

87

unused in this schedule, leading to 5% performance degradation. On the other

hand, the dynamic issue logic in the superscalar processor has no wasted slots

since instructions from the next iteration can be overlapped with the current

iteration at run-time.

Hence, to estimate the schedule efficiency of the compiler-generated

schedule, the penalty on the schedule due to this limitation is estimated. To

estimate the cost, iteration counts of the S-Regions are profiled. In most loops,

it is sufficient to profile the innermost loop count alone since the performance

is determined primarily by that loop. However, in media programs, several

important loops have very short innermost loops (such as dct or quantization).

Hence, the iteration counts of the innermost two loops (I1i, I2i) are profiled

and the total time taken for the compiler-generated loop (SCi) to execute is

computed:

SCi = ((C1i ∗ I1i) + C2i) ∗ I2i (6.2)

where, C1i and C2i are the schedule lengths of the two loop nests.

To estimate the cost of running the loop in the dynamic mode with out-

of-order issue, the total number of instructions Ni executed by the loop is first

computed. If the processor has a sufficiently large issue queue and reorder

buffer, for ILP-rich regions such as media and scientific loops, the dynamic

issue logic can find sufficient parallelism to keep the pipeline and functional

units busy in almost every cycle. Hence, the total time taken for the S-Region

to execute in the dynamic mode (SDi) is estimated to be simply the total

number of instructions divided by the issue width of the processor.

88

Ni = ((N1i ∗ Ii1) + N2i) ∗ Ii2 (6.3)

where, N1i and N2i are the number of instructions in each nest level of the

loop.

SDi =
Ni

IW
(6.4)

The estimated performance difference between compiler-generated sched-

ules and those achieved by the dynamic issue logic (PDss) can thus be com-

puted as:

PDss =
(SCi − SDi)

SDi

(6.5)

Step 3: Estimating cost of cache misses PDcm

Without dynamic scheduling it is difficult to hide the latency of an L1 cache

miss and even harder to hide the larger latency miss in the L2 cache. Fritts et

al. [24] and Banerjee et al. [7] note that long latency cache misses are some of

the biggest impediments to achieving high performance in statically scheduled

processors. Thus, the cost of these misses is estimated to ensure that the

performance impact in selected S-Regions is limited. To identify the cost,

the average number of L1 misses (L1i) and L2 misses (L2i) are profiled. The

execution time (Ei) of the S-Region increases by:

89

Ei = SCi + L1i ∗ L2 Latency + L2i ∗ Memory Latency (6.6)

The heuristics conservatively estimate that the dynamic scheduler can

hide all the L1 and L2 misses with a sufficiently large window. Hence, the

performance degradation is given by:

PDcm =
(Ei − SDi)

SDi

(6.7)

Step 4: Final selection of S-Regions

Final S-Regions are selected such that the sum of the performance degrada-

tion due to switching overhead, imperfect schedules and memory misses, is

less than a given performance threshold of PDth as shown in Figure 6.1. The

compiler identifies regions in programs that satisfy the given constrains and

schedules them with different ILP optimizations to create efficient schedules.

The compiler schedules instructions into ‘packets’ of independent instructions.

All the instructions in a packet are guaranteed to be independent and can be

issued to the function units in parallel. A packet style similar to the MultiOp-S

packet semantics described in the HPL-PD instruction set architecture [66] is

used. MultiOp-S instructions can be issued in parallel but can also be issued

sequentially from left to right. This permits the S-Region code to run correctly

in both static and dynamic modes. Additionally, a program compiled for a

specific Hybrid-Scheduling machine can also run correctly on general-purpose

processors with different resource configurations. The compiler finally anno-

tates S-Regions with special “start-static” and “end-static” instructions to

90

indicate the beginning and the end of S-Regions. S-Regions can have multiple

basic-blocks and the first instruction in each basic-block starts a new instruc-

tion packet. The compiler also annotates each basic-block with a “start-block”

instruction.

6.3 The Dual-Mode Hybrid-Scheduling microar-

chitecture

A high-level view of the Dual-Mode Hybrid-Scheduling microarchitecture is

shown in Figure 6.2 [63]. In this architecture, S-Regions bypass the dynamic

issue logic and execute in a low power static mode. S-Region instruction

packets are issued to the functional units in their statically-scheduled with

minimal hardware support.

The Dual-Mode Hybrid-Scheduling microarchitecture extends the fea-

tures of a generic superscalar processor with various low energy structures to

support static mode issue. These include a small buffer to hold S-Regions and

a low-energy mechanism to support precise exceptions for instruction execu-

tion in the static mode. The remainder of this section describes in detail the

various features of the Dual-Mode Hybrid-Scheduling architecture.

Initial Program Execution: In this scheme, the program begins execution

in the normal superscalar fashion, i.e., decoded instructions are dispatched to

the instruction window where they wait for their operands, ready instructions

are issued to the functional units and finally instructions retire in-order from

the reorder buffer. Execution continues in the superscalar mode until “start-

static”, an instruction indicating the beginning of an S-Region, is detected.

91

Window

Issue Reorder

Buffer

F
un

ct
io

n
U

ni
ts

File

S−Buffer EHU
Future

File

Program

D
ec

od
e

F
et

ch
Register

To reg. fileS−Regions

Figure 6.2: The Dual-Mode Hybrid-Scheduling microarchitecture

The S-Buffer: All instructions following the “start-static” instruction, i.e.,

S-Region instructions, are stored in the S-Buffer. Instructions are placed in

the S-Buffer until the “end-static” instruction is detected indicating that all

the instructions belonging to the S-Region have been captured in the buffer.

A detailed structure of the S-Buffer is shown in Figure 6.3. The S-Buffer is

a circular buffer and each line holds one instruction packet. The packet size

is fixed and is determined at design time. The maximum packet size is the

number of function units available in the processor. Each S-Buffer line contains

a PC field where the program counter value of the first instruction in the group

is stored. Each line also has two special bits, namely, S-bit and B-bit, which are

set if the line holds the first instruction of an S-Region or if it holds a branch

instruction respectively. The buffer also maintains a pointer (fill ptr) to the

next available entry for filling. Consecutive instruction packets are placed in

consecutive lines of the S-Buffer.

92

SB# SB# PCTarget

(c) Branch Table

PC
bit

:
:

:

Instr NSInstr1
bit
B PC V

(a) S−Buffer

fill−ptr

SB# NB

(b) PC Table

Figure 6.3: Structures used in the static mode

Switching to Static Mode: The compiler schedules S-Region instructions

assuming that all the function units are available for use in the static mode and

that all the register values are available in the register file. This implies that

the S-Region instructions can begin execution only after the last instruction in

the superscalar mode has completed. Therefore, static mode issue can begin

immediately provided the superscalar pipeline has drained while the S-Region

was being captured. If not, the processor stalls for a few additional cycles

until the superscalar pipeline drains completely. Thus, there is a cycle-time

overhead incurred in switching between the two modes. However, by choosing

S-Regions that execute for long durations in the static mode, the switching

cost can be amortized. After the last instruction in the superscalar mode

has completed, the dynamic issue logic is turned off and instructions begin

issuing from the S-Buffer. Thus, just prior to static mode execution, the latest

values of registers are available in the register file. Note that since S-Region

instructions are issued in their statically-scheduled order, they need not be

renamed and are placed into the buffer before register renaming is performed.

Instruction Execution in Static Mode: Instructions from the S-Buffer

93

are issued to the functional units without any further dependence analysis.

One complete S-Buffer line is issued every cycle. Memory misses are handled

by hardware interlocks and cause the issue of the subsequent packet to stall.

All instructions issued in the static mode completely bypass the issue logic,

leading to enormous energy savings in the processor. Instructions issue in the

static mode until the last instruction of the S-Region is executed (detected by

the “end-static” instruction). The processor then exits the static mode, starts

fetching from the instruction cache and returns to the superscalar mode of

execution.

Tracking S-Regions: The scheme uses a small content addressable table,

called PC-Table (Program-Counter Table) as shown in Figure 6.3, to track

all S-Region blocks in the S-Buffer. Each entry in the table contains a PC

field and the corresponding S-Buffer line number holding the first instruction

of the region. Each time a new S-Region is filled into the S-Buffer, an entry

is created in the PC table. When a “start-static” instruction is decoded, the

PC table is probed to check if the corresponding S-Region is already present

in the S-Buffer.

The “start-block” instruction also causes an entry to be created in the

PC table. To track S-Regions with multiple basic blocks, the entries of the

PC table are augmented with a field to hold the number of blocks (NB field).

