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Abstract—Early design-space evaluation of computer-systems
is usually performed using performance models such as detailed
simulators, RTL-based models etc. Unfortunately, it is very
challenging (often impossible) to run many emerging applica-
tions on detailed performance models owing to their complex
application software-stacks, significantly long run times, system
dependencies and the limited speed/potential of early perfor-
mance models. To overcome these challenges in benchmarking
complex, long-running database applications, we propose a fast
and efficient proxy generation methodology, PerfProx that can
generate miniature proxy benchmarks, which are representative
of the performance of real-world database applications and yet,
converge to results quickly and do not need any complex software-
stack support. Past research on proxy generation utilizes detailed
micro-architecture independent metrics derived from detailed
functional simulators, which are often difficult to generate for
many emerging applications. PerfProx enables fast and efficient
proxy generation using performance metrics derived primarily
from hardware performance counters. We evaluate the proposed
proxy generation approach on three modern, real-world SQL and
NoSQL databases, Cassandra, MongoDB and MySQL running
both the data-serving and data-analytics class of applications
on different hardware platforms and cache/TLB configurations.
The proxy benchmarks mimic the performance (IPC) of the
original database applications with ∼94.2% (avg) accuracy. We
further demonstrate that the proxies mimic original application
performance across several other key metrics, while significantly
reducing the instruction counts.

I. INTRODUCTION

Data handling and management has become an integral
component of all businesses, big or small. Every major in-
dustrial sector, be it health-care, scientific-computing, retail,
telecommunication, social networking etc., generates large
amounts of data every day. For example, Facebook reported
to have 21 peta-bytes of data in 2010, with 12 tera-bytes of
new data added everyday and 800 tera-bytes of compressed
data scanned daily [1]. Thus, recent times have seen an
unprecedented boom in the need for efficient data management
systems and applications. While traditional data management
systems were based on the structured-query language (SQL)
based relational databases, a new group of databases popu-
larly known as NoSQL databases have recently emerged as
competitive alternatives owing to their simplicity, flexibility
and scalability properties [2], [3], [4], [5], [6], [7], [8]. Big-
data processing needs not only challenge the capabilities
of database management systems, but also pose significant
challenges to the conventional computing systems to efficiently
process data in terms of both performance and power. Thus,
computer designers need to re-evaluate their design principles
to target database applications.

Early computer design evaluation is performed using per-
formance models such as execution-driven simulators or RTL-

based models. However, several emerging applications are
often complex targets to evaluate on early performance models
owing to their complex application software-stacks, signif-
icantly long run times, system dependencies, etc. Figure 1
shows the software stack of a typical web-serving engine,
consisting of layers of complicated software levels interacting
together to form the backbone of the engine. Running similar
applications requires handling different software layers, back-
end databases, third-party libraries, etc., which is extremely
challenging (often impossible) to support on early performance
models. Furthermore, detailed performance models are sig-
nificantly slower than real hardware that makes it difficult
to analyze complete execution characteristics of such long-
running applications.

Typically, a set of standard benchmarks are used for per-
forming computer design-space exploration. Cloudsuite [9] and
BigDataBench [10] are recently proposed benchmark suites
consisting of a set of real-world and synthetic applications
representing the broad space of emerging big-data applications.
Few other research studies [11], [12], [13], [14] have explored
to simplify database benchmarking by using smaller data-sets
etc. However, these efforts suffer from similar challenges as
the real-world applications, i.e., they rely on the ability of
early performance models to support complex software stacks
with back-end databases. On the other end of the spectrum
are benchmarks like SPEC CPU2006 [15], MiBench [16],
etc., which are comparatively simpler targets for performance
evaluation but several recent research studies [10], [17], [18]
have demonstrated that their performance behavior is very
different from many big-data applications.
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Fig. 1: Software stack of a typical web-serving engine



In order to overcome the difficulties in simulating emerging
applications, in this paper, we propose a fast and efficient
proxy synthesis methodology, PerfProx, to create miniature
proxy benchmarks that are representative of the performance
of real-world database applications and yet, converge to results
quickly and do not need any complex software-stack support.
The proposed methodology achieves a sense of representa-
tiveness by synthesizing proxies based on detailed workload
characterization of the low-level dynamic runtime character-
istics of the database applications. The workloads, which we
considered in this paper include data-analytics and data-serving
applications using SQL and NoSQL-based backend databases
(e.g., Cassandra, MongoDB, etc.). Past research on proxy
generation [19], [20] utilizes micro-architecture independent
metrics derived from detailed functional simulators, which are
often very difficult to generate for such emerging applications.
Also, program profilers (e.g., Pin [21]) often face difficulties
when dealing with Java and databases. PerfProx enables fast
and efficient proxy generation for such applications using
performance metrics derived primarily from hardware perfor-
mance counters. Many big-data workloads do not work reliably
with many profiling tools and thus, performance-counter based
characterization and associated extrapolation into generic pa-
rameters that the code generator can take is an important
contribution. For database applications that can work with fast
program profilers (e.g., Pin), PerfProx augments its memory
access modeling methodology by capturing detailed patterns
in the original memory access streams. The key contributions
made in this paper are as follows:

• We propose to generate proxy benchmarks to sim-
plify benchmarking of big-data data-serving and
data-analytics workloads without needing back-end
database support.

• We present a proxy benchmark generation methodol-
ogy, PerfProx, which enables fast and efficient proxy
generation using performance metrics derived primar-
ily from hardware performance counters.

• We evaluate the effectiveness of the proxy benchmarks
using three real-world, popular databases, Cassandra
[22], MongoDB [23] and MySQL [24] for both data-
serving and data-analytics applications running across
different hardware platforms and several cache/TLB
configurations. We demonstrate that the proxy bench-
marks closely follow the performance and power
behavior of original applications while significantly
reducing the instruction counts; the mean error in IPC
between the proxies and the database applications is
5.1% for data-serving applications and 6.5% for data-
analytics applications.

• Unlike prior proposals ([19], [20], [25], [26], [27],
[28], [29]), we validate the performance of the proxies
running on real hardware systems over their complete
execution. To the best of our knowledge no prior
proxy generation method has been cross-validated on
real hardware. Also, unlike prior work which focused
on Alpha/Sparc-based proxies, we generate x86-based
proxy benchmarks which can be easily run on any
x86-based simulator or real machines.

