
ATTC (@𝐶) : Addressable-TLB based Translation Coherence
Harsh Gugale

University of Texas at Austin
Austin, TX

harsh.gugale@utexas.edu

Nagendra Gulur
University of North Texas

Denton, TX
nagendra.gulur@unt.edu

Yashwant Marathe
University of Texas at Austin

Austin, TX
marathe.yashwant@gmail.com

Lizy K. John
University of Texas at Austin

Austin, TX
ljohn@ece.utexas.edu

ABSTRACT
Heterogeneous memory systems are getting popular, however they
face significant challenges from translation coherence overheads
from page remappings. Translation coherence, which is typically
implemented in software, can consume up to 50% of the runtime for
some applications in virtualized platforms. In this paper, we propose
ATTC – Addressable TLB-based Translation Coherence, a hardware
translation coherence scheme which eliminates almost all of the
overheads associated with software-based coherence mechanisms,
and overcomes the challenges in existing hardware schemes. Unlike
other proposals (HATRIC, UNITD) that require on-chip TLB tags
to enforce coherence and are capable of tracking only the last
level page table entries of either the guest or host page tables,
ATTC tracks changes to both guest and host page tables without
requiring any additional metadata in L1, L2 TLBs. ATTC enforces a
“point of coherence” uniformly for both guest and host page table
updates using an addressable TLB (ATLB) in the DRAM akin to
the one in [41]. An inverse mapping table (𝐼𝑁𝑉𝑇𝐵𝐿 - present in
DRAM) that maps host physical pages to ATLB locations helps to
precisely track translations. We study the proposed ATTC scheme
in detail for an emerging hybrid memory organization (a mix of
DRAM and NVM) and show that ATTC practically eliminates all
translation coherence overheads, yielding an average improvement
of 35.7% over a baseline software coherence scheme in virtualized
environment and 7.4% over the hardware HATRIC scheme.

CCS CONCEPTS
•Computer systems organization→Heterogeneous (hybrid)
systems; • Software and its engineering→ Virtual memory.

KEYWORDS
Virtualization, Translation coherence, TLB Shootdown, Hybrid
Memory

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PACT ’20, October 3–7, 2020, Virtual Event, GA, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8075-1/20/10. . . $15.00
https://doi.org/10.1145/3410463.3414653

ACM Reference Format:
Harsh Gugale, Nagendra Gulur, Yashwant Marathe, and Lizy K. John. 2020.
ATTC (@𝐶) : Addressable-TLB based Translation Coherence. In Proceedings
of the 2020 International Conference on Parallel Architectures and Compilation
Techniques (PACT ’20), October 3–7, 2020, Virtual Event, GA, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3410463.3414653

1 INTRODUCTION
Emerging non-volatilememory (NVM) technologies such as PCM [23],
STTRAM [15], ReRAM [2] and 3DX Point [19] are promising en-
hancements to conventional DRAM for handling the needs of
emerging workloads. Due to inherent drawbacks such as larger
access times or low endurance, these emerging memories often
cannot be used as a complete replacement. Researchers have shown
that a hybrid memory subsystem comprising of a conventional
DRAM coupled with a high capacity NVM or high bandwidth die-
stacked DRAMs can provide the required performance, power and
reliability benefits [37, 38]. Intel, AMD and other vendors are re-
leasing systems with 3D Xpoint, High Bandwidth Memory (HBM),
HBM2, Hybrid Memory Cube (HMC) etc.

In heterogeneousmemory systems, pages aremigrated frequently
between the fast and slow memory devices, to match the demands
of applications, necessitating operating systems to remap pages.
During page remapping events, consistency has to be maintained
across private TLBs in various cores for correctness; i.e. no core
should access a stale memory translation. The OS must inform all
the processors in a Chip Multi Processor (CMP) about the remap-
ping and associated translation modification. Modern systems uti-
lize Inter Processor Interrupts (IPIs) for this communication. The
core which initiates the address translation modification, called the
initiator core, relays IPIs to other cores (referred to as victim cores)
which might potentially hold the affected address translations in
their private TLBs. The initiator core then enters a busy wait loop
waiting for acknowledgement from all the cores to ensure remote
invalidation before proceeding further. Upon receiving the IPIs, the
victim cores jump to an interrupt handler and perform invalidations
in their own private TLBs, a process typically referred to as TLB
shootdown.