This is set by the “start-static” instruction. Hence, only the first PC table

entry of a region has this field set.

The PC table entry is invalidated when the S-Buffer is full and a new

S-Region has to overwrite an existing region. Invalidation of S-Regions is

handled by the S-bit. The S-Buffer line holding the first instruction in the

region has its S-Bit set. The value of the S-bit is always checked before filling

94

a line in the S-Buffer. If the bit is set, the entry of the previous S-Region

(including all the basic blocks in the region) is invalidated in the PC Table

before proceeding any further. Note that this simple scheme allows us to

handle multiple basic block S-Regions with single-entry points. For regions

with multiple entry points, all entries in the PC Table are invalidated before

filling the S-Buffer with the new S-Region.

Branching in the Static Mode: Branches in the static mode by default are

predicted as ‘always taken’. The Branch Table shown in Figure 6.3 is used for

storing the target address of the branch instruction. Entries in the branch table

are created when the branch is decoded. Each entry holds the PC of the branch

and the S-Buffer line number of the target instruction. The branch table is

content addressable with an S-Buffer line number. When issuing an S-Buffer

line containing a branch instruction (indicated by the B-bit), the branch table

is accessed and the target S-Buffer line number is obtained. Subsequent issue

of instructions is performed from this S-Buffer line. If the branch is not-taken,

as soon as the branch has been resolved in the execute state, the instruction

packet in the decode stage is squashed. The PC Table is searched with the

computed target address and if there is no valid entry corresponding to the

address, the processor exits the static mode and returns to the superscalar

mode of execution. This branching scheme, similar to the IBM NorthStar

branch prediction scheme [10], provides zero-cycle branch instructions in the

taken case, and a unit cycle latency for the not-taken case (when the target

instruction is in the S-Buffer). Hence, this scheme is particularly suited for

branches that are highly biased in the ‘taken’ direction. The compiler employs

if-conversion [3] to eliminate unbiased branches wherever possible.

95

Exiting the Static Mode: When execution switches from static mode

to the dynamic mode on a branch, the instruction cache is accessed with the

target of the branch. The processor waits until the last instruction in the static

mode has completed (after which the correct values of registers are available in

the architectural register file), before execution resumes in the dynamic mode.

In-order Retirement and Exceptions: In the static mode, instructions

are issued in packetized groups and also commit as a group. This feature

offers the opportunity to design a low-power reorder buffer with few ports

and low associativity. Therefore, rather than using the reorder buffer present

in the superscalar mode, the scheme provides a separate buffer for the static

mode called the Exception Handling Unit (EHU) to support in-order commit

of instructions and for handling precise exceptions in the static mode. The

EHU is similar to the reorder buffer with future file structure proposed by

Ozer et al. [45] for VLIW processors.

The structure of the exception handling unit is shown in Figure 6.4.

Each line in the EHU contains only as many instructions as the issue width

of the processor. The EHU is a circular buffer consisting of a head and a

tail pointer, which point to the first and next available entries in the buffer,

respectively. The maximum buffer length is the longest latency operation plus

one [45].

When an instruction packet is issued, the buffer line number is placed

in the line number field of the EHU entry pointed to by the tail pointer and

the destination register numbers are written into the Dest Reg field. In the

static-mode, the operations write results into the future file and also read

operands from it. The future file is a replica of the architectural register file.

This implies that when the execution modes switch from the superscalar to

96

Line #
Exe
bit

Dest
reg

 Value Exp
bit

Exe
bit

Dest
reg

 Value Exp
bit

...............

:
:
:

:
:
:

Instruction 1 Instruction N

 SB

head

tail

Figure 6.4: Exception handling unit for static mode. N is the number of
instructions issued every cycle.

static mode, the register contents of the architectural register file need to be

copied to the future file.

When an operation executes without an exception, the result is written

into the future file, its Exe bit in the EHU is set and the result value is written

in the Value field. If any instruction causes an exception, the Exp bit is set.

At each cycle, the entry pointed to by the head pointer is examined. If all

the Exe bits are set and all the Exp bits are clear, the results are written into

the architectural register file. If an exception occurs in one of the instructions,

instruction issue is stalled, the architectural register file contents are overwrit-

ten onto the future file and the EHU contents are discarded. The S-Buffer line

number which caused the exception is extracted and the instruction causing

the interrupt is reported to the operating system. Re-execution of instructions

resumes from the first instruction in the packet.

The structures introduced for the static mode execution are inherently

low energy structures due to small sizes, low associativity and fewer port re-

quirements. These simple structures replace the complex, power-hungry hard-

ware units such as the issue window and reorder buffer. A detailed evaluation

of the scheme shows that the Hybrid-Scheduling scheme can provide tremen-

97

dous energy savings in generic superscalar processors with minimal perfor-

mance loss.

6.4 Experimental Setup

This section describes the experimental setup used for evaluating the Dual-

mode Hybrid-Scheduling scheme.

6.4.1 Benchmarks

The evaluation suite includes several media and scientific benchmarks. Five

audio and video compression/encoding applications in the Mediabench [38]

suite (adpcm, epic, g.721, jpeg, mpeg2) and several media kernels (iir, add,

scale, autocorr, fir, dct) are examined in this study. Further, two scientific

applications from the SPECFP suite of benchmarks (swim, tomcatv) also in-

cluded in the benchmark suite. All benchmarks except tomcatv are run to

completion. For tomcatv, the first 100 million instructions are skipped and

run for a billion instructions.

6.4.2 Evaluation framework

The framework used to evaluate the Dual-Mode Hybrid-Scheduling scheme is

shown in Figure 6.5. Benchmarks are compiled on a DEC Alpha machine with

the cc and g77 compilers. The benchmarks are compiled with the highest opti-

mizations; optimizations such as loop unrolling, if-conversion, software pipelin-

ing, prefetching were applied semi-automatically to create compact schedules.

By default all loops are unrolled four times. In some cases, higher unroll fac-

tors provided better performance benefits. Software pipelining is applied in

98

Power Models

Simulator
Parameters

+

C/FORTRAN Program

custom parser/
C−Breeze

Simulator Results

Profile Analyzer

Profile Stats for selecting/marking S−Regions

Simplescalar
Simulator

cc/gcc Compiler

Figure 6.5: Framework for evaluating the Dual-Mode Hybrid-Scheduling
scheme.

many of the S-Regions in media programs. The scientific benchmarks were

not unrolled or software pipelined since they were very large and exhibited

sufficient ILP even without unrolling. If-conversion is applied by the com-

piler using conditional move instructions. Only two major S-Regions (main

loop in adpcm and sum-of-absolute-differences (SAD) loop in mpeg2) required

predication. The compiler adds a prefetch instruction for all load instructions

within loops. All load and store instructions are scheduled assuming they hit

in the cache. Misses, if any, are handled by hardware interlocks.

All loops without function calls were considered to be potential S-

Regions. Loops in the programs were identified using custom parsers (for

FORTRAN programs) and C-Breeze [27], an academic source-to-source com-

piler (for C programs). Selected S-Regions are annotated with special “start-

static”, “end-static” and “start-block” instructions.

The Dual-Mode Hybrid-Scheduling architecture is implemented within

the Wattch 1.0 simulator [11] framework. Wattch is an architectural-level

simulator for estimating CPU energy consumption. Wattch is based on Sim-

99

Table 6.1: Processor configuration

Feature Attributes Feature Attributes

IW/LSQ 64/32 entries S-Buffer 128 rows,
194 bits/row

ROB 64 entries EHU 16 rows,
284 bits/row

Width 4-way PC/Br Table 16/10 entries
Branch- Combination predictor BTB 512 entries,4-way
Predictor 4K Gshare + 2K bimod

L1 Dcache 64K 4-way IALU (4 units) 1-cycle latency
1-cycle FPALU (4 units) 2-cycle latency

L1 Icache 32K DM IMult (2 units) 3-cycle mult lat.
1-cycle 10-cycle div lat.

L2 Cache 512KB, 4W FPMult (2 units) 3-cycle mult lat.
10-cycle 15-cycle div lat.

Memory 100-cycle lat LD/ST (2 units) 1-cycle

plescalar’s cycle-accurate out-of-order issue simulator sim-outorder [13]. De-

tails about the Wattch simulator are provided in Chapter 4 and are also avail-

able in the Wattch technical paper [11]. Complete configuration details of the

simulated processor are given in Table 6.1. The default simulator has only

five pipeline stages. An additional 30 cycles penalty is added to the switching

overhead to account for the impact of deeper pipelines. The base processor

has an issue width of four. Power distributions for different hardware struc-

tures in the base processor are shown in Tables 6.2 and 6.3. The power models

corresponding to the 0.18µ process at 2V supply voltage and 1GHz operating

frequency are used. Unused units dissipate 10% of their maximum power [9].

