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Conclusions 
•  Using applications’ Memory behavior is necessary in sharing 

cache pseudo-partitions  

•  Accurate monitors of memory behavior, interference 
sensitivity and average occupancy is necessary for precise 
control of partitions  

•  Careful management can provide most of benefits of 
isolated partitions while leading to scaling solutions 
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MCFQ: Leveraging Memory-level Parallelism and 
Application's Cache Friendliness for Efficient Management of 

Quasi-partitioned Caches 

Motivation 
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Cache Fitting (dealII) Cache Friendly (gcc) 

Cache Thrashing (lbm, milc) 
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Step 2
Ordering Partitions

Step 3
Scaling Partitions
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Cache-line aging 

Memory 
Subsyste

m 

L1 D+I L2 Main Memory Memory 
Controller Prefetcher 

2-way, 64KB, 
3 cycles, 64B 

block 

16-way, 4M, 12 
cycles, 64B 

block, Pseudo-
LRU 

8GB, 16GB/s, 
DDR3 

1066-6-6-6, 16 
Req./Core 

2 Controllers,  
2 Ranks/

Controller, 32 
Read/Write 

entries 

H/W stride 
n,  

8 streams/
core 

Core 
processor 

Frequency Pipeline 
Reorder 
Buffer / 

Scheduler 

Branch 
Predictor 

4GHz 
30 stages /  

4 wide fetch-
decode 

128 / 64 Entries 
Direct YAGS / 
indirect 256 

entries 

Requirements of efficient Cache Management scheme 

1.  Cache space allocated to applications proportionally to the 
real benefit of using the capacity 

2.  Thrashing applications have to be isolated  
3.  Fitting applications have to be guaranteed a minimum 

capacity  
4.  Cache capacity allocation priority scheme: 

Friendly > Fitting > Thrashing (few LRU ways) 
 

Need a mechanism to allocate priorities within the 
same category of applications  Interference 
Sensitivity Factor 

4 Cores 8 Cores 

Bench. Group Benchmarks Bench. Group Benchmarks 

Mix 1 – All Friendly soplex, bzip2, h264ref, 
perlbench Mix 1 – All Friendly 

soplex, omnetpp, perlbench, 
calculix, gromacs, dealII, calculix,  

gromacs Mix 2 – All Fitting xalancbmk, wrf, tonto, gamess 

Mix 3 – All Thrashing leslie3d, sjeng, bwaves, 
zeusmp Mix 2 – All Fitting  xalancbmk, gobmk, wrf, gobmk, 

hmmer, astar, gamess, hmmer 
Mix 4 – 3 Fr. : 1 Fit omnetpp, bzip2, calculix, astar 

Mix 5 – 2 Fr. : 2 Fit bzip2, mcf, gobmk, gamess  
Mix3 – 4 Fr.: 2 Fit.: 2 Thr. 

omnetpp, bzip2, gobmk, 
gromacs, povray, h264ref, lbm, 

libquantum Mix 6 – 1 Fr. : 3 Fit omnetpp, xalancbmk, gamess, 
wrf  

Mix 7 – 3 Fr./Fit. : 1 Thr.  mcf, perlbench, hmmer, bwaves 
Mix 4- 2 Fr.: 4 Fit. : 2 Thr.  mcf, gobmk, gromacs, hmmer, 

gamess, tonto, libquantum, milc Mix 8 – 3 Fr./Fit. : 2 Thr. xalancbmk, dealII, milc, 
zeusmp 

Mix 9 – 2 Fr. : 1 Fit : 1 Thr.  mcf, bzip2, astar, leslie3d  
Mix 5 – 2 Fr.: 2 Fit. : 4 

Thr.  

omnetpp, soplex, gobmk, 
gamess, libquantum, milc, 

zeusmp, milc Mix 10 – 1 Fr. : 2 Fit: 1 Thr.  mcf, gobmk, gamess, 
libquantum 

Experiments 
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Results 

Throughput 4-cores  - 19% LRU, 14% TADIP, 13% PIPP, 10% UCP 

Throughput 8-cores  - 20% LRU, 13% TADIP, 17% PIPP, 8% UCP 
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Fairness 4-cores  - 17% LRU, 12% TADIP, 14% PIPP, 9% UCP 

Fairness 8-cores  - 15% LRU, 13% TADIP, 12% PIPP, 8% UCP 

Example of operation on 4-core CMP 16-way LLC  

Overall Scheme 

§  Previous work to address the cache contention problem: 

–  Cache Partitioning Scheme [UCP MICRO ‘06] 

•  Inefficient use of capacity, not scaling to large CMP 

–  Cache Replacement policies 

•  Hard to provide control over cache capacity à interference 

–  Cache-block dead time prediction & Cache Pseudo-
partitioning    

•  Destructive interference still presents 

•  No absolute control of capacity per core  

•  Oblivious to applications memory behavior 

§  Memory behavior is important in sharing cache capacity 

Pseudo-partitions best compromise IF DONE 
correctly 

Profilers 

•  Average MLP 

•  Use of MSHR (Miss Status Hold Register) 

•  Two extra counters: aggregated number of misses in structure, 
overall number of L1 misses added 

•  Memory Behavior 

•  Using the Cache miss profilers from MSA circuit 

•  Thrashing: 

•  Fitting: MKPI < ThresholdFitting 

•  Remaining Friendly 

4-core CMP.

