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Abstract—Optimizing a multilayer cache hierarchy involves
a careful balance of data placement, replacement, promotion,
bypassing, prefetching, etc. to capture the various properties of
access streams. Often getting good performance involves aggres-
sively orchestrating the movement of the data to be available
at the appropriate layers of the cache hierarchy at appropriate
times. However, it has been popularly recognized that aggressive
movement of data results in high energy consumption. State-
of-the-art caching policies such as Hawkeye and MPPPB yield
excellent performance but incur more data movement compared
to policies such as CHAR, and Flexclusion. Considering the
energy cost of data movement, we architect a FILtered Multilevel
(FILM) caching policy, which yields good performance with
reduced levels of data movement. It achieves this by identifying
appropriate cache layers for each block of data using a bloom fil-
ter and table based predictors. The bloom filter helps to overcome
the challenges associated with capturing PC-based information
in exclusive caches in an efficient manner. When there is free
space in the bypassed cache layer, FILM overrides the initial
prediction and allows cache block installation into the cache
level achieving more low latency hits. FILM also incorporates an
explicit mechanism for handling prefetches, which allows it to
train differently for data from demand requests versus prefetch
requests. By incorporating quick detection and correction of
stale/incorrect bypass decisions, FILM significantly reduces cache
block installations and data movement, resulting in up to 10%
reduction in dynamic energy at the LLC and DRAM compared
with Hawkeye EX or MPPPB EX. Considering energy-delay
product as a metric, FILM is 10%, 11%, and 5% better than
Hawkeye EX, MPPPB EX, and CHAR respectively.

I. INTRODUCTION

Performance and power consumption are usually at odds
while designing circuits and systems. Microprocessor perfor-
mance scaling in recent years has been achieved by scaling
throughput, i.e. by processing more threads concurrently
using increased core counts and by employing techniques
like Simultaneous Multithreading (SMT) and SIMD. While
performance gains from such scaling can serve the increasing
demand on computational power, the number of cores and
threads are limited by the restricted power and energy budget.

A large consumer of this energy budget is the memory
hierarchy. Often caches account for more than 50% of on-
chip die area and consume a significant fraction of static
and dynamic power. Therefore, increasing the efficiency of
caches becomes crucial. The number of threads (and cores) in
modern microprocessor SoCs has been steadily increasing as
exemplified in 48 thread Arm based solutions [1] and recently

announced 36 thread Intel solutions [2]. This has caused the
cache capacities to reach the limits of power and die-area
constraints. From the the first generation of Intel Core i7 chip
to the most recent Intel Core i9 design, the Last Level Cache
(LLC) capacity per core has been held near constant at around 1
to 2MB during the past ten generations of chips. At the capacity
limits, caches are often still under-provisioned for data-intensive
workloads and under-utilized for cache-insensitive workloads.
Regardless of whether the large cache is fully utilized by
workloads or not, the energy and power cost is always too
high to be ignored.

To improve the performance of data-intensive workloads,
prior research has looked at redistributing the available SRAM
capacity across the various levels in the cache hierarchy and
shows that many emerging workloads benefit from a larger
L2 size [3]–[5]. Several recently announced microprocessor
products appear to have conformed to this recommendation [6],
[7]. Opting for larger L2 sizes however, implies that there
would be greater overhead to maintain the inclusive property.
In prior work, relaxing the inclusion requirement of LLCs
has been shown to be beneficial with 3-12% improvements
reported [3], [8]. We also observe that out of all dynamic
blocks in SPEC CPU2006 suite, more than 70% never get
reused at L2 and more than 50% never get reused at the LLC.
In Figure 1, we categorize dynamic cache blocks into four
groups based on whether it gets reused in L2 or L3 after it
gets evicted out of L1. We see that only 20% of dynamic
blocks get reused in both L2 and L3. The remaining 80% of
the dynamic blocks have an optimal cache location. Insertion
of these blocks into other cache levels uses up critical cache
space and consumes energy without bringing any performance
benefit. This observation motivates exclusive L2 caches.

While trying to optimize the aforementioned types of cache
hierarchies, there are many choices in policies for replacement
and/or bypassing. We compare the performance and data move-
ment of three bypass and insertion algorithms for exclusive
last level caches, CHAR [5], MPPPB EX [9] and Hawk-
eye EX [10], using workload mixes from SPEC CPU2006 suite.
Hawkeye EX and MPPPB EX are PC-correlated algorithms
and were originally designed for inclusive caches. PC-correlated
algorithms are popular and yield high-performance in the field
of inclusive or near-inclusive cache design. The PCs used in
such algorithms correspond to those instructions that cause the



Fig. 1: Percentage of L1 evicted cache blocks getting reused
at L2 and L3 in SPEC CPU2006 (average)

cachelines to be fetched from memory. For inclusive caches this
PC also corresponds to the instruction that installs the line in
the LLC. It is convenient to maintain this PC signature in just
the LLC because in inclusive caches any given cacheline has
its longest residence in the LLC. There are no PC-correlated
algorithms tailored for exclusive caches because the required PC
information is not available in exclusive caches. For exclusive
caches, where lines are inserted into the lower level caches upon
eviction, the PC information gets lost unless it is passed along
with the cacheline across all the levels in the hierarchy. This
can lead to inefficient use of space and also further exacerbate
the problem of data movement.

Exclusive cache adaptations of the three PC-correlated
algorithms mentioned are devised by allowing unlimited
hardware overhead to store training data. The comparison result
is shown in Figure 2, with IPC and LLC traffic normalized
over TC-UC [8]. We see that MPPPB EX and Hawkeye EX
show better performance compared to CHAR, whereas CHAR
generates less LLC traffic than MPPPB EX and Hawkeye EX.
Specifically, Hawkeye EX demonstrates a 9% performance
improvement compared to CHAR in mix-d by exploiting the
data locality of lbm workload, whereas CHAR shows as large
as 50% less LLC traffic than Hawkeye EX and MPPPB EX
in mix-e due to reduced data movement from L2 to LLC
(i.e., L2 eviction installed in LLC) of the bwaves workload.
The high-performance of MPPPB EX and Hawkeye EX are
certainly desirable, but the low data traffic of CHAR is also
advantageous. Prior art [11] shows that data movement energy
is orders-of-magnitude larger than computation energy and
the energy dissipation of future systems will be dominated by
data movement. Energy-efficient architectures are required to
reduce the amount of data movement and exploit data locality
to reduce the distance of moving data. The objective of this
paper is to create a new algorithm that gives both the high
speedup and low data traffic (low data movement and hence
low energy).