The power breakdowns in Table 6.2 represent the maximum power per unit.

The total processor power for the baseline configuration was 77W. In the base-

line configuration, benchmarks dissipated anywhere from 29W to 41W average

power per cycle. Table 6.3 shows the average power distribution among dif-

ferent structures based on the activity factors of the benchmark jpeg.

100

Table 6.2: Power distribution for different hardware structures in the baseline
processor.

Unit Power Unit Power

BPred 4% Rename 1%
IW/LSQ 10% ROB 13%
Reg. File 3% Res. Bus 3%

Func. Units 15% ICache 3%
DCache 7% Clock 37%

L2 Cache 4% Total 100%

Table 6.3: Activity-based power distribution for jpeg.

Unit Power Unit Power

BPred 2% Rename 1%
IW/LSQ 18% ROB 18%
Reg. File 1% Res. Bus 5%

Func. Units 8% ICache 6%
DCache 6% Clock 34%

L2 Cache 1% Total 100%

Table 6.4: Static mode structures

Unit Ent- bits/ Ports Max Assoc. Power Power(%
ries row access access (Watts) of total)

S-Buffer 128 194 1R/1W 1/cyc No 0.6 0.8%
EHU 16 284 1R/5W 6/cyc Partial 0.86 1.1%

Future File 32 64 8R/4W 12/cyc No 2.24 3%

The static mode structures are modeled using the RAM and CAM mod-

els provided by Wattch 1.0. The static mode also supports execution of only

four instructions per cycle. The structures introduced for this mode are in-

herently low energy structures due to small sizes, low associativity and fewer

port requirements. More details of the structures introduced are given in Ta-

ble 6.4. The size of the S-Buffer needs to be large enough to hold the largest

101

S-Region in the programs. For the benchmarks studied, the lengths of different

S-Regions varied from 10 lines to 34 lines. Hence, the size of the S-Buffer is set

to 128 lines to easily accommodate the largest S-Region. Each S-Buffer line

contains 4 instruction entries. Each line in the buffer also holds a PC and two

state bits (a total of 194 bits). The S-Buffer is accessed only once per cycle,

either during fill or during issue.

The size of the exception handling unit is also small, since it needs

to be only one entry longer than the longest latency operation [45]. Instruc-

tions access the EHU (exception handling unit) associatively during instruction

writeback. However, unlike the reorder buffer, during issue and commit only

a single entry is accessed [45]. Each row in the EHU contains four instruction

entries. Each entry holds one result value, a destination register number and

two state bits. Hence, each entry of the EHU contains 284 bits. The maxi-

mum power consumed by the EHU is 1% and the future file, which is similar

to the register file, is 3% of the overall processor power. Note that the since

the register file is updated from the ROB in the dynamic mode and from the

EHU in the static mode; the total number ports on the register file remains

unchanged. The PC and branch tables are small structures since only a few

S-Regions are placed in the S-Buffer. They account for only 0.3% of the total

processor power.

6.5 Workload characterization

Table 6.5 shows the characteristics of the programs in terms of S-Regions.

Columns 2 and 3 show the total number of loops and the number of loops

without function calls, or potential S-Regions in the benchmarks. Columns 4

and 5 show the number of S-Regions that were dynamically invoked and the

102

Table 6.5: S-Region characteristics in media and scientific applications

Bench Static Info. Dynamic Info. Duration Regular Memory

-mark Num # w/out Num % Time Avg. Num %Time Num % Time
of Function of in S- Dura- of S- in S- of S- in S-

Loops Calls Loops Regs tion Regs Regs Regs Regs

ADPCM 7 2 1 99% 17607 1 99% 1 99%
EPIC 75 49 18 87.8% 1.2e6 11 87.1% 11 87.1%
G.721 9 6 5 49.6% 84 0 0% 0 0%

MPEG2 109 77 77 88% 6107 32 75% 32 75%
JPEG 317 162 20 50% 6403 4 31% 4 31%
SWIM 16 14 14 93% 3.3e8 14 93% 2 67%
TOMC 9 6 6 93% 2.1e7 6 93% 4 71%

total time spent in the regions. The table shows that in these applications, a

significant number of loops qualified as potential S-Regions and a considerable

amount of program execution time was spent in potential S-Regions.

Column 6 in Table 6.5 shows the average duration of the potential S-

Regions. The duration shown is the weighted average, where the weights are

determined based on the percentage of program time attributed to a region.

Figure 6.5 shows the distribution of S-Regions in the program in decreasing or-

der of the program time spent in the S-Region. Typically in each program there

are three or four dominant S-Regions. The average duration of the S-Regions

in each program is typically determined by these dominant regions. On closer

examination the results revealed that except in G.721, most of the dominant

S-Regions were over 3000 cycles in duration (corresponding to approximately

1% performance loss when the switching overhead is 20-30 cycles). Columns 7

and 8 show the number of S-Regions eliminated due to short durations and

the time spent in the remaining S-Regions respectively.

In this study, PDthreshold is set to 10%. However, the largest penalty

observed was only 7% (ADPCM). Examining the schedules further showed

that the limitation that schedules generated by the compiler are restricted

103

0

10

20

30

40

0

10

20

30

40

0

10

20

30

%
 T

o
ta

l

E
x
e

c
.

T
im

e

 EPIC

G721

JPEG

%
 T

o
ta

l

E
x
e

c
.

T
im

e

%
 T

o
ta

l

E
x
e

c
.

T
im

e

S−Regions

S−Regions

S−Regions

0

20

40

60

S−Regions

%
 T

o
ta

l i
n

E

xe
c.

 T
im

e

0

10

20

30

40

S−Regions

0

20

40

60

S−Regions

%
 T

o
ta

l i
n

E

xe
c.

 T
im

e

%
 T

o
ta

l i
n

E

xe
c.

 T
im

e

TOMCATV

SWIM

MPEG2

Figure 6.6: Distribution of S-Regions in decreasing order of the program time
spent in the region.

104

to integral values caused significant performance penalty. The performance

degradation caused due to rounding the lengths of schedules to integer values

can be significant but is considerably reduced by unrolling (and/or software

pipelining) the loop [36]. There were very few false dependences introduced

due to register reuse. There were sufficient registers to assign each instance of

a variable in the unrolled version (or software-pipelined version) to different

destination registers to eliminate false dependences. Further, there were suffi-

cient registers to do this without introducing any spill code. The Alpha ISA

has 32 general-purpose integer registers, which are sufficient for the compiler

to harness the ILP statically. In architectures with a fewer number of archi-

tectural registers (e.g: x86), the impact of false dependences will be higher

than what is observed in this work and potentially more S-Regions will be

eliminated due to this. One possible solution for such architectures is to apply

the Hybrid-scheduling scheme within a dynamic optimization framework [50],

wherein the dynamic optimizer creates schedules using the physical register

file.

Columns 9 and 10 show that most of the S-Regions had regular ac-

cess patterns for which simple prefetching schemes were sufficient to hide the

memory latencies. However, in the scientific programs, few large S-Regions

were eliminated due to frequent memory misses. With more sophisticated

prefetching schemes, these S-Regions could potentially be included for static

mode issue as well. Final S-Regions are selected such that the sum of the

performance degradation due to switching overhead, imperfect schedules and

memory misses, is less than 10%. However, the maximum performance drop

was limited to only 7.7% in ADPCM. Column 9 thus indicates the final num-

ber of S-Regions selected by the compiler and column 10 shows the percentage

of time spent in these regions.

105

6.5.1 Variability with input

Media and scientific programs typically have very regular control flow and

regular memory access patterns that shows little variability across different

inputs. Input data however directly controls some of the iteration counts in

the dominant loops and hence the duration of the S-Regions could potentially

be sensitive to input data. A total of five input sets were used for profiling

multimedia programs and three sets for the scientific programs. For media pro-

grams, particularly small images and audio inputs were included to determine

the sensitivity of the results to input data. For the floating point benchmarks

the smallest inputs were the test inputs in the SPEC suite. Note, Table 6.5

shows the data for the default input sets for media and test inputs for scientific

benchmarks. The main observations are summarized as follows:

• In several media programs, the duration of selected S-Regions were com-

pletely independent of input data. These programs included APDCM,

G721 and MPEG2.