The rest of this paper is organized as follows: In section II,

we will present a detailed description of the proposed proxy
generation methodology. Section III presents an overview of
the evaluated databases and benchmarks. Section IV provides
details about our experimental methodology. We discuss key
results and analysis in section V. Finally, we discuss related
work in section VI, before concluding the paper in section VII.

II. METHODOLOGY

The main problem we want to address in this paper is
that we want to generate miniaturized proxy benchmarks
that have similar performance characteristics as the original
real-world/complex workloads, yet are short-running and do
not require any complex software-stack support. Furthermore,
the proxy benchmarks should not divulge any proprietary
information regarding the original end-user workload, which
can motivate increased code sharing of real-world, end-user
workloads with computer system designers and researchers,
without any proprietariness or confidentiality concerns.

The overall framework of the proposed proxy benchmark
generation approach is shown in Figure 2. PerfProx first char-
acterizes the database applications running on real hardware
and extracts their key performance metrics (step A©). During
the workload characterization step, PerfProx captures low-level
dynamic runtime characteristics of the program (like statisti-
cal simulation), adding accurate instruction-locality, memory
access and branching models. Based on the extracted perfor-
mance features, PerfProx builds a workload-specific profile
for each database application that uniquely summarizes the
application’s runtime behavior over its entire execution time
(step B©). Synthesizing using statistics rather than the orig-
inal application source code effectively hides the functional
meaning of the code/data, which addresses any proprietariness
or confidentiality concerns about sharing end-user workloads.
Finally, PerfProx’s workload synthesizer uses the captured
workload-specific profiles to generate the proxy benchmarks,
which have similar features as original application (step C©).

If the workload-specific profile represents the execution
behavior of the original application accurately, then the proxy
benchmark created using the same set of features would also
replicate the performance of the original applications with
similar accuracy. The proxy benchmark is synthesized as
a C-based program, with low-level instructions instantiated
as asm statements. When compiled and executed, the proxy
benchmark mimics the dynamic performance characteristics
of the database application and it can be easily run on
early performance/functional simulators etc. with significantly
reduced runtimes. In the following sections, we will discuss
PerfProx’s workload characterization methodology followed
by its proxy synthesis algorithm in detail.

A. Workload Characterization

As discussed before, PerfProx monitors the runtime be-
havior of an application and produces a set of workload
characteristics representing its low-level dynamic execution
characteristics. PerfProx captures the execution characteristics
of database applications primarily using hardware performance
counters running on real hardware systems. It then extrap-
olates the performance counter data using analytical models
to derive features representing the workload-specific profile.
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Fig. 2: Proxy generation methodology and workload synthesis algorithm

The workload-specific profile serves as an input to the work-
load synthesis algorithm, which generates representative proxy
benchmarks that closely resemble the performance of the orig-
inal applications. Many emerging big-data workloads do not
work reliably with many profiling tools and thus, performance-
counter based characterization and associated extrapolation
enables fast and accurate analysis and proxy generation for
such applications. For database applications that can work with
fast program profilers (e.g., Pin), PerfProx further augments its
memory access modeling methodology by capturing micro-
architecture independent patterns from the original memory
access streams. The key performance features captured by the
PerfProx’s workload characterization model are described as
follows. The abstract workload-specific profile generated based
on the following features is shown in Table I.

1) Instruction Mix: The instruction mix (IMIX) of a
program measures the relative frequency of various oper-
ations performed by the program. PerfProx measures the
instruction mix of the database applications using hardware
performance counters. We specifically measure the fraction
of integer arithmetic, integer multiplication, integer division,
floating-point operations, SIMD operations, loads, stores and
control instructions in the dynamic instruction stream of the
program. The detailed instruction mix categorization is shown
in Table I. PerfProx computes the target proxy IMIX based
on the fraction of individual instruction types in the original
application. This target IMIX fraction is used to populate
corresponding instructions into the static basic blocks of the
proxy benchmark.

2) Instruction Count and Basic Block Characteristics:
PerfProx uses the database application’s instruction cache
(icache) miss rate to derive an initial estimate of the number
of instructions to instantiate in the proxy benchmark. The
instruction cache miss rate metric is easily measurable on

most computers using the hardware performance counters that
count the number of instruction cache misses and accesses.
An initial estimate of the number of static instructions to
instantiate in the proxy benchmark is made to achieve the
desired icache miss rate based on the assumption of a default
instruction cache size/configuration (64KB, 64B line-size, 2-
way set-associative). The final static instruction count of the
proxy benchmark is tuned to achieve the target icache miss
rate on the profiled hardware system. PerfProx also measures
the average basic block size of the database application based
on its total dynamic instruction count and fraction of control
instructions. Both these metrics are measured using hardware
performance counters on the profiled system. The number of
static basic blocks to instantiate in the proxy benchmark is
derived as a ratio of the final instruction count estimate and
the target basic block size.

3) Control Flow Behavior: Another important metric that
affects application performance significantly is its control flow
performance. Poor branch prediction rates owing to hard-
to-predict branches, irregular control flow behavior etc, can
cause significant performance degradation in applications due
to increased number of wrong path executions, wasted re-
sources, etc. Prior research [30], [19], [25] has shown that
an application’s branch misprediction rate is highly correlated
with the transition rate (switching probability) of the compo-
nent branch instructions [31]. PerfProx estimates the overall
branch predictability of an application in a directly correlated
fashion based on the application’s branch misprediction rate
(measured using hardware performance counters). To model a
target branch predictability into the proxy benchmark during
proxy generation, PerfProx estimates the fraction of control
instructions in the proxy benchmark that will have a par-
ticular predictability behavior. For example, assuming a 2-
bit saturating counter based predictor, 100% and 50% branch



TABLE I: Workload-specific model

Metric Category Metrics Description/Range

Instruction-mix

1. Load, 2. Store, 3. Integer 4. INT 

MUL, 5. INT DIV,

6. FP, 7. SIMD, 

8. Control instructions

Fraction of each instruction category measured using hardware 

performance counters

Instruction Footprint 9. Instruction count
Derived from target instruction cache miss rate and default 

cache configuration assumption

Control-flow 

Predictability

10 . Branch transition probability
Derived from target branch misprediction rate (Ranges 

between 0-100%)

11. Average basic block size
Derived from actual application’s total instruction count and 

control instruction count

12. Number of basic blocks Derived from metrics 9 and 11

Instruction-level 

Parallelism
13. Instruction dependency distance 1, 4, 8, 16, 32, 64, 128, 256 dependency distance bins

Memory Access Model

14. Stride value per static load/store

0, 1, 2, 4, 8, 12, 16, 20, 24, 28, 32, 64, 128, 256  byte buckets 

based on target L1/L2 cache miss rate or characterization of 

application’s local and global strides. 

