
LogicNets vs. ULEEN : Comparing two novel high
throughput edge ML inference techniques on FPGA

Shashank Nag1§, Zachary Susskind1§, Aman Arora1, Alan T. L. Bacellar2, Diego L. C. Dutra2,
Igor D. S. Miranda3, Krishnan Kailas6, Eugene B. John7, Mauricio Breternitz Jr.4,

Priscila M. V. Lima2, Felipe M. G. França5,2, and Lizy K. John1

1Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, TX, USA
Email: {shashanknag, zsusskind, aman.kbm}@utexas.edu, ljohn@ece.utexas.edu

2Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
Email: alanbacellar@poli.ufrj.br, ddutra@cos.ufrj.br, priscilamvl@cos.ufrj.br

3Federal University of Recôncavo da Bahia, Cruz das Almas, Brazil; Email: igordantas@ufrb.edu.br
4ISCTE - Instituto Universitario de Lisboa, Lisbon, Portugal; Email: Mauricio.Breternitz.Jr@iscte-iul.pt

5Instituto de Telecomunicações, Porto, Portugal; Email: felipe@ieee.org
6IBM T.J. Watson Research Center, USA; Email: kailas@us.ibm.com

7The University of Texas at San Antonio, San Antonio, TX, USA; Email: eugene.john@utsa.edu

Abstract—With the advent of Internet-of-Things (IoT) and
edge computing devices, there has been an increased demand for
low power and high-throughput machine learning inference on
the edge. However, the trends of ever-increasing model sizes with
numerous computations involved makes it increasingly difficult to
deploy state-of-the-art models on edge computing devices. Of late,
there has been a renewed interest in lookup table (LUT)-based
ML models that replace typical weighted-addition operations in
artificial neurons with lookup operations. These are well suited
for edge FPGAs, both due to their underlying architecture, as
well as their potential for low energy consumption. LogicNets
and ULEEN are two such LUT-based model architectures, that
have claimed to offer high throughput and low energy inferences.
These two architectures are extensions of contrasting ideas of
Deep Neural Networks and Weightless Neural Networks, and
it is difficult to infer a suitable choice among these. In this
paper, we compare these, and evaluate them on some high-
throughput inference use cases. When evaluated on intrusion
detection and physics-experiment classification tasks, our results
suggest that ULEEN outperforms LogicNets on hardware and
energy requirements making it well suited for edge deployment,
albeit at a slight drop in accuracy for some datasets.

Index Terms—Edge ML, High Throughput, Low Energy,
Weightless Neural Networks, Deep Neural Networks, LogicNets,
ULEEN, FPGA

I. INTRODUCTION

Internet-of-Things (IoT) devices are widespread today, and
will only become more ubiquitous in the foreseeable future [1].
A lot of these edge devices are required to perform tasks,
such as segregation and fault detection, involving intelligent

This research was supported in part by Semiconductor Research Cor-
poration (SRC) Task 3148.001, National Science Foundation (NSF) Grant
#2326894, NVIDIA Applied Research Accelerator Program Grant, Fundação
para a Ciência e a Tecnologia, I.P. (FCT) [ISTAR Projects: UIDB/04466/2020
and UIDP/04466/2020], and by FCT/MCTES through national funds and,
when applicable, co-funded by EU funds under the project UIDB 50008/2020.
Any opinions, findings, conclusions, or recommendations are those of the
authors and not of the funding agencies.

§Equal contributions

decisions by Machine Learning (ML) algorithms. Such appli-
cations require decisions to be made at a low-latency for their
effectiveness, which are typically not achievable using cloud
computing solutions. This has necessitated the need for high-
throughput inferences of ML models at the edge [2].

Conventional ML models, including deep neural networks
(DNNs), have large model sizes and involve a high inference
latency. Moreover, they are compute intensive with many
multiply-accumulate (MAC) operations, and aren’t suitable to
be deployed on hardware resource and energy constrained
edge devices. As such, there is a growing need to redesign
ML models and their hardware implementations specifically
targeting such devices.