With increasing deployment of virtual machines for cloud ser-
vices and server applications, maintaining efficient virtualization is
important. An important challenge in virtualized systems is address
translation and translation coherence. Translations in virtualized
environments involve two levels of redirection (i) guest virtual
address (gVA) to guest physical address (gPA), managed by the

https://doi.org/10.1145/3410463.3414653
https://doi.org/10.1145/3410463.3414653

guest OS, and done by the guest page tables; and (ii) guest physical
address to system (host) physical address (sPA) - managed by the
hypervisor (also called the Virtual Machine Manager or VMM) and
done by the nested page tables. In many modern processors, both
these page tables use a 4-level radix tree and modification to any
set of mappings is expensive. In such systems, TLB shootdowns
occur between virtual processors (vCPUs) instead of the physical
cores. and generate virtual IPIs instead of physical IPIs. Delivery of
virtual IPIs requires hypervisor (VMM) intervention to notify target
vCPUs. Further, the target vCPUs may not be scheduled to imme-
diately service virtual interrupts (or worse, may get pre-empted
while processing virtual interrupts), delaying acknowledgment[29].

Ideally translation coherence mechanisms should invalidate only
the TLB entries corresponding to the pages that were remapped, but
in many systems precise invalidation cannot be accomplished. Cur-
rent VMMs do not track the gVA of pages used by the guest. Since
modern processors only permit invalidations of individual TLB
entries when the gVA (for guest pages) is known, when the VMM
updates the nested page table, translation structures are completely
flushed [44]. Repopulating the flushed 2-dimensional page tables
are very expensive. Additionally, VMMs track address translations
at VM-granularity - VMMs track the subset of physical cores that a
virtual CPU (vCPU) runs on, but do not track the subset of cores
that a process on a vCPU runs on. As a result, in addition to the list
of victim vCPUs approximated by the guest OS, the list of victim
cores is approximated by the VMM. Combined with the flushing
of translation structures upon a nested page table update, these
approximations result in frequent needless evictions of unrelated
translations [44].

TLB shootdown activity has been observed to be a significant bot-
tleneck in prior studies [4, 6, 12, 25, 33, 40, 44] and is also confirmed
by our own experiments. Our experiments with a heterogeneous
memory hierarchy similar to recent work (SITE [6]) where a fast
DRAM acts as a first level memory and an NVM is the second level
memory illustrate that TLB shootdowns result in cycle counts in-
creasing by 13.1% in the native case and 37% in the virtualized case
(see Figure 1).

0

20

40

60

80

100

120

%
 cy

cle
 o

ve
rh

ea
d

(w
rt

id
ea

l)

Native Virtualized

Figure 1:% cycle overhead introduced by TLB shootdownswith
respect to an ideal case where shootdowns take zero cycles

There have been industry and academic efforts to reduce TLB
shootdown overheads. On the industry side, in x86-64 and ARM
architectures, there are instructions to invalidate specific TLB en-
tries (without flushing the entire TLB). Operating systems such as
Linux have improved in how they track coherence targets [42] and

as a result, reduce TLB shootdown overheads. However, many of
these enhancements are limited to native execution [44] and TLB
coherence remains a significant bottleneck in virtualized systems.

On the academic side, there have been various techniques pro-
posed in both hardware and software to eliminate these overheads.
Schemes like Lazy Translation Coherence (LATR) [22], ABIS [4],
DIDI [42], UNITD [40], HATRIC [44] and SITE [6] aim to reduce the
number of IPIs or eliminate them altogether. LATR solved several
problems of software schemes by eliminating the requirement of
acknowledgements from victim cores but is still imprecise. While
DIDI eliminate expensive IPIs and the associated kernel interven-
tions, they lack support for hardware virtualization, and do not
eliminate the long waits on the initiator core. UNITD augments
each TLB entry with the physical address of the last-level PTE for
precise invalidations, but - it too does not address virtualized en-
vironments. Furthermore, as explained by Yan et al. [44], it is not
straightforward to extend UNITD for virtualization.

HATRIC [44] was proposed by Yan et. al. to address shootdown
overheads in virtualized environments. By augmenting TLB entries
with co-tags constructed from the physical address of the last-level
page table entry (PTE) of the host page table, HATRIC demon-
strated that up to 30% performance improvement can be obtained
in KVM-based virtualized systems, by providing hardware based
translation coherence. However, HATRIC tracks changes to only
the host page table, but not the guest page table. HATRIC can be
made to track either the guest or the host, but tracking both at the
same time involves additional on-chip hardware and is not straight-
forward [1]. Addressing only the host-initiated page table changes
is insufficient, since many workloads have significant guest-level
translation changes . As an example, in the dedup benchmark, our
measurements on a state-of-the-art Intel Whiskey Lake system
(Intel® Core™ i7-8565u CPU) indicated that guest side page table
changes alone take upto 28% of the execution time (see Figure 2).
Thus, it is highly desirable to offer efficient hardware support for
both guest and host-initiated changes on both the initiator and
victim cores.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