• The duration of S-Regions in image processing benchmarks JPEG and

EPIC showed some dependence on input data. However, even with the

smallest image used (32x96 pixels), the durations of the dominant regions

remained as high as 1,311 and 45,269 cycles respectively.

• In a few media benchmarks, the percentage of time in S-Regions reduced

with very small input sets, the largest difference was in EPIC were the

percentage of time spent in S-Regions decreased from 87% to 67%. In

most benchmarks, the time spent in S-Regions remained within 5%-10%

of the values shown in Table 6.5 for any input. In a few benchmarks,

increasing the input data size, increased the percentage time spent in S-

106

Regions considerably (for example, in EPIC, the time spent in S-Regions

increased from 87% to 94% for a large 1184x1760 pixel image).

• In scientific programs, the average durations were very high even with

smallest test input sets and with train and reference inputs, the average

durations increased further.

6.6 Experimental results

Figure 6.7 provides the energy and energy-delay results for all benchmarks.

The corresponding performance degradation suffered by the programs is given

in Figure 6.8. The figure shows that the Dual-Mode Hybrid-Scheduling scheme

is able to achieve very large improvements in energy consumption without any

significant increase in the execution time.

In kernels, the average energy improvement is seen to be 35%, with

the improvement ranging from 34% (iir) to 37% (dct). On average, the

energy-delay product improves by 33%. The energy improvement and perfor-

mance results for the applications are also included in Figures 6.7 and 6.8.

On average, in applications, we observe an energy improvement of 20% and a

performance degradation of 4.3%. In the applications, the energy savings are

directly proportional to the amount of time spent in S-Regions. The highest

improvement in energy is seen in ADPCM (35%). JPEG shows the lowest

savings (8%).

The energy improvements seen are primarily due to the savings in the

issue window and reorder buffer power. Additional power savings are observed

in the fetch and decode phases of the pipeline. Since static mode instructions

are accessed from the S-Buffer which is significantly smaller than the instruc-

107

0

5

10

15

20

25

30

35

40

45
%

 Im
pr

ov
em

en
t in

En
er

gy
 an

d E
ne

rg
y−

De
l

Energy Energy−Del

iir add scale auto fir dct AVG adpcm epic jpeg mpeg2 swim tomc AVG

Figure 6.7: Energy and Energy-Delay improvements

tion cache, fetch power reduces considerably. Further, since instructions in

static mode are not renamed, rename power is also saved in the static mode.

Additionally, since the branch predictor is not accessed in the static mode,

this leads to further energy savings. Figure 6.9 shows the energy savings in

each hardware structure. Energy savings in the clock nodes of the structures

is shown separately. Note that these are not absolute values but only portray

the ratio of savings from each structure.

The performance degradation suffered by an application depends on

the nature of the loop schedules, static mode cache misses and the switch-

0

2

4

6

8

10

12

%
 D

eg
ra

da
tio

n
in

Ex
ec

ut
ion

 T
im

e

iir add scale auto fir dct AVG adpcm epic jpeg mpeg2 swim tomc AVG

Figure 6.8: Performance degradation in the benchmarks

108

0

20

40

60

80

100

120

%
 Im

pr
ov

em
en

t i
n

E
ne

rg
y

rename bpred window rob lsq icache clock

iir add scale auto fir dct adpcm epic jpeg mpeg2 swim tomc

Figure 6.9: Energy improvements in different hardware structures

ing overhead incurred. The average performance degradation caused by the

Hybrid-Scheduling approach is 3.6%. The highest performance drop in kernels

(4.95%) is observed in add and the lowest is 0.26% seen in iir. The highest

performance drop in applications was observed in MPEG2 (9.9%) and lowest

performance penalty was seen in JPEG (1%). As described in Section 5.1,

in most benchmarks the key constraining factor was the limitation that the

schedules generated by the compiler are restricted to integral values. In most

of the benchmarks, the performance penalty due to cache misses and switch-

ing overhead was limited to less than 1%. In MPEG2, the switching overhead

accounted for approximately 3% performance loss. The largest S-Region in

MPEG2 was only 800 cycles long.

6.6.1 Combining the generic and the Dual-Mode Hybrid-

Scheduling microarchitectures

With nominal increase in design complexity and chip area, the generic and

Dual-Mode Hybrid-Scheduling micro-architectures can also potentially be com-

bined as shown in Figure 6.10. The resulting Hybrid-Scheduling architecture

109

Fetch Decode

Issue Logic
Reorder−Sensitive

Rename

F
u
n
c
ti
o
n
a
l
U

n
it
s

Reorder

Buffer

Low−Power
ROBS−RegionsLoop−Level

Blocks LRR/HRR

Figure 6.10: A Multi-Mode Hybrid-Scheduling scheme

replaces the out-of-order issue queue in the Dual-Mode Hybrid-Scheduling

scheme with the reorder-sensitive issue queue to support three types of pro-

gram regions: loop-level S-Regions, Low Reorder Required (LRR) blocks (basic-

block level S-Regions) and High-Reorder Required (HRR) blocks (dynamic

blocks) for larger overall energy savings. Such a trade-off can be particularly

useful in general-purpose desktop systems which cater to diverse application

domains such as integer, media and scientific. By routing instructions within

a program region to scheduling engines tuned specifically to the region’s inher-

ent dynamic reordering requirements, the multi-mode Hybrid-Scheduling ap-

proach can thus provide substantial reduction in processor energy consumption

while concurrently delivering high levels of performance.

6.6.2 Hybrid-Scheduling versus in-order issue

Table 6.6 compares and contrasts the Dual-Mode Hybrid-Scheduling architec-

ture with a complete in-order issue processor. The results show that while the

energy savings in an in-order processor of execution might be high, the perfor-

mance degradation suffered is also significantly large. The main reason for the

110

Table 6.6: Hybrid-Scheduling approach versus in-order execution. All values
are normalized with respect to out-of-order execution results.

Benchmark Normalized Execution Normalized Energy
Time Consumption

OOO Hyb-Sched In-order OOO Hyb-Sched In-Order

ADPCM 1.00 1.08 1.08 1.00 0.71 0.61
EPIC 1.00 1.04 1.35 1.00 0.70 0.59
JPEG 1.00 1.01 1.27 1.00 0.90 0.61

MPEG2 1.00 1.06 1.14 1.00 0.87 0.60
SWIM 1.00 1.03 1.70 1.00 0.74 0.67
TOMC 1.00 1.02 1.60 1.00 0.84 0.66

performance degradation in the media programs is short basic blocks created

by frequent function calls in the non-S-Regions of the programs. The scientific

programs typically have fewer function calls and larger basic blocks, however,

the primary reason for the performance degradation is the large number of

memory misses seen in the non-S-Regions. The results in Table 6.6 further in-

dicate that partitioning a program into different execution regions as is done in

the Hybrid-Scheduling architecture and mapping the regions to hardware units

based on their requirements is critical for improving the power-performance

balance modern superscalar processors.

6.6.3 Comparing Dual-Mode Hybrid-Scheduling with dy-

namic resource adaptation schemes

Recent work in the area of energy-effective microprocessors has shown that

it is possible to reduce power in the out-of-order issue units and other units

by dynamically resizing the structures [5][6][14][22][25][47][51]. The basic phi-

losophy of these approaches is that the resource requirements of a program

changes during its execution. Almost ubiquitously, changes in IPC (instruc-

tions per cycle) are used to estimate the resource requirements of the program

111

Table 6.7: IPC of different program regions

Benchmark Average S-Region IPC of rest
IPC IPC of the prog.

ADPCM 3.97 3.99 1.29
EPIC 2.44 2.61 2.05
G.721 2.48 0 2.48

MPEG2 3.38 3.55 2.82
JPEG 3.02 3.99 2.80
SWIM 3.53 3.99 2.98
TOMC 2.98 3.99 2.45

during run-time [5][14][22]. IPC is monitored and processor resources such as

the issue window, reorder buffer, issue width are changed based on a predeter-

mined FSM (Finite State Machine). Typically, when IPC is below a certain

threshold, the number of resources (example: issue queue entries) are reduced.

If the IPC increases, the number of entries are increased. The assumption is

that the program is now in a region containing inherently high amount of ILP,

and hence can benefit from more resources.