Hardware acceleration on edge devices is typically achieved
using application-specific integrated circuits (ASICs). Though
ASICs tend to be fast and energy-efficient with a small
hardware area and low unit cost, they have a high non-
recurring engineering cost. With changing algorithms and use
cases in edge IoT applications, such as with intrusion detection
algorithms, ASICs’ limited flexibility once deployed proves to
be a liability. Field-programmable gate arrays (FPGAs) are an
alternative to ASICs for hardware acceleration. FPGAs are
reconfigurable, which allows adaptability to varying user and
application needs. Edge FPGAs like the Lattice iCE40 series
provide a low-power low-cost alternative to ASICs, while
offering the all the flexibility provided by FPGAs.

LogicNets [3] is one such recent work that addresses this
issue, and seeks to codesign DNN topologies and their FPGA
implementations for extreme-throughput applications. Based
on the observation that modern FPGAs are largely composed
of lookup tables (LUTs), LogicNets seeks to convert each
neuron in a trained DNN into an equivalent LUT for an
optimal hardware mapping. LogicNets proposes a design flow
for such an implementation, and demonstrates high throughput
performance with competitive accuracy for Network Intrusion
Detection [4] and Jet Substructure Classification (JSC) [5]

979-8-3503-8717-9/24/$31.00 ©2024 IEEE 1206

tasks, which demand such low-latency inferences. Its novel
approach of targeting LUT implementations for FPGAs has
garnered it recent interest.

ULEEN - Ultra Low Energy Edge Networks [6] is another
such model and FPGA-based architecture proposed recently
for extreme-edge and latency-critical inferences, inspired by
the idea of Weightless Neural Networks (WNNs). ULEEN
incorporates a novel multi-pass training strategy to update the
entries in a single-layer of Look-Up-Tables or RAM nodes,
to form a discriminator-based classification model that learns
patterns in the input sequence. ULEEN reports lower latency,
improved energy-efficiency, and smaller area-delay product
against iso-accuracy FINN Binary Neural Network (BNN) [7]
models.

Though both these works end up seeking LUT-based imple-
mentations on FPGAs, they draw inspirations from two very
different ideas. While LogicNets extends the idea of pruning
and quantizations of DNNs to make neurons representable
by LUTs, ULEEN designs neural networks with LUTs at the
heart of them. Though both demonstrate extreme throughput
performances on edge devices, interestingly there has been
no prior work that compares these two, to the best of our
knowledge. With both works using very different design flow
and training techniques, and evaluated on different datasets,
there is not much insight into how these compare against
each other. In this paper, we seek to address this gap in the
literature, and evaluate both the works on common parameters.
Our specific contributions in this paper are as follows:

• This paper is the first to systematically compare Logic-
Nets and ULEEN, two of the recent works in the area of
LUT-based neural networks.

• We evaluate ULEEN and compare it against LogicNets
on two Network Intrusion Detection datasets, UNSW-
NB15 and BoT-IoT, and the Jet Substructure Classifica-
tion (JSC) and Higgs particle detection datasets. We pro-
pose a search strategy for ULEEN and provide insights
into picking an optimal model configuration for newer
datasets, which is otherwise absent in literature.

• We compare the performance of the FPGA implementa-
tions of ULEEN and LogicNets on hardware parameters.
Notably, we perform an analysis of power consumption,
which has not been reported for LogicNets in the original
work [3].

The rest of the paper is organized as follows : in Section
II, we provide a background of what the two ideas stemmed
from, and more details of it. We discuss the methodology used
for comparisons in Section III and present the findings from
the experiments in Section IV. Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Quantized and Pruned DNNs
Several pruning and quantization techniques for Deep Neu-

ral Networks have been explored in the past with the aim
of co-designing efficient hardware implementations [8], [9].
Pruning of networks intends to sparsify the connections be-
tween neurons across layers, in contrast to a fully connected

neural network. Since each neuron now receives fewer inputs,
this reduces the computational costs, at the expense of minimal
drop in accuracy. Quantization on the other hand restricts
weights and/or activations in neural networks to lower preci-
sion quantised values, and is useful in reducing the hardware
costs for computations during inference [10].

