On Load Latency in Low-Power Caches

Soontae Kim, N. Vijaykrishnan, M. J. Irwin and L. K. Johnf

Computer Science and Engineering Dept.
The Pennsylvania State University
{sookim,vijay,mjiy@cse.psu.edu

ABSTRACT

Many of the recently proposed techniques to reduce power
consumption in caches introduce an additional level of non-
determinism in cache access latency. Due to this additional
latency, instructions speculatively issued and dependent on
a non-deterministic load must be re-executed. Our exper-
iments show that there is a large performance degradation
and associated energy wastage due to these effects of in-
struction re-execution. To address this problem, we propose
an early cache set resolution scheme. It is based on the
observation that the displacement values used for address
generation are generally small. Our experimental evaluation
shows that this technique is quite effective in mitigating this
problem.

Categories and Subject Descriptors: B.3 [Memory Struc-

tures]: Performance Analysis and Design Aids
General Terms: Performance, experimentation

Keywords: Load latency, low-power, caches

1. INTRODUCTION

Current superscalar processors, such as Alpha 21264 [7],
MIPS R10000 (8], and Pentium 4 [9] speculatively issue in-
structions dependent on a load as early as possible. The
speculative issue of dependent instructions is performed as-
suming that the load will hit in the data cache so that the
data will be available after a fixed number of cycles and that
data forwarding logic can be used. However, when the load
cannot provide the data within the fixed number of cycles,
the speculatively issued consumers of the load and their de-
scendants must be squashed from the pipelines and re-issued
when the data does become available.

There are several reasons that load latencies could be non-
deterministic. An obvious reason is a cache miss [7]. An-
other source of non-deterministic load latency occurs due to
the bank conflicts in multi-banked cache architectures [12].

A new source for non-determinism associated with load
latencies arises from the use of low-power cache architec-

fElectrical and Computer Engineering Dept.

The University of Texas at Austin
ljohn@ece.utexas.edu

tures. There have been several approaches to reducing the
leakage and dynamic energy consumed in caches [1, 2, 3,
4, 5]. Non-determinism can arise as probes are limited to a
predicted portion of the cache [1, 2], so additional probes are
required when a prediction fails or because accesses to the
cache lines in leakage-saving mode require additional cycles
to wake them up and service the request [4]. This addi-
tional non-determinism due to low-power caches is particu-
larly interesting because it not only degrades performance
(and consequently increases energy consumption) but can
also waste energy in squashing and re-issuing instructions.
Thus, this effect can offset the power benefits of an intended
low-power cache if proper attention is not paid to this non-
determinism conundrum. Further, it must be observed that
the penalty of non-deterministic load latency will become
larger in (future) deeper pipelines. The penalty depends
on the load resolution latency, which is defined as the delay
from the issue of a load instruction to when its cache access
result arrives at the issue queue.

The contribution of this paper is two-fold. First, we ana-
lyze the performance and energy impact of non-deterministic
load latencies that can arise from the use of low-power caches.
We specifically focus our evaluation on a drowsy cache scheme
[4], a technique that has been shown to be effective and sim-
ple for controlling leakage. The second part of the paper fo-
cuses on alleviating this non-deterministic latency penalty.
For that purpose, we propose a novel early cache set reso-
lution scheme. It is based on the observation that the dis-
placement values used for address generation are generally
small. Our results show that the early cache set resolution
scheme is quite effective in reducing the performance and
energy penalties associated with the drowsy cache.

The rest of this paper is organized as follows. Section 2 ex-
plains in detail why non-deterministic load latency occurs in
low-power caches and gives the impact of non-deterministic
load latency on performance and energy consumption. Our
proposed early cache set resolution scheme is presented in
section 3. We give experimental results on performance and
energy in section 4. Finally, section 5 concludes.

