
SILC-FM: Subblocked InterLeaved Cache-Like Flat Memory Organization

Jee Ho Ryoo

The University of Texas at Austin

Austin, TX

jr45842@utexas.edu

Mitesh R. Meswani

ARM*

Austin, TX

mitesh.meswani@gmail.com

Andreas Prodromou

UCSD

San Diego, CA

aprodrom@eng.ucsd.edu

Lizy K. John

The University of Texas at Austin

Austin, TX

ljohn@ece.utexas.edu

Abstract—With current DRAM technology reaching its limit,
emerging heterogeneous memory systems have become attrac-
tive to continue scaling memory performance. This paper
argues for using a small, fast memory closer to the processor
as part of a flat address space where the memory system
is composed of two or more memory types. OS-transparent
management of such memory has been proposed in prior works
such as CAMEO and Part of Memory (PoM). Data migration
is typically handled either at coarse granularity with high
bandwidth overheads (as in PoM) or at fine granularity with
low hit rate (as in CAMEO). Prior work uses restricted address
mapping from only congruence groups in order to simplify the
mapping. At any time, only one page (block) from a congruence
group is resident in the fast memory.

In this paper, we present a flat address space organization
called SILC-FM that uses large granularity but allows sub-
blocks from two pages to coexist in an interleaved fashion in
fast memory. Data movement is done at subblocked granularity,
avoiding fetching of useless subblocks and consuming less
bandwidth compared to migrating the entire large block.
SILC-FM can achieve more spatial locality hits than CAMEO
and PoM due to page-level operation and interleaving blocks
respectively. The interleaved subblock placement improves
performance by 55% on average over a static placement scheme
without data migration. We also selectively lock hot blocks
to prevent them from being involved in hardware swapping
operations. Additional features such as locking, associativity
and bandwidth balancing improve performance by 11%, 8%,
and 8% respectively, resulting in a total of 82% performance
improvement over a no migration static placement scheme.
Compared to the best state-of-the-art scheme, SILC-FM gets
performance improvement of 36% with 13% energy savings.

Keywords-die-stacked DRMA; subblocked; flat memory;

I. INTRODUCTION

In the current era, where the bandwidth requirement of

multi-core processors has exceeded the maximum bandwidth

provided by conventional DDR DRAM technology, alterna-

tive memory technologies rise as a solution to leap over

the bandwidth wall [1], [2]. Near term solutions are likely

to combine alternative memory and conventional DRAM

technologies to form a heterogeneous memory system. A

few such popular technologies are Phase Change Memory

(PCM), which provides a higher capacity, and die-stacked

DRAM, which provides high bandwidth. These alternatives

all play an important role to supplement the existing memory

*This work was done while the author was working at AMD Research

technology, yet integrating these technologies in existing

systems remains challenging.

Emerging technologies such as High Bandwidth Memory

(HBM) and Hybrid Memory Cube (HMC) offer much higher

bandwidth than the conventional DDR technology [3], [4],

[5], [6]. In addition, its physical proximity to the processor

offers slightly reduced access latency. Over the years, the

capacity of these modules has increased steadily from a few

hundred megabytes to a few gigabytes, and exposing this ca-

pacity to users can make an impact for capacity constrained

applications [7]. Although the capacity is much greater than

conventional SRAM caches, many emerging applications

often have a memory footprint of hundreds of gigabytes [8],

[9], [10]. Therefore, even emerging memory technologies

cannot hold all hot pages of such applications. Researchers

have been exploring ideas to efficiently use this small, fast

memory as a large Last Level Cache (LLC). Researchers

focus on ways to manage tags (metadata) efficiently by

managing data at different cacheline sizes to reduce the

metadata storage overheads, while at the same time, they

try to perform selective cacheline fetching from the off-chip

DRAM to reduce off-chip bandwidth usage [11], [12], [13],

[14], [15], [16], [17], [18], [19], [20], [21], [22].

While such memory technologies cannot replace the main

memory yet, it still has significant capacity, which can con-

tribute towards useful main memory capacity. The operating

system (OS) can explicitly manage such capacity via page

placement [23], [24], [25], [26], [27]. The OS monitors

page usage and swaps hot pages from slow memory to

fast memory at some fixed time intervals or epochs. The

major drawbacks are the high software related overheads.

The overheads to perform a bulk migration are significant,

and hence the OS management is done at coarse granularity

(hundreds of milliseconds). As a result, software schemes

are typically slow to to react to changes to the hot working

set.

To address this issue, recent proposals such as CAMEO

and PoM schemes [7], [28] expose the fast memory capacity

while transparently migrating data between off-chip and on-

chip memories without involving the OS. CAMEO migrates

64B block at a time whereas PoM does so at 2KB. The

migration is done using hardware remapping tables, so some

off-chip memory data are remapped to die-stacked DRAM.

2017 IEEE International Symposium on High Performance Computer Architecture

2378-203X/17 $31.00 © 2017 IEEE

DOI 10.1109/HPCA.2017.20

349

In this work, we present Subblocked InterLeaved Cache-

Like Flat Memory Organzation (SILC-FM), which fully

utilizes the die-stacked DRAM capacity while intelligently

placing hot pages in fast memory. The subblock level data

movement reduces the bandwidth usage compared to PoM

and prevents fetching data that may not get utilized much.

However, SILC-FM fetches multiple small-size blocks at a

time, resulting in more spatial locality hits compared to

CAMEO. In effect, SILC-FM achieves the best of both

CAMEO and PoM. Furthermore, SILC-FM allows interleav-

ing between die-stacked and off-chip DRAM hot blocks,

so subblocks from on-chip and off-chip DRAM can coexist

together in faster memory. Our scheme is a hardware data

management mechanism that is robust to common problems

associated with recent proposals since SILC-FM can exclude

and lock hot pages from being involved in undesirable data

migration operations. Our associative structure also protects

those pages that are not locked and are actively participating

in hardware data migrations from being frequently swapped

out. In addition, we maximize the memory bandwidth by

utilizing both on-chip and off-chip memory bandwidth. We

achieve this by moving only a certain subset of memory

traffic to off-chip memory rather than servicing all memory

requests from fast memory. Thus, we further improve per-

formance by utilizing the sum of both on-chip and off-chip

memory bandwidth. Our technique provides the following

insights:

• The high bandwidth costs typically associated with

page-level data placement and migration in prior PoM

can be eliminated by using subblocking. Subblocking

together while interleaving subblocks from two differ-

ent pages increase the usefulness of the fast memory

layer.

• Hot pages are preferred to reside in on-chip memory as

those pages benefit from high bandwidth. We developed

a mechanism to identify hot pages and to lock them in

fast memory, so that conflicting data does not swap

hot pages out to off-chip DRAM. Unlike epoch based

approaches, the locking does not need to occur at coarse

grain time intervals, and thus our scheme can react

quickly to changes in the hot working set.

• In memory bandwidth limited systems, the bandwidth

is the scarce resource. Thus, instead of maximizing

the total number of requests serviced from the fast

memory layer, it is beneficial to service a fraction of

requests from the off-chip DRAM to utilize the overall

available system bandwidth. If the bandwidth available

from the two memory levels are N+1, it is beneficial

to service 1/(N+1) of the accesses from the slower

memory layer. Therefore, our scheme achieves high

performance improvement with a slightly lower number

of requests serviced from die-stacked DRAM. This

leads to well balanced bandwidth utilization, which in

turn improves performance.

We evaluate our scheme against the state-of-the-art

scheme, which also fully utilizes the added fast memory

capacity as a part of memory. Our scheme outperforms

the state-of-the-art scheme by 36%. Also, with die-stacked

DRAM’s low energy consumption, our scheme reduces the

Energy-Delay Product (EDP) by 13%.