15. Data footprint (number of iterations 

before resetting to beginning of data 

arrays)

Based on target application data footprint

16. Memory stream concurrency factor Bins representing upto 100 different data arrays

System Activity 17.  System call ratio Derived from target fraction of user vs kernel instructions

predictability can be modeled using a branch instruction which
is mostly not-taken and a branch instruction which alternates
between the taken and not-taken paths respectively. Similarly, a
very hard-to-predict branch can be modeled to switch between
the taken and not-taken paths in a random fashion.

4) Memory-access Model: Several prior research studies
have shown that memory performance has a significant im-
pact on database application’s overall performance [32], [9],
[18]. Although PerfProx’s primary objective is to develop
a fast and light-weight methodology to model application
performance, it is crucial for PerfProx to model the cache
and memory performance accurately. The principle of data
locality and its impact on cache and memory performance is
widely recognized. PerfProx models the data memory accesses
using simple, strided stream-classes over fixed-size data arrays.
PerfProx leverages a methodology to infer the memory stream
strides based on the data cache miss rates of the original
application (similar approach as [19], [33]). It employs a
pre-computed table that holds the correlation between L1/L2
cache hit rates and the corresponding stride values. Particular
memory access strides are determined, using the target L1/L2
hit rate information along with this table, by first matching
the L1 hit rate of the memory operation, followed by the
L2 hit rate. For example, memory accesses with 100% and
50% hit-rates can be modeled using a stride of zero and 8
respectively (assuming 64B cacheline size). Stride values are
optimized to achieve the greater correlation of proxies in terms
of target cache performance. Although approximate, such a
mechanism to model strides based on the cache miss rates
enables fast and efficient memory pattern modeling of complex
workloads, which are otherwise difficult to simulate on detailed
performance simulators. This technique was used to estimate
memory access strides for database applications (e.g., JAVA-

based Cassandra) that often can not reliably run to completion
using program profilers.

Despite its advantages, the simple memory access model
based on cache miss rates is dependent on the profiled
cache/memory hierarchy. Although it is possible to mea-
sure cache miss rates corresponding to different cache
sizes/configurations in a single run, a better solution to improve
the fidelity of the generated proxies would be to exploit
micro-architecture independent features to model the memory
access locality. Thus to improve upon its memory access
locality modeling technique, PerfProx proposes to analyze
detailed access patterns in the global and local memory access
streams of the database applications. We specifically model
memory access behavior by finding fine-grained stride-based
correlations on (a) per-instruction (local-stride profile) and
(b) global memory reference stream (global-stride profile)
granularity. The collected stride information is categorized
into bins, where each bin corresponds to a stride between -
256 to +256 for global strides and 0 to 218 for local strides.
During proxy generation, every proxy memory instruction is
assigned a memory address that satisfies both the target local
and global stride distribution of the original application. This
methodology can also model irregular memory access behavior
by controlling the degree of spatial locality in memory streams
and randomly using large stride bins. For database applications
(e.g., MySQL applications) that can work with fast program
profilers, the local and global memory strides were measured
at a byte-size granularity over the entire execution.

Furthermore, it has been shown by several prior research
studies that database applications tend to have higher TLB
misses (often as frequent as cache misses) [18], [9], which has
a significant impact on their performance. As discussed before,
PerfProx models the data memory accesses using simple



strided stream classes over fixed-size data arrays. In order to
model the effects of TLB performance, PerfProx controls the
degree of concurrency in its active memory access streams,
i.e, it controls the number of unique memory streams actively
accessed by the proxy application within a fixed window of
instructions. Individual load/store instructions are assigned to
different active data streams based on this concurrency factor.
The proxy data footprint is also scaled according to the target
data-set size of the database application.

5) Instruction-level Parallelism: Instruction-level paral-
lelism (ILP) is an important determinant of application perfor-
mance. Tight producer-consumer chains can limit performance
due to serialization effects. PerfProx models the original ap-
plications ILP based on its inter-instruction dependency dis-
tance, which is defined as the number of dynamic instructions
between the production(write) and consumption(read) of a
register/memory operand. PerfProx classifies the instruction
dependency distance into 8 bins, where each bin represents
the percentage of instructions having that particular depen-
dency relation. As it is not possible to measure the applica-
tion’s exact dependency distance using performance counters
alone, PerfProx adopts an approximate model to measure
the same. It makes an initial estimate of the application’s
inter-instruction dependency using the dependency-related stall
events of the original application. Most micro-architectures
support measuring some form of reservation-station stalls, re-
order buffer stalls or data-dependency stalls etc. Depending on
the ratio of the dependency related stalls to overall execution
cycles, ranging from very low (≤2%) to high(≥30%), PerfProx
approximately extrapolates the inter-instruction dependencies
into the 8 bins (see Table I), where each bin represents a certain
inter-instruction dependency distance. The final dependency
distance estimate is tuned to achieve the target stall ratio on the
profiled system. Nonetheless, profiling the original applications
to measure the exact multi-granularity instruction dependency
distance statistics (if possible) can lead to more accurate
modeling of instruction-level parallelism effects. During proxy
benchmark generation, the register/memory operands of the
instructions are assigned a dependency distance to satisfy the
metrics collected from the original application.

6) System Activity: Prior research [18], [9] has shown
that the emerging database applications spend a significant
fraction of their execution time executing operating system
(OS) code, which has a significant impact on their overall
performance. To model the performance impact of high system
activity, PerfProx measures the system activity in the original
applications using STRACE tool and the fraction of executed
user-mode and kernel instructions using hardware performance
counters. During proxy generation, PerfProx inserts corre-
sponding desired fraction of system calls into the basic blocks
in the proxy benchmark to achieve the desired level of system
activity.

