
Memory Behavior of Application of Last-level Cache

Introduction

D. Kaseridis, M. F. Iqbal, J. Stuecheli and L. John

Department of Electrical & Computer Engineering
The University of Texas at Austin

Scheme

Comparison of Runtime

Evaluation

Conclusions
•  Using applications’ Memory behavior is necessary in sharing

cache pseudo-partitions

•  Accurate monitors of memory behavior, interference
sensitivity and average occupancy is necessary for precise
control of partitions

•  Careful management can provide most of benefits of
isolated partitions while leading to scaling solutions

Acknowledgements
This work is sponsored by the National Science Foundation
under award 0702694 and CRI collaborative awards: 0751112,
0750847, 0750851, 0750852, 0750860, 0750868, 0750884,
0751091.

MCFQ: Leveraging Memory-level Parallelism and
Application's Cache Friendliness for Efficient Management of

Quasi-partitioned Caches

Motivation

Configuration

!"

!#!!$"

!#!%"

!#!%$"

!#!&"

!#!&$"

!" %" &" '" (" $")" *" +"

!
"#
#$
%&

'(
$

)&*+($,"-($.!/0$

!"

!#!!$"

!#!!%"

!#!!&"

!#!!'"

!#!!("

!#!!)"

!" $" %" &" '" (")" *" +"

!
"#
#$
%&

'(
$

)&*+($,"-($.!/0$

!"

!#!!$"

!#!!%"

!#!!&"

!#!!'"

!#!("

!#!($"

!" (" $")" %" *" &" +" '"

!
"#
#$
%&

'(
$

)&*+($,"-($.!/0$
$

,-./01234"

56.076234"

Cache Fitting (dealII) Cache Friendly (gcc)

Cache Thrashing (lbm, milc)

Shared
L2 Cache

Last-Level
Cache

Capacity
Management

Core 0

Cache
ProfilerMSHR

Core N

Cache
ProfilerMSHR

L1

L1

Occupancy
Profiler

MRU LRU

Friendly
Fit. 2

Fit. 1

Friendly Fitting 1 Fitting 2 Thrashing

Step 1
Initial Assignment

Step 2
Ordering Partitions

Step 3
Scaling Partitions

IPFriendly IPFitting 2 IPFitting 1 IPThrashing

Cache-line aging

Memory
Subsyste

m

L1 D+I L2 Main Memory Memory
Controller Prefetcher

2-way, 64KB,
3 cycles, 64B

block

16-way, 4M, 12
cycles, 64B

block, Pseudo-
LRU

8GB, 16GB/s,
DDR3

1066-6-6-6, 16
Req./Core

2 Controllers,
2 Ranks/

Controller, 32
Read/Write

entries

H/W stride
n,

8 streams/
core

Core
processor

Frequency Pipeline
Reorder
Buffer /

Scheduler

Branch
Predictor

4GHz
30 stages /

4 wide fetch-
decode

128 / 64 Entries
Direct YAGS /
indirect 256

entries

Requirements of efficient Cache Management scheme

1.  Cache space allocated to applications proportionally to the
real benefit of using the capacity

2.  Thrashing applications have to be isolated
3.  Fitting applications have to be guaranteed a minimum

capacity
4.  Cache capacity allocation priority scheme:

Friendly > Fitting > Thrashing (few LRU ways)

Need a mechanism to allocate priorities within the
same category of applications  Interference
Sensitivity Factor

4 Cores 8 Cores

Bench. Group Benchmarks Bench. Group Benchmarks

Mix 1 – All Friendly soplex, bzip2, h264ref,
perlbench Mix 1 – All Friendly

soplex, omnetpp, perlbench,
calculix, gromacs, dealII, calculix,

gromacs Mix 2 – All Fitting xalancbmk, wrf, tonto, gamess

Mix 3 – All Thrashing leslie3d, sjeng, bwaves,
zeusmp Mix 2 – All Fitting xalancbmk, gobmk, wrf, gobmk,

hmmer, astar, gamess, hmmer
Mix 4 – 3 Fr. : 1 Fit omnetpp, bzip2, calculix, astar