Table 6.7 shows the IPC of the programs studied, along with the average

IPCs for S-Regions and the rest of program. The table shows that the S-

Regions exhibit high IPCs compared to the rest of program. For these high ILP

regions, the Dual-Mode Hybrid-Scheduling technique completely eliminates

the use of the processor resources such as the instruction window and reorder

buffer. The dynamic resource adaptation schemes on the other hand employ

larger number of resources for the high ILP regions leading to less energy

savings. Therefore, the proposed scheme does particularly well for regions

where the IPC-based dynamic adaptation schemes fail to benefit from resource

reduction. Furthermore, these dynamic resizing methods could potentially

112

Table 6.8: Resource occupancy of different regions in programs
Benchmark ADPCM EPIC G.721 MPEG2 JPEG SWIM TOMC

Avg. ROB 63.46 23.38 19.71 28.91 33.53 58.69 59.85
S-Region ROB 63.8 23.48 0 29.6 63.79 68.3 63.68
Rest of Prog. 12.8 23.15 19.71 26.6 26.63 53.09 57.84

Avg. IQ 52.0 11.0 9.8 19.30 23.34 34.93 26.18
S-Region IQ 52.4 12.7 0 20.42 51.19 44.96 44.55
Rest of Prog. 4.7 8.6 9.8 15.9 16.99 22.69 16.53

be applied in the superscalar mode of execution in the Hybrid-Scheduling

approach leading to larger overall savings in energy consumption.

A different approach to dynamically reconfigure processor resources is

based on monitoring the occupancy of the different queues in the proces-

sor [47][18]. These techniques directly monitor the occupancy of structures

such as the issue queue, load-store queue and reorder buffer to reconfigure

their sizes. Table 6.8 shows the resource occupancy of the S-Regions and the

rest of the program. The table shows that the issue queue and reorder buffer

occupancy of the S-Regions is much higher than the rest of program. These

occupancy-based reconfigurable techniques can also be applied in the super-

scalar mode of execution in the Hybrid-Scheduling approach for greater overall

energy savings.

6.7 Summary

This chapter introduced a Hybrid-Scheduling technique specifically targeted

to media and scientific applications. The compiler analysis and the microarchi-

tecture for these applications is considerably simpler than the generic Hybrid-

Scheduling scheme proposed for a diverse set of applications. In this scheme,

regular regions such as loops, bypass the power-hungry units such as the issue

113

window and reorder buffer and execute in a low power static mode. Execution

in the static mode also results in additional energy savings in the decode logic,

instruction cache and branch predictor. The Dual-Mode Hybrid-Scheduling

technique can reduce energy consumption by as much as 37% for kernels and

up to 35% in full-length applications with minimal performance degradation.

114

Chapter 7

Related Research

This chapter briefly reviews previous contributions in areas related to the

Hybrid-Scheduling scheme. These include compile-time and run-time tech-

niques to reduce issue queue power, techniques that reuse dynamic schedules

and complexity-effective issue queues.

7.1 Compile-time techniques to reduce issue

queue power

A contemporaneous work similar to the Hybrid-Scheduling scheme was pro-

posed by Jones et al [31]. Their software-directed issue scheme estimates the

size of the issue queue required for each basic-block using compiler analysis.

At run-time, the scheme uses the compiler-directed hints to resize the issue

queue. One of the main differences between our approach and theirs is that

rather than resizing the existing queue, we add a separate low power queue to

the conventional out-of-order issue logic. An advantage of adding a separate

queue is that several compiler-directed and dynamic resizing schemes [5, 22,

47, 30, 16, 61, 31], including the one suggested by Jones et al., can be applied

to the out-of-order issue queue for much larger overall savings in power. The

Cool-Fetch scheme proposed by Unsal et al. [61] performs compiler-controlled

adaptation of the fetch engine at loop boundaries. While this technique does

not directly target the issue queue, the expected reduction in the number of

115

instructions fetched, indirectly reduces power consumption in the issue queue

and other out-of-order issue units.

7.2 Run-time techniques to lower issue queue

power

Run-time energy saving schemes typically lower the energy consumption in the

issue queue by adapting the size of the queue based on the dynamic require-

ments of the program [5, 14, 16, 22, 30, 47]. These techniques usually sample

measurable metrics such as IPC and issue queue occupancy to estimate the

computational demand of programs and to guide adaptation. To ensure ac-

curacy in detecting changes in computational demand, the sampling intervals

are usually quite large [22, 47, 30]. In contrast, compile-time approaches have

been shown to be better at adapting at smaller intervals [31, 61, 63]. For exam-

ple, the techniques suggested by Unsal et al. [61] and the proposed dual-mode

Hybrid-Scheduling scheme for media/scientific applications perform adapta-

tion at loop boundaries. The Hybrid-Scheduling scheme and Jones et al. [31]

resize the queue at an even finer granularity (at basic-block boundaries) using

compiler hints.

Seng et al. [51] suggest a technique to reduce power by using an in-

order queue and an out-of-order issue queue for critical and non-critical in-

structions respectively but do not reuse compiler schedules or support as in

the Hybrid-Scheduling scheme. They use dynamic critical path information to

steer instructions.

A few approaches use profile-time information to reconfigure dynamic

issue hardware for energy savings. Iyer et al. explore a technique which profiles

116

different characteristics of a program such as ALU usage, register file usage,

and instruction window usage [30]. Hotspots in the program are detected and

processor units are scaled accordingly. Ghaisi et al. [25] propose a technique

wherein the operating system dictates the expected IPC of a program (or even

for different phases of the program) and allows the hardware to choose between

different processor configurations such as pipeline-gating, in-order issue and

out-of-order issue. Chi et al [16] propose a technique to combine hardware

monitoring and software profiling to adapt microprocessor resources for power

reduction.

7.3 Reusing dynamic schedules

Talpes et al. [57] suggest an approach that collects schedules created by the

dynamic issue logic into a large trace cache and reuses them to save issue

queue power. Franklin et al. [23] and Nair et al. [44] proposed similar schemes

that were primarily aimed at improving the clock frequency of the processor.

These techniques are insensitive to the available ILP in the various phases

of programs, resulting in inefficient use of the caches holding the scheduled

instructions. These techniques require large caches to store scheduled groups

of instructions (nearly 100KB). In future processors, where leakage power is

projected to equal active power, techniques such as the Hybrid-Scheduling

scheme are more promising.

7.4 Complexity-effective issue queues

Another related direction of research focuses on designing complexity-effective

issue queues. These techniques attempt to reduce the complexity of crit-

117

ical issue logic tasks such as instruction wakeup and select. A majority

of the previously proposed techniques reduce complexity of the issue queue

by limiting the number of candidate instructions to be considered for is-

sue [1, 15, 20, 41, 42, 46, 48, 37]. These techniques typically consist of a

pre-scheduling phase wherein the data-dependences of instructions are ana-

lyzed. Instructions are typically held in a separate buffer and are considered

for issue in their approximate data-flow order [1, 15, 20, 41, 42, 48, 37]. In

some cases, after the pre-scheduling phase, instructions are steered to various

low-complexity FIFOs based on their dependences with older instructions in

the queues [1, 46, 48]. While these techniques indeed alleviate the complexity

of the issue logic, they often require extra hardware and/or the addition of a

few pipeline stages. In the Hybrid-Scheduling work, since the necessary anal-

ysis is performed statically, we shift the burden to the compiler and thereby

eliminate the need for any auxiliary hardware resources or pipeline stages.

Past research has suggested the use of a software layer to replace the

out-of-order issue logic. The DAISY [19] and Crusoe [34] architectures from

IBM and Transmeta, respectively, consist of a VLIW processor core logically

surrounded by a software translation layer. The software converts binaries of

any chosen architecture into VLIW instructions of the native processor. The

main limitation of this scheme is that a considerable portion of the execution

time is spent in running the translation software, making it nearly impossi-

ble to implement sophisticated compiler optimizations within the translator.

Further, in cases where the ILP is not visible at compile-time, conservative

decisions taken by the translation software could lead to significant perfor-

mance degradation on a target machine that allows only the VLIW mode of

execution.

118

Chapter 8

Future Work

This dissertation introduces a novel Hybrid-Scheduling paradigm that syner-

gistically combines the benefits of both the compiler and the micro-architecture.

The applications and opportunities for such a paradigm remain vast and largely

unexplored. Listed below are several areas that look especially attractive for

future exploration.