B. Synthetic Proxy Benchmark Generation

In this section, we will discuss the workload synthesis
algorithm (see Figure 2). The workload synthesis algorithm
takes as an input the workload-specific profile captured during
the workload characterization phase (see Table I for a list of the
captured metrics). The proxy benchmark generation steps are
listed in Algorithm 1. PerfProx first estimates the total number

of static basic blocks to instantiate in the proxy benchmark. It
then chooses a random number in the interval [0, 1] to select
a basic block based on its access frequency. The size of the
basic block (in terms of number of instructions) is chosen to
satisfy the mean and standard deviation of the target basic
block size (line 6). The IMIX statistics are used to populate
the basic block with appropriate instruction types (line 8),
while ensuring that the last instruction of every basic block is
a conditional branch instruction (line 13). Every instruction is
assigned a dependency distance (i.e., a previous instruction that
generates its data operand) to satisfy the dependency distance
criterion. The memory instructions are assigned a stride and
memory access stream based on the memory model described
before. System calls are injected (or not) into the basic block
based on the target system-call frequency. Finally, an X86 test
operation is inserted before the branch instruction to set the
condition codes that affect the conditional branch outcome.
The test instruction’s operand is chosen to control the branch
transition rate in order to satisfy the target transition rate of
every basic block. These steps are repeated till we generate
the target number of static basic blocks. Finally, architectural
register operands are assigned to each instruction to satisfy the
dependencies in step 9 (line 16).

The proxy synthesizer generates C-language based proxy
benchmarks with embedded X86-based assembly instructions
using the asm construct. The generated sequence of instruc-
tions is nested under a two-level loop where the inner loop
iterations controls the dynamic data footprint and the outer
loop iterations control the number of dynamic instructions
in the proxy benchmark. The nested looping structure is
not the major determinant of the application performance as
the static footprint of the proxy benchmarks is significant.
As an example, the proxy benchmark of YCSB workload
with MongoDB consists over 40K static basic blocks. The
outer loop iterations reset each data-stream access to the first
element of the memory array (for re-walking). The code is
encompassed inside a main header and malloc library call is
used to statically allocate memory for the data streams. Using

Algorithm 1 Workload synthesis algorithm

1: Input: Table I metrics, target instruction & basic block count;
2: Output: Proxy benchmark sequence, B[]
3: Determine number of static basic blocks B to instantiate in proxy

benchmark.
4: while b < B do
5: Sample a random basic block based on its access frequency.
6: Estimate basic block size I to satisfy mean & std. dev of target

basic block size.
7: for i < I do
8: Assign instruction type based on target IMIX probability.
9: Assign dependency relation based on target dependency

distance distribution.
10: For load/store instructions, assign the memory access stream

and local stride.
11: Inject system-calls based on target system-call frequency.
12: Insert x86 test operation with chosen modulo operand.
13: Assign last instruction to be conditional branch instruction.
14: end for
15: end while
16: Assign architectural register operands to satisfy dependency re-

lations of step 9.
17: return B[]



volatile directive for each asm statement prevents the compiler
from optimizing out the program machine instructions.

C. Discussion

PerfProx’s workload characterization methodology has sev-
eral advantages. One of its key benefits is speed. As PerfProx
derives key workload metrics from hardware performance
counters using simple models, PerfProx can run at the speed
of native hardware. PerfProx, thus, makes it possible to
monitor complex, long-running applications over their entire
execution time, which is often impossible on slower, detailed
performance models. Also, many database applications (e.g.
Cassandra) are difficult to run reliably using performance
simulators as they are based on higher level programming lan-
guages such as JAVA and typically require deep software stack
support. PerfProx provides an easy and reliable methodology
to evaluate such applications and generate corresponding proxy
benchmarks. For applications that can work with fast program
profilers (e.g., Pin), PerfProx also augments its memory ac-
cess modeling methodology by capturing micro-architecture
independent patterns from the original memory access streams
to improve fidelity of the generated proxies. Nonetheless, the
reliance on some micro-architecture dependent features for
proxy generation can degrade the performance correlation of
the PerfProx proxies on systems, which deviate significantly
from the target system (which was used for performance
counter based profiling and proxy generation).

It must be noted that the data-set and query information
manifest themselves into the final workload characteristics ob-
tained from the dynamic statistical profiling of the application.
Separate proxy benchmarks need to be generated for represent-
ing different input data-sets and database application queries,
however the fast proxy benchmark synthesis methodology
makes it easily feasible. Also, the generated proxies do not
capture features that are not modeled (e.g., value prediction)
during the workload characterization step. In this paper, we
evaluate in-memory databases and thus, I/O is not modeled.
This is not an inherent limitation of the approach as support
could be added by monitoring/modeling I/O (beyond the scope
of this paper). PerfProx also does not model context-switches
and applications are pinned to cores during execution.

III. DATABASES AND BENCHMARKS

In this section, we will discuss the databases and bench-
marks used for evaluating the proposed PerfProx methodology.

A. Databases

In this paper, we evaluate three NoSQL and SQL databases
(Cassandra, MongoDB and MySQL), which are discussed in

TABLE II: YCSB core workloads

Workload Operations 
Record 

Selection 
Application Example 

A - Update 

heavy 

Read: 50%, 

Update: 50% 
Zipfian 

Session store recording recent actions 

in a user session 

B - Read 

heavy 

Read: 95%, 

Update: 5% 
Zipfian 

Photo tagging; add a tag is an update, 

but most operations are to read tags 

C - Read 

only 
Read: 100% Zipfian 

User profile cache, where profiles are 

constructed elsewhere (e.g, Hadoop) 

D - Read 

latest 

Read: 95%, 

Insert: 5% 
Latest 

User status updates; people want to 

read the latest status 
 

TABLE III: TPC-H benchmark description

 

Sl. Benchmark Name Description 

1 TPC-H Query 1 (Q1) 
Pricing summary report query involving sequential table 

scan. 

2 TPC-H Query 3 (Q3) Shipping priority query, involves hash-join,nested loop join 

3 TPC-H Query 6 (Q6) Forecasting revenue change query using sort 

4 TPC-H Query 14 (Q14) Business Promotion Effect Query using join 

5 TPC-H Query 19 (Q19) Discounted revenue query using nested loop join 

the following paragraphs.

1) Cassandra: Apache Cassandra [22] is a popular, Java-
based column-family style NoSQL database. It is incrementally
scalable, eventually consistent, and has no single point of
failure. Every node in the Cassandra cluster knows of and has
the key for at least one other node and any node can service a
request. The node structure can be visualized as a ring/web of
interconnected nodes. Cassandra is semi-structured i.e., its data
may share some of the same fields, or columns, but not all. In
this way Cassandra is slightly more organized than MongoDB,
but still not as rigid as MySQL.