In this paper, we present a replacement and bypassing
algorithm which yields the performance of state-of-the-art
caching schemes, but with much reduced data movement, data
traffic and energy.

Aimed at addressing these issues and to devise an effective
predictor for an efficient and scalable multi-level exclusive
cache hierarchy, this paper makes the following contributions:

• FILM, a locality filtering mechanism utilizing a bloom

(a) Performance (b) LLC traffic

Fig. 2: Normalized performance and LLC traffic of state of the
art caching schemes over TC-UC. mix-a: libquantum, bwaves,
gcc, milc; mix-b: GemsFDTD, bwaves, gcc, xalancbmk; mix-c:
GemsFDTD, libquantum, leslie3d, xalancbmk; mix-d: lbm, gcc,
gobmk, wrf; mix-e: GemsFDTD, bwaves, perlbench, wrf

filter and predictors to capture PC-based guidance in
a multi-level exclusive cache hierarchy with minimal
hardware overhead.

• A method to learn about the correctness of bypass
decisions and to adaptively guide data placement into
appropriate cache layers based on data reuse patterns.

• Explicit incorporation of prefetch logic, with FILM differ-
entiating prefetch and demand requests and with prefetch
aware training/learning of bypass/placement decisions.

• Adopt state-of-the-art work to exclusive caches and
show results for multicore multi-programmed system,
demonstrating significant energy efficiency improvements
and reduction in on-chip data movement. FILM improves
overall energy efficiency by 9%, compared to the second
highest of 4% from CHAR.

The rest of this paper is organized as follows. Section II
discusses the background of exclusive cache hierarchies.
Section III describes the design details of the proposed FILM
scheme. We describe our evaluation methodology in Section IV
and show the performance and energy result of FILM in
Section V. Section VI summarizes prior research in the domain.
Finally we summarize our paper in Section VII.

II. BACKGROUND

While exclusive caches bring high-performance as suggested
above, data movement in exclusive hierarchies is different
as compared to inclusive hierarchies. In contrast to inclusive
hierarchies, only the top level cache of the multi-level exclusive
caches is filled with LLC miss data, and the remaining levels
serve as victim caches [12], which get filled upon evictions
from the upper cache level regardless of cacheline dirty status.
If a cacheline in the lower level receives a hit, the cacheline
is promoted to the top level and gets invalidated from the
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current level to maintain uniqueness. This policy is referred to
as “invalidate on hit”.

In this work, we use the RRIP [3] optimized for exclusive
caches as our replacement policy. The “invalidate on hit policy”
poses challenges on replacement policies that are not designed
with exclusive hierarchies in mind. For example, the RRIP [13]
replacement policy learns re-reference behavior by attaching an
RRPV per cacheline. However, such re-reference information
is lost as the cacheline is invalidated on hit. To address this
challenge, Jaleel et al. [3] presented modifications required
for RRIP to be applied to exclusive LLC by adding an SFL3
(Serviced From L3) bit per cacheline and condensing the re-
reference information into the SFL3 bit. Specifically, the SFL3
bit is set when a cacheline gets hit at L3. On LLC insertion,
if the line was originally served from memory (SFL3 is zero),
it is predicted as reuse in the distant future; if the line was
originally served from L3 (SFL3 is one), it is predicted as
reuse in the near future. This paper extends this idea to both
exclusive L2 and exclusive LLC by adding an SFL2 (Serviced
From L2) bit. SFL2 and SFL3 are set when a cacheline sees
a hit and serves the data request from L2/L3, and are reset
when the cacheline is evicted from L2/L3 to make room for
new blocks.

III. DESIGN

In this section, we introduce the design of FILM. FILM
predicts the reuse of cache blocks at each cache level, and
guides evicted cache blocks to insert into the right level rather
than trickle down through the various layers in the cache
hierarchy.

Figure 3 illustrates how FILM is integrated into the cache
hierarchy and how it closely interacts with all levels. Although
FILM is a single centralized component, it is not on the critical
path. The training process of FILM, which does not require
instant feedback, is also off the critical path. FILM’s training
process is triggered by the three types of cache activities shown
in the Figure 3, 1© data block installs from main memory to
the top level cache due to LLC misses, 2© data block hits at
lower level caches, and 3© unused data evictions from lower
level caches. By leveraging cacheline address and cacheline
reuse behavior, FILM trains its prediction model to get the
optimal cache insertion decision. On LLC misses (activity 1©),
apart from receiving training information, FILM also sends
L2 and LLC bypass hints to data blocks. The bypass hints are
stored along with the cacheline at the cost of 2-bit overhead.
The access latency of FILM is orders-of-magnitude lower than
the long DRAM access latency and thus can be overlapped
with DRAM access latency.

FILM is composed of two hardware structures, a Prediction
Learning Table and a Result Table. The Prediction Learning
Table learns data locality of an individual memory instruction
by observing the history of past data accesses, and uses this
learning to make bypass decisions for future accesses. FILM
uses a centralized structure to store the locality of memory
instructions. This centralized structure is more space-efficient
in comparison to holding the memory instruction locality

Fig. 3: Overview of the proposed FILM system

along with cachelines in all the levels of the cache hierarchy.
FILM achieves good learning accuracy with a reasonably small
number (16) of entries in this table.

To avoid information loss, when a trained entry is evicted
from the Prediction Learning Table, its learning is captured in
the Result Table to inform future bypass decisions. The Result
Table also provides an initial value for the Prediction Learning
Table when an instruction is reallocated back to the table. The
Result Table is indexed using a hash of the memory instruction
PC. This hash is stored in the Tag field of the Prediction
Learning table. Each entry in the Result Table is just 2 bits,
much smaller than Prediction Learning Table Entry. Therefore,
we can maintain a lot of (2048) entries in this table. Thus,
with judicious allocation of available resources, we combine
the benefits of a wide but shallow learning table and a narrow
but deep result table. This helps with optimizing the solution
while maintaining a tight overall hardware budget. FILM can
be applied together with other cache replacement policies as
FILM only provides bypass/insertion hints.