2. NON-DETERMINISTIC LOAD LATEN-
CIES DUE TO LOW-POWER CACHES

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are Proposed low-power caches can be classified into two cat-
not made or distributed for profit or commercial advantage and that copies egories. One tries to reduce dynamic power and the other
bear this notice and the full citation on the first page. To copy otherwise, t0 Joakage power. Way-prediction and selective direct mapping
republish, to post on servers or to redistribute to lists, requires prior specific schemes [1, 2] incur non-deterministic load latency when a

hermission and/or a fee. cache must be re-probed when the first probe fails. The

ISLPED’03,August 25-27, 2003, Seoul, Korea.
Copyright 2003 ACM 1-58113-682-X/03/0008%5.00. use of a cache decay scheme [3] or the drowsy cache scheme

Cydle 12 3 4

addl Ra,Rb,cl [IS RF EX WB!

| |
load1 Re, c2(Ra) IS RF AG iCl WD: C2 WB

]]
add2 Re, Re, ¢3 IS RFI IS RF EX WB

subl Rd, Re, o4 | IS

S RF EX WB

—~—

speculative window

Figure 1: A non-deterministic load in a drowsy cache. IS
means instruction issue, RF register file read, EX execution,
AG address generation, C1 and C2 cache access, WD waking-
up drowsy cache line and sending a signal to the scheduler,
and WB write back, respectively. The load resolution latency

is five cycles in the figure.

for leakage power reduction also contributes to additional
sources of non-deterministic load latency. When a cache line
in leakage-saving mode is accessed, the line must be woken
up in the drowsy cache scheme or brought in from the next
level of memory in the cache decay scheme. The cache decay
scheme can increase cache miss rates if it prematurely turns
off currently used cache lines, and consequently increase the
number of non-deterministic loads. In the drowsy cache
scheme, the source of non-determinism is whether a cache
line is in a leakage-saving mode or not, since cache lines
are periodically placed in a state-preserving leakage-saving
mode (drowsy state hereafter). In this mode, the cache line
cannot be accessed and a single cycle wake-up time is re-
quired. The drowsy cache circuit provides a means to auto-
matically transition the cache line to active mode when an
access is made. If a careful attention is not given to, these
low-power caches might inadvertently increase (rather than
decrease) overall energy consumption of a processor when
non-deterministic loads occur frequently. In this study, we
use the drowsy cache as our evaluation case.

Figure 1 shows when and how non-determinism happens,
and squashing and re-issuing the instructions dependent on
a load in the drowsy cache. Data cache access takes two
cycles in the figure (C1 and C2). For clarity of explanation,
the figure is drawn such that other stages take a single cy-
cle. WD means waking-up a drowsy cache line and sending
a signal to the scheduler to notify it that a non-deterministic
load is encountered. The add2 instruction depends on the
prior load1, and the subl on the add2 instruction. The add2
is issued at cycle 5, assuming that the prior load! will hit in
the data cache. Also, the sub! is issued at cycle 6, assuming
that data will be forwarded from the add?2 at cycle 8. At cy-
cle 6, however, the cache line accessed by the load! is in the
drowsy state. So, the line must be woken up before it can be
accessed. Thus, the instructions issued in cycle 5 and cycle
6 must be squashed from the pipelines as they can not have
the correct data. The period constituting cycles 5 and 6 is
called the speculative window. The two dependent instruc-
tions on the load! are re-issued at cycle 7 and 8, respectively.
Although the speculative window is only two cycles in the
example, it will be larger in (future) processors that employ
deeper pipelines.

2.1 Experimental Framework

We use Wattch [11] tool suite to model our baseline pro-
cessor in this study. Our CPU models an aggressive out-of-
order superscalar processor. It can decode, issue and com-
mit eight instructions per cycle. Table 1 summarizes the

Table 1: Baseline processor configuration

[Parameter [Configuration

Instruction window 128-entry ROB and register file

Fetch queue 32 instructions

Machine width 8-wide decode, issue, commit

Functional 8 INT add, 2 INT mult/div
units 4 FP add, 1 FP mult/div

L1 instruction cache 32KB 2-way, 32B line, 1 cycle latency

L1 data cache 32KB 2-way, 32B line, 2 cycle latency, 2 ports

L2 cache unified 1M 4-way 64B line, 12 cycle latency

Memory 8B-wide, 80 cycle latency

Branch prediction 2K bimodal

\D Performance loss B Energy CJDrowsy rale\

Percentage
3
1

3

bzip2 gap gec gzip mof paser ped vorex vpr avg

Figure 2: Performance loss, energy increase and drowsy

rate for the drowsy cache scheme.

simulation parameters of our baseline processor. Wattch is
modified to make the load resolution latency seven cycles in
the baseline processor.