B. LogicNets

LogicNets [3] extends the idea of sparse and quantized
neural networks to the extreme case, where the neurons can
be mapped to small LUTs that form the building blocks
of FPGAs. Through sparsification, each neuron’s fan-in can
be restricted to a few inputs from the previous layer, and
through quantization, the bit-width of the output of a neuron
is restricted. Consequently, the input and output bits from a
neuron can be made so small, that they can be represented by
an equivalent X-input:Y-output LUT - where X is the number
of bits concatenated together from all fan-ins to the neuron,
and Y is the number of output bits from the quantized neuron.
The LUT encapsulates the output from the neuron for all the
2X possible input combinations. Fig 1 represents a LogicNets
model during inference.

The design and implementation flow for LogicNets involves
the following steps. First, a set of X:Y configurations of
LUTs are identified that can be implemented with a reasonable
amount of hardware units (LUTs) on the target FPGA (typ-
ically a 6:1 or 5:2 LUT), referred to as Hardware Building
Blocks (HBBs). For these, corresponding Neuron Equivalents
(NEQs) are defined, which have the specified number of bits
for fan-in and output. Effectively, this imposes constraints
on the sparsity and output quantization of the neurons. Sub-
sequently, a Neural Network with these constrained NEQs
as building blocks is defined in PyTorch and trained. The
trained network is then converted into the netlist of HBBs,
and synthesised on a target FPGA.

Fig. 1: LogicNets model inference. The input bits are pro-
cessed through a network of LUTs, that are representative of
neurons in a DNN. The final layer has LUTs corresponding
to each of the classes in the dataset, and Argmax predicts the
class.

C. Weightless Neural Networks (WNNs)

Unlike conventional Deep Neural Networks (DNNs), in
which computation is dominated by multiply-accumulate oper-
ations, WNNs primarily use table lookups to perform compu-
tation. The individual neurons, or RAM nodes, of a WNN are
conventionally look-up tables representing Boolean functions
of binary inputs and outputs. WNNs typically contain many

1207

small RAM nodes which are each only sensitive to a small
subset of model inputs.

WiSARD [11] is an early WNN for classification tasks
which serves as the baseline for much subsequent work. As
shown in Fig 2, WiSARD is composed of submodels called
discriminators, with one discriminator per output class. Inputs
are partitioned between the RAM nodes of a discriminator
using a mapping function, which is typically shared between
discriminators. During inference, RAM nodes are indexed
using the addresses formed by concatenating their inputs.
Next, each discriminator performs a popcount of the outputs
of its constituent RAM nodes to produce a response score (Fig
2a). Lastly, the class corresponding to the discriminator with
the largest response is chosen as the network’s prediction (Fig
2b).

�✁✂✄

�✁✂☎

�✁✂✆

�✁✂✝

✞✟✠✡☛

☞✌✍✍✎☛✏✏✑

✂✌✠✠✒✓✔

✕✟✓✖✗✒✘✓

�✁✂ ✓✘✍☛

✙

✚✒✏✖✎✒✛✒✓✌✗✘✎✄

✚✒✏✖✎✒✛✒✓✌✗✘✎☎

✚✒✏✖✎✒✛✒✓✌✗✘✎✜

✙✢

✙✣

✙✤

✥✦✧★✩✪✧✦

✫✓✠✟✗ ✒✛✌✔☛

✚✒✏✖✎✒✛✒✓✌✗✘✎

✫✓✠✟✗ ✒✛✌✔☛

✬✭✮

✬✯✮

Fig. 2: WiSARD, a basic WNN for classification tasks. WiS-
ARD trains discriminators for each output class, which are
in turn composed of LUT-based RAM nodes. Figure adapted
from [12].

Subsequent work has greatly improved the accuracy and
memory efficiency of WiSARD. In Bloom WiSARD [13], the
authors implemented RAM nodes using Bloom filters instead
of simple LUTs, greatly reducing model sizes with minimal
loss to even improvements in accuracy.1 In [14], the authors
proposed a multi-bit unary “thermometer” encoding of the
inputs, in which each input is compared against a series of
linearly increasing thresholds.