Mix 5 – 2 Fr. : 2 Fit bzip2, mcf, gobmk, gamess
Mix3 – 4 Fr.: 2 Fit.: 2 Thr.

omnetpp, bzip2, gobmk,
gromacs, povray, h264ref, lbm,

libquantum Mix 6 – 1 Fr. : 3 Fit omnetpp, xalancbmk, gamess,
wrf

Mix 7 – 3 Fr./Fit. : 1 Thr. mcf, perlbench, hmmer, bwaves
Mix 4- 2 Fr.: 4 Fit. : 2 Thr. mcf, gobmk, gromacs, hmmer,

gamess, tonto, libquantum, milc Mix 8 – 3 Fr./Fit. : 2 Thr. xalancbmk, dealII, milc,
zeusmp

Mix 9 – 2 Fr. : 1 Fit : 1 Thr. mcf, bzip2, astar, leslie3d
Mix 5 – 2 Fr.: 2 Fit. : 4

Thr.

omnetpp, soplex, gobmk,
gamess, libquantum, milc,

zeusmp, milc Mix 10 – 1 Fr. : 2 Fit: 1 Thr. mcf, gobmk, gamess,
libquantum

Experiments

-7%

-2%

3%

8%

13%

18%

23%

28%

33%

38%

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Mix 9 Mix 10

Th
ro

ug
hp

ut
 Im

pr
ov

em
en

ts

TADIP PIPP UCP MCFQ

0%

10%

20%

30%

40%

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5

Th
ro

ug
hp

ut

Im
pr

ov
em

en
t

TADIP PIPP UCP MCFQ

Results

Throughput 4-cores - 19% LRU, 14% TADIP, 13% PIPP, 10% UCP

Throughput 8-cores - 20% LRU, 13% TADIP, 17% PIPP, 8% UCP

0%

5%

10%

15%

20%

25%

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Mix 9 Mix 10

Fa
irn

es
s

Im
pr

ov
em

en
t

TADIP PIPP UCP MCFQ

0%

5%

10%

15%

20%

25%

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5

Fa
irn

es
s

Im
pr

ov
em

en
t TADIP PIPP UCP MCFQ

Fairness 4-cores - 17% LRU, 12% TADIP, 14% PIPP, 9% UCP

Fairness 8-cores - 15% LRU, 13% TADIP, 12% PIPP, 8% UCP

Example of operation on 4-core CMP 16-way LLC

Overall Scheme

§  Previous work to address the cache contention problem:

–  Cache Partitioning Scheme [UCP MICRO ‘06]

•  Inefficient use of capacity, not scaling to large CMP

–  Cache Replacement policies

•  Hard to provide control over cache capacity à interference

–  Cache-block dead time prediction & Cache Pseudo-
partitioning

•  Destructive interference still presents

•  No absolute control of capacity per core

•  Oblivious to applications memory behavior

§  Memory behavior is important in sharing cache capacity

Pseudo-partitions best compromise IF DONE
correctly

Profilers

•  Average MLP

•  Use of MSHR (Miss Status Hold Register)

•  Two extra counters: aggregated number of misses in structure,
overall number of L1 misses added

•  Memory Behavior

•  Using the Cache miss profilers from MSA circuit

•  Thrashing:

•  Fitting: MKPI < ThresholdFitting

•  Remaining Friendly

4-core CMP.

Profiler for Concurrency Factor (MLP): To estimate the average Concurrency factor

(MLP) of each application running on a single core, we profiled the Miss Status Holding

Registers (MSHR). The MSHR typically exists in an out-of-order core between the L1

and L2 cache [41]. The purpose of the MSHR is to keep track of all the outstanding L1

misses being serviced by the lower levels of memory hierarchy (i.e. L2 and main memory).

Therefore, the number of entries in the MSHR represents the number of the concurrent,

long-latency, outstanding memory requests that were sent from the core to the last-level

cache or memory, which is equal to the MLP of the application running on the core. To

estimate the average MLP, we modified the MSHR by adding two counters: one to hold

the aggregated number of outstanding misses in the MSHR, and a second one to hold the

overall number of times an L1 miss was added in it. Both counters are updated every time

an entry is added (new outstanding demand miss) or removed (demand miss served) from

the MSHR.