Dedup Wordcount

%
 o

f t
ot

al
 e

xe
cu

tio
n

tim
e

% Guest side overheads on real system

Native Virtualized

Figure 2: Guest-side shootdown overheads for dedup and
wordcount running on Intel Whiskey Lake system

We propose ATTC (pronounced @𝐶), a hardware translation
coherence mechanism that goes beyond HATRIC and other
works on TLB coherence, creating an efficient solution for
dealing with guest and host level page table changes. ATTC
overlays translation coherence atop cache coherence. It leverages a
very large addressable TLB (abbreviated ATLB) to enable precise
invalidations in virtualized environments. ATTC tracks changes

2

UNITD DiDi SITE HATRIC ATTC
Handles Native System Yes Yes Yes Yes Yes
Handles Virtualized System No No No Either Guest or

Host
Both Guest And Host si-
multaneously

Hardware addition 32 bits per
TLB entry
(on-chip)

Requires
Shared TLB

32 bits per
TLB entry
(on-chip)

16 bits per TLB en-
try (on-chip)

Inverse Table added but
it is in DRAM. Minimal
changes in on-chip con-
trol logic.

Table 1: Comparison of ATTC with other hardware coherence schemes. LATR, ABIS, Shoot4U are software schemes and do
not provide virtualization support.

to both guest and host page tables by tying each guest page table
translation to a single address in the ATLB and maintaining an
inverse mapping table (𝐼𝑁𝑉𝑇𝐵𝐿) to precisely identify guest virtual
pages that are mapped to a system physical page. By ensuring that
both guest and host page table changes are reflected as writes to
a common address space, ATTC achieves hardware translation co-
herence of virtualized environments without resorting to software
IPIs or shootdowns. Unlike prior works (UNITD, HATRIC), ATTC
does not introduce additional tag bits to area and latency sensitive
TLBs. Table 1 briefly compares the main features of prior art and
the proposed ATTC scheme. Succinctly, we make the following
contributions:

• Propose the ATTC organization for hardware-based TLB
coherence achieving coherence under both host and guest
initiated page table changes, with minimal on-chip hardware
changes. The major hardware addition, 𝐼𝑁𝑉𝑇𝐵𝐿 is resident
in the DRAM, where the area-overheads are more manage-
able.

• Demonstrate that ATTC eliminates nearly all of the IPI over-
heads by leveraging the addressable ATLB coupled with the
proposed 𝐼𝑁𝑉𝑇𝐵𝐿 to track both guest and host page table
changes, resulting in approximately 40% improvement over
kvmtlb-based schemes and 12% improvement over state-of-
the-art hardware scheme, HATRIC.

This paper is structured as follows. In Section 2, we present
our design. Section 3 presents the experimental setup and Section
4 presents the results. Section 5 presents a discussion of various
design considerations. Section 6 offers a comparison with related
works. We conclude with Section 7.

2 ATTC (@𝐶) DESIGN
In this section, we describe our hardware translation coherence
scheme ATTC which addresses both guest and system page table
updates by overlaying TLB coherence atop cache coherence. It en-
forces coherence in hardware while requiring light changes to the
guest and hypervisor software. Section 2.1 provides an overview of
ATTC . The hardware additions for coherence-invalidation support
at private TLBs and the L2 cache are described in Section 2.2. The
major hardware addition to support host updates, the inverse ta-
ble is described in Section 2.3. Section 2.4 describes the operation
for handling guest and host updates and Section 2.5 describes the
operating system support needed.

2.1 Overview
Figure 3 shows the high-level system organization of a multi-core
system that integrates ATTC. As can be seen ATTC requires an
addressable TLB (ATLB - explained below) and an inverse mapping
table (𝐼𝑁𝑉𝑇𝐵𝐿), both resident in main memory. Blocks outlined
with the thick green border in Figure 3 are ATTC additions over
the baseline system.

2.1.1 System-wide Point of Coherence. Prior hardware-based ap-
proaches (UNITD [40] andHATRIC [44]) have proposed to integrate
TLBs into the cache coherence mechanism. However, the lack of a
consistent system-wide (across guest OS and hypervisor) coherence-
triggering mechanism limited their applicability to tracking either
only the guest or only the hypervisor-initiated changes, but not
both. ATTC addresses this fundamental issue using an addressable
TLB (ATLB). Prior work [41] established the feasibility of using a
large shared L3 TLB placed in addressable main memory for achiev-
ing very high TLB hit rates as well as low lookup latency. ATTC
exploits such an addressable structure to design a TLB coherence
mechanism that supports both guest and host-initiated page table
changes.