Recent WNN architectures, including LogicWiSARD [12]
and BTHOWeN [15], have incorporated improved single-
pass training techniques [16], model compression, and nonlin-
ear thermometer encodings to produce efficient and accurate
hardware accelerators, outperforming quantized and binary
multilayer perceptrons.

D. ULEEN
ULEEN [6] is a FPGA based inference accelerator de-

sign for a WNN, as an extension of the multi-pass train-
ing technique proposed in [17]. Early WNNs were typically

1In bloom filters, inputs to the filter are hashed through multiple functions,
and the AND of the accessed LUT entries is computed.

Fig. 3: ULEEN model inference. The input bits pass through
an ensemble of submodels, each of which contain M discrim-
inators corresponding to the M-classes, with a single layer of
LUTs. Figure adapted from [6].

trained with a one-pass learning rule, where each sample
was presented to the discriminator corresponding to its label.
While subsequent works [16], [15] explored computationally
efficient techniques, they did not incorporate feedback, and
discriminators could not learn inhibitory patterns. The multi-
pass WNN learning rule in ULEEN incorporates gradient-
based feedback. This technique is also similar to learning
rules used for training binary neural networks [18]. While
the training is performed with floating-point values in RAM
nodes, once training is complete, these values can be binarized
by taking only their signs (treating negative values as 0 and
positive values as 1). Therefore, while it is impractical to
support training on the edge using this technique, it does not
introduce any overhead to edge inference. Hence, ULEEN is
developed to be used as an inference accelerator architecture.
ULEEN also incorporates uniform pruning techniques [17] to
identify and eliminate the RAM nodes which contribute the
least to accuracy. This reduces both the memory footprint of
the model and the amount of accelerator area needed for hash
computation. Fig 3 shows the view of a ULEEN model during
inference. An ensemble of discriminator-based models is used
to predict the scores of each class. The discriminator with the
highest score across the submodels in the ensemble adjudicates
the predicted class. Unlike LogicNets, ULEEN only has a
single-layer of LUTs, that were updated when a similar pattern
was observed during training.

III. METHODOLOGY

A. Dataset Selection and Preprocessing

In order to compare LogicNets and ULEEN, we consider
datasets in areas having high throughput applications and
evaluate both on the same set. We note that while the design
space available for exploration for ULEEN is defined and
parameterized, that for LogicNets is quite vast. As such, we
primarily focus on evaluating both the works on the datasets
evaluated in the LogicNets [3] work - namely UNSW-NB15
and JSC, and try to find optimal configurations of ULEEN for
these. We also evaluate these on BoT-IoT and Higgs datasets,
two other closely-related dataset.

1208

1) UNSW-NB15 Dataset: The UNSW-NB15 dataset [4] is
a common dataset used in the Network Intrusion Detection
domain, where high throughput detection of malicious packets
is critical. The dataset comprises of 49 input features, with
each entry labelled as “normal” or “attack” - thus forming
a binary classification problem. In order to evaluate it on
ULEEN, we apply some basic preprocessing and balancing
steps to it, sticking closely to the approach used in LogicNets.
Samples in the dataset contain non-numeric features such as
transaction protocol names. While some prior works including
LogicNets and [19] experimented with one-hot encodings for
these features, we found that this provided no benefit to the
accuracy of ULEEN and significantly increased the model size.
Therefore, we remove these features entirely. A small number
(∼0.01%) of samples are malformed (e.g., they contain non-
numeric values for numeric features), and are culled. A further
19.4% of samples appear to be duplicates, so we remove all
but one copy to avoid data leakage (the appearance of the
same sample in the training and test data). After these steps,
we are left with 205k samples, of which just 4.3% belong to
the “attack” category. We perform a 9:1 train/test split on this
data. To avoid training with highly imbalanced data, which is
known to be a difficult problem [20], we balance the training
data by randomly oversampling the minority “attack” class to
a 1:1 ratio with the majority “normal” class. In the test data,
we instead balance to a 2:1 normal to attack ratio. This is
the same ratio used by LogicNets, and allows us to make a
direct accuracy comparison. Note that training and test data are
balanced separately to ensure test samples are not replicated
in the training data.