II. BACKGROUND

In this section, we first discuss challenges associated with

architecting small, fast memory as a part of memory. In

this paper, our main focus is to efficiently use this memory

as a part of memory, so we explain using prior state-of-

the-art schemes. We show inherent advantages/disadvantages

associated with each scheme. Throughout the paper, we refer

the small, fast memory as Near Memory (NM) and off-

chip DRAM as Far Memory (FM) since NM is physically

located closer to the cores with high bandwidth. Also, we

call 64B worth of contiguous address space as a small block

or subblock and 2KB worth of contiguous address space as

a large block. For software related schemes, we assume that

the page size is 2KB.

A. Challenges with Architecting Near Memory as Part of

Memory

Using emerging memories as part of memory rather than

caches poses sophisticated design challenges. First, when

swapping is done without OS intervention, a remap table is

necessary to allow dynamic migration of data between NM

and FM. However, keeping an SRAM based remap table

for every small block will easily exceed today’s on-chip

SRAM capacity [7]. As NM scales to a larger capacity, the

remap table storage overheads become a problem. Therefore,

efficiently storing such large metadata is challenging and

important. Making the remapping granularity to a large

block (2KB) can mitigate this issue, yet on each remapping

migration, the bandwidth usage becomes exorbitant as un-

necessary subblocks also have to be migrated. Furthermore,

recent work [15] has shown that as NM capacity scales, even

making the remap granularity larger becomes problematic

again. Using the OS to intervene the system and perform

the remapping can completely eliminate such remapping

overheads. Yet, this has to be done at a large time interval

to minimize the OS related overheads, so its adaptation

to memory behavior changes is inherently slow. Therefore,

carefully choosing the remap granularity and the frequency

is crucial. Similarly, identifying what to placed in NM is

an important task since only a subset of the entire memory

space can be held in NM. Current OS main memory activity

monitoring is done at page granularity based on the reference

bit in a Page Table Entry (PTE). This method limits the OS

to accurately select the appropriate number of hot blocks that

will fit in NM [25]. Therefore, a finer monitoring method is

necessary.

350

B. Hardware Schemes

A block based scheme swaps either small or large size

blocks between two memories upon a request. This category

of schemes attempts to exploit temporal locality as they

expect those swapped blocks in NM to be used frequently.

Each block in NM has a remap table entry, which identifies

whether a requested block resides in NM or FM. A scheme

can use different data management granularities from a small

block (64B) to a large block (2KB). The key idea in this

category of schemes is that while it allows NM capacity to

be exposed to the OS, the dynamic remapping between NM

and FM allows the data to move between two memories

without OS intervention at low overheads. PoM [28] and

CAMEO [7] are two state-of-the-art schemes that use a

large and small block size respectively. PoM’s large blocks

are migrated to NM intelligently by estimating the benefit

and cost of migrating pages. If the benefit outweighs the

cost, then it is migrated to NM. PoM requires a counter for

a page to reach a threshold before migration occurs, and

thus it misses potential opportunities. Also, although only a

subset of 2KB page is desired, it has to fetch the entire 2KB,

which wastes significant bandwidth in low spatial locality

workloads. Unlike PoM, CAMEO adopts a small block size.

Since the migration bandwidth consumption is low, it allows

small blocks to swap from FM whenever a requested small

block is in FM.

CAMEO manages data at a small block granularity, so

each block must have an accompanying remap table entry.

The high metadata storage overheads due to having a remap

table with each block is a drawback. Therefore, the metadata,

namely the remap table, is stored next to data within the

same row in the large NM. During an NM access, the burst

length is increased to fetch the extra bytes of metadata, and

this saves latency as only one memory request is required

per access instead of two. Prior work [20] showed the

difficulties involved with associative structures in NM as

fetching multiple data in parallel from the same NM row

is not possible. Consequently, the direct-mapped approach

is preferred to achieve low latency. Thus, conflict misses

are an inherent problem in this scheme. Also, by only

swapping a small block at a time from FM, this scheme

does not take advantage of the abundant spatial locality

present at a large block level. The original CAMEO paper

does not implement any prefetching scheme, which might

benefit high spatial locality workloads, thus it achieves a

lower hit rate. Furthermore, other work [15], [16] has shown

CAMEO’s lost performance opportunities by only fetching

64B at a time. Therefore, in this paper, in addition to original

CAMEO, we have additionally also evaluated CAEMO with

prefetching to see higher spatial locality effects.

C. Software Schemes

In an epoch based scheme, the OS explicitly manages

the NM capacity as a special region of memory. The OS

moves hot pages (2KB) into NM and the PTE is updated

accordingly. Upon an access, the post-translation physical

address is directly used to access data in NM. Unlike

hardware managed schemes, it does not have additional

hardware structures like the remap table or modified address-

ing schemes, which result in unconventional data layout in

a row. In CAMEO, the addressing scheme in the memory

controllers has to be modified to fetch the remap table entry

located next to every data block. Yet, the NM data layout

and addressing of epoch based schemes is the same as in

conventional DRAM, so it does not require specialized logic

in memory controllers. The key to achieve high performance

in epoch based schemes is the ability to identify hot pages

and to reduce migration related overheads. In this section,

we use the state-of-the-art epoch based scheme, the HMA

scheme [25], to describe the advantages and disadvantages.

The software scheme relies on hot page detection to

achieve performance improvement as there is no additional

hardware to perform sophisticated operations such as dy-

namic remapping. HMA uses a dynamic threshold based

counter where the pages, whose access counts are higher

than a set threshold, are marked using an unused bit in

the PTE. The page migration occurs at a large interval,

and the interval is referred to as an epoch. At each epoch

boundary, the OS sweeps through the PTEs to select those

pages that are marked, and the bulk page migration occurs

between NM and FM. In addition to the time spent on

physically transferring pages, this operation requires the

system to update PTEs and invalidate corresponding TLB

entries. Costs related to such operations are extremely high,

and thus the benefit of performing the block migration has

to be large enough to offset the expensive costs [25], [28].

This scheme is slow to changes in the hot working set,

which is a common behavior in many applications with

different execution phases. For example, a page can become

hot in FM, yet this page cannot be serviced from NM until

the next epoch, which may take millions of cycles to reach.

Until then, the potential to get performance benefits when it

is placed in NM is not exercised. Furthermore, the working

set coverage by NM is fixed during an epoch as no data

migration occurs between NM and FM except at epoch

boundaries. If a larger working set coverage is desired, the

hardware management scheme can swap blocks from FM

and a larger amount of data can be served from NM at the

end of an epoch.

III. SILC-FM MEMORY ARCHITECTURE

In this section, we will explain the details of the SILC-FM

architecture piece-by-piece. The SILC-FM scheme uses NM

as OS visible space while internally operating with subblock

based mechanisms. NM is organized as an associative struc-

ture where subblocks are swapped between NM and FM.

A locking feature prevents hot blocks from being swapped

out to FM while a bypassing feature utilizes the overall

351

��� ���
���	
��� ���	
��� ���	
�
�

�� �� �� ���� �� 	�
� �� ��
� ��

���	
��� ���	
��� ���	
���
�� �� �� ���� �� �� �� �� �� �� ��

������

������

Figure 1: NM Set Mapping

system bandwidth. Figure 1 shows the initial memory state

where each row is a congruence set. In this example, each

block contains four subblocks and the mapping is direct-

mapped. This implies that multiple subblocks from only

one large block (from the same set) in FM can swap into

corresponding subblocks in NM at any one point of time. For

example, subblock A and C are in the same large NM block

whereas another subblock F is in a different large block in

FM, so the subblocks F and J can only swap into subblock B

in NM. At any point in time, only one of subblock F or J can

reside in NM. In Figure 1, the migration between two pages

within the same set occurs at subblock granularity. This is

bandwidth efficient as only 64B worth of data is migrated,

yet managing the remap table at a large block granularity

reduces the remap table overheads. The subblock tracking

is done using a bit vector per NM block where individual

bits validate the corresponding subblock’s residency in NM.