2) MongoDB: MongoDB [23] is an open-source, C++
based document-style NoSQL database. It is designed for
speed and scalability. It has a flexible schema (allows objects
to not have fixed schema/type) and can store large documents
such as binaries, images etc. Documents are stored as binary
JSON objects and may be organized into collections. Within
a collection each document has a primary key, and an index
can be created for each query-able field. MongoDB’s data is
searched using keys and meta-data information.

3) MySQL: MySQL [24] is one of the worlds most popular
open-source relational database management system. It en-
ables the cost-effective delivery of reliable, high-performance
and scalable web-based and embedded database applications.
MySQL is designed to work on data whose fields are pre-
defined and finite in number. Given this regular layout, MySQL
can organize and search through data in multiple dimensions.
This is both its strength and limitation, as it can’t use the same
strategy on less structured data.

B. Benchmark Description

Next, we will discuss the evaluated data-serving and data-
analytics benchmarks in detail.

1) YCSB Benchmarks: We use the Yahoo! Cloud Serving
Benchmark (YCSB)[4] to represent the data-serving appli-
cations using Cassandra, MongoDB and MySQL databases.

TABLE IV: System description

Configuration System-A System-B 

Core 
Architecture 

64-bit processor, Core micro-
architecture 

64-bit processor, 
Ivy-bridge micro-architecture 

Core 
Frequency 

2 GHz 2.50 GHz 

Cache 
Configuration 

Private L1 caches (64 KB I and D 
caches), 12 MB L2 cache 

Three levels of caches, 1.5MB 
L2, 15MB L3 cache 

Memory 16 GB DRAM 64 GB DRAM 

 



YCSB is a standard benchmarking framework that is used to
evaluate different cloud systems. YCSB’s framework consists
of a workload generating client and a set of standard ‘core’
workloads (see Table II), which cover the most important
operations performed against a typical data-serving database.
Our test database is generated using the YCSB framework and
has over 10 million records (total size is ≥ 12GB). The data-
set size is chosen so that the data fits into memory of the
server nodes, which is the recommended operational setup for
scale-out applications for better performance [34]. Every test
run performs 1 million operations against the database.

2) TPC-H Benchmarks: We use TPC-H benchmarks [35]
to represent the data-analytics applications. TPC-H models
a decision-support system environment for commercial order
processing engines. It consists of a set of queries that inter-
act with the server system to perform different business-like
analyses. Similar to Barroso et al. [12], we use a data-set size
(∼10GB) to analyze the behavior of an in-memory database.
We used dbgen and qgen tools (provided on TPC’s website)
to create/populate the database and generate the queries. We
run 5 queries from the TPC-H benchmark suite on MySQL
database. Query details are shown in Table III.

IV. EXPERIMENTAL METHODOLOGY

Characterization and generation of proxy benchmarks for
databases running YCSB and TPC-H workloads is performed
on servers based on the system-A configuration, as described
in Table IV. We validate the performance of the proxies on
systems A and B, as shown in the table.

We use MongoDB version 2.6.5, running one mongod
instance per server node. MongoDB’s config server and router
node are setup on the server node, we also verified that the
router node and config server processes were light-weight and
were not bottlenecks in our tests. We use Cassandra version
0.1.7 with Java Oracle JDK version 1.7 and a JVM heap size
of 8GB. We use MySQL version 5.1.15.

The proxy benchmarks are compiled using gcc with the
-O0 optimization flag to avoid compiler optimizations that
remove dead-code or other optimizations that alter the inserted
code. In order to evaluate microarchitectural performance of

the actual applications and corresponding proxy benchmarks,
we use Linux perf tool [36] that provides an interface to the
processor performance counters. We also use Intel’s PIN tool
[21] for workload characterization.

V. RESULTS AND ANALYSIS

In this section, we evaluate the effectiveness of the proxy
benchmarks in mimicking the behavior of the original database
applications based on several key performance metrics across
different systems. In the following sections, YCSB benchmarks
are represented as DB-WLx, where DB is the original database
name and x is the YCSB workload (A-D). Also, database and
proxy benchmark results are represented as Actual (A) and
Proxy (P) respectively. Apart from comparing the error be-
tween different performance metrics of the proxy and database
applications, we also compare the Pearson’s correlation coef-
ficient (ρ) for each performance metric. Pearson’s correlation
coefficient indicates how well the proxy benchmarks track the
trends in the actual database applications, with 1 indicating a
perfect correlation, and 0 indicating no correlation.

A. Proxy Performance Validation on System-A

Figure 3 compares the instructions per cycle (IPC) of Cas-
sandra, MySQL and MongoDB databases running the YCSB
and TPC-H benchmarks along with their corresponding proxies
on system-A. We can see that IPC of the proxy benchmarks
closely follow the IPC of the original applications, with a high
correlation (ρ = 0.99). The mean error between the proxy IPC
and actual application IPC is 6.1% approximately (10.7% max)
across all workloads. Considering the data-serving applications
only, the average error in IPC between the proxy and the
actual applications is 5.1%. MongoDB experiences worse
errors as compared to Cassandra and MySQL. Performance
of MongoDB-based applications are impacted by their cache
and TLB performance [18]. Because of PerfProx’s simple
memory access locality modeling technique, PerfProx proxies
experience higher deviation in terms of the cache and TLB
performance with respect to the original applications, which
results in the higher overall performance modeling error. The
data-analytics applications have an average error of 6.5% be-
tween the proxy and actual applications. Next, we will analyze
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Fig. 4: Comparison of performance features of original and proxy applications on system-A. Error % on the right side axis.

performance of several key performance metrics, which lead to
the overall performance correlation between the original and
proxy benchmarks.

Figure 4a compares the branch prediction rates of the
original and their corresponding proxy benchmarks. We can
observe that the error between the branch prediction rates of
the proxy benchmarks and the actual applications is small
(average error = 1.5%, ρ = 0.99). This shows that PerfProx’s
methodology of capturing and mimicking branch transition
rates is effective at achieving the target branch prediction rates
fairly accurately. Figures 4b and 4c compare the L1 cache
and last-level cache (LLC) hit rates respectively for Cassandra,
MySQL and MongoDB databases running the YCSB and TPC-
H benchmarks with their corresponding proxies (normalized
with respect to the cache hit rate of Cassandra running YCSB
WLA benchmark). The average error in mimicking L1 and
LLC Cache hit rate is 6.1% and 3.1% respectively. In terms
of TLB behavior (Figure 4d), the average error between the
proxy and original applications is higher as compared to other
performance metrics. Nonetheless, the trend in TLB perfor-
mance is captured to a reasonable degree across the different
workloads (ρ = 0.83). Similarly, in terms of system activity
(Figure 4e), the fraction of user to system instructions in the
proxy benchmarks closely follows the original applications,
with a correlation (ρ) of 0.967.