When a non-deterministic load is detected, two recovery
mechanisms can be employed. First, all instructions issued
in the speculative window can be squashed and re-issued as
done in Alpha 21264 processor. The other scheme squashes
and re-issues only instructions dependent on a load and their
descendants as used in Pentium 4 processor. However, this
recovery scheme requires more complex mechanisms to keep
track of, and to selectively squash, the load’s dependent in-
structions and their descendants in the pipelines. Hence, we
use the first recovery mechanism in our evaluation.

In implementing the drowsy cache scheme, we assume one
cycle wake-up time and that all cache lines in the same cache
set are woken up to avoid having to wait for tag comparisons
to complete when a cache line is in the drowsy state. All
cache lines are put into the drowsy state every 2000 proces-
sor cycles (drowsy window size).

Simulations are done on nine of SPEC2000 integer bench-
marks [10] using their PISA binaries. All benchmarks are
executed for one billion committed instructions. For all sim-
ulations, the train input sets are used. In this paper, we
measure only dynamic energy overhead (of both processor
core and caches). For energy results, we used energy values
produced by Wattch.

2.2 Impact of non-deterministic loads on per-
formance and energy

The frequency of non-deterministic loads depends on how

many times cache lines that are accessed by loads are in the

drowsy state. We call it drowsy rate. The drowsy rate also

Dzero M8 (16 (132 W64 Hother|
100% i
80%

e .-

- _=4Tll

0%

bzip2 gap gec gzip mef parser perl vorex vpr avg

Figure 3: Distribution of displacement values.

determines the occupancy time of cache ports as they must
be occupied another cycle when the cache lines are in the
drowsy state.

To see the impact of non-deterministic load latency on
performance and energy consumption, we compare the per-
formance and energy consumption of a processor when a
drowsy cache is employed to that with a normal cache (per-
fect scheduling). Figure 2 shows normalized performance
degradation and energy increase due to the use of the drowsy
cache. Overall, the performance degrades by 8.5%, the dy-
namic energy increases by 5.6% and the drowsy rate is 9.1%.
In addition, one can expect that leakage energy also in-
creases due to the performance penalty.

We observe that performance loss and energy increase are
generally proportional to the drowsy rate except for the mcf
and vorter benchmarks. Even though the drowsy rate is
high, the performance loss and energy increase are low if pro-
grams are dictated more by a high cache miss rate. This is
observed in the mcf benchmark, where the performance loss
due to the non-determinism induced by the drowsy cache is
small due to a very high data cache miss rate (16.5%). In
the vortex benchmark, the performance is more dictated by
a high instruction cache miss rate (4.2%). In contrast, the
bzip2 benchmark is very sensitive to the drowsy rate as it
already has a high IPC.

3. EARLY CACHE LINE WAKE-UP

To wake up drowsy cache lines early, we need a scheme
that is both cost-effective and very accurate, as we do not
want to increase execution time and power consumption due
to the extra hardware required to implement the scheme.
We propose a novel early cache set resolution scheme. It
is based on the observation that most of loads have small
displacement values. The scheme needs a few small com-
parators and has perfect accuracy with reasonable coverage.

We consider only load instructions using a displacement
addressing mode, the most commonly used addressing mode
in load/store instructions. The load instructions use a base
register and a displacement to determine the address from
which data is accessed. If the cache index bits of this address
can be determined a cycle earlier (i.e., overlapped with the
normal register read cycle), we can use this cycle to wake
up a cache line in the drowsy state. The key to achieving
this is in the displacement values.

Figure 3 shows the distribution of displacement values of

10X XX
00X XX

00xxx
10xxXx

OX XXX
OX XXX

(@ (b) ©

Figure 4: No carry generation to index bits.