When a block is swapped out of NM, the history of bit

vectors is stored in a small SRAM structure called a bit

vector table. Our bit vector history table has a total of

1 million entries (˜4MB). Multiple subblocks are fetched

using this bit vector when a block is swapped in again.

This exploits spatial locality as previously used subblocks

are swapped at the same time, so any subsequent request to

either of the subblocks results in a subblock serviced from

NM. In comparison to CAMEO, our scheme can achieve

higher spatial hits. Since this scheme does not swap any

other undesirable subblocks, it is more bandwidth efficient

than large block based schemes such as PoM, which have

to swap every subblock within a large block.

Since NM is not a cache, we do not use the term “hit

rate” to describe the fraction of requests serviced from NM.

Rather, we adopt the term, “access rate”, that is used in

a recent die-stacked DRAM paper [7]. The access rate is

defined as

AccessRate =

total number of requests
serviced from NM

total number of requests
missed from LLC

. (1)

In this work, we assume that NM uses the lower addresses in

the physical address space and FM uses the higher addresses.

A. Hardware Swap Operations

Since NM is a part of memory space, when data is brought

into NM, the existing data from NM needs to be swapped

out. Unlike hardware caching schemes where there is always

a copy in FM, SILC-FM needs to perform a swap operation.

Figure 2 shows a direct mapped scheme to describe the

swapping operation for subblocks F and H. When two back

to back requests are made to subblock F and H, they are

��� ���
���	
��� ���	
��� ���	
�
�

������������ �

�� �� �� ���� �� 	�
� �� ��
� ��������

��� ���
���	
��� ���	
��� ���	
�
�

�!�"��" #���$��

�� �� ��
��� �� 	� �� �� ��
� ��������

%�"� &���' (�$#�
)� *)*)�

+ ��*�
% ��,����

%�"� &���' (�$#�
-� ****�

+ ��*�
% ��,����

Figure 2: Example of Interleaved Swap

brought in one by one from block 1 in FM into block 0 in

NM. The corresponding subblocks (subblock B and D) in

block 0 are swapped out to block 1. Any subsequent access

to subblock F and H will be serviced from NM. There are no

duplicate copies of data and hence the total memory capacity

is the sum of NM and FM capacities, which is much greater

than in cache schemes such as Alloy Cache [20]. In SILC-

FM, the address is used to calculate an index, which refers

to a set of unique NM blocks. Upon a memory request,

the index is calculated by performing the modulo operation

with the incoming address and the total number of blocks

in NM. Then, the incoming address is checked against the

remap field of the metadata. The remap entry is only used

for the swapped in data from FM since it contains the large

block address of the swapped in block.

Subblocking is done via a bit vector, which consists of

valid bits to indicate whether a particular subblock in this

NM block has been swapped in from FM. In Figure 2, when

subblock H is brought into NM, the corresponding bit, which

is calculated using the block offset, is set in the bit vector.

Also, the remap table entry is updated, so it contains the

block address of the swapped in block, which is 1 in our

case. Note that SILC-FM does not have a valid bit at block

granularity because unlike caches, there is always data in

NM, so the block is always valid. The difficulty here is

to distinguish which block the data belongs to. SILC-FM

can achieve that by using the NM address range and remap

entry. Using the remap table entry, bit vector and the request

address, there can be 6 scenarios of swap operations. Table I

lists each operation and we will refer to this table to explain

each swap operation. First, we begin with the case where

the remap entry matches with the request address. If a bit

in the bit vector is not set and the request address belongs

to the NM address space, then the subblock (original NM

subblock) is resident. Otherwise, if the bit is set, then the

original subblock is swapped out to FM.

In the scenario with a remap entry mismatch, the bit is

Remap Bit Vector NM Address Action

match 1 - service from NM

match 0 - swap subblock from FM

mismatch 1 yes swap subblock from FM

mismatch 0 yes service from NM

mismatch 1 no restore current block and

swap subblock from FM

mismatch 0 no restore current block and

swap subblock from FM

Table I: Metadata and Operation Summary

352

��� ���
���	
��� ���	
��� ���	
�
�

�� �� �� ���� �� 	�
� �� ��
� ��

���	
��� ���	
��� ���	
���
�� �� �� ���� �� �� �� �� �� �� ��

������
������
����	�

���	
��
� � 	

��	
���
���	
�

Figure 3: Locking and Associativity

set, and the address falls in the NM address space, then the

swapped out subblock (the one originally belonging to NM)

is brought into NM. The FM location where the swapped out

subblock currently resides is the block address in the remap

entry, so the remap entry is consulted to bring the subblock

back. In the same scenario with the bit not set, the original

subblock is resident, so the request is serviced from NM.

Lastly, if the remap entry mismatches and the requesting

block address belongs to the FM space, the original mapping

is restored. Although the bit vector is not used to make

an execution action, the bit vector is consulted to restore

the original mapping. At the same time, the bit vector is

saved in a bit vector table. This is a small SRAM structure

that is indexed using the xor’ed PC and address of the first

swapped in subblock within the block (first in timely sense).

Thus, this PC and request address is stored along with other

metadata for each block. These two variables have shown to

have high correlation with the program execution [29], [30],

[31], [32], so when this block is accessed again in the future,

it is likely that a similar access pattern will repeat. Since the

bit vector has a pattern of previous subblock usage, it will be

used to fetch multiple subblocks when this block is swapped

into NM again. The bit vector table is indexed and those

subblocks corresponding to 1’s in the bit vector are fetched

together from FM, which takes advantage of spatial locality.

By doing so, SILC-FM can achieve a higher access rate

than small block schemes. Now, after successfully restoring

a block, the new swapping occurs between NM and FM.

If a FM subblock has to be swapped into NM, the

corresponding subblock in NM (the subblock that originally

belongs to the NM address space) is swapped out to FM.

The corresponding bit is set accordingly and the subblock

is now resident. Since our large block size is 2KB and the

subblock size is 64B, there are 32 bits per block. Each bit

is responsible for each subblock position in NM. Unlike

caches, we do not keep track of dirty bits in NM. In caches,

dirty bits facilitate the eviction process by only writing back

dirty data and invalidating clean data. However, since data

in NM is the only copy of the data in the physical address

space, all swapped in blocks need to be written back to FM

when necessary. Therefore, our scheme does not need dirty

bits.

B. Memory Activity Monitoring

SILC-FM monitors memory access activities to classify

data into hot and cold data. The idea is that we want to keep

only hot pages in NM to benefit from NM’s high bandwidth.

The cold data should not interfere with hot data to keep

hot data from being inadvertently swapped out to FM. The

activity tracking metadata, namely NM and FM counters,

are used to gather memory access statistics, and each page

in NM has its own dedicated set of NM and FM counters.

Each NM page has two counters, each with 6 bits, so the

total area overhead is 1.5MB, which is negligible.If there

are any swapped in subblocks in NM, then two different

blocks coexist in the same NM row; ones originally in NM

space and the others swapped in from FM. Unlike the remap

entry where only one entry is needed to distinguish those two

sets, for monitoring activities, we need two sets of counters,

each for NM and FM blocks. The counter is used to classify

two coexisting blocks into either hot or cold blocks. Upon

an access, the updated counter value is compared against a

threshold and if it exceeds this value, the large block is hot.

Otherwise, it is considered cold. This later helps to identify

candidates to lock in NM. In order to distinguish between

current and past hot blocks, these counters are implemented

using aging counters where the counter value is shifted to

the right at every one million memory accesses.