2) BoT-IoT: BoT-IoT [21] is another Network Intrusion
Detection dataset, that consists of 73,370,344 “attack” samples
and 9531 “normal” samples extracted sequentially from net-
work traffic. The dataset authors also provide a preprocessed
subset of the data. However, this subset undersamples both
classes equally, meaning it contains just 477 samples from
the minority class. We instead preprocess the entire dataset
using the technique described by the authors, generating new
features based on a sliding window of 100 samples. We then
select all “normal” samples and 2.2 million “attack” samples
and perform a 9:1 train/test split. After this undersampling,
BoT-IoT is still far more imbalanced than UNSW-NB15 (22:1
vs. 234:1). Therefore, we use ADASYN [22] to generate
synthetic “normal” training samples. We balance the test data
to a 1:1 ratio using random oversampling, and there is no
synthetic data in the test set.

3) Jet Substructure Classification (JSC): The Jet Substruc-
ture Classification dataset [5] used in LogicNets is a low-
latency inference requirement task, representative of work-
loads typically found in large physics experiments including
those in CERN ATLAS and CMS. We use the same prepro-
cessing and representation used in LogicNets and [5], to form
a 16-feature 5-class classification task.

4) Higgs: The Higgs dataset [23] is another dataset in the
realm of high-energy particle physics experiments. The dataset
consists of features measured by particle detectors, and the

accelerator is tasked with detecting if it is a particle (signal)
or not (background). It is formulated as a 28-feature binary
classification task.

B. Model Configuration Search

As noted in Section III-A, the design space available for
exploration of LogicNets is quite vast, and there are no insights
provided in the original work on how the configurations are
found. For UNSW-NB15 and JSC, we use their most accurate
reported configurations for comparison, considering them to
be optimal. We train a LogicNets model similar to the one
for UNSW-NB15 on the BoT-IoT dataset, and perform a
parameter search to find a good model configuration for Higgs.
While these may not necessarily be optimal configurations, it
serves as an additional context for generalization.

For ULEEN, we note that we have the following flexibility:
(i) picking the sub-models in the ensemble, (ii) configuring
the number of hash functions, (iii) configuring the input bits
mapped to each LUT, and (iv) configuring the size of each
LUT. We seek to first experiment with randomly sampled set
of configurations of sub-models and observe their hardware
implementation’s trends. Based on the inferences obtained
from this, and some insights provided in [6], we identify con-
straints on the configurable parameters to make the sub-models
feasible to be implemented on hardware. We then perform a
grid search on the parameters within these constraints, and
evaluate the performance of these sub-models. Susequently, a
set of well-performing submodels that complement each other
are picked to form the ensemble of models for ULEEN. We
also prune the model using a conservative pruning ratio, that
doesn’t degrade the model accuracy significantly.

C. FPGA Implementation and Comparison Metrics

We implement ULEEN and LogicNets on the same FPGA,
and compare them against various metrics of relevance. As
with any ML-inference task, accuracy is one of the primary
concerns. However, for edge applications, resource utilization,
inference latency, throughput, and power consumption become
equally critical - all of which depend on the model’s deploy-
ment on a target FPGA.

We use the Python scripts provided by the authors of
ULEEN to generate the SystemVerilog files for the accelerator
designed for the finalized model configuration. We deploy
this on the Xilinx Virtex UltraScale+ xcvu9p-flgb2104-2-i
FPGA, the same used by the authors of LogicNets to enable a
direct and fair comparison. Synthesis runs are performed us-
ing Vivado 2019.2 with the Flow_PerfOptimized_high
strategy (which instructs synthesis to prioritize timing over
power and area) in out-of-context mode, considering an in-
ference sample-wide data bus as used in LogicNets[3]. We
derive power and resource utilization numbers for ULEEN
from Vivado implementation reports. We assume the default
(12.5%) toggle rate. We generate the RTL for LogicNets and
run it through Vivado’s synthesis routines to estimate resource
utilization and power numbers.