The ATLB is organized as a set associative cache. Each set is
64B in size, holding four 16B TLB entries, each entry holding one
translation 𝑔𝑉𝐴 → 𝑠𝑃𝐴1. An ATLB comprising 𝑁 sets is assigned
an address range of 64 × 𝑁 bytes. The guest virtual address (𝑔𝑉𝐴)
of the L2 TLB miss is converted to an ATLB set index by extracting
𝑙𝑜𝑔2 (𝑁) bits of the 𝑔𝑉𝐴 (after ignoring the page offset bits). These
bits are XORed with 𝑉𝑀_𝐼𝐷 bits to ensure that identical guest
addresses across VMs map to different ATLB sets. The memory
address of the set that the 𝑔𝑉𝐴 maps to is given by:

𝐴𝐷𝐷𝑅𝐴𝑇𝐿𝐵 (𝑔𝑉𝐴) = 𝐵𝐴𝑆𝐸_𝐴𝐷𝐷𝑅𝐴𝑇𝐿𝐵+
(((𝑔𝑉𝐴 >> 12) ⊕ (𝑉𝑀_𝐼𝐷 << 14))&

((1 << 𝑙𝑜𝑔2 (𝑁)) − 1)) ∗ 64 (1)

Since, the ATLB assigns a memory address to every set in the
large TLB, this enables caching of these TLB sets in data caches in
a manner identical to the caching of normal data. Any updates to
an ATLB set (by writing to the respective ATLB set address) will
trigger cache coherence actions without requiring any special hard-
ware support. Snoop-based or directory-based hardware coherence
schemes will ensure that changes to a memory location will result
in appropriate cache-side actions to remove all stale copies of that
location, ensure a single owner for dirty data, and so on. Given

1Like other TLBs and caches, each ATLB entry also holds other bits such as the valid
bit, dirty bit, page permissions, process ID, VM ID, recency bits etc.

3

INVTBL

L3 $

L2 TLB

ATLB

PTW
ATLB entries
cached in private
and shared caches

ATTC Additions

L2 TLB
L2 $

PTW

L2 $

L2$ controller

ATLB

Physical
Memory

gVA sPA

sPA ATLB Set

Core (C)

Core (C’)

Figure 3: ATTC Overview
the mapping scheme in equation 1, it is also possible to extract
partial 𝑔𝑉𝐴 from the ATLB set address (𝐴𝐷𝐷𝑅𝐴𝑇𝐿𝐵) specified in
the coherence message. Forwarding these messages to the private
TLBs could be used to invalidate stale TLB entry through partial
tag match.

This motivates the use of the ATLB as the point of coherence:
if all modifications to address translations are reflected as writes to
the affected ATLB locations, the hardware cache coherence protocols
could be used to invalidate stale translation entries from local TLBs.
It is important to emphasize that both guest-side and host-side
translation changes should be reflected onto the ATLB writes in
order to achieve an entirely hardware-based coherence scheme.

2.2 Support for ATTC in Private TLBs
As mentioned in the previous section, to enforce ATLB as point
of coherence, invalidation messages must be sent to private TLBs
with ATLB set address. ATTC uses a simple hardware extension
to monitor and implement coherence-invalidation actions in pri-
vate TLBs. Whenever a private TLB receives a coherence message
with an ATLB set address, the TLB looks up the guest virtual tags
of TLB entries that match the set index bits of the ATLB address
and computes their corresponding ATLB set locations. If there is
a match between the computed location and the incoming ATLB
address in the coherence message, then the TLB entry is invalidated.
This is similar to what happens with invlpg instruction in the x86
architecture. Unlike the mechanisms proposed in UNITD [40] and
HATRIC [44], ATTC does not add any storage overhead to private
TLBs.