C. Locking Pages

Once the system identifies hot blocks, SILC-FM locks

hot large blocks in NM as those blocks are responsible for

high bandwidth usage, which benefits from being placed in

NM. When the counter crosses the threshold, the block is

locked. To reduce hardware complexity, the locking is done

at large block/page granularity although the unlocked pages

still operate at subblock granularity. Unlike unlocked blocks,

the locked blocks have all their subblocks in NM. Therefore,

when locking the block, the missing subblocks, which are

residing in FM, are swapped into NM. After locking, a

complete large block remap has been performed as the

large block originally belonging to NM is now completely

remapped to a location in FM and vice versa. The counter for

this locked page is still incremented upon each access, but

the bit vector check is ignored. The counter is still monitored

to ensure that the locked block is still hot. If the locked

block is no longer hot and the access count becomes below

the threshold, the lock bit is unset. Clearing the lock bit does

not have an immediate effect as it operates as if the unlocked

block has all subblocks swapped in from FM (all bits in the

valid bit vector are set). If this block has, in fact, lost its

hotness, then other hot subblocks will be swapped into this

place in NM. Our locking and unlocking mechanism can

react more quickly to changes in the hot working set than

epoch based schemes as migrating hot blocks do not have

to wait until epoch boundaries. In fact, our scheme does

not have a notion of epochs, so locking and unlocking can

happen at anytime for any number of blocks.

However, locking a block makes other subblocks in the

same set in FM inaccessible to NM as they can only be

swapped into NM in the same set when a direct-mapped

scheme is used. Therefore, SILC-FM allows swapped in

353

��.�*� ��.�)� ��.�/� ��.�0�

/
��

111�

����2&&�$(3+�

����2&&�$(3+�

���$(3 ,���$(3�

111�

�$(3 ,���$(3�

/
��!$#�4�$5�,����

����
���3+� 111�

	4��� ��)� 	4��� ���-)�� ���
����
���3+�

	4��� ��*�

� ��,����*� � ��,����)� � ��,����/� � ��,����0�

����)*)���)))�

'���,�&���' (�$#�

���	$2�� #��$(3� � %�"� ���	$2�� #��	6��,,#�

Figure 4: SILC-FM Data and Metadata Organization

subblocks to be placed with some flexibility by allowing

block level associativity. We have experimented with vari-

ous associativities at a management granularity of a large

block (2KB). 1-way is a direct-mapped organization and

it achieves the least performance improvement as several

hot blocks get swapped out due to conflicts and thrashing.

Increasing it to two improves performance by removing

many conflicts. Yet, the index is still calculated using a part

of the address bits, so multiple hot blocks (more than two)

are still mapped to the same set. Consequently, increasing the

associativity to four further improves the performance. As

a result, SILC-FM adopts a four-way associative structure.

Therefore, the incoming address is checked again all ways to

find the matching remap entry. Prior page based work [28],

[15], [13] showed similar results regarding associativity, yet

our associativity is distinct from prior work in that depending

on the number of pages locked, the associativity can vary

from 1-way to 4-way.

D. Metadata Organization

The overall metadata organization in SILC-FM is shown

in Figure 4. The block address for those swapped in sub-

blocks are stored in the remap field as shown in the figure.

The FM counter tracks the number of accesses made to

these swapped in blocks. The FM counter is used since

those subblocks originally belong to the FM address space.

The block corresponding to Way 0 shows the layout of

the data where subblocks shaded in black within 2KB

block represent swapped in subblocks. Those swapped in

subblocks originally belong to FM address space, but they

are brought into NM upon a request. The white subblocks

are data belonging to the original page that resides in NM

address space. Again, since NM is an OS visible space

just like FM, it originally has its own exclusive data from

FM. Upon a request, this remap entry has to be checked to

determine if the requested block has been swapped in or not.

SILC-FM maintains one remap entry per large block/page

while the residency of subblocks within a block is validated

using a bit vector. SILC-FM also has other metadata fields

such as lock and LRU, which are used for locked pages

and finding the swapping candidate in NM. The metadata is

stored in a separate channel to increase the NM row buffer

hit rate of accessing metadata. Separating the metadata

storage from data has been shown to increase the row buffer

locality [13].

E. Bypassing and Bandwidth Balancing

Always swapping subblocks upon access increases the

overall access rate. Although such approach makes sense

for caches where NM is considered another level in memory

hierarchy, it may leave the available bandwidth to FM idle

once the access rate becomes high. In caches, FM being

idle is actually beneficial since all requests are serviced

from a layer of memory closer to the processor. Yet, in

our situation where NM is a part of the memory space just

like FM, having a portion of the memory being idle has a

similar effect as disabling a fraction of the memory in the

same memory hierarchy. This is not a desirable outcome,

and in this case, making use of the FM bandwidth can

increase the effective available bandwidth to the system.

We have experimented with the effects of bypassing using

the CAMEO scheme and steered an appropriate amount

of traffic to match our desired access rate. Unlike SRAM

caches where the maximum performance is achieved at

100% hit rate, in our experiment, the optimal performance

improvement point in our case is at 0.8 instead of 1.0.

In our system, the available bandwidth ratio between FM

and NM is 4:1, so routing 80% of the traffic to NM

and 20% to FM matches this bandwidth ratio. Since NM

and FM are at the same memory hierarchy, using this

FM bandwidth allows the processor utilize all bandwidths

available in the system at the NM and FM layer. Thus, it

is able to gain extra performance from the memory system.

Since our work focuses on memory bandwidth bottlenecked

system, having more bandwidth available to the application

helps. Prior work [33], [34] also showed that bandwidth

throttling is effective in bandwidth constrained systems, yet

our bypassing is at much finer granularity (at page level) than

in prior work, which uses a segment of memory as bypassing

zones. In SILC-FM, we want to match the access rate to

be 0.8, so we add the bypassing feature if the access rate

exceeds this value. When this happens, no more subblocks

are swapped into NM. However, the unlocked blocks, which

are already in NM, can still operate normally from NM. For

example, subblock G in Figure 3 can be swapped into block

1 upon a request and still work under unlocked conditions.

However, in the bypassing scenario, this swapping is not

allowed, so the bit vector will not be updated and subblock G

will be serviced from FM. However, if the access rate again

becomes lower than 0.8, this bypassing feature is turned off

to increase the access rate.

354

F. Latency Optimization

Having an associativity structure adds the NM access

latency as fetching multiple remap entries is a serialized

operation. In SRAM caches, it does not add a significant

latency as multiple entries can be fetched and checked

simultaneously. However, it is not the case for NM since it

uses DRAM based technology. Our implementation uses 4

way associativity, so in each access, four independent remap

entries are fetched. This operation has to be serialized as the

maximum fetch bandwidth is limited by the bus width. The

metadata serialization problem was also addressed in prior

work [18], [20]. In order to hide the long latency of fetching

multiple remap entires, we add a small predictor that can

bypass this serialization. The predictor has 4K entries in

total. The predictor uses the instruction and data addresses

since they are known to have a strong correlation with the

execution phase of a program [29], [30], [31], [32], and thus,

they are widely used as predictors in DRAM caches [16],

[13], [20]. The program counter and data address offset

values are xor’ed to form an index into the predictor. This

table keeps track of a recently accessed way for each

particular index. On each access, the index is calculated

to access this table. Since this table is a small structure,

the access latency is negligible. However, we assume that

the access to the table begins with an LLC access, so by

the time the LLC miss is identified, the predicted way is

available to access NM. Furthermore, we add one more bit

in each entry to speculate on the location of the data (NM

or FM).