8.1 Using compiler assistance to lower power

dissipation in various hardware units

The Hybrid-Scheduling scheme reduces energy consumption in the issue queue

by reusing instruction scheduling work done at compile-time. There are a host

of other hardware structures that can be made energy-efficient by harnessing

compile-time intelligence. Value prediction hardware is one such example. Re-

cent work has shown that while value prediction is an effective architectural

technique for improving performance, the hardware tables used for record-

ing the run-time history of data values and predictions consume a significant

amount of power [8]. One of the primary reasons these structures consume

energy is that they are highly multi-ported. In typical value predictors, al-

though not many instructions show proclivity for value prediction, all instruc-

tions access the tables, thereby increasing the total switching activity. The

compiler can help alleviate the power dissipation in these tables by providing

119

information regarding which instructions can truly benefit from value predic-

tion. For example, address increment instructions in loops operating on array

structures often increment the address register by a value of four. These in-

structions thus exhibit a high prediction accuracy. During the code generation

phase, the compiler can mark instructions that perform address generation.

By annotating these instructions at compile-time and allowing only a select

few instructions to access the run-time hardware tables, energy consumption

can be significantly lowered.

Another hardware structure for which compile-time assistance could po-

tentially reduce energy consumption is the physical register file. The physical

register file is typically much larger than the architectural register file (more

than twice). However, as observed in Chapter 6, many regular program re-

gions do not require hardware register renaming. In regions such as loops,

the compiler can perform efficient software renaming with the architectural

registers. The compiler can identify such program regions by evaluating the

impact of false register dependences on the region schedule. For regions that

are not expected to suffer significant performance degradation due to false de-

pendences can potentially use only the architectural registers. A significant

portion of the physical register file can then be turned off to save energy.

8.2 Hybrid-Scheduling in multi-core proces-

sors

A recent trend in the semiconductor industry is to offer multiple processing

cores on a single chip. The focus on multiple cores arises from Moore’s Law,

which dictates that the number of transistors on a chip doubles every two

120

years. In the past, the extra transistors have been used to increase the size

of the cache or to boost other ILP-enhancing features. However, employing

the extra transistors to create additional cores to boost performance, without

drastically increasing chips’ power consumption.

Multiple cores open several new avenues for applying the Hybrid-Scheduling

technique. In a multi-core scenario, it is possible to run different processors

at different frequencies. A potentially energy-efficient processor design could

have a combination of low-power, low-complexity issue queue based cores run-

ning at high frequencies, combined with associative queue based cores running

at lower frequencies. Each core is designed to specifically cater to a different

type of program region. Based on the particular dynamic phase, programs can

be moved from one processing core to another more suitable core, for better

power-performance trade-offs.

8.3 “Compile for power” switch

Current compilers already provide two axes in the optimizations used. Pro-

grams are typically “compiled for speed” (common in general-purpose pro-

cessors) and/or “compiled for code size” (in embedded systems). With the

increasing power dissipation and energy consumption concerns, it is worth-

while to offer users a third axis with optimizations where programs can be

compiled for power/energy. The Hybrid-Scheduling technique is a key opti-

mization that could be included in such an axis. Further, Chapter 2 in this

dissertation evaluated several existing compiler optimizations for their impact

on processor power and energy. The study noted that some optimizations

such as common subexpression elimination are particularly suitable for low-

ering processor energy. A more comprehensive study can help identify other

121

such optimizations that can be included in an option where programs are com-

piled for power. The study will also help identify optimizations that require

improvements when compiling for a system where power is among the primary

concerns. Another interesting addition to this axis of compilation would be

power-aware libraries. When compiled with this option, the user library calls

can be directed to energy-efficient versions of the library routines to further

reduce energy consumption in the processor.

122

Chapter 9

Conclusions

The Hybrid-Scheduling scheme developed in this dissertation is based on the

key observation that all instructions and all basic-blocks in a program are not

equal; some blocks are inherently easy to schedule at compile-time, while oth-

ers are not. In conventional out-of-order issue superscalar processors, dynamic

scheduling is performed for all program regions irrespective of the quality of

the compiler-generated code. A detailed characterization of several general-

purpose integer programs revealed that 20%-45% of program execution time

can be attributed to basic-blocks classified as S-Regions, i.e., regions for which

the compiler can generate efficient schedules. Compile-time instruction-level

parallelism (ILP) enhancing optimizations are particularly effective in media

and scientific programs. In these programs nearly 30% to 99% program execu-

tion time (70% on average) can be ascribed to S-Regions. Thus, for a sizable

portion of a program, the hardware issue logic typically expends energy per-

forming superfluous dynamic reordering of instructions.

The Hybrid-Scheduling scheme exploits this inherent redundancy in a

computer system to lower the power dissipation and complexity of the out-

of-order issue units in the processor. In this scheme, energy is conserved by

allowing S-Regions to bypass the dynamic issue hardware in the processor and

execute on specially designed low-power, low-complexity hardware.

The proposed technique has both software and hardware components.

At the software-level, the scheme includes a novel compile-time analyzer that

123

uses extensive profile-guided hints to evaluate the quality of schedules gener-

ated by the static scheduler. Basic blocks which contain a small number of

anti- and output dependences, unresolved aliases and unknown load latencies

are inherently amenable to compile-time scheduling and require less dynamic

reordering. Such blocks are classified as S-Regions.

At the micro-architecture-level, S-Regions are directed to a novel is-

sue queue that can harness compiler-generated schedules to save power. In

the generic Hybrid-Scheduling architecture, basic-blocks that do not require

dynamic reordering of instructions, i.e., LRR (low reorder required) blocks, ex-

ecute on simple low-power, low-complexity, First-In, First-Out (FIFO) queues.

Non-S-Regions, i.e., HRR (high reorder required) blocks are directed to a fully

associative issue queue. The resulting issue logic is thus Reorder-Sensitive. A

detailed analysis of the Hybrid-Scheduling architecture demonstrates that it

is possible to save on average 70% of the issue queue energy with only 5%

performance degradation. Further, the proposed issue hardware is less com-

plex when compared to a conventional out-of-order issue queue, providing the

potential for much higher clock speeds.

This dissertation also presents the Dual-Mode Hybrid-Scheduling ar-

chitecture, which is a variation of the generic Hybrid-Scheduling architecture

specifically developed for media and scientific applications. These programs

contain long duration and contiguous S-Regions and hence offer the oppor-

tunity to massively lower hardware requirements. The Dual-Mode Hybrid-

Scheduling architecture does not use two types of issue queues but instead

supports two modes of execution. S-Regions bypass the out-of-order issue logic

and execute in a VLIW mode wherein instructions are directly issued to the

function units with minimal hardware support. In addition to saving a signif-

icant amount of energy in the issue queue, the Dual-Mode Hybrid-Scheduling

124

scheme exploits large granularity, loop-level S-regions to save energy in other

structures such as the reorder buffer and the instruction cache. The scheme

uses a low-power reorder buffer to support in-order retirement of S-Regions

instructions and a low-power loop buffer to hold S-Region instructions. On

average, the total energy saved in the Dual-Mode Hybrid-Scheduling architec-

ture is a remarkable 35% with a negligible performance drop of 3.5%.

With nominal increase in design complexity and chip area, the generic

and Dual-Mode Hybrid-Scheduling micro-architectures could also potentially

be combined. The resulting multi-mode Hybrid-Scheduling architecture uses

the reorder-sensitive issue queue in lieu of the out-of-order issue queue in the

Dual-Mode Hybrid-Scheduling scheme to support three types of program re-

gions: loop-level S-Regions, basic-block level S-Regions (LRR blocks), and

dynamic blocks (HRR basic-blocks). The multi-mode Hybrid-Scheduling ar-

chitecture could potentially considerably larger overall energy savings for a

small increase in design complexity. Such a trade-off can be particularly useful

in general-purpose desktop systems which cater to diverse application domains

such as integer, media and scientific. By routing instructions within a program

region to scheduling engines tuned specifically to the region’s inherent dynamic

reordering requirements, the multi-mode Hybrid-Scheduling approach can thus

provide substantial reduction in processor energy consumption while concur-

rently delivering high levels of performance.

The Hybrid-Scheduling scheme is a cooperative hardware/software ap-

proach. The advantage of engaging the compiler is that the static scheduler has

accurate information regarding the region to be executed in the near future.

Hence, energy saving resource adaptations can be applied at finer granulari-

ties when compared to run-time hardware techniques [31][63][65]. Further, a

compile-time approach offers opportunities to simplify the hardware beyond

125

what is achievable with typical hardware schemes. Additionally, a host of dy-

namic resource adaptation schemes such as : [14][22][25][30][47], can be applied

orthogonally to the Hybrid-Scheduling technique for larger overall reduction

in energy consumption.