Identify Applications Cache Friendliness Type: To categorize the cache behavior

of each application (Fig. 7.1), the scheme utilizes the previous cache miss profiles

that the profilers create for each core. The profiler looks at the estimated Misses

Per Kilo Instructions (MPKI) when only one cache-way is allocated to an application

(MPKImin.capacity), and the MPKI when the whole cache capacity (MPKImax.capacity) is

given to it. To assume an application as T hrashing one the following has to be true:

MPKImax.capacity

MPKImin.capacity
> T hresholdT hrashing (7.1)

In the same way, if at any capacity point of the cache miss profile (number of cache-

97

§  Insertion Policy (Insertion Points – IPs)

§  Use UCP to find ideal partition sizes

§  Applications Cache friendliness

§  Cache Friendly higher priority

§  Cache Fitting intermediate

§  Cache Thrashing restricted to LRU position

§  Interference sensitivity factor and Partitions Scaling (next slide)

§  Promotion: Every hit moves line to core’s Insertion Point

§  Replacement Policy: LRU of the whole cache set

MCFQ Policies

 Interference Sensitivity Factor

§  When more than one applications with same memory behavior

§  Based on sensitivity an application to cache contention & how
friendly is in sharing capacity

§  Estimate: i=0 MRU
position

allocate the higher priority to Cache Friendly applications followed by Cache Fitting ones.

We restrict Cache Thrashing applications at the lowest 1 cache way of the LRU stack,

similar to the TADIP [26] and PIPP [86] schemes. Thus the applications with higher

priority have less competition in terms of promotion and demotion of cache lines in the

LRU stack. The Partition Scaling scheme (Section 7.3.3.2) scales the estimated partition

sizes and IPs to ensure that Cache Fitting applications have enough capacity to avoid

thrashing the cache. Between applications of the same category, we allocate priorities

based on applications’ interference sensitivity factor described in 7.3.3.2. Such approach

significantly reduces the cache interference for low priority cache-ways. Since we share

lower priority partitions, the Partition Scaling scheme makes sure that each application

has enough capacity to maintain, on average, a number of cache ways close to the ideal

estimated partition size. Therefore, for this case under study ÂSi >#cache ways. By

doing so, we can allow capacity stealing for high priority cores while maintaining a low

threshold of capacity allocation to the lower-priority partitions.

7.3.3.2 Interference Sensitivity Factor and Partition Scaling Scheme

Interference Sensitivity Factor: While MCFQ has a clear priority scheme between

applications with different cache friendliness behavior, we need a way to allocate

individual priorities when more than one applications belong to the same category. We

base the ordering on how sensitive is an application to cache contention and how much we

expect it to hurt the cache behavior of other applications. To calculate the sensitivity

of an application, we used the stack-distance profiles from the cache miss profilers

(Section 7.3.1) to estimate the following Interference Sensitivity Factor:

Inter f erence Sensitivity Factor =
#ways�1

Â
i=0

i⇥hits(i) (7.7)

103

Namd Soplex

0"

0.005"

0.01"

0.015"

0.02"

0.025"

0.03"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10"11"12"13"14"15"

H
it$
$R
at
e$

MRU$$$$$$$$$$$$$$$$$Posi-oninLRU$stack$$$$$$$$$$$$$$$$LRU$$$

0"

0.005"

0.01"

0.015"

0.02"

0.025"

0.03"

0.035"

0.04"

0" 1" 2" 3" 4" 5" 6" 7" 8" 9" 10"11"12"13"14"15"

H
it$
Ra

te
$$

MRU$$$$$$$$$$$$$$$$Posi-oninLRU$stack$$$$$$$$$$$$$$$$$$LRU$

§  Need to know the actual average occupancy of cache capacity
in LLC

§  Less than 80% of ideal à adjust Insertion Point (IPs) at next
epoch

§  Two counters per core:

§  Occupancy Counter: Number of actual ways occupied in
cache for a core

§  Cache accesses Counter per core

§  Important addition to achieve performance targets

Partition Scaling