1209

IV. EXPERIMENTS & RESULTS

A. Model Selection

We varied inputs, entries, and hash functions per Bloom
filter and the number of thermometer encoding bits per in-
put feature to identify efficient and accurate sub-models for
ULEEN. We observed that while the hash functions in Bloom
filter do not impact the model parameter size, they do require a
substantial amount of hardware area. Therefore, we use as few
unique hash functions as possible without significantly harm-
ing accuracy. We also observe that as we decrease the number
of input bits mapped to each LUT, the hardware area increases
multiplicatively. Consequently, we restrict ourselves to a larger
number of input bits when exploring larger LUTs. Increasing
the number of thermometer encoding bits eventually yields
diminishing returns, though the point where this happened
differed between the datasets. Within these constraints, we
perform a grid search on the parameters. We prioritize picking
fewer and more accurate sub-models for hardware efficiency.
The final ULEEN model configurations are shown in Table I.
We prune the ULEEN models by prioritizing high accuracy
over an absolute minimum model size, as explored in prior
work [17].

TABLE I: Optimal model configurations for ULEEN

Dataset Bloom Filter Thermometer
Inputs Entries Hashfns. Encoding Bits

UNSW-NB15 10 64 1 4
BoT-IoT 12 128 1 8

8 128 1
10 256 1
12 512 1
14 512 1

JSC

16 1024 1
(ensemble)

20 1024 1

32

6 16 1Higgs 7 32 1(ensemble) 8 64 1
12

B. Model Evaluation

Model parameter sizes and accuracies are shown in Fig 4
and Table II respectively. LogicNets is initially trained as a
sparse neural network, and then converted to a LUT-based
model after training. This conversion greatly increases the
model parameter size, but is readily optimized by synthesis
tools to give a much smaller final hardware area than the
parameter count would suggest. We provide both figures
(before and after the LUT conversion) in Fig 4 for clarity.
ULEEN achieves excellent accuracy with very small model
sizes on both the Network Intrusion Detection datasets. As
shown in Fig5, ULEEN performs significantly better when
evaluated on the ROC curve. On the JSC dataset, we observe
that ULEEN performs comparably to LogicNets in terms of
the accuracy. In this case, while ULEEN has a higher model
size compared to the pre-LUT conversion stage of LogicNets,
it is lower than that of post-LUT conversion. On the Higgs
dataset as well, we note that ULEEN performs comparably to
LogicNets at a lower model size.

Fig. 4: Model parameter sizes for ULEEN and LogicNets.
We report two figures for LogicNets: the training-time sparse
model, and the much larger post-training LUT-based model.

Fig. 5: ROC curve for ULEEN and LogicNets on the UNSW-
NB15 and BoT-IoT intrusion detection tasks.

C. FPGA Implementation Results

We compare FPGA implementations of LogicNets and
ULEEN for the datasets, shown in Table II. This comparison
is performed on the 14/16nm xcvu9p-flgb2104-2-i FPGA,
where the models are envisioned as being one IP block in
a larger design. This enables the use of a very wide input
bus width and an aggressive pipeline initiation interval of one
inference sample per cycle. We note that ULEEN surpasses
LogicNets for UNSW-NB15 and BoT-IoT datasets in terms of
accuracy, throughput, area, and energy efficiency. On the Jet
Substructure Classification (JSC) and Higgs particle detection
tasks, LogicNets achieves a slightly higher accuracy than
ULEEN, but ULEEN has a much smaller hardware and energy
cost. For all the datasets, ULEEN achieves a much higher
clock frequency, explained by its deeply pipelined design.
Consequently, there is a 1.4×-1.9× improvement in through-
put across the datasets. On most cases, ULEEN reduces
the dynamic energy per inference2 by a significant factor,
and decreases LUT usage by 2.44×-59×. However, ULEEN
utilizes more FFs in certain cases, owing to its deep pipeline.

The hardware savings of ULEEN are more pronounced
when compared in terms of the area (LUT count)-
delay(1/throughput) and energy-delay products. The dramatic
decrease in area between LogicNets and ULEEN can be
mainly attributed to the fact that unlike DNNs, the individual
RAM nodes within a WNN can learn non-linear functions

2We use dynamic rather than total energy since the static power of unused
blocks in FPGAs could not be isolated.