FILM adapts PC-correlated locality filtering approaches for
exclusive cache hierarchies. We select PC as the training
heuristic because we observe a good correlation between a
memory instruction and the locality of the data accessed by
the instruction. Figure 4 shows that the majority of active
instructions which make intensive data requests in the SPEC
CPU2006 workloads have stable data locality behavior at L2
and L3 of exclusive caches. We define a memory instruction to
have stable data locality at a specific cache level if more than
90% of data blocks accessed by the instruction are within the
same range of reuse distance (e.g., always hit or always miss
in the cache). This observation suggests that if historical data
accesses made by an instruction do not benefit from caching at
a given level, then future accesses from the same instruction can
bypass that cache. In section III-A we discuss how this intuition
is applied to train FILM for demand requests. Although PC-
correlated algorithms have been proposed in prior work [9],
[10], [14], they focus on inclusive cache hierarchies, where the

3



Fig. 4: Percentage of memory instructions with stable data
locality

memory instruction information is available during the data
block insertion. A direct adaptation of prior art requires storing
memory instruction PC along with cachelines, which introduces
a significant amount of storage overhead. We present how FILM
overcomes this challenge of building the one-to-one relationship
between a data block and its instruction using bloom filters
in the section III-A2. In section III-B we present how we can
train FILM for prefetch requests by adding only one entry per
prefetcher. Further, we bring out that these prefetcher entries
do not even require a bloom filter.

A. Handling demand request

FILM leverages the observation that data blocks touched
by the same memory instruction tend to have similar caching
behavior. Thus, by learning the caching behavior of a memory
instruction through access history, the caching behavior of
future data blocks from the same instruction can be predicted.
Building this one-to-one relationship between a data block and
its instruction is challenging for exclusive cache hierarchies.
Storing the PC information in the cache along with the tag/data
blocks for a sampled set (training set) is not viable for exclusive
caches as the overhead for just a sampled set can be dramatic.
We end up having to store the PC information across all the
levels in the hierarchy. This is because every cache-line in an
exclusive cache hierarchy has only one unique location across
all the cache levels. If we store the PC information in just the
last level, we lose the ability to track reuse behavior when a
cache-line is promoted to the upper levels (L1, L2). Further,
unless the PC information is stored in the L1 when the line is
first brought in from memory, it will not be available when the
cache-line eventually reaches the exclusive LLC. Increasing
the size of L1 tag structures to store additional meta-data will
likely have effects on its cycle-time and therefore adversely
impact performance. Additionally, ferrying the bypass related
meta-data along with data across the various levels in the
hierarchy further impacts the critical path and worsens the
problem of data movement. To circumvent these challenges
FILM employs centralized training and inference structures
that are off the critical path of the cache hierarchy. We describe
the key components of FILM in the subsections below.

1) Prediction Learning Table: The Prediction Learning
Table forms the core of FILM’s bypass mechanism. It is a
multiported table based training structure, where each entry
corresponds to one memory instruction. FILM selects data
blocks mapped to a few LLC sampled sets as its training
set. Once FILM is able to retrieve the memory instruction
information of a training data block, it trains bypass heuristics
for this memory instruction at all cache levels except for L1.
Due to constrained training storage budget, the Prediction
Learning Table keeps track of a limited number (e.g.,16) of
memory instructions. When reaching the Prediction Learning
Table entry limit, the instruction with the least frequent memory
accesses would be evicted to make room for new instruction.

As illustrated in Figure 5, each table entry contains a Tag field
which is a hash of the memory instruction PC and is used to
index the Result Table, a Footprint Container, ReuseCnt fields
for L2 and L3 respectively, and Fill fields to record current L2
and L3 insertion decisions. The footprint container represents
the cache footprint of the associated memory instruction. An
entry in this table learns the reuse behavior for cache-lines
fetched from DRAM by the memory instruction associated with
the entry. As cachelines move across the hierarchy, we capture
their re-use behavior to the learning table entry that is identified
by the footprint container of the entry. The ReuseCnt fields are
used to track the number of cache reuses encountered by the
data blocks fetched by one memory instruction. The ReuseCnt
fields are fixed width saturating counters(e.g., 3-bit), which
get incremented on data hit, or get decremented on unused
data eviction. L2Fill and L3Fill fields record the latest training
result, a bypass/insert hint. They are initialized according to
the value in the Result Table. An L2ReuseCnt/L3ReuseCnt
value reaching the maximum value triggers the L2Fill/L3Fill
field to change to “Insert”, whereas value decreasing to zero
triggers changes to “Bypass”. When a new entry is allocated,
the initial value of a ReuseCnt field is set based on the status
of the corresponding Fill hint, i.e., set to maximum value if the
Fill hint is “Insert” and to zero if the Fill hint is “Bypass”. The
initial status of a Fill hint is determined by the Result Table,
which will be introduced in Section III-A4. Before training
starts, all entries in the Result table are initialized to ‘Insert”.
Therefore, for a first-time trained memory instruction, its Fill
hints are initialized to “Insert” and the ReuseCnt fields are
initialized to the maximum value.

2) Footprint Container: Each entry in the Prediction Learn-
ing table represents a single memory instruction but needs to
train on all the cachelines the instruction brings in to the cache
hierarchy. Storing the addresses of all the corresponding cache
lines in the footprint container of entry can make the Prediction
Learning Table prohibitively large. Therefore, how to efficiently
associate data blocks fetched by a memory instruction with
its corresponding entry in the Prediction Learning Table is a
crucial problem. To address this challenge, FILM applies a
bloom filter [15], a space-efficient probabilistic data structure
which can rapidly determine whether a data element belongs
to a data set or not. Every Prediction Learning table entry is
assigned to a separate bloom filter. In our work, we use the
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Fig. 5: Training of FILM on demand-fetched blocks. One
Prediction Learning Table entry update at three different cycles.

most basic design of a bloom filter, which is in the form of a
bit vector. The bit vector of bloom filter has a fixed size (e.g.,
4098 bits).