Profiler for Concurrency Factor (MLP): To estimate the average Concurrency factor

(MLP) of each application running on a single core, we profiled the Miss Status Holding

Registers (MSHR). The MSHR typically exists in an out-of-order core between the L1

and L2 cache [41]. The purpose of the MSHR is to keep track of all the outstanding L1

misses being serviced by the lower levels of memory hierarchy (i.e. L2 and main memory).

Therefore, the number of entries in the MSHR represents the number of the concurrent,

long-latency, outstanding memory requests that were sent from the core to the last-level

cache or memory, which is equal to the MLP of the application running on the core. To

estimate the average MLP, we modified the MSHR by adding two counters: one to hold

the aggregated number of outstanding misses in the MSHR, and a second one to hold the

overall number of times an L1 miss was added in it. Both counters are updated every time

an entry is added (new outstanding demand miss) or removed (demand miss served) from

the MSHR.

Identify Applications Cache Friendliness Type: To categorize the cache behavior

of each application (Fig. 7.1), the scheme utilizes the previous cache miss profiles

that the profilers create for each core. The profiler looks at the estimated Misses

Per Kilo Instructions (MPKI) when only one cache-way is allocated to an application

(MPKImin.capacity), and the MPKI when the whole cache capacity (MPKImax.capacity) is

given to it. To assume an application as T hrashing one the following has to be true:

MPKImax.capacity

MPKImin.capacity
> T hresholdT hrashing (7.1)

In the same way, if at any capacity point of the cache miss profile (number of cache-
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§  Insertion Policy (Insertion Points – IPs) 

§  Use UCP to find ideal partition sizes 

§  Applications Cache friendliness 

§  Cache Friendly higher priority 

§  Cache Fitting intermediate 

§  Cache Thrashing restricted to LRU position 

§  Interference sensitivity factor and Partitions Scaling  (next slide) 

§  Promotion: Every hit moves line to core’s Insertion Point 

§  Replacement Policy: LRU of the whole cache set 

MCFQ Policies 

  Interference Sensitivity Factor 

§  When more than one applications with same memory behavior 

§  Based on sensitivity an application to cache contention & how 
friendly is in sharing capacity 

§  Estimate:                                                                   i=0 MRU 
position 

allocate the higher priority to Cache Friendly applications followed by Cache Fitting ones.

We restrict Cache Thrashing applications at the lowest 1 cache way of the LRU stack,

similar to the TADIP [26] and PIPP [86] schemes. Thus the applications with higher

priority have less competition in terms of promotion and demotion of cache lines in the

LRU stack. The Partition Scaling scheme (Section 7.3.3.2) scales the estimated partition

sizes and IPs to ensure that Cache Fitting applications have enough capacity to avoid

thrashing the cache. Between applications of the same category, we allocate priorities

based on applications’ interference sensitivity factor described in 7.3.3.2. Such approach

significantly reduces the cache interference for low priority cache-ways. Since we share

lower priority partitions, the Partition Scaling scheme makes sure that each application

has enough capacity to maintain, on average, a number of cache ways close to the ideal

estimated partition size. Therefore, for this case under study ÂSi >#cache ways. By

doing so, we can allow capacity stealing for high priority cores while maintaining a low

threshold of capacity allocation to the lower-priority partitions.

7.3.3.2 Interference Sensitivity Factor and Partition Scaling Scheme

Interference Sensitivity Factor: While MCFQ has a clear priority scheme between

applications with different cache friendliness behavior, we need a way to allocate

individual priorities when more than one applications belong to the same category. We

base the ordering on how sensitive is an application to cache contention and how much we

expect it to hurt the cache behavior of other applications. To calculate the sensitivity

of an application, we used the stack-distance profiles from the cache miss profilers

(Section 7.3.1) to estimate the following Interference Sensitivity Factor:

Inter f erence Sensitivity Factor =
#ways�1

Â
i=0

i⇥hits(i) (7.7)
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§  Need to know the actual average occupancy of cache capacity 
in LLC 

§  Less than 80% of ideal à adjust Insertion Point (IPs) at next 
epoch 

§  Two counters per core: 

§  Occupancy Counter: Number of actual ways occupied in 
cache for a core 

§  Cache accesses Counter per core  

§  Important addition to achieve performance targets 

Partition Scaling 