1210

TABLE II: Comparison on Model Accuracy & Implementation Parameters

Dataset Model Test Clock Bus Init. Xput Dyn.Energy LUTs FFs Area × Delay Energy × Delay
Name Accuracy (MHz) Width Intv. (MS/s) (pJ/Inference)

LogicNets NID-M 91.3% 471 593b 1 471 654 15,949 1,274 33.86 1.39UNSW-NB15 ULEEN 98.9% 740 160b 1 740 73 269 538 0.36 0.10
LogicNets 88.6% 471 68b 1 471 654 15,949 1,274 33.86 1.39BoT-IoT ULEEN 99.4% 920 272b 1 920 156 530 1,079 0.58 0.17

LogicNets JSC-L 71.8% 427 48b 1 427 6222 37,931 810 88.83 14.57JSC ULEEN 71.3% 773 512b 1 773 1222 4,774 5,541 6.18 1.58
LogicNets 64.8% 509 112b 1 509 736 6,380 348 12.53 1.45Higgs ULEEN 64.2% 737 336b 1 737 759 2,612 4,156 3.55 1.03

of their inputs. This provides a significant efficiency advan-
tage to WNNs, as DNNs need multiple layers to capture the
same behavior. Overall, we note that ULEEN has the potential
to greatly reduce FPGA resource utilization while providing a
high throughput, making it well poised for edge applications.

V. CONCLUSION

Machine Learning inference at the edge is a critical prob-
lem, that needs to be addressed by specialized algorithm-
hardware co-design schemes. LogicNets and ULEEN are
two recent FPGA-based designs developed in this direction,
stemmed from different research directions. We comprehen-
sively compare these techniques on various model and hard-
ware parameters, and evaluate these on common datasets.
While LogicNets has a slight accuracy advantage in two of
the datasets, ULEEN outperforms LogicNets under similar
resource environments and is ideal for high-throughput edge
inference applications, achieving about 1.4×-1.9× throughput
as compared to LogicNets on the evaluated datasets.

REFERENCES

[1] Telefonaktiebolaget LM Ericsson, “IoT connections outlook,”
Ericsson Mobility Report, 06 2022. [Online]. Avail-
able: https://www.ericsson.com/en/reports-and-papers/mobility-report/
dataforecasts/iot-connections-outlook

[2] N. N. Alajlan and D. M. Ibrahim, “Tinyml: Enabling of inference
deep learning models on ultra-low-power iot edge devices for ai
applications,” Micromachines, vol. 13, no. 6, 2022. [Online]. Available:
https://www.mdpi.com/2072-666X/13/6/851

[3] Y. Umuroglu, Y. Akhauri, N. J. Fraser, and M. Blott, “Logicnets: Co-
designed neural networks and circuits for extreme-throughput appli-
cations,” 2020 30th International Conference on Field-Programmable
Logic and Applications (FPL), pp. 291–297, 2020.

[4] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in 2015 Military Communications and Information Systems Conference
(MilCIS), 2015, pp. 1–6.

[5] J. Duarte, S. Han, P. Harris, S. Jindariani, E. Kreinar, B. Kreis,
J. Ngadiuba, M. Pierini, R. Rivera, N. Tran, and Z. Wu, “Fast inference
of deep neural networks in fpgas for particle physics,” Journal
of Instrumentation, vol. 13, no. 07, p. P07027–P07027, Jul. 2018.
[Online]. Available: http://dx.doi.org/10.1088/1748-0221/13/07/P07027

[6] Z. Susskind, A. Arora, I. D. S. Miranda, A. T. L. Bacellar, L. A. Q.
Villon, R. F. Katopodis, L. S. de Araújo, D. L. C. Dutra, P. M. V. Lima,
F. M. G. França, M. Breternitz Jr., and L. K. John, “Uleen: A novel
architecture for ultra-low-energy edge neural networks,” ACM Trans.
Archit. Code Optim., vol. 20, no. 4, dec 2023. [Online]. Available:
https://doi.org/10.1145/3629522

[7] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong,
M. Jahre, and K. Vissers, “Finn: A framework for fast, scalable
binarized neural network inference,” in Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, ser. FPGA ’17. ACM, Feb. 2017. [Online]. Available:
http://dx.doi.org/10.1145/3020078.3021744

[8] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” 2021.