To add an element to the bloom filter, the element is hashed
a few times, and the bits in the bit vector at the index of those
hashes are set to 1. To test for membership, an element is
hashed with the same hash functions. The element is not in the
set if any value at index bits is not set, otherwise it could be
in the set. Since there is no way to delete an element from the
bloom filter, the chance of bloom filter reporting false positive
membership increases as the number of inserted elements grows.
Therefore, we reset the bloom filter periodically, after every
256 insertions, to maintain a low false positive rate of 1%.
We name the bloom filter the footprint container, as what it
records is essentially the memory footprint of an instruction.

3) Learning Process: To train the prediction model, FILM
requires information including cacheline address, the level from
which the data block gets hit or evicted without reuse, and
the hashed PC of the memory instruction if it is an LLC miss.
FILM leverages SFL2 and SFL3 bits to indicate whether a data
block has been reused during its stay at L2 and L3. Jaleel et
al. presented how these bits are required for RRIP if it has to
be applied to exclusive caches. Details on RRIP’s adaptation
for exclusive caches are included in the Section II. The hashed
PC is used to find the right entry in the Prediction Learning
Table, and is stored in the Tag field if a new table entry is
allocated. As described in Figure 3, FILM’s learning process
is triggered by the three types of cache activities: LLC misses,
cache hits and unused data evictions.

On LLC misses, the data address is shifted by the size of
a cacheline to form a cacheline address, and the cacheline
address is inserted into the bloom filter. For example, as
shown in Figure 5, an LLC miss to data 0xBEE happens
at cycle X. The PC (0xFEED) of the memory instruction and
the cacheline address (0xBEE) are sent to FILM’s Prediction
Learning Table. A new table entry is allocated to the memory

instruction. PC (0xFEED) is stored in the Tag field. Fill hints
are set based on the Result table, which are all “Insert” in this
example. ReuseCnt fields are initialized based on the Fill hints.
The cacheline address (0xBEE) is inserted into the Footprint
Container of the table entry.

On training events triggered by unused data eviction or
cache hits, FILM retrieves the PC of the memory instruction
which initially fetched the data from DRAM by looking for the
cacheline address among all the footprint containers in a time
multiplexed fashion. The searching process can be pipelined
and is not on the critical path. If a single membership is
reported for a cacheline address, then FILM constructs the one
to one mapping between the data and the instruction. The data
locality of the memory instruction is learned based on data reuse
information. Alternatively, training activities are not performed
for the following two situations: one is when no residency in
the Prediction Learning Table is detected, which is possible
because FILM tracks a limited number of memory instructions
and footprint containers get reset periodically; and the other
situation is one when the address is found in more than one
bloom filter due to false positive membership reporting. In the
latter case, FILM decides not to train to avoid training noise.
Figure 5 illustrates Prediction Learning Table entry updates due
to L2 data hits at cycle Y and LLC unused evictions at cycle Z
respectively. After searching through all the footprint containers,
cacheline address 0xBEE, which has previously been added to
the Footprint Container of the instruction 0xFEED during cycle
X, is reported as single membership in table entry 0xFEED.
The ReuseCnt number of this table entry is updated based on
the data reuse information. The Fill hints stay same as no new
threshold has been reached.

4) Result Table: Upon LLC miss, data blocks consult FILM
about whether to bypass L2 or LLC in the future. The Prediction
Learning Table is the first-hand source of bypass hints when a
PC match is found. However, if there is no PC match, FILM
relies on the Result Table to handle cases when data blocks
cannot receive bypass hints from the Prediction Learning Table.
The Result Table is a direct-mapped structure indexed by
the hashed instruction pointer. Each table entry has two bits,
representing L2 and L3 bypass hints separately, and their initial
value are set to be “Insert”. When there is an LLC demand
miss, the PC of the demand request is used to index the Result
Table and read the L2 and L3 fill decision. Once the data
block is installed directly into L1, the decision is kept with
the data block along with other metadata. The 2 bit overhead
per cacheline is acceptable, and it helps guide data insertion
as a complement to the Prediction Learning Table. Another
important function of the Result Table is to provide initial Fill
value for a newly allocated Prediction Learning Table entry.
When a Prediction Learning Table entry is evicted, the trained
bypass hints of the instruction are stored into its corresponding
Result Table entry, and such that next time when this instruction
gets reallocated to the Prediction Learning Table, it has warmed-
up bypass hints.

5) Detect stale bypass decisions using empty blocks:
The optimal bypass hints dynamically change along with the
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program execution. The reason is because cache bypass of
one group of data blocks changes the reuse distance of other
groups. A previous bypass decision becomes stale and does
not work in the future as the reuse distance profile changes
dynamically. One example is the case when cache accesses
exhibit a thrashing access pattern, e.g., a memory instruction
repetitively reading K data blocks which happen to map to the
same set of an N -way associative (N < K) cache. The optimal
solution is to keep N data blocks in the cache and bypass the
rest (K−N ). An algorithm without error detection will predict
that none of the future data blocks from the same instruction
should be inserted into the cache. Whereas an optimal algorithm
should allow at least N data blocks to be inserted to guarantee
data reuse at the best effort.

A stale bypass hint is difficult to detect because the data
block following the bypass hint is discarded, leaving no chance
to prove its locality from cache hits. Thus, FILM is designed
with a ”utilize empty blocks” rule to provide opportunities to
detect stale bypass decisions. The rule is explained as follows.
Let us consider the L2 cache as an example. A data block is
inserted into L2 cache due to available free space even though
FILM suggests to bypass L2. The bypass L2 hint is stored
along with this block. On a subsequent hit to the same block at
L2, FILM trains its model and considers the L2 “Bypass” hint
as stale after seeing that a block marked as bypass gets reused.
In addition to increasing the L2ReuseCnt counter, FILM would
immediately flip the L2 fill hint from “Bypass” to “Insert”
based on the single error. Prior art either does not have an
error detection scheme and always performs data bypassing
based on prediction, or inserts blocks if there is free space
cache without any further activities on error detection.