The latency on an access to FM is longer than an access

to NM since the remap entry has to be checked first in NM

prior to accessing FM. Our predictor attempts to improve

this issue. If the predictor speculates that the data is located

in FM, then the request is sent to FM at the same time

as the remap entry request is sent to NM. Upon correct

speculation of the data in FM, the latency is just a single FM

access latency, hiding the NM remap entry fetching latency.

Therefore, the saved time is the NM access latency. Note

that the predictor only forwards the requests to FM when

the block is speculated to exist in FM. In the case where

the block is speculated to be in NM, no additional action

is taken. If this prediction was not correct (FM speculated,

but data is in NM), the simultaneously forwarded request to

FM is ignored.

G. Putting It All Together

Now, the overall scheme is explained from the point of

an LLC miss using Figure 5. The congruence set index

is calculated using the modulo operator to access both the

remap entry and data in NM. Also along with LLC access,

the PC and the request address are used to access the

predictor. The request is sent to NM using the calculated

index and predicted way. If the lock bit and the remap field

is set and matched, the NM data is fetched. In case of a

	$%%$���" #���$�+�

����
�����

�� �

!"�

��� ����
�� ��
�� ��
###� ###�
�� ��

$�

�$(3 ,
7�

�$(3 ,�

����
%�� %��

����

%�"
7�

��7�
����

%�"
7�

����

%�� ���&��'����	
��
(��)����

(��	*��'����	
��
(��)����

(��	*��'����	
�
(��)����

����((++� ����((++� ���$(3 ,�

���&��'����	
�
(��)����

%��&���
' (�$#

7�

%�����
�,,#�
+"�(7�
����

���&��'����	
�
(��)����

����
&���

' (�$#
7�

����

(��	*��'����	
�
(��)����

%��

���&��'����	
�
(��)����

+%��,�
&���+	��������

-�+%��,�

�" (2����' ����4��
8���.�5$#�����" (2����$�9�

Figure 5: Overall Execution Flow of SILC-FM

remap mismatch, the request address is checked whether it

falls under the NM address space. If so, the bit vector is

checked to determine the location of the requested subblock

(if resident in NM, the bit has to be 0). The prediction,

shown in a dotted line, can skip the previously mentioned

metadata fetching steps. If the block address does not fall

under NM space, then the remap entry update and subblock

swap from FM are initiated. The subblock is swapped to

available ways within the set. A similar operation occurs

for a remap mismatch. If the request was made to one of

the locked blocks, the remap entry is checked. If it matches,

then the corresponding subblock is fetched from NM. If not,

then the subblock is swapped from FM to NM blocks other

than this locked block. Due to space constraint, we do not

show the bypassing operation, but for every swap from FM

operation in the figure, the access rate is checked. If it is

enabled, then the swap from FM becomes a fetch from FM

without any metadata update. Also, only the correct way

speculation path is shown. In the case of the way prediction

misspeculation, the remap entry check takes longer as four

remap entries are checked in serial.

IV. EXPERIMENTAL SETUP

A. Simulation Infrastructure

To evaluate the SILC-FM scheme, we use a Pin-based

simulator that models a 8-core server class processor similar

to AMD’s A10-7850K processor [35]. Each core is a 4-wide

issue processor with 128 ROB entries per core. We also use

a detailed memory simulator, Ramulator [36], with 32-entry

read and write queues per channel. Timing and configuration

parameters are listed in Table II. We implement a virtual-to-

physical address translation (2KB page size) and assume that

FM to NM capacity ratio is 4:1. For NM memory, we use

HBM generation 2 technology and derived timing parame-

ters from JEDEC 235A datasheet [5]. DDR3 technology is

used as FM memory with latency parameters derived from

JEDEC and vendor datasheet [37], [38]. We also perform

the NM capacity sensitivity study in Section V-C. We use

the system without NM as baseline scheme. The bit vector

history table is 72KB and the predictor is 1.5KB, both of

which take 1 cycle. The access latency of SRAM structures

is derived from CACTI [39]. We have experimentally found

that the threshold of 50 works the best to determine the

355

Processor Values

Number of Cores (Freq) 16 (3.2GHz)

Width 4 wide out-of-order

Caches Values

L1 I-Cache (private) 64 KB, 2 way, 4 cycles

L1 D-Cache (private) 16 KB, 4 way, 4 cycles

L2 Cache (shared) 8 MB, 16 way, 11 cycles

HBM Values

Bus Frequency 800 MHz (DDR 1.6 GHz)

Bus Width 128 bits

Channels 8

Ranks 1 Rank per Channel

Banks 8 Banks per Rank

Row Buffer Size 8KB (open-page policy)

tCAS-tRCD-tRP-tRAS 7-7-7-28 (memory cycles)

DDR3 Values

Bus Frequency 800 MHz (DDR 1.6 GHz)

Bus Width 64 bits

Channels 4

Ranks 1 Rank per Channel

Banks 8 Banks per Rank

Row Buffer Size 8KB (open-page policy)

tCAS-tRCD-tRP-tRAS 11-11-11-44 (memory cycles)

Table II: Experimental Parameters

block hotness, so we use this value throughout the paper.

The execution time is calculated using the time when all

workloads in all cores terminate. Our speedup (figure of

merit) is calculated using the total execution of the baseline

with no HBM memory over the execution time of a corre-

sponding scheme, and therefore, higher speedup represents

higher performance.

We compare our scheme against other five other designs:

Random Static Placement (rand), HMA (hma), CAMEO

(cam), CAMEOP (camp), Part of Memory (pom). Random

uses the entire NM and FM as OS visible address space and

maps pages randomly. Thus, this scheme does not consider

different bandwidth/latency characteristics of NM and FM,

and rather, treats them the same. HMA and CAMEO are

described in Section II. CAMEOP is not published from

prior work, yet we implemented a prefetcher that fetches

extra 3 lines along with the miss (we have experimentally

found that next 3 lines achieve the best overall performance).

Lastly, Part of Memory is implemented based on [28], which

migrates 2KB blocks based on block access counts.

B. Workloads

We run a representative region of SPEC CPU2006 bench-

mark suite using 1 billion instruction slice Simpoint [40].

We choose a subset of benchmarks within the suite, which

exhibit high memory bandwidth usage. We run those in

a multiprogrammed simulation mode where one copy of

the benchmark instance is run on each core. Since each

benchmark is a single-threaded application, in our 16-core

simulation environment, 16 separate instances of workloads

are run with a total of 16 billion instructions across all cores.

SPEC calls such simulation rate mode and it is a recom-

mended method to evaluate multicore systems. A benchmark

instance on each core does not get migrated to other cores

and will stay on its own core until the end of execution.

Since we use the multiprogrammed simulation, our virtual-

to-physical mapping ensures that different instances do not

Category Benchmark MPKI (per core) Footprint (GB)

Low MPKI

bwaves 10.12 6.82

cactus 7.52 2.31

dealII 4.46 0.69

xalanc 5.98 2.87

Medium

MPKI

gcc 31.23 1.34

gems 15.95 10.59

leslie 11.28 1.19

omnet 27.22 2.06

zeusmp 11.41 3.32

High MPKI

lbm 53.29 6.30

lib 35.50 0.50

mcf 88.95 18.46

milc 34.13 9.05

soplex 43.32 0.78

Table III: Workload Descriptions

share the same physical address space.

With chosen benchmarks, we categorize them into three

groups: low, medium, and high Misses Per Kilo Instructions

(MPKI). We compute the MPKI based on the number of

LLC misses. We place those workloads whose MPKI is

lower than 11 as low MPKI benchmarks, those higher

than 32 as high MPKI workloads, and those in between

as medium MPKI workloads. Table III summarizes our

workload composition and related characteristics. All re-

ported MPKI is the LLC MPKI computed per core, and

the footprint is calculated by counting the total number of

unique pages seen from LLC misses.