[9] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” 2016.

[10] R. Banner, Y. Nahshan, E. Hoffer, and D. Soudry, “Post-training 4-bit
quantization of convolution networks for rapid-deployment,” 2019.

[11] I. Aleksander, W. Thomas, and P. Bowden, “WISARD·a radical step
forward in image recognition,” Sensor Review, vol. 4, no. 3, pp.
120–124, 1984. [Online]. Available: https://www.emerald.com/insight/
content/doi/10.1108/eb007637/full/html

[12] I. D. Miranda, A. Arora, Z. Susskind, L. A. Villon, R. F. Katopodis,
D. L. Dutra, L. S. De Araújo, P. M. Lima, F. M. França, L. K. John,
and M. Breternitz, “LogicWiSARD: Memoryless synthesis of weight-
less neural networks,” in 2022 IEEE 33rd International Conference
on Application-specific Systems, Architectures and Processors (ASAP),
2022, pp. 19–26.

[13] L. Santiago, L. Verona, F. Rangel, F. Firmino, D. S. Menasché,
W. Caarls, M. Breternitz Jr, S. Kundu, P. M. Lima, and F. M. França,
“Weightless neural networks as memory segmented bloom filters,”
Neurocomputing, vol. 416, pp. 292–304, 2020.

[14] H. Carneiro, F. França, and P. Lima, “Multilingual part-of-speech tagging
with weightless neural networks,” Neural Networks, vol. 66, 03 2015.

[15] Z. Susskind, A. Arora, I. D. Miranda, L. A. Villon, R. F. Katopodis, L. S.
De Araújo, D. L. Dutra, P. M. Lima, F. M. França, M. Breternitz, and
L. K. John, “Weightless neural networks for efficient edge inference,” in
31st International Conference on Parallel Architectures and Compilation
Techniques (PACT), 2022.

[16] D. Carvalho, H. Carneiro, F. França, and P. Lima, “B-bleaching : Agile
overtraining avoidance in the wisard weightless neural classifier,” in
ESANN, 04 2013.

[17] Z. Susskind, A. T. Bacellar, A. Arora, L. A. Villon, R. Mendanha, L. S.
De Araújo, D. L. Dutra, P. M. Lima, F. M. França, I. D. Miranda,
M. Breternitz, and L. K. John, “Pruning weightless neural networks,”
in ESANN 2022 proceedings, European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning, 2022, pp.
37–42.

[18] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or -1,” 2016.

[19] T. Murovič and A. Trost, “Massively parallel combinational bi-
nary neural networks for edge processing,” Elektrotehniski Vest-
nik/Electrotechnical Review, vol. 86, pp. 47–53, 01 2019.

[20] S. Wang, W. Liu, J. Wu, L. Cao, Q. Meng, and P. Kennedy, “Training
deep neural networks on imbalanced data sets,” 07 2016, pp. 4368–4374.

[21] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards
the development of realistic botnet dataset in the internet of things for
network forensic analytics: Bot-iot dataset,” 2018. [Online]. Available:
https://arxiv.org/abs/1811.00701

[22] H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive synthetic
sampling approach for imbalanced learning,” in 2008 IEEE International
Joint Conference on Neural Networks (IEEE World Congress on Com-
putational Intelligence), 2008, pp. 1322–1328.

[23] P. Baldi, P. Sadowski, and D. Whiteson, “Searching for exotic particles
in high-energy physics with deep learning,” Nature Communications,
vol. 5, no. 1, Jul. 2014. [Online]. Available: http://dx.doi.org/10.1038/
ncomms5308

1211

	MAIN MENU
	Search
	Print
	View Full Page
	View Page Width
	Author Index
	Table of Contents

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20170330081459
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