Although the “utilize empty blocks” rule could cause useless
data block insertions (given that FILM suggests bypass), we
argue that it does not cause additional performance degradation
due to two reasons. One is that it does not pollute caches as
it uses free cache space without causing any eviction. The
other reason is that high performance cache replacement policy
protects cache blocks with frequent reuse and selects cache
blocks with less or no reuse as the victim, such that wasted
insertions from the “utilize empty blocks” rule are evicted to
make room for new blocks.

B. Handling Prefetch

FILM’s training on prefetched blocks is performed at the
granularity of a prefetcher. For example, for a system with L1
and L2 prefetchers, FILM sets up two entries in the Prefetch
Prediction Learning Table, with each entry representing one
prefetcher. The footprint container field is not required, because
each cacheline can pinpoint which prefetcher initially fetched
the block by storing prefetch identifier information (PfId) in the
tag store. Cache blocks fetched by the same prefetcher will have
the same PfId. Prefetch identifier helps to distinguish prefetched
blocks from regular blocks (whose PfId is zero). When a
prefetched block serves a demand request, it is promoted from
a prefetched block to a regular block and the PfId is reset to
zero. The future training process on this block is handled the

Fig. 6: Training on prefetched blocks. Showing two different
scenarios at two different cycle.

same as a regular block. Note that a prefetched block serving
prefetch requests from upper levels does not change the PfId
value of the block. Basically, the prefetch identifier of a cache
block provides three hints to FILM. Firstly, it indicates whether
the training target is a regular memory instruction or certain
data prefetcher. Secondly, if the target is a data prefetcher,
PfId points to the prefetcher for which FILM is to be trained.
Thirdly, PfId being non-zero indicates that a prefetched block
has not served a demand request yet.

Training on prefetch requests occurs when a prefetched block
is hit by either prefetch requests or demand requests, and when
a prefetched block is evicted. When a prefetched block sees a
demand request hit, FILM performs three operations. Firstly,
the L2ReuseCnt or L3ReuseCnt of the corresponding prefetcher
is incremented based on whether the hit occurs at L2 or L3.
Secondly, the cacheline address of the hit block is added to the
footprint container of the demand request, in preparation for
future training on this instruction. The ReuseCnt of the Demand
Prediction Learning Table entry also increments. PfId of this
cache block is reset. Thirdly, the demand request PC is used to
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consult the Prediction Learning Table and the Result Table to
get suggested L2 and L3 bypass hints, which is sent back to the
data. When a prefetched block serves a prefetch request (hit),
the L2ReuseCnt/L3ReuseCnt of the corresponding prefetcher
is incremented. When a regular block serves a prefetch request
(hit), the regular block is demoted to a prefetched block and has
its PfId set, but there is no Prediction Learning Table updates.
When an unused prefetch block is evicted, the L2ReuseCnt or
L3ReuseCnt of the corresponding prefetcher is decremented.
Making L2/L3 bypass decisions and correcting stale bypass
decisions are the same as handling demand requests. Figure 6
illustrates the above operation using two different examples.
In the first example at cycle M, a data block prefetched by
L2 services a demand request at L3. In the second example
at cycle N, a prefetched block initiated by L2 prefetcher gets
evicted out of L2 without usage. For this case, the prefetched
block is inserted into the L3 based on the Insert L3 bypass hint
from the Prefetch Prediction Table, but the Demand Prediction
Table is not updated.

IV. EVALUATION METHODOLOGY

Our simulations are performed on a cycle-accurate simulator,
which is an extended version of the 2nd Cache Replacement
Champion (CRC2) simulator [16]. Table I shows detailed
simulator parameters. The memory subsystem consists of a
three-level cache hierarchy and a detailed DRAM model. Eval-
uations are conducted on multicore systems with prefetching
enabled. We apply both traditional data prefetcher designs
such as next-line prefetchers, as well as one of the state-of-
the-art prefetching schemes, VLDP [17]. We use Simpoint
traces of SPEC CPU2006 workloads provided by the 2nd
Cache Replacement Contest [16]. In multi-core experiments,
cores that finish executing early would restart execution from
beginning in order to continue adding pressure to shared cache
and memory. In the multi-core experiments, each core runs
250M instructions with a warm up length of 10M instructions.
We use McPAT [18] to estimate the dynamic power and energy
consumed by the various policies. The system energy reported
in this paper includes core energy, fabric energy, shared LLC
energy and DRAM energy.

We compare FILM design against seven cache replacement
and bypass algorithms. TC-UC [8] and DRRIP EX [3] learn
global caching priorities for exclusive caches. Both policies
use a three-bit re-reference counter per cacheline. TC-UC is
implemented with bypass and aging policies, which corresponds
to the ”Bypass+TC UC AGE x8” policy in their paper [8].
Both FLEXclusion [19] and CHAR [5] focus on reducing on-
chip multi-level cache bandwidth via relaxing cache inclusion
policy. For CHAR we use the address space correlation scheme
and implement the ”CHAR-C4” policy which is tailored for
an exclusive cache model and does not de-allocate a block
from LLC on hit. For FLEXclusion, it operates in both
Aggressive and Bypass mode. While the above four schemes are
address space correlated, we also include code space correlated
schemes, namely SHiP++ EX [20], Hawkeye EX [10], and
MPPPB EX [9]. We have adopted these schemes to exclusive

TABLE I: Simulation parameters

Four cores out-of-order cores, 4.5GHz, 6-wide pipeline,
72-entry load queue, 56 entry store queue
maximum 2 loads and 1 stores be issued every cycle

Branch Predictor bimodal branch prediction, 16384 entries,
20 cycle mispredict latency

Private L1 64KB, 8-way associative, 8 MSHR entries
RRIP replacement policy, nextline prefetcher,
4 cycle latency

Private L2 512KB, 8-way associative, 16 MSHR entries
RRIP replacement policy, VLDP prefetcher,
additional 8 cycle latency

Shared LLC 8MB, 16-way associative, 32 MSHR entries
RRIP replacement policy
additional 20 cycle latency

DRAM 4GB off-chip memory. 1 channel. 1600 MT/s
Read queue length 48 per channel
Write queue length 48 per channel
tRP = 11 cycle, tRCD = 11 cycle, tCAS = 11 cycle

caches by storing the instruction pointer information along
with data block and tailored their RRIP-based replacement
policies for an exclusive cache model based on Jaleel’s prior
work [3]. The implementations are based on the code submitted
by the respective authors to the CRC2. Specifically, the
implementation of SHiP++ EX is based on SHiP++ [20], which
further improves the performance of the SHiP policy.