Another key contribution of this dissertation is the SPHINX framework

developed for evaluating the Hybrid-Scheduling technique. Good interaction

between compilers and computer architectures is critical for designing highly

efficient and effective computer systems. Effective compilers allow more effi-

cient execution of application programs on a given computer architecture and

well-conceived architectural features can support more effective compiler op-

timization techniques. The SPHINX tool provides a unified and user-friendly

platform to enable future research in this important area of cooperative hard-

ware/software schemes.

The applications and opportunities for a cooperative compile-time/micro-

architectural approach are vast. This dissertation also briefly reviewed a few

areas that look especially attractive for future exploration.

126

Bibliography

[1] J. Abella and A. Gonzlez. Low-complexity distributed issue queue. In

Proceedings of the 10th Annual International Symposium on High Perfor-

mance Computer Architecture, Feb 2004.

[2] D. H. Albonesi. Selective cache ways: on-demand cache resource alloca-

tion. In Proceedings of the 32nd Annual ACM/IEEE International Sym-

posium on Microarchitecture (MICRO-32), pages 248–259, Dec 1999.

[3] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of

control dependence to data dependence. In Principles of Programming

Languages, Austin, Jan 1983.

[4] K. Asanovic. Energy-exposed instruction set architectures. In Work In

Progress Session, Sixth International Symposium on High Performance

Computer Architecture, Jan 2000.

[5] R. I. Bahar and S. Manne. Power and energy reduction via pipeline bal-

ancing. In Proceedings of the 27th International Symposium on Computer

Architecture, Jul 2001.

[6] Y. Bai and R. I. Bahar. A dynamically reconfigurable mixed in-orderout-

of-order issue queue for power-aware microprocessors. In Proceedings of

the International Symposium on VLSI, Feb 2003.

[7] S. Banerjee, H. Sheikh, L. John, B. Evans, and A. Bovik. VLIW DSP

vs. superscalar implementation of a baseline H11.263 video encoder. In

127

Conference Record of the Thirty-Fourth Asilomar Conference on Signals,

Systems and Computers, pages 1665 – 1669, Oct 2000.

[8] R. Bhargava and L. K. John. Latency and energy aware value prediction

for high-frequency processors. In Proceedings of the 16th International

Conference on Supercomputing, pages 45–56, 2002.

[9] S. Borkar. Design challenges of technology scaling. In IEEE Micro, pages

23–29, Jul/Aug 1999.

[10] J. Borkenhagen and S. Storino. 4th generation 64-bit PowerPC-

compatible commercial processor design. IBM Server Group , White

Papers, Jan 1999.

[11] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for

architectural-level power analysis and optimizations. In Proceedings of

the 27th International Symposium on Computer Architecture, Jun 2000.

[12] J. Bunda, W. C. Athas, and D. Fussell. Evaluating power implication of

cmos microprocessor design decisions. In Proceedings of the International

Workshop on Low Power Design, April 1994.

[13] D. Burger and T. M. Austin. Evaluating future microprocessors: The

simplescalar tool set. Technical report, Department of Computer Science,

University of Wisconsin, Madison, 1997.

[14] A. Buyuktosunoglu, S. Schuster, D. Brooks, P. Bose, P. Cook, and D. Al-

bonesi. An adaptive issue queue for reduced power at high performance.

In Proceedings of the Workshop on Power-Aware Computers Systems, Nov

2000.

128

[15] R. Canal and A. Gonzlez. A low-complexity issue logic. In Proceedings

of the 14th International Conference on Supercomputing, pages 327–335,

2000.

[16] E. Chi, A. M. Salem, R. I. Bahar, and R. Weiss. Combining software and

hardware monitoring for improved power and performance tuning. In the

Workshop on Interaction Between Compilers and Computer Architecture,

Feb 2003.

[17] L. DiCarlo. Putting New Life In Batteries.

www.forbes.com/personaltech/2004/09/20/cx ld 0920batteries.html,

Sept 2004.

[18] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D. H. Albonesi,

S. Dwarkadas, G. Semeraro, G. Magklis, and M. L. Scott. Integrating

adaptive on-chip storage structures for reduced dynamic power. In Pro-

ceedings of the International Conference on Parallel Architectures and

Compilation Technique, Sep. 2002.

[19] K. Ebcioglu and E. R. Altman. DAISY: Dynamic compilation for 100%

architectural compatibility. In Proceedings of the 24th International Sym-

posium on Computer Architecture, Jun. 1997.

[20] D. Ernst, A. Hamel, and T. Austin. Cyclone: a broadcast-free dynamic

instruction scheduler with selective replay. In Proceedings of the 30th

Annual International Symposium on Computer Architecture, pages 253–

263, Jun 2003.

[21] J. A. Fisher. Trace scheduling: A technique for global microcode com-

129

paction. In Proceedings of the IEEE Transactions on Computer, C-30m

no.7, pages 478–490, Jul 1981.

[22] D. Folegnani and A. Gonzalez. Energy-effective issue logic. In Proceed-

ings of the 28th International Symposium on Computer Architecture, Jun.

2001.

[23] M. Franklin and M. Smotherman. A fill-unit approach to multiple instruc-

tion issue. In Proceedings of the 27th Annual International Symposium

on Microarchitecture, 1994.

[24] J. Fritts and W. Wolf. Evaluation of static and dynamic scheduling for

media processors. In Proceedings of the 2nd Workshop on Media Proces-

sors and DSPs, pages 34–43, Dec 2000.

[25] S. Ghiasi, J. Casmira, and D. Grunwald. Using IPC variation in work-

loads with externally specified rates to reduce power consumption. In

Proceedings of the Workshop on Complexity Effective Design, Vancouver,

Canada, Jun. 2000.

[26] M. K. Gowan, L. L. Biro, and D. B. Jackson. Power considerations in the

design of the Alpha 21264 microprocessor. In Proceedings of the Design

Automation Conference, pages 726–731, 1998.

[27] S. Z. Guyer, D. A. Jimnez, and C. Lin. The C-Breeze compiler infras-

tructure. Technical report, Department of Computer Science, University

of Texas, Austin, 2001.

[28] N. B. I. Hajj, C. Polychronopoulos, and G. Stamoulis. Architectural and

compiler support for energy reduction in the memory hierarchy of high

130

performance microprocessors. In Proceedings of the International Sympo-

sium on Low Power Electronics and Design, pages 70–75, July 1998.

[29] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and

P. Roussel. The microarchitecture of the Pentium 4 processor. Technical

report, Intel, Feb. 2001.

[30] A. Iyer and D. Marculescu. Run–time scaling of microarchitecture re-

sources in a processor for energy savings. In Proceedings of the Kool

Chips Workshop, 2000.

[31] T. Jones, M. O’Boyle, J. Abella, and A. Gonzalez. Software assisted issue

queue power reduction. In Proceedings of the 7th Annual International

Symposium on High Performance Computer Architecture, 2005.

[32] V. Kathail, M. Schlansker, and B. R. Rau. HPL Playdoh architecture

specification: Version 1.0. Hewlett-Packard Computer Systems Labora-

tory, Oct. 1992.

[33] R. King. Optimizing Data Center Energy Efficiency Results In Cost Sav-

ings. http://thewhir.com/features/dce.cfm, Jun 2002.

[34] A. Klaiber. The technology behind Crusoe processors. Transmeta Cor-

poration, Jan. 2001.

[35] A. KleinOsowski and D. J. Lilja. Minnespec: A new spec benchmark

workload for simulation-based computer architecture research. In ACM

Computer architecture letters, 2002.

[36] D. M. Lavery and W. Hwu. Unrolling-based optimizations for modulo

scheduling. In Proceedings of the 28th International Symposium on Mi-

croarchitecture, pages 327–337, Dec 1995.

131

[37] A. R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg. A

large, fast instruction window for tolerating cache misses. In Proceedings

of the 29th Annual International Symposium on Computer Architecture,

pages 59–70, Jun 2002.

[38] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. Mediabench: A tool

for evaluating and synthesizing multimedia and communications systems.

In Proceedings of the 30th International Symposium on Microarchitecture,

pages 330–335, Dec. 1997.

[39] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann.

Effective compiler support for predicated execution using the hyperblock.

In 25th International Symposium on Microarchitecture, pages 45–54, Dec

1992.

[40] W. mei W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter,

R. A. Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab,

J. G. Holm, and D. M. Lavery. The Superblock: An effective technique for

VLIW and Superscalar compilation. In The Journal of Supercomputing,

Kluwer Academic Publishers, pages 229–248, 1993.