[ee]
=
T

I
Y
Disp. |__Yes

is
zero? No

:
\
Effective

No Addr
No carn Wake
=

Figure 5: Baseline pipeline (upper) and early cache set

resolution logic (lower).

load instructions for each benchmark. Each bar has six por-
tions. The zero portion means the percentage of loads with
zero displacement value. The “8” portion indicates the per-
centage of loads that have displacement values between -8
and 7, inclusive. The “16”7, “32” and “64” portions can be
similarly interpreted. The other portion is the percentage of
loads that have displacement values not between -64 and 63.
The displacement field has 16 bits in the baseline architec-
ture. As can be observed, a large percentage of loads have
small displacement values. The average percentage values
are 33.4%, 4.7%, 9.7%, 12.4%, 10.4%, and 29.4% from the
zero portion to the other portion, respectively. Around 50%
of loads have displacement values between -16 and 15. This
range is the same as that covered by one 32-byte cache line
(as used in our baseline configuration). Using this informa-
tion, when it is certain that the calculated address will have
the same index bits as those of the base address (no carry to
indez condition), we do not need to wait until the address
is generated to wake up a cache line. This “free” cycle can
be utilized to wake up a cache line early. Next, we focus on
hardware needed to detect the no carry to index conditions.

Figure 4 illustrates three conditions for no carry to in-
dex we use. As further refinement shows only incrementally
better results and requires additional hardware, we use only
these three conditions. The three cases show two 5-bits off-
sets of base address (upper) and displacement (lower) when
a cache line is 32 bytes. In the figure, “x” means don’t care
bits. When the MSB (Most Significant Bit) 11-bits of the
displacement are zero and a pair of the LSB 5-bits of the
base address and the displacement belongs to one of three
cases shown, this is a no carry to indexr condition. When
the no carry to index condition is detected, we can use only
the base address to index the cache set to wake it up a cy-
cle early. In this case, address generation and cache line
wake-up are performed in parallel, so a performance loss is
avoided.

Next, we illustrate the operation of our early cache set res-
olution scheme in the pipeline. Figure 5 shows our baseline
processor pipeline and an early cache set resolution scheme.
When a load instruction enters the decode stage, its dis-
placement value is checked. If the value is zero, address
generation is eliminated and the base address of the load
is used to wake up the cache line in the address generation
stage. This eliminates unnecessary power consumption due
to address generation and incurs no extra cycle to wake up
the drowsy cache line. Otherwise, the address is generated

EPer loss M Energy i CDrowsy rate

Percentgae
®
1

:' i [l

balk2 gap gec gzp mef parser perl vorex vpr avg

Figure 6: Results of the early set resolution scheme.

as in a normal pipeline. The no carry to index condition is
checked right after the base address is read from the reg-
ister file. If the condition is true, the cache line wake-up
is performed in parallel with address generation. Displace-
ment value checking is performed with hardwired 11-bits
and 5-bits comparators in the decode stage, so it does not
require an extra cycle and is done deterministically. The
no carry to inder condition checking is implemented with
hardwired 2-bits and 4-bits comparators, so it is performed
fast with little power consumption. We evaluated the power
consumption of those comparators with CACTI [6], and it
is included in the overall processor energy consumption in
our experiments. To support the wake-up logic, we use an
extra decoder logic for the data cache. While this incurs
an additional area penalty, there is no energy overhead as
decoding is just done a cycle earlier.

4. RESULTS

In this section, we evaluate proposed early set resolution
scheme over the perfect scheduling scheme. Performance
and energy values are normalized over those of the perfect
scheduling scheme. With the drowsy cache scheme, leakage
energy in the data cache is reduced to around one-fourth of
the unoptimized value [11], which depends on applications
and system parameters.

Figure 6 shows the results when the early cache set resolu-
tion scheme is employed. Overall, the performance degrades
by 2.6%, the energy increases by 1.1%, and the drowsy rate
is 4.4% (as compared to 8.5%, 5.6%, and 9.1%, respectively,
in the original drowsy scheme). Thus, a large percentage of
performance loss and energy wastage are eliminated. This is
mainly due to the decreased drowsy rate by using the early
set resolution scheme.