V. RESULTS

A. Multicore Evaluation

We evaluate FILM on a series of 4-core multi-programmed
workloads, with a wide variation in the data reuse characteristics
and cache capacity sensitivity of the co-running programs. The
workload mixes are made of both streaming-oriented workloads
and reuse-oriented workloads. In the following sections, we
evaluate FILM and other policies from the perspective of
energy efficiency, data movement and performance. An early
finished workload continues executing and stressing shared
resources(e.g., LLC and main memory) until the slowest one
completes, however, the energy and performance of a workload
is computed based on the data of first 250 million instructions.
We use throughput (i.e., total IPC) over entire system energy as
the metric to demonstrate energy efficiency. LLC accesses and
DRAM accesses are used as metrics to evaluate the amount
of data movement controlled by the evaluated policies. LLC
accesses (LLC traffic) consists of all kinds of LLC accesses,
including load/store access, prefetch requests and L2 evictions.
DRAM accesses (DRAM traffic) consists of all the LLC misses.
IPC speedup is used to summarize the performance impact of
a policy on multicore workloads.

1) Energy Efficiency: Figure 7 compares the energy ef-
ficiency of CHAR, FLEXclusion, DRRIP EX, SHiP++ EX,
Hawkeye EX and MPPPB EX, with the number normalized to
the baseline TC-UC. The mixes are arranged in the increasing
order of FILM’s normalized energy efficiency. The comparisons
are demonstrated in two panels based on whether the policies
were originally proposed to handle exclusive caches or not. The
policies in the first class (CHAR, FLEXclusion, DRRIP EX) as
well as the baseline(TC-UC) are address-correlated. In contrast,
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(a) (b)

Fig. 7: Energy efficiency(IPC/J) of FILM and other schemes. Results normalized to TC-UC. FILM (line with blue triangle)
constructs the upper envelope.

(a) LLC traffic (b) DRAM traffic (c) LLC+DRAM
energy

Fig. 8: The traffic and energy of shared memory resource
(LLC and DRAM) of FILM and other schemes. Results

normalized to TC-UC. The lower the better.

all the policies in the second class (SHiP++ EX, Hawkeye EX
and MPPPB EX) are PC-correlated and require maintaining
the program counter of the load/store instructions along with
the cacheline. Additionally, CHAR and FLEXclusion, from the
first group, and the baseline TC-UC policy have L2 eviction
bypassing LLC mode, whereas DRRIP EX and policies in the
second group do not enable data bypassing.

Our first observation is that FILM constantly achieves higher
energy efficiency than the baseline whereas the profile of other
policies fluctuates dramatically. Compared to the baseline, the
energy efficiency of FILM varies from 1% to a gain of 20%,
whereas FLEXclusion shows the largest swing between a loss
of 8% to a gain of 16%. Our second observation is that FILM
has the highest average energy efficiency improvement of 9%,
beating the second largest value of 4% from CHAR by 5%. In
other words, given the same amount of energy supply FILM
is able to achieve 9% higher performance than the baseline,
compared to the range of -2% to 4% performance improvement
from other policies.

2) Data Movement: Data movement is a major factor
contributing to the energy consumption difference among all
the policies as it affects both LLC energy and DRAM energy. In

order to understand why one policy consumes more/less energy
than another, we summarize the average normalized LLC and
DRAM traffic as well as the total energy of the two shared
memory resources of all the workload mixes in Figure 8a.
From the figure, we observe that FILM consumes the least
amount of shared memory energy compared to other schemes
because it generates the smallest average number of LLC and
DRAM traffic. It is also noted that all the evaluated policies
introduce more LLC traffic compared to the baseline policy
with fewer DRAM accesses. The reason is that the baseline
policy performs LLC bypass more aggressively compared to
the other schemes. Aggressive LLC bypassing helps reduce
LLC energy, but results in wasting more DRAM energy due
to the increasing LLC misses.

Comparing to the policies with no LLC bypassing (DR-
RIP EX, SHiP++ EX, Hawkeye EX and MPPPB EX), FILM
saves LLC traffic by selectively installing L2 evictions into
LLC. The average normalized LLC traffic for no-bypassing
policies are around 1.22X, which is 0.12X more than the 1.1X
of FILM. The LLC bypass rate of FILM varies between 1%
to 46% (with median value of 20%), which account for up to
0.3X less LLC traffic compared to no-bypassing policies.

Compared with data-bypassing policies, FILM has similar
average LLC traffic compared to CHAR and 0.7X less than
FLEXclusion, and FILM has the lowest DRAM traffic(0.88X)
compared to CHAR(0.9X) and FLEXclusion(0.93X).

3) Performance: Figure 9 summarizes the performance
speedup of various algorithms normalized to the baseline TC-
UC. The mixes are arranged in the increasing order of FILM’s
normalized throughput. The average performance of FILM is
generally better than FLEXclusion and SHiP++, and looks
on par with other schemes. Specifically, FILM outperforms
DRRIP EX on workload mixes with lbm and sphinx3. FILM
beats DRRIP EX in lbm and sphinx3 in terms of single core
performance by more than 10%. FILM shows its performance
advantage on cache capacity sensitive workloads by increasing
the effective cache capacity via reduced insertions, minimizing
shared cache capacity contention in the multicore scenario.

Among all the four PC-correlated policies, SHiP++ EX
shares the most common thoughts with FILM. The largest
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Fig. 9: IPC of FILM and other schemes. Results normalized to TC-UC. FILM constructs the upper envelope.