B. Proxy Cross-platform Validation on System-B

In this section, we evaluate the performance sensitivity of
proxy benchmarks generated from system-A on the system-B
micro-architecture (see Table IV).

Figure 5a shows the IPC of the proxy versus actual
applications on system-B for Cassandra-based applications
(normalized with respect to actual Cas-WLA). We can observe
that IPC of proxy benchmarks experience an average error
of ∼19.4% in replicating original application performance
across the different YCSB workloads. As PerfProx’s work-
load features are derived using microarchitecture-dependent
characterization (e.g., cache miss rates etc) based on a target
system, the performance correlation of the proxies on similar
machines is higher. However when tested on machines with
very different configurations, the performance correlation of
proxies comparatively degrades. We also compare the original
and the proxy workloads using several other key metrics e.g.,
L2 misses per kilo instructions (MPKI), LLC MPKI and
branch prediction rate (see Figures 5b, 5c and 5d). We can
observe that although the L2 and LLC MPKI of the proxy
benchmarks follow the performance trends of the original
applications, the degree of correlation is lower because of
dependence of profiled cache performance metrics on the
profiled cache hierarchy.

In Figure 5e, we compare the IPC of the proxy benchmarks
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Fig. 5: Proxies from system-A validated on system-B: (a) IPC, (b) L2 MPKI, (c) LLC MPKI, (d) Branch prediction rate

versus the original TPC-H applications on system-B. We also
compare the proxy and original workloads across several other
key metrics, L2 MPKI (average error = ∼0.78 MPKI), LLC
MPKI (average error = ∼1 MPKI) and branch prediction rate
(average error = 0.25%) as shown in Figures 5f, 5g and 5h
respectively. The L1 cache and TLB performance (not shown
here due to space considerations) also have similar correlations
between the original and proxy applications. Memory locality
modeling using stride-based patterns leads to accurate capture
of application spatial locality, thereby improving the cache
performance correlation between the proxy and actual appli-
cations. However, the assumed stride model fails to capture
long-distance reuse locality of accesses, which manifests as
slightly worse errors in modeling LLC locality. On the other
hand, the cache miss rate based memory locality modeling
technique captures reuse probability at lower level caches as
well, leading to slightly better performance correlation. Future
work will focus on incorporating longer-distance reuse locality
patterns into the memory access model.

Finally, Figure 5i shows the IPC of the proxy benchmarks
versus the original applications on system-B for MongoDB-
based applications. Although the average error between the
IPC of proxy benchmarks with respect to the original database
queries on system-B is high, the proxy benchmarks still capture
the IPC trends of the original application pretty well (average
correlation = ∼0.93). We also compare the proxy and original
workloads across several other key metrics, L2 MPKI, LLC
MPKI (average error = ∼3 MPKI) and branch prediction rate
(average error = 2.3%) as shown in Figures 5j, 5k and 5l

respectively.

C. Proxy performance sensitivity analysis on different
cache/TLB configurations

This section discusses the performance sensitivity of the
proxy benchmarks to different cache and TLB configurations
and aims to evaluate the effectiveness of PerfProx’s memory
access modeling methodology to capture and mimic the inher-
ent memory access patterns in a workload.

We first evaluate the performance sensitivity of the data-
analytics applications. We choose to evaluate TPC-H Q19 as
Q19’s proxy experienced the highest error in replicating cache
performance among the 5 TPC-H queries on system-A. We use
a PIN-based cache simulator to measure the cache performance
of the proxy and the original TPC-H queries across 20 different
cache configurations, where we we vary the cache size between
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Fig. 7: Sensitivity of data-serving proxy performance to
different cache and TLB configurations

16-256KB and associativity between 1, . . . 32. Figure 6 shows
the cache MPKI of the original TPC-H Q19 and its proxy for
the different configurations. We can see that the cache MPKI
of the proxy benchmark follows the original application with
an average deviation of 0.5 MPKI and a high correlation of
0.89 across the different configurations.

We also evaluate the cache performance sensitivity of data-
serving applications using the YCSB workload with MongoDB
database. For the different cache configurations, we vary cache
sizes between 16 to 256KB and associativity between direct-
mapped, 2, . . . 16. Similarly, the different TLB configurations
correspond to different TLB sizes (32 - 256 entries) and
associativity (2 - 8). Figure 7 shows the cache and TLB MPKI
sensitivity of the proxy and database application. We can
observe that the cache MPKI of the proxy benchmark follows
the original application closely across different cache config-
urations, with an average deviation of ∼2 MPKI. Similarly,
the TLB MPKI of the proxy benchmarks follows the original
application with a mean error of 2.2 MPKI. The proxies and
the actual applications have a correlation of 0.88 and 0.97 with
respect to cache and TLB performance respectively.

D. Energy-efficiency Analysis

Figure 8 shows the average power consumption (in watts)
of the individual databases running the data-serving and data-
analytics applications and their corresponding proxy bench-
marks (normalized with respect to the actual YCSB bench-
marks running on Cassandra). We measure power using the
Intel’s RAPL counters on system-B. We can see that the
correlation between the average power consumption of the
proxy and actual applications is significantly high (ρ = 0.97).
The power consumption of an application is often highly
correlated with its performance behavior [37]. Since the proxy
benchmarks mimic the performance behavior of the original
applications closely (in terms of IMIX, instruction dependen-
cies, cache/memory behavior etc.), they closely mimic the
power characteristics of the actual applications as well.