V. EVALUATION

In this section, unless otherwise specified, all results in

the following subsections are normalized with a common

baseline of a system without die-stacked DRAM.

A. Performance Analysis

We show the breakdown of SILC-FM execution time

improvement in Figure 6. The stack bar begins with the

Random scheme as it is the most naive scheme. We show

performance improvement achieved through each technique

used. SILC-FM swap shows the performance improvement

achieved with a direct-mapped small block scheme when any

associativity, locking or bypassing technique is not applied.

The system is able to achieve a speedup of 1.55 only with the

subblock granularity swapping between FM and NM. In high

MPKI workloads where more bandwidth demand exists, the

swapping alone can significantly alleviate the bandwidth

bottleneck by swapping many hot blocks into NM. For that

reason, Figure 6 shows that high MPKI workloads achieve

the overall highest performance improvement. Workloads

such as milc does not get much benefit from swapping as

conflicts constantly swap out recently swapped in subblocks,

which in turn shows the need for other features that are

incorporated in SILC-FM. Now, the SILC-FM adds the

locking feature, which can improve the hot page residency

in NM. In this case, not all benchmarks benefit as some

benchmarks do not have significant number of thrashing or

conflicts from the baseline. However, a benchmark such as

xalancbmk achieves an extra 14% performance improvement

just by locking hot pages. This problem arises due to the fact

356

����
����
����
����
����
����
����
����
����
����
	���

�
�

��

��
��
��

��
��
��

��
��
��

��
��

��
�

��
�

��
�
�

��
���
�

��
��
�

��
��
�
�

��
��

��
�

�

� ��
 �
��

�
���

��
��
��

��
��

��
�

��
��

��
��
��
��
�

 �
!�
�!
�
��
��
���

�!
�

��

��
��

!��� ���� ���" �����
#����

$���% &�� %������% &�� '��(�% &��

Figure 6: Performance Improvement Breakdown

that address bits are used to place blocks, so not all hot pages

are evenly spread out in the NM indexing. The xalancbmk

benchmark is a good example and locking ensures that some

hot blocks are locked, so at least those blocks can be serviced

from NM if not all hot blocks can be accommodated in the

NM set.

Adding associativity achieves similar effects for unlocked

blocks. In some benchmarks, the fraction of hot blocks

that reach over the hotness threshold may not be a large

portion of the entire working set, meaning many blocks

are just lukewarm. In this case, the effects of associativity,

which protects those unlocked pages from unwanted con-

flicts and thrashing, can be quite significant. For example,

gcc achieves a significant speedup of 36% with the addition

of associativity while locking only improves performance

by 11%. This is a good example where the benchmark

has many lukewarm blocks. As a result, locking, which

only benefits hot blocks, provides negligible improvement,

yet associativity brings a huge performance improvement.

Lastly, the bypassing feature is added in SILC-FM. Note

that the bypassing feature is enabled only when the access

rate exceeds 0.8. Benchmarks such as bwaves do not reach

this point, so adding the bypassing feature does not provide

additional performance. Yet, milc exceeds the 0.8 access rate

that the bypassing feature enhances performance by utilizing

the FM bandwidth, which otherwise would have been idle.

Overall, SILC-FM is able to capture hot blocks and sub-

blocks within lukewarm blocks in NM through features such

as swapping, locking, and associativity while higher system-

wide bandwidth utilization is achieved through bypassing.

B. Comparison with Other Schemes

Figure 7 shows the performance improvement of our

proposed scheme against other schemes. First, the Random

scheme does not see much significant performance improve-

ment. The placement is done randomly without considering

NM and FM characteristics, so pages are statically allocated.

Although some pages may sit in NM, the access rate is low.

Since there is no other overheads due to page migration dur-

ing the execution, all workloads achieve similar performance

improvement.

The HMA and PoM scheme improve upon the Random

��)
��*
��+
���
��	
��)
��*
��+
���
��	
��)
��*

�
�

��

��
��
��

��
��
��

��
��
��

��
��

��
�

��
�

��
�
�

��
���
�

��
��
�

��
��
�
�

��
��

��
�

�

� ��
 �
��

�
���

��
��
��

��
��

��
�

��
��

��
��
��
��
� �
!�
�!
�
��
��
���

�!
�

��

��
��

!��� ��� (�� ��� ���� ����,��

$���% &�� %������% &�� '��(�% &��

Figure 7: Performance Comparison with Other Schemes

scheme by intelligently selecting hot pages and placing them

in NM. The threshold based decision is able to select a

subset of pages (mostly hot pages) and move them to NM.

As seen in Figure 7, HMA achieves significantly higher

performance than Random even though this scheme has

additional software overheads such as context switching and

TLB shootdowns. This makes the majority of hot pages

reside in NM. However, the migration only occurs at a very

large time interval, so the selected pages may not be hot

anymore by the time the decision is made, which is shown

in bwaves and milc. Also, PoM follows the similar trend to

HMA, yet in our evaluation, we see that PoM uses much

more FM bandwidth as it frequently transfers 2KB blocks.

In high spatial workloads, most of 2KB blocks are used, yet

in most workloads, we have found that the number of used

unique subblocks within 2KB is rather low. Also, PoM has

to accumulate a certain access count until the migration is

triggered, so it achieves a lower performance.

The CAMEO scheme reacts quickly to any changes in the

hot working set and it moves data at a small block granular-

ity. In all workloads, this scheme effectively places most hot

small blocks in NM. Yet, the conflict misses are unavoidable

since the mapping is direct mapped. For example, cactus

suffers from conflict misses, so that schemes such as HMA

that can withstand conflicts perform better than CAMEO. In

addition, since only one small block is brought into NM at

each time, this does not take advantage of abundant spatial

locality within a page. However, the CAMEO scheme’s data

movement granularity of a small block uses FM bandwidth

efficiently, so it achieves an overall higher performance

improvement than other schemes. The improved CAMEO

with prefetcher achieves a higher speedup as it enjoys some

degree of spatial locality. However, naively prefetching sub-

blocks also wastes bandwidth as those prefetched subblocks

are not always useful.

The SILC-FM scheme effectively removes conflicts by

offering associativity and locked blocks. Unlike HMA where

pages are migrated and locked into NM at epoch boundaries,

the blocks are locked in NM as soon as the access count

reaches the threshold. This makes the hot block capturing

ability of our scheme respond more quickly to changes in

the hot working set. The gemsFDTD workload shows per-

357

���

���

���

���

���

���

	

�
�

�
�

�
�

�

�

�

�

��
��
��
�

	

�
�

�
�

�
�

�

�

�

�

��
��
��
�

	

�
�

�
�

�
�

�

�

�

�

��
��
��
�

	

�
�

�
�

�
�

�

�

�

�

��
��
��
�

-!
��
���
��
��
�.
/
�

�� ��

$���% &�� %������% &�� '��(�% &�� 0�����$���% &�� %������% &�� '��(�% &�� 0�����

Figure 8: Fraction of FM and NM Bandwidth Usage

formance degradation with HMA, but performance improve-

ment with CAMEO. This benchmark has many short-lived

hot pages and the epoch length is too long to make migration

decisions. SILC-FM also responds quickly, so performance

benefits are seen. The associativity reduces conflicts among

those pages that are not locked yet. For libquantum, HMA

performs well since it offers fully associative placement at

epoch boundaries. Here, CAMEO suffers from conflicts and

SILC-FM can withstand that by locking and associativity.

Furthermore, our bit vector based fetching scheme migrates

more useful subblocks than CAMEO with prefetcher, and

thus our benefits are higher. This additional performance

gain makes SILC-FM achieve higher performance than the

state-of-the-art scheme, CAMEO. Furthermore, the bypass-

ing feature makes certain workloads such as milc extract

performance opportunities by using FM bandwidth, which

would have been idle in other schemes due to its high access

rate.