TABLE II: Comparison between FILM and basic RAP and
RAP enhanced with FILM-like training on prefetch relative to
TC-UC

Metric Basic RAP Enhanced RAP FILM
Hardware overhead per core 72KB 72KB 8.5KB
Energy efficiency (IPC/J) 0.91 0.96 1
DRAM traffic (access count) 2 1.06 1
LLC traffic (access count) 1.38 1 1
Performance (IPC) 0.89 0.98 1

difference is that FILM relies on bypassing dead blocks to
avoid triggering the replacement policy and protecting critical
data, whereas SHiP++ EX (as well as Hawkeye EX and
MPPPB EX) always inserts dead blocks with the highest
eviction priority. Take the mix50 in the Figure 9b as an
example, FILM outperforms SHiP++ EX, Hawkeye EX and
MPPPB EX in this workload mix, which consists of one
cache capacity sensitive workload (sphinx3), one streaming
workload (libquantum), and two workloads with small working
set size (astar and wrf). FILM distills the streaming pattern
and minimizes the LLC data replacement due to this workload,
thus increasing the LLC hit rate of the data with reuse, which
is retained in the cache. Another difference is that FILM
detects any stale bypass decisions and updates its prediction
model, whereas SHiP++ EX does not do any error detection
or correction. There is no obvious performance winner among
CHAR, Hawkeye EX, MPPPB EX and FILM. Hawkeye EX
outperforms FILM on a few workload mixes, and its multicore
throughput speedup comes from its performance improvement
on one workload, lbm. However, even for the workload
mixes with 8% performance difference between FILM and
Hawkeye EX, FILM achieves the same energy efficiency as
Hawkeye EX as FILM generates 25% less LLC traffic.

Co-running application could experience IPC reduction due
to the negative interference between the multiple tenants
contending for shared cache resources. Compared to the
baseline, FILM is able to restrict the performance degradation
of single application within 2%, whereas other policies lead
to single application performance degradation of 4% to 10%.

TABLE III: FILM hardware budget (per core)

Component Parameter Budget
Prediction Learning Table 16 entries, 11-bit Tag, 8 KB
(Demand + Prefetch) 4096-bit footprint container

8-bit ReuseCnt+Fill
Result Table 2048 entries, 2-bit entry 0.5KB

TABLE IV: Overhead Comparison (per core)

CHAR SHiP++ EX Hawkeye EX MPPPB EX FILM
2.25KB 77.5KB 86KB 97KB 8.5KB

4) Comparison with RAP: As both FILM and RAP [21] have
the same goal of optimizing data placement across the cache
hierarchy, we complete our evaluation with RAP comparison
in this section. RAP is compared separately because it does
not have a special training mechanism for prefetched blocks.
With prefetching disabled, FILM’s performance on the multi-
programmed mixes beats RAP by 7%. With prefetching enabled,
the performance of the original version of RAP on the system
with prefetching enabled is poor, because RAP uses PC as
its training metric and the PC of a prefetched block is zero
(prefetcher does not have PC). To make fair comparison, we
enhance RAP with FILM-like training schemes on prefetch
and show the result of the enhanced RAP in Table II. One
difference between RAP and FILM is that for cachelines with
frequent accesses(hits), RAP learns from only the first hit and
evictions, whereas FILM learns from all the hits and evictions.
Another difference is that to avoid losing a global view of data
movement under heavily data bypassing, RAP dedicates few
sets as learning sets which are not affected by the RAP bypass
algorithm, whereas FILM follows its ”utilize empty line” rule.
Enhanced RAP has a 72KB hardware cost as it extends the
metadata field of each cacheline in the cache subsystem with
12-bit PC. With such significant overhead, the energy efficiency
of Enhanced RAP is 4% less than FILM. Both Enhanced RAP
and FILM cut down LLC traffic due to their support on cache
level bypassing. RAP has 6% more DRAM accesses and 2%
less performance compared with FILM as its bypassing tends
to get overly aggressive.
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Fig. 10: Rate of multiple entry matches reported by FILM’s
bloom filter.

B. Hardware Cost and Design Decisions

1) Hardware overhead comparison: Table III shows the
hardware budget of FILM’s two main memory components,
Prediction Learning Table and Result Table. FILM’s total
hardware budget is 8.5KB per core, which is 0.3% more
SRAM than the three-level cache hierarchy, in exchange for
a significant reduction in data movement and a dramatic
improvement on energy efficiency. Table IV compares the
hardware budgets for the evaluated replacement policies. TC-
UC and DRRIP EX are not listed because they, as well as
other six schemes, share the common overhead of three bits
per cacheline to store re-reference counter. FLEXclusion is
not listed because it leverages pre-existing data paths with
only four registers overhead. SHiP++ EX, Hawkeye EX and
MPPPB EX have 72KB more overhead than the number
claimed in their paper due to the overhead of 14-bit PC-based
signature stored with cacheline.

2) Bloom filter analysis: As mentioned earlier, we use a
bloom filter in FILM, to tie all cache blocks fetched from
DRAM by the same memory instruction to one table entry.
When training, we use this bloom filter to identify which
specific memory instruction to train. FILM stops training on
a data address when a multiple match is detected. Figure 10
illustrates the false positive rate at which FILM’s bloom filter
reports multiple entries matched one address among SPEC
CPU2006 workloads. We see that the false positive rate is
greater than 10% for more than half of the workloads. One
may be surprised that FILM’s training accuracy is not seriously
impacted even with such high rates of multiple matches. We
observe that for workloads like libquantum and bwaves, the
valid training points are only around 30% of the entire training
set, and this observation suggests high information redundancy
in the training set. In other words, although we do not train
FILM based on the entire history of data accesses generated
by a given instruction, a small portion of the history provides
sufficient information to train a decision that is as good as the
one made with all the history. Further, this observation adds
confidence to our design choice of using a few sampled cache
sets for training FILM, as opposed to tracking all the sets.

Figure 11 illustrates the impact on performance as the
number of bloom filters in the Prediction Learning Table
increases from 8 to 64. The performance number is normalised
to 16 entries, which is the same number showing in Table III.