E. Comparison with standard benchmarking suites

In this section, we compare the performance correlation
between the original database applications and three standard
benchmarks, SPEC CPU2006 [15], SPECjbb2013 [38] and
Linpack [39]. The kiviat plots shown in Figure 9a show the
performance trends of the original database applications and
their corresponding proxy benchmarks, while the kiviat plots
in Figure 9b shows performance metrics corresponding to the
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applications

standard benchmarks across several key metrics. Specifically,
the kiviat plots are based on selected raw performance metrics
(L1D, L1I, LLC, I/D TLB MPKI, %kernel instructions exe-
cuted (Ker), branch misprediction rate (BrMis)), normalized
by their maximum observed values on system-A. Modern
database applications suffer from several bottlenecks which
limit their overall performance on contemporary hardware
systems. The plots illustrate significant diversity in the per-
formance and bottlenecks of different database applications
and standard benchmarks. For example, SPECjbb stresses a
different set of system components (branch misprediction rate
and LLC cache misses) than MongoDB applications. Even
with a comparable dataset size (over 10GB), Linpack does not
encounter similar memory subsystem issues as the database
applications, demonstrating that Linpack program behavior is
different from databases even when the data-set is big. The
plots also show how closely the generated proxy benchmarks
resemble performance trends of the original workloads. Thus,
the proxy benchmarks can be used for effective performance
validation, while being very simple targets for performance
evaluation. Improving the memory and instruction locality
models can further improve their fidelity.

F. Degree of Miniaturization

A key advantage of the proxy benchmarks is that they
are miniaturized (have fewer instructions) as compared to the
original applications. This significantly reduces the simulation
time of the proxy benchmarks on simulation frameworks.
Average instruction-count of the generated proxy benchmarks
is ∼2 billion (∼520 times smaller than original database appli-
cations). Thus, the proxy-benchmarks can be run to completion
on simulators in a reasonable time.

VI. RELATED WORK

Several research studies [11], [12], [13], [14] use a set of
simpler database queries or smaller data-sets to simplify bench-
marking databases on early performance models. Dbmbench
[13] scales down the TPC-H and TPC-C benchmarks based
on the database size, workload complexity and concurrency
level and produces µTPC-H and µTPC-C workloads respec-
tively. However, these approaches suffer from the challenge of
supporting complex software stacks of modern-day databases
on early performance models. In contrast, PerfProx captures
key performance features of real-world database applications
and distills them into smaller proxies that can be evaluated
without any back-end database support. MinneSPEC [40] is
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Fig. 9: Kiviat diagrams comparing performance of the original database applications, their proxy benchmarks and a set of
standard benchmarks

another proposal to reduce simulation time of SPEC workloads
by using miniature, representative input sets.

Bell et al. [19] proposed the black-box benchmark cloning
approach using several execution-metrics. Other studies [20],
[25] cloned proprietary applications into proxy benchmarks
using only micro-architecture independent attributes. Perf-
Prox enables fast and accurate database proxy generation
by using hardware performance counters. Also, prior pro-
posals were evaluated (often shorter run-times) for desktop-
like benchmarks (SPEC CPU2000 [41], SPEC CPU2006 [15]
etc) or embedded benchmarks (Implantbench [42]) on micro-
architectural simulators. In contrast, PerfProx allows to moni-
tor and analyze complete execution of database applications
(with complex software stacks) on real systems. We also
evaluate and validate the proxy performance on real hardware
systems unlike prior proposals.

Simpoints [43] reduce simulation time by identifying re-
gions of program execution with distinct performance char-
acteristics. Using simpoint-based techniques for database ap-
plications requires supporting complete software stack of
database applications on simulation frameworks and fast-
forwarding support.

Trace-based schemes [44], [45], [46] have been explored
to reproduce data-memory behavior of SPEC benchmarks
specifically. As they don’t model other workload features
(instruction-side, control-flow etc), they are orthogonal to
the proposed scheme. Also, the proposed approaches do not
require storing large traces and are likely more portable (e.g.,
32-bit to 64-bit).

VII. CONCLUSION

In this paper, we presented a novel methodology, PerfProx
to generate representative proxy benchmarks that enable fast
and efficient performance evaluation of emerging workloads
without needing back-end database or complex software stack
support. PerfProx generates proxies by monitoring and ex-
trapolating database performance primarily using hardware
performance counters. We evaluated the proxy benchmark-
ing methodology using three popular and modern databases,
Cassandra, MySQL and MongoDB for data-serving and data-
analytics applications running across different hardware plat-
forms and multiple cache/TLB configurations. We demon-
strated that the proxy benchmarks closely follow the perfor-
mance trends of database applications across several key per-
formance metrics while significantly reducing the instruction
count. The proxy benchmarks mimic the performance (IPC)
of the original applications with 94.9% (average) accuracy for
data-serving applications and 93.5% (average) accuracy for
data-analytics applications.

VIII. ACKNOWLEDGEMENT

The authors of this work are supported partially by SRC
under Task ID 2504 and National Science Foundation (NSF)
under grant number 1337393. We wish to acknowledge the
computing time we received on the Texas Advanced Comput-
ing Center (TACC) system. Any opinions, findings, conclu-
sions or recommendations expressed in this material are those
of the authors and do not necessarily reflect the views of NSF
or other sponsors.



REFERENCES

[1] A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain, J. Sen Sarma, R. Murthy,

and H. Liu, “Data warehousing and analytics infrastructure at facebook,” in

Proceedings of the 2010 ACM SIGMOD International Conference on Management

of Data, ser. SIGMOD ’10, 2010, pp. 1013–1020.

[2] M. Indrawan-Santiago, “Database research: Are we at a crossroad? reflection on

nosql,” in NBIS. IEEE Computer Society, 2012, pp. 45–51.

[3] A. Floratou, N. Teletia, D. J. DeWitt, J. M. Patel, and D. Zhang, “Can the elephants

handle the nosql onslaught?” Proc. VLDB Endow., vol. 5, no. 12, pp. 1712–1723,

Aug. 2012.

[4] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Bench-

marking cloud serving systems with ycsb,” in SoCC, 2010, pp. 143–154.

[5] A. Boicea, F. Radulescu, and L. I. Agapin, “Mongodb vs oracle – database

comparison,” in EIDWT. IEEE Computer Society, 2012, pp. 330–335.

[6] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and

M. Stonebraker, “A comparison of approaches to large-scale data analysis,” in

SIGMOD. ACM, 2009, pp. 165–178.

[7] S. M. Y. Li, “A performance comparison of sql and nosql databases,” in PACRIM,

August 2013.

[8] D. Bartholomew, “Sql vs nosql,” Linux Journal, p. 195, July 2010.

[9] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic,

C. Kaynak, A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the clouds: A

study of emerging scale-out workloads on modern hardware,” in ASPLOS. New

York, NY, USA: ACM, 2012, pp. 37–48.