Figure 8 shows the fraction of the total demand bandwidth

usage broken down by either NM or FM. The ideal point

here is 0.8 as discussed in Section III-E. Note that here

we are only showing the bandwidth consumed by demand

requests and not migrations, so the bulk page migration in

HMA scheme is not shown here. In HMA and PoM, 71%

and 58% of the total demand bandwidth usage on average

is consumed by NM, so the NM’s high bandwidth is well

utilized. Yet, CAMEO’s low access rate makes it service

more requests from FM when more of NM’s bandwidth can

be used. CAMEO with prefetcher adds additional traffic to

NM bandwidth as prefetched subblocks consume bandwidth,

and thus, it creates an imbalance between FM and NM.

Without bypassing, SILC-FM leaves FM bandwidth near

idle, but by enabling the bypassing feature, we control the

access rate. This makes our scheme have 76% of the total

bandwidth usage on NM bandwidth, which is only 4% below

the ideal of 80%. Therefore, our scheme effectively utilizes

available bandwidth in both NM and FM and improves

performance.

C. Capacity Analysis

In this section, we analyze the performance improvement

with different NM to FM capacity ratios as the proportion of

the NM capacity can range from a small to a large fraction of

the overall memory capacity. We vary the FM:NM capacity

���
���
���
���
���
���
���
���
���
���
���
���

�1
�� �1
�

�1
�

�1
�� �1
�

�1
�

�1
�� �1
�

�1
�

�1
�� �1
�

�1
�

 �
!�
�!
�
��
��
���

�!
�

��

��
�� 	
��
�� ��

�
� �
�
 �������

$���% &�� %������% &�� '��(�% &�� 0�����

Figure 9: Performance Improvement with Various NM Ca-

pacities

ratio from 1/16 to 1/4. In the recent Intel Knights Landing

processor [41], the NM to FM ratio is approximately 1:24, so

we sweep the capacity close to this ratio to see performance

effects. Figure 9 shows the performance improvement with

various schemes and capacities. CAMEO and CAMEO with

prefetcher perform better with a larger capacity since it

has a larger number of sets, which reduces its inherent

problem with conflicts. HMA and PoM’s performance is

not affected significantly by NM capacities. Although they

can capture long lasting hot pages, short living hot pages

are not well captured. The set of benchmarks used in this

paper does not have the varying number of long lasting

pages with NM capacities, and thus, their performance

remains approximately constant with varying NM capacities.

However, in other application domains such as cloud com-

puting, it is possible that their performance improvement

can be noticeable. SILC-FM, on the other hand, captures

hot blocks/subblocks across various capacities. When the

capacity is small, such as 1/16, the scheme also has a smaller

number of sets as in the case of CAMEO, yet the locking

and associativity significantly improve such problems. This

is apparent in low MPKI workloads, which does not see sig-

nificant performance degradation with much reduced number

of sets. Therefore, when conflicts and thrashing play a huge

performance role in other schemes such as CAMEO, SILC-

FM is able to minimize such impact when the capacity is

reduced. Overall, SILC-FM is able to provide an average

performance improvement from 1.83 to 2.04 when the ratio

grows from 1/16 to 1/4 while the best comparison scheme

can provide only from 1.47 to 1.67.

VI. RELATED WORK

Emerging memory technologies have provided opportuni-

ties for creating interesting memory system designs. Much

of the work has been focused on efficiently storing metadata

overheads for scalability of this multi-gigabyte memory

technology. Since memory bandwidth is often the bottleneck,

some work[11], [12], [13], [14], [15], [16], [17], [18], [19],

[20], [21], [22] has focused on reducing the FM bandwidth

usage while managing high hit rate to NM. These proposals

manage NM as hardware caches, and thus, do not take

advantage of added NM capacity. In near future, the NM

capacity is expected to take a considerable amount of the

main memory, and thus, some work [7], [28] has focused

358

on using this capacity as apart of OS visible space to take

advantage of added capacity. However, their schemes are

based on conventional caching techniques that are suscepti-

ble to problems that exist in SRAM caches. Purely software

techniques [23], [24], [25], [26], [27], [42], [43] have been

proposed, yet the high overheads associated with software

intervention achieves suboptimal performance.

Cache bypassing has been done in on-chip caches, but

with a goal of reducing conflict misses. Our scheme by-

passing is performed to better utilize the overall system

bandwidth. Recent work [28], [33] provides a bypassing

feature, however, a rather significant amount of NM region

is disabled and bypassed. Our bypassing is not tied to

any particular region and is more fine-grained (at page

granularity). Column caching [44] is one SRAM cache

technique that prevents one entire way from being involved

in hardware eviction activities, so in the context of 1GB NM,

it means to lock 256MB. Also, it is proposed to be managed

as a scratch pad where users have to explicitly allocate data,

whereas locking in our scheme is transparent to the user.

VII. CONCLUSION

Prior die-stacked DRAM approaches focused on using

block or epoch based schemes, but adopting either one will

benefit only a subset of different workloads. In this paper, we

have presented an associative locking memory architecture

called SILC-FM that locks hot pages in NM and intelligently

remaps FM subblocks into NM. Unlike using NM as a cache,

SILC-FM fully exposes the die-stacked DRAM capacity to

the OS to take advantage of the additional capacity provided

by NM. SILC-FM incorporates a predictor to reduce the

access latency. In addition, some memory requests bypass

NM and directly access FM to utilize the FM bandwidth

available to the processor. In the end, SILC-FM is able

to achieve on average 36% performance improvement over

state-of-the-art die-stacked DRAM architecture.

REFERENCES

[1] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki,
“Toward dark silicon in servers,” IEEE Micro, vol. 31, no.
EPFL-ARTICLE-168285, pp. 6–15, 2011.

[2] B. M. Rogers, A. Krishna, G. B. Bell, K. Vu, X. Jiang,
and Y. Solihin, “Scaling the bandwidth wall: challenges in
and avenues for cmp scaling,” in ACM SIGARCH Computer
Architecture News, vol. 37, no. 3. ACM, 2009, pp. 371–382.

[3] HMC Consortium, “HMC Specification 1.0,” http://www.
hybridmemorycube.org, 2012.

[4] JEDEC, “High Bandwidth Memory (HBM) DRAM
(JESD235),” https://www.jedec.org, 2013.

[5] ——, “High Bandwidth Memory (HBM) DRAM Gen 2
(JESD235A),” https://www.jedec.org, 2016.

[6] J. T. Pawlowski, “Hybrid Memory Cube (HMC),” in Proceed-
ings of 23rd Hot Chips, 2011.

[7] C. Chou, A. Jaleel, and M. K. Qureshi, “CAMEO: A Two-
Level Memory Organization with Capacity of Main Memory
and Flexibility of Hardware-Managed Cache,” in Proceedings
of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-47, 2014.

[8] G. B. Berriman, G. Juve, E. Deelman, M. Regelson, and
P. Plavchan, “The application of cloud computing to as-
tronomy: A study of cost and performance,” in e-Science
Workshops, 2010 Sixth IEEE International Conference on.
IEEE, 2010, pp. 1–7.

[9] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical
processing in big data systems: A cross-industry study
of mapreduce workloads,” Proc. VLDB Endow., vol. 5,
no. 12, pp. 1802–1813, Aug. 2012. [Online]. Available:
http://dx.doi.org/10.14778/2367502.2367519

[10] C. Luo, J. Zhan, Z. Jia, L. Wang, G. Lu, L. Zhang, C.-Z.
Xu, and N. Sun, “Cloudrank-d: benchmarking and ranking
cloud computing systems for data processing applications,”
Frontiers of Computer Science, vol. 6, no. 4, pp. 347–362,
2012.