[41] P. Michaud and A. Seznec. Data-flow prescheduling for large instruction

windows in out-of-order processors. In Proceedings of the Seventh Inter-

national Symposium on High-Performance Computer Architecture, Feb

2001.

[42] E. Morancho, J. M. Llaberia, and A. Olive;. Recovery mechanism for la-

tency misprediction. In Proceedings of the 2001 International Conference

on Parallel Architectures and Compilation Techniques, Sept 2001.

132

[43] T. Mudge. Power: A first-class architectural design constraint. In IEEE

Computer, pages 52–58, April 2001.

[44] R. Nair and M. E. Hopkins. Exploiting instruction level parallelism in

processor by caching scheduled groups. In Proceedings of the Annual

International Symposium on Computer Architecture, 1997.

[45] E. Ozer, S. W. Sathaye, K. N. Menezes, S. Banerjia, M. D. Jennings, and

T. M. Conte. A fast interrupt handling scheme for VLIW processors. In

Proceedings of the International Conference on Parallel Architectures and

Compilation Technique, Oct. 1998.

[46] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective su-

perscalar processors. In Proceedings of the 24th Annual International

Symposium on Computer Architecture, pages 206–218, Jun 1997.

[47] D. Ponomarev, G. Kucuk, and K. Ghose. Reducing power requirements

of instruction scheduling through dynamic allocation of multiple datap-

ath resources. In Proceedings of the 34th International Symposium on

Microarchitecture, pages 90–101, Dec 2001.

[48] S. E. Raasch, N. L. Binkert, and S. K. Reinhardt. A scalable instruction

queue design using dependence chains. In Proceedings of the 29th Annual

International Symposium on Computer Architecture, pages 318–329, Jun

2002.

[49] P. Ranganathan, S. Adve, and N. P. Jouppi. Performance of image and

video processing with general-purpose processors and media isa exten-

sions. In Proceedings of the 26th International Symposium on Computer

Architecture, 1999.

133

[50] R. Rosner, Y. Almog, M. Moffie, N. Schwartz, and A. Mendelson. Power

awareness through selective dynamically optimized traces. In Proceedings

of the 31st Annual International Symposium on Computer Architecture,

page 162, 2004.

[51] J. S. Seng, E. S. Tune, and D. M. Tullsen. Reducing power with dynamic

critical path information. In Proceedings of the 34th Annual International

Symposium on Microarchitecture, Dec. 2001.

[52] P. Shivakumar and N. P. Jouppi. Cacti 3.0: An integrated cache timing,

power and area model. In Western Research Lab (WRL) Research Report,

2002.

[53] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan,

and D. Tarjan. Temperature-aware microarchitecture. In Proceedings of

the 30th Annual International Symposium on Computer Architecture, Jun

2003.

[54] F. Spadini, B. Fahs, S. Patel, and S. S. Lumetta. Improving quasi-dynamic

schedules through region slip. In Proceedings of the International Sympo-

sium on Code generation and Optimization, pages 149–158, Mar 2003.

[55] C.-L. Su and A. M. Despain. Cache designs for energy efficiency. In Pro-

ceedings of the 28th Annual Hawaii International Conference on System

Sciences, pages 306–315, 1995.

[56] C. L. Su, C. Y. Tsui, and A. M. Despain. Low power architecture design

and compilation techniques for high-performance processors. In Proceed-

ings of the IEEE COMPCON, Feb. 1994.

134

[57] E. Talpes and D. Marculescu. Power reduction through work reuse. In

Proceedings of the International Symposium on Low Power Electronics

and Design, 2001.

[58] J. Tendler, J. Dodson, J. Fields, H. Le, and B. Sinharoy. POWER4 system

microarchitecture. In IBM J. Research and Development, 46(1);5-27,

Austin, 2002.

[59] V. Tiwari, S. Malik, and A. Wolfe. Compilation techniques for low energy:

An overview. In Proceedings in the IEEE Symposium on Low Power

Electronics, Oct. 1994.

[60] M. C. Toburen, T. M. Conte, and M. Reilly. Instruction scheduling for low

power dissipation in high performance microprocessors. In Proceedings of

the Power-Driven Microarchitecture, Jun 1998.

[61] O. S. Unsal, I. Koren, C. M. Krishna, and C. A. Mortiz. Cool-fetch: A

compiler-enabled IPC estimation based framework for energy reduction.

In ACM Computer architecture letters, 2002.

[62] M. Valluri and L. John. Is compiling for performance == compiling for

power? In Chapter 6, in Interaction between Compilers and Computer

Architectures, edited by Gyunggho Lee and Pen-Chung Yew, Kluwer Aca-

demic Publishers, 2001, ISBN 0-7923-7370-7, Jan 2001.

[63] M. Valluri, L. John, and H. Hanson. Exploiting compiler-generated sched-

ules for energy savings in high-performance processors. In Proceedings of

the 2003 International Symposium on Low Power Electronics and Design,

2003.

135

[64] M. Valluri, L. John, and K. McKinley. Low-power, low-complexity in-

struction issue using compiler assistance. In Technical Report: TR-

040925-01, Laboratory for Computer Architecture, The University of

Texas at Austin, Nov 2004.

[65] M. Valluri, L. John, and K. McKinley. Low-power, low-complexity in-

struction issue using compiler assistance. In Proceedings of the 19th ACM

International Conference on Supercomputing, Jun 2005.

[66] V.Kathail, M.Schlansker, and B.R.Rau. HPL-PD architecture specifica-

tion: Version 1.1. technical report HPL-93-80(R.1). Technical report,

HewlettPackard Laboratories, Feb. 2000.

[67] P. H. Wang, H. Wang, R. M. Kling, K. Ramakrishnan, and J. Shen. Regis-

ter renaming for dynamic execution of predicated code. In Proceedings of

the 7th Annual International Symposium on High Performance Computer

Architecture, Feb 2001.

[68] K. Wilcox and S. Manne. Alpha processors: A history of power issues and

a look to the future. In CoolChips Tutorial, An Industrial Perspective on

Low Power Processor Design in conjunction with Micro-33, Dec. 1999.

[69] V. V. Zyuban and P. Kogge. Inherently lower-power high-performance

superscalar architectures. In Proceedings of the IEEE Transactions on

Computers, pages 268–285, Mar. 2001.

[70] P6 family of processors, hardware developer’s manual. In Intel Corpora-

tion, sept 1998.

[71] Itanium 2 family of processors, hardware developer’s manual. In Intel

Corporation, Jul 2002.

136

[72] TRIMARAN: An Infrastructure for Research in Instruction-Level Paral-

lelism http://www.trimaran.org/

[73] The Standard Performance Evaluation Corporation (SPEC)

http://www.spec.org/

[74] Java technology http://java.sun.com

[75] Microsoft .NET technology http://www.microsoft.com/net/

[76] Jikes Research Virtual Machine (RVM) http://jikesrvm.sourceforge.net/

[77] Alpha Architecture Reference Manual. Digital Press, Boston, MA, 3rd

edition, 1998.

137

Vita

Madhavi Gopal Valluri was born in Hyderabad, India on January 2nd, 1975 to

Mr. Sivagopal Valluri and Mrs. Sarada Gopal Valluri. After living in Trivan-

drum for 6 years, she moved to Bangalore with her family. In the Fall of 1992,

she began her undergraduate studies at Dayanada Sagara College of Engineer-

ing. After graduating with Distinction from D.S.C.E, she began her Graduate

studies in the Supercomputer Education and Research Center at the Indian

Institute of Science, Bangalore. She worked in the area of compilers for high-

performance processors under the supervision of Prof. R. Govindarajan. She

received a M.Sc (Engg) degree from I.I.Sc on completing her Master’s thesis en-

titled “Evaluation of Register Allocation and Instruction Scheduling Methods

in Multiple Issue Processors”. In January 1999, Madhavi entered the Gradu-

ate School at The University of Texas at Austin to pursue her doctoral studies.

During the summers of 2000 and 2003, she gained industry experience through

internships at Hewlett Packard and Intel Corporation respectively. She mar-

ried Vivekananda Vedula in December 2000. While pursuing her Ph.D, she

also earned a Master of Science degree in Electrical and Computer Engineering

in December 2004. Madhavi’s graduate education was supported by Univer-

sity of Texas teaching and research assistantships. She is a student member

of IEEE, IEEE Computer Society, ACM, and ACM SIGARCH.

Permanent Address: 531, 16th Main, 3rd Block, Koramangala,

Bangalore 560034

This dissertation was typeset with LATEX2εby the author.

138