Now, let us look in detail at the behavior of individ-
ual benchmarks. The bzip2 benchmark shows good results.
From figure 3, its percentage of loads with zero displacement
is 85%. This eliminates most of non-deterministic loads and
consequently performance loss. In addition, address gen-
eration is avoided for those loads, eliminating the energy
consumption for unnecessary address generations. This re-
sulted in overall decrease of energy consumption. By con-
trast, the mcf and vpr benchmarks still maintain relatively
large performance loss and energy increase. This can be
explained by the fact that even if the early set resolution
scheme eliminates a large percentage of non-deterministic

loads, the drowsy rates for these benchmarks are still high
compared to other benchmarks. The average coverage of the
early set resolution scheme is 45.6%. This means that the
scheme effectively covers most of loads that have displace-
ment values between the zero portion and the 16 portion,
inclusive, of figure 3.

5. CONCLUSIONS

This paper revealed that introducing additional non-deter
minism in load latencies by employing low-power caches can
result in a large performance and energy wastage. To allevi-
ate the energy and performance impact of non-deterministic
load latency due to the use of the drowsy cache, we proposed
a novel early cache set resolution scheme. When cache sets
can be determined early, the sets are woken up before access-
ing the data cache. Our results demonstrate that the early
set resolution scheme is quite effective in reducing perfor-
mance and energy penalties incurred by the drowsy cache.
Specifically, the energy increase when the proposed scheme
is employed is around or below 1% of the overall processor
energy that does not account for penalties associated with
non-deterministic load latency.

6. ACKNOWLEDGMENTS

This work was supported in part by National Science

Foundation grants 0073419 and 0082064, career award 0093085,

and GSRC.

7. REFERENCES

[1] K. Inoue, T. Ishihara, and K. Murakami. Way-predicting
set-associative cache for high performance and low energy
consumption. In Proc. International Symposium on Low
Power Electronics and Design, 1999.

[2] M. D. Powel, A. Agarwal, T. N. Vijaykumar, B. Falsafi, and K.
Roy. Reducing set-associative cache energy via way-prediction
and selective direct-mapping. In Proc. International
Symposium on Microarchitecture, December 2001.

[3] S. Kaxiras, Z. Hu and M. Martonosi. Cache decay: Exploiting
generational behavior to reduce leakage power. In Proc.
International Symposium on Computer Architecture, July
2001.

[4] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge.

Drowsy caches: simple techniques for reducing leakage power.

In Proc. International Symposium on Computer Architecture,

July 2002.

S. Yang, M. D. Powel, B. Falsafi, K. Roy and T. N.

Vijaykumar. An integrated circuit/architecture approach to

reducing leakage in deep-submicron high-performance i-caches.

In Proc. International Symposium on High-Performance

Computer Architecture, 2001.

[6] G. Reinman and N. Jouppi. An integrated cache timing and
power model. Technical Report, Compaq Western Research
Lab, 1999.

[7] R. E. Kessler. The Alpha 21264 microprocessor. IEEE
MICRO, 19(2):24-36, April 1996.

[8] K. C. Yeager. The Mips R10000 microprocessor. I[EEE
MICRO, April 1996.

[9] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A.
Kyker and P. Roussel. The microarchitecture of the pentium 4
processor. In Intel Technology Journal, Q1 2001.

[10] SPEC2000 benchmarks.
http://www.specbench.org/osg/cpu2000/

[11] D. Brooks, V. Tiwari and M. Martonosi. Wattch: a framework
for architectural-level power analysis and optimizations. In
Proc. International Symposium on High-Performance
Computer Architecture, 2000.

[12] H. Neefs, H. Vandierendonck, and K. De Bosschere. A
technique for high-bandwidth and deterministic low latency
load/store accesses to multiple cache banks. In Proc.
International Symposium on High-Performance Computer
Architecture, 2000.

5