[11] M. El-Nacouzi, I. Atta, M. Papadopoulou, J. Zebchuk, N. E.
Jerger, and A. Moshovos, “A dual grain hit-miss detector for
large Die-Stacked DRAM caches,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2013, 2013,
pp. 89–92.

[12] S. Franey and M. Lipasti, “Tag tables,” in High Performance
Computer Architecture (HPCA), 2015 IEEE 21st Interna-
tional Symposium on, 2015.

[13] N. Gulur, M. Mehendale, R. Manikantan, and R. Govindara-
jan, “Bi-Modal DRAM Cache: Improving Hit Rate, Hit La-
tency and Bandwidth,” in Microarchitecture (MICRO), 2014
47th Annual IEEE/ACM International Symposium on, 2014.

[14] F. Hameed, L. Bauer, and J. Henkel, “Simultaneously Opti-
mizing DRAM Cache Hit Latency and Miss Rate via Novel
Set Mapping Policies,” in Proceedings of the 2013 Interna-
tional Conference on Compilers, Architectures and Synthesis
for Embedded Systems, ser. CASES ’13, 2013.

[15] D. Jevdjic, G. Loh, C. Kaynak, and B. Falsafi, “Unison Cache:
A Scalable and Effective Die-Stacked DRAM Cache,” in
Microarchitecture (MICRO), 2014 47th Annual IEEE/ACM
International Symposium on, 2014.

[16] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked DRAM
Caches for Servers: Hit Ratio, Latency, or Bandwidth? Have
It All with Footprint Cache,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture,
ser. ISCA ’13, 2013.

[17] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni,
D. Newell, Y. Solihin, and R. Balasubramonian, “CHOP:
Integrating DRAM Caches for CMP Server Platforms,” IEEE
Micro, vol. 31, no. 1, 2011.

[18] G. Loh and M. D. Hill, “Supporting Very Large DRAM
Caches with Compound-Access Scheduling and MissMap,”
IEEE Micro, vol. 32, no. 3, May 2012.

359

[19] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganathan,
“Enabling Efficient and Scalable Hybrid Memories Using
Fine-Granularity DRAM Cache Management,” Computer Ar-
chitecture Letters, vol. 11, no. 2, pp. 61–64, July 2012.

[20] M. K. Qureshi and G. H. Loh, “Fundamental Latency Trade-
off in Architecting DRAM Caches: Outperforming Impracti-
cal SRAM-Tags with a Simple and Practical Design,” in Pro-
ceedings of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, ser. MICRO-45, 2012.

[21] J. Sim, G. H. Loh, H. Kim, M. O’Connor, and M. Thot-
tethodi, “A Mostly-Clean DRAM Cache for Effective Hit
Speculation and Self-Balancing Dispatch,” in Proceedings of
the 2012 45th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-45, 2012.

[22] L. Zhao, R. Iyer, R. Illikkal, and D. Newell, “Exploring
DRAM cache architectures for CMP server platforms,” in
Computer Design, 2007. ICCD 2007. 25th International
Conference on, 2007, pp. 55–62.

[23] X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi,
“Simple but Effective Heterogeneous Main Memory with On-
Chip Memory Controller Support,” in Proceedings of the 2010
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’10,
2010.

[24] G. H. Loh, N. Jayasena, K. Mcgrath, M. O’Connor, S. Rein-
hardt, and J. Chung, “Challenges in Heterogeneous Die-
Stacked and Off-Chip Memory Systems,” in the 3rd Work-
shop on SoCs, Heterogeneous Architectures and Workloads
(SHAW), 2012.

[25] M. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ig-
natowski, and G. Loh, “Heterogeneous memory architec-
tures: A HW/SW approach for mixing die-stacked and off-
package memories,” in High Performance Computer Architec-
ture (HPCA), 2015 IEEE 21st International Symposium on,
2015.

[26] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page Placement
in Hybrid Memory Systems,” in Proceedings of the Interna-
tional Conference on Supercomputing, ser. ICS ’11, 2011.

[27] Z. Wang, D. Jimenez, C. Xu, G. Sun, and Y. Xie, “Adaptive
placement and migration policy for an stt-ram-based hybrid
cache,” in High Performance Computer Architecture (HPCA),
2014 IEEE 20th International Symposium on, 2014.

[28] J. Sim, A. R. Alameldeen, Z. Chishti, C. Wilkerson, and
H. Kim, “Transparent Hardware Management of Stacked
DRAM as Part of Memory,” in Proceedings of the 2014 47th
Annual IEEE/ACM International Symposium on Microarchi-
tecture, ser. MICRO-47, 2014.

[29] S. M. Khan, D. A. Jiménez, D. Burger, and B. Falsafi, “Using
dead blocks as a virtual victim cache,” in Proceedings of the
19th international conference on Parallel architectures and
compilation techniques. ACM, 2010, pp. 489–500.

[30] S. Somogyi, T. F. Wenisch, A. Ailamaki, and B. Falsafi,
“Spatio-temporal memory streaming,” in ACM SIGARCH
Computer Architecture News, vol. 37, no. 3. ACM, 2009,
pp. 69–80.

[31] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun,
“A modified approach to data cache management,” in Pro-
ceedings of the 28th annual international symposium on
Microarchitecture. IEEE Computer Society Press, 1995, pp.
93–103.

[32] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C.
Steely Jr, and J. Emer, “Ship: Signature-based hit predictor for
high performance caching,” in Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture.
ACM, 2011, pp. 430–441.

[33] C. Chou, A. Jaleel, and M. K. Qureshi, “Bear: techniques
for mitigating bandwidth bloat in gigascale dram caches,” in
Proceedings of the 42nd Annual International Symposium on
Computer Architecture. ACM, 2015, pp. 198–210.

[34] N. Agarwal, D. Nellans, M. O’Connor, S. W. Keckler,
and T. F. Wenisch, “Unlocking bandwidth for gpus in cc-
numa systems,” in High Performance Computer Architecture
(HPCA), 2015 IEEE 21st International Symposium on. IEEE,
2015, pp. 354–365.

[35] AMD, “AMD A-Series Desktop APUs,” http://www.amd.
com/en-us/products/processors/desktop/a-series-apu.

[36] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and
Extensible DRAM Simulator,” Computer Architecture Letters,
vol. PP, no. 99, pp. 1–1, 2015.

[37] JEDEC, “DDR SDRAM (JESD79-3C),” https://www.jedec.
org, 2008.

[38] Micron Technology Inc., “TN-46-03 Calculating Memory
System Power for DDR,” 2001.

[39] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated
cache timing, power, and area model,” Technical Report
2001/2, Compaq Computer Corporation, Tech. Rep., 2001.

[40] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood,
and B. Calder, “Using SimPoint for Accurate and Efficient
Simulation,” SIGMETRICS Perform. Eval. Rev., vol. 31, no. 1,
Jun. 2003.

[41] Intel, “KnightsLanding,” http://www.realworldtech.com/
knights-landing-details.

[42] Y. Lee, J. Kim, H. Jang, H. Yang, J. Kim, J. Jeong, and
J. W. Lee, “A fully associative, tagless dram cache,” in
ACM SIGARCH Computer Architecture News, vol. 43, no. 3.
ACM, 2015, pp. 211–222.

[43] H. Jang, Y. Lee, J. Kim, Y. Kim, J. Kim, J. Jeong, and J. W.
Lee, “Efficient footprint caching for tagless dram caches,” in
2016 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2016, pp. 237–248.

[44] D. Chiou, P. Jain, L. Rudolph, and S. Devadas, “Application-
specific memory management for embedded systems using
software-controlled caches,” in Proceedings of the 37th An-
nual Design Automation Conference. ACM, 2000, pp. 416–
419.

360