Fig. 11: Performance sensitivity to the number of bloom filters.
IPC normalized to 16 bloom filters.

Fig. 12: Energy efficiency of FILM and FILM without ”utilize
empty block rule”. Results normalized to TC-UC. FILM is at
upper envelope.

We observe a huge performance jump when the number of
bloom filters increases from 8 to 16. Performance difference
between 16 and 32 bloom filters is negligible. Performance
increases by 2% as the number quadruples from 16 to 64. Thus,
the least amount we could possible use to maintain performance
is 16.

3) Impact of ”Utilize empty blocks” rule: The ”Utilize
empty blocks” rule inserts evicted cache blocks into lower
caches when there is empty space in the cache, regardless
of FILM’s bypassing hints. If such blocks see hits in their
new home, it guides FILM to dynamically adjust its outdated
bypass decisions. The CHAR algorithm uses empty block as
well. However, FILM uses empty blocks to create opportunities
for detecting stale bypassing hints, whereas CHAR does not
perform any special training on data inserted into empty blocks.
Figure 12 compares normalized energy efficiency over TC-
UC between FILM and another FILM implementation which
does not apply the ”Utilize empty blocks” rule and always
bypasses data block based on hints. Always bypassing reduces
the number of LLC installs and saves cache energy, at the cost
of losing performance and increasing DRAM energy. Figure 12
illustrates that ”utilize empty block” rule contributes to an
average of 4% energy efficiency improvement compared to
TC-UC.
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VI. RELATED WORK

There have been several studies on intelligent cacheline
bypass/placement. A group of researchers have studied the
energy and performance impact of cache bypass on the first
level cache [22]–[26], while another group of researchers
focus on the last level [27]–[36]. All these techniques only
target single level of cache without addressing the problem
from the perspective of the entire cache hierarchy.

Gaur et al. explore insertion and bypass algorithms for
exclusive LLCs and propose a number of design choices for
selective bypassing and insertion age assignment (TC-UC) [8].
LLC bypass and age assignment decisions are based on two
properties of a block, trip count and use count.

Chaudhuri et al. propose CHAR [5], cache hierarchy-aware
replacement algorithms for inclusive LLCs and applies the
same algorithms to implement efficient bypass techniques for
exclusive LLCs in a three-level hierarchy. The CHAR algorithm
learns the reuse pattern of the blocks residing in the L2 cache
to generate selective replacement hints to the LLC.

Sim et al. propose FLEXclusion [19] which dynamically
switches between exclusion and non-inclusion depending on
workload behavior. While FLEXclusion dynamically changes
between the exclusive and non-inclusive to get the benefit of
high performance of exclusive caches and low data traffic of
non-inclusive caches, FILM’s goal is to improve exclusive
caches performance and reduce data traffic by learning bypass
hints.

Wu et al. propose Signature based Hit Predictor (SHiP) [14],
a sophisticated cache insertion mechanism. SHiP predicts
whether the incoming cache line will receive a future hit by
correlating the re-reference behavior of a cache line with a
unique signature, such as memory region, program counter,
or instruction sequence history based signatures. The SHiP
implementation compared in our work uses program counter
as the signature.

Jain et al. propose Hawkeye [10], a cache replacement policy
which learns from Belady’s algorithm by applying it to past
cache accesses to inform future cache replacement decisions.
Hawkeye is consisted of an OPTgen algorithm which uses the
notion of liveness intervals to reconstruct Belady’s optimal
solution for past long cache accesses, and a predictor which
learns OPT’s behavior of past PCs to inform eviction decisions
for future loads by the same PCs.

Jimenez et al. propose Multiperspective Placement, Promo-
tion, and Bypass (MPPPB) [9], a technique that predicts the
future reuse of cache blocks using seven different types of
features to capture various program properties and memory
behavior. The set of features used in MPPPB include data
address, last miss, offset and program counter. Its predictor
is organized as a hashed perceptron predictor indexed by
a diverse set of features, and the final prediction result is
an aggregation of many predictions taking into account each
prediction’s confidence.

Sembrant et al. present a Reuse Aware Placement (RAP)
policy [21] to optimize data movement across the entire

cache hierarchy. RAP dynamically identifies data sets and
measures their reuse at each level in the hierarchy. Each
cache line is associated with a data set and consults that
data set’s policy upon eviction or installation. RAP selects
a group of cachelines (called learning blocks) to help adapt
changes in application and instruction behavior by ignoring
bypass decisions upon installation. Compared with FILM, RAP
experiences performance degradation as an incorrect bypass
decision may have caused additional cache misses before it is
corrected. Another factor leading to RAP’s low performance is
the absence of making special training effort on the prefetch
requests. Moreover, RAP involves huge hardware overhead as
it requires every cache block in the cache hierarchy to maintain
a 12-bit large instruction pointer field.

VII. CONCLUSION

Due to the inherent difference of data block insertion and
movement between an exclusive hierarchy and an inclusive/non-
inclusive hierarchy, prior work, which is PC-correlated and is
designed with non-inclusive caches in mind, cannot be easily
applied to exclusive caches. Moreover, a holistic approach to
manage data placement is essential for high cache performance
and efficient resource utilization. Therefore, the authors propose
FILM, a locality filtering mechanism to adaptively guide
data placement into appropriate cache layers based on data
reuse patterns. With a PC-based prediction scheme, FILM
utilizes bloom filters to record the memory instruction PC of
data blocks, incurring minimal cache overhead for meta-data
transmission and storage. Additionally, FILM is able to quickly
detect and correct any stale bypass decisions. FILM also does
special training on prefetch requests, and makes prefetch aware
learning of bypass/placement decisions.

Compared to a competitive baseline (TC-UC), FILM im-
proves the average energy efficiency of multicore multi-
programmed system by an of average 9% (maximum 20%),
beating the second-highest average energy efficiency improve-
ment from CHAR by 5%, and is constantly more energy
efficient than other PC-correlated schemes. Moreover, FILM
cuts down wasteful cache block insertions and data movement,
and generates on average 12% less LLC traffic and 4% less
DRAM traffic than other PC-correlated schemes.
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