[10] W. Gao, Y. Zhu, Z. Jia, C. Luo, L. Wang, Z. Li, J. Zhan, Y. Qi, Y. He, S. Gong,

X. Li, S. Zhang, and B. Qiu, “Bigdatabench: a big data benchmark suite from web

search engines,” CoRR, vol. abs/1307.0320, 2013.

[11] K. Keeton and D. A. Patterson, “Towards a simplified database workload for

computer architecture evaluations,” in In Workload Characterization for Computer

System Design, edited byh. Kluwer Academic Publishers, 2000, pp. 115–124.

[12] L. A. Barroso, K. Gharachorloo, and E. Bugnion, “Memory system characterization

of commercial workloads,” SIGARCH Comput. Archit. News, vol. 26, no. 3, Apr.

1998.

[13] M. Shao, A. Ailamaki, and B. Falsafi, “Dbmbench: Fast and accurate database

workload representation on modern microarchitecture,” in Proceedings of the

2005 Conference of the Centre for Advanced Studies on Collaborative Research,

ser. CASCON ’05. IBM Press, 2005, pp. 254–267. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1105634.1105653

[14] L. Van Ertvelde and L. Eeckhout, “Benchmark synthesis for architecture and com-

piler exploration,” in Workload Characterization (IISWC), 2010 IEEE International

Symposium on. IEEE, 2010, pp. 1–11.

[15] “SPEC CPU2006,” https://www.spec.org/cpu2006.

[16] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B.

Brown, “Mibench: A free, commercially representative embedded benchmark

suite,” in WWC-4. Washington, DC, USA: IEEE Computer Society, 2001, pp.

3–14.

[17] R. Panda and L. K. John, “Data analytics workloads: Characterization and

similarity analysis.” in IPCCC. IEEE, 2014, pp. 1–9.

[18] R. Panda, C. Erb, M. Lebeane, J. Ryoo, and L. K. John, “Performance character-

ization of modern databases on out-of-order cpus,” in IEEE SBAC-PAD, 2015.

[19] R. H. Bell, Jr. and L. K. John, “Improved automatic testcase synthesis for

performance model validation,” in Proceedings of the 19th Annual International

Conference on Supercomputing, ser. ICS ’05, 2005, pp. 111–120.

[20] A. Joshi, L. Eeckhout, R. H. B. Jr., and L. K. John, “Performance cloning: A

technique for disseminating proprietary applications as benchmarks.” in IISWC,

2006.

[21] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.

Reddi, and K. Hazelwood, “Pin: Building customized program analysis tools with

dynamic instrumentation,” in PLDI, 2005, pp. 190–200.

[22] “Cassandra,” wiki.apache.org/cassandra/FrontPage.

[23] “MongoDB,” mongodb.org.

[24] “MySQL,” http://www.mysql.com.

[25] K. Ganesan, J. Jo, and L. K. John, “Synthesizing memory-level parallelism aware

miniature clones for spec cpu2006 and implantbench workloads.” in ISPASS, 2010.

[26] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. Devito, R. Haque,

D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, and C. H. Still, “Exploring

traditional and emerging parallel programming models using a proxy application,”

in IPDPS, ser. IPDPS ’13, 2013, pp. 919–932.

[27] L. Eeckhout, R. H. Bell Jr., B. Stougie, K. De Bosschere, and L. K. John, “Control

flow modeling in statistical simulation for accurate and efficient processor design

studies,” in Proceedings of the 31st Annual International Symposium on Computer

Architecture, ser. ISCA ’04, 2004.

[28] M. Oskin, F. T. Chong, and M. Farrens, “Hls: Combining statistical and symbolic

simulation to guide microprocessor designs,” in ISCA, ser. ISCA ’00, 2000, pp.

71–82.

[29] L. Eeckhout, K. de Bosschere, and H. Neefs, “Performance analysis through

synthetic trace generation,” in ISPASS, 2000, pp. 1–6.

[30] A. Joshi, L. Eeckhout, and L. John, “The return of synthetic benchmarks,” in

Proceedings of the 2008 SPEC Benchmark Workshop, San Francisco, CA, USA,

1 2008, pp. 1–11 (digitaal).

[31] M. Haungs, P. Sallee, and M. K. Farrens, “Branch transition rate: A new metric

for improved branch classification analysis.” in HPCA. IEEE Computer Society,

2000, pp. 241–250.

[32] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “Dbmss on a modern

processor: Where does time go?” in VLDB, 1999, pp. 266–277.

[33] L. V. Ertvelde and L. Eeckhout, “Benchmark synthesis for architecture and com-

piler exploration,” in Workload Characterization (IISWC), 2010 IEEE International

Symposium on, Dec 2010, pp. 1–11.

[34] “Mongodb architecture guide,” http://www.mongodb.com.

[35] “TPC-H Benchmark Suite,” http://www.tpc.org/tpch.

[36] “Linux perf tool,” https://perf.wiki.kernel.org/index.php/Main Page.

[37] K. Ganesan, J. Jo, W. L. Bircher, D. Kaseridis, Z. Yu, and L. K. John, “System-

level max power (sympo): A systematic approach for escalating system-level power

consumption using synthetic benchmarks,” in PACT, 2010, pp. 19–28.

[38] “SPECjbb 2005,” https://www.spec.org/jbb2005/.

[39] “HP Linpack,” http://icl.eecs.utk.edu/hpl/.

[40] A. J. KleinOsowski and D. J. Lilja, “Minnespec: A new spec benchmark work-

load for simulation-based computer architecture research.” Computer Architecture

Letters, vol. 1, 2002.

[41] “SPEC CPU2000,” https://www.spec.org/cpu2000.

[42] Z. Jin and A. C. Cheng, “Implantbench: Characterizing and projecting represen-

tative benchmarks for emerging bioimplantable computing.” IEEE Micro, vol. 28,

2008.

[43] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder, “Automatically character-

izing large scale program behavior,” SIGOPS Oper. Syst. Rev., vol. 36, no. 5, pp.

45–57, Oct. 2002.

[44] G. Balakrishnan and Y. Solihin, “West: Cloning data cache behavior using

stochastic traces.” in HPCA. IEEE Computer Society, 2012, pp. 387–398.

[45] A. Awad and Y. Solihin, “Stm: Cloning the spatial and temporal memory access

behavior.” in HPCA, 2014, pp. 237–247.

[46] R. Panda, X. Zheng, and L. John, “Accurate address streams for llc and beyond

(slab): A methodology to enable system exploration,” in IEEE ISPASS, 2017.