For example, suppose the coherence message specifies an ad-
dress 𝐴 in a 16MB ATLB. From 𝐴, the 18-bit set index 𝐴𝑇𝐿𝐵 [17 : 0]
is extracted. Given the Skylake L1-dTLB and L2-sTLB, TLB index-
ing schemes [18], these TLB indices can be exactly reconstructed
from the ATLB set index. The L1-dTLB index is the least four
bits 𝐴𝑇𝐿𝐵 [3 : 0]. The L2-sTLB index, computed using the XOR-7
scheme (refer [18]), requires the least fourteen bits 𝐴𝑇𝐿𝐵 [13 : 0].
This reconstruction works because of our addressing scheme (refer
Equation 1) that ensures that 𝐴𝑇𝐿𝐵 [13 : 0] = 𝑔𝑉𝐴[25 : 12]. If a dif-
ferent architecture used a different set of 𝑔𝑉𝐴 bits for indexing into

L1, L2 TLBs, then the ATLB set-indexing could be suitably modified
to use the same 𝑔𝑉𝐴 bits as part of ATLB indexing. Thus, ATTC
can precisely identify the L1, L2 TLB sets to inspect and partially
match the tag bits to identify TLB entries to invalidate. We show in
our evaluation that proportion of false positives due to partial tag
matching is extremely low.

2.3 The Inverse Mapping Table – 𝐼𝑁𝑉𝑇𝐵𝐿

Host-initiated translation changes require hardware and hypervisor
support to track the affected guest addresses whenever the hypervi-
sor makes a gPA to sPA translation change. As the ATLB is looked
up using gVA, the host-side changes must be reflected in terms of
the guest-virtual addresses whose 2D translations are affected. To
address this, we propose an inverse mapping table (𝐼𝑁𝑉𝑇𝐵𝐿) that
is implemented as a large in-memory addressable cache.

2.3.1 𝐼𝑁𝑉𝑇𝐵𝐿 Organization. Figure 4 shows the organization of
the 𝐼𝑁𝑉𝑇𝐵𝐿 and its interaction with the ATLB. The 𝐼𝑁𝑉𝑇𝐵𝐿 is an
in-memory addressable cache of mappings. Each entry maps a host
physical page to the corresponding entry in the ATLB that points
to it. The organization of the 𝐼𝑁𝑉𝑇𝐵𝐿 is similar to the ATLB. It
is organized as a large set-associative cache indexed using sPA.
In each set, inverse mapping entries are stored, each 4B entry
containing the host physical address tag bits and the ATLB set
index. We deliberately choose to store ATLB set indices rather
than guest virtual addresses for two reasons: one, ATLB cache set
indices require far fewer bits of storage as compared to storing
guest virtual tags (18 bits versus 52), and two, directly storing the
ATLB index avoids a conversion step for converting the guest vir-
tual address into the ATLB set index. Like the ATLB, it is assumed
that the 𝐼𝑁𝑉𝑇𝐵𝐿 occupies a range of host physical address space:
[𝐵𝐴𝑆𝐸𝐼𝑁𝑉𝑇𝐵𝐿, 𝐵𝐴𝑆𝐸𝐼𝑁𝑉𝑇𝐵𝐿 + 𝑅𝐴𝑁𝐺𝐸𝐼𝑁𝑉𝑇𝐵𝐿].

2.3.2 𝐼𝑁𝑉𝑇𝐵𝐿 Interaction with the ATLB. The 𝐼𝑁𝑉𝑇𝐵𝐿 and the
ATLB work in unison to track both guest-level and host-level page
table updates. The 𝐼𝑁𝑉𝑇𝐵𝐿 is installed with inverse mappings
whenever 2D hardware page table walks occur. The hardware Page
Table Walk (PTW) is augmented to add the inverse mapping when-
ever a page walk completes. Thus, the inverse table entry associated
with the system (host) physical page contains a “pointer” to the
ATLB set which contains the guest virtual page whose translation
needs to be invalidated if the host makes a page table change that
affects the host physical page of interest. Whenever the host makes
a page table change that affects a set of host physical pages, then the
host OS writes to the affected 𝐼𝑁𝑉𝑇𝐵𝐿 entries to invalidate them.
The hypervisor also uses the ATLB pointers stored in the affected
𝐼𝑁𝑉𝑇𝐵𝐿 entries to issue invalidations to these ATLB entries.

For this scheme to work correctly, the system must guarantee
one invariant: for every valid ATLB entry, there must be a pointer
in the 𝐼𝑁𝑉𝑇𝐵𝐿 that points to it. This invariant guarantees that
whenever the host makes a change to the page table, it will be able
to follow the pointer to the ATLB to invalidate the corresponding
translation entry. Ensuring that this invariant is met requires that
whenever the 𝐼𝑁𝑉𝑇𝐵𝐿 suffers an eviction, then the ATLB entry
that the evicted entry is pointing to is also evicted.

4

…
k sPA1 p

…
sPA1gVA1

INVTBL ATLB

p sPA2 sPA3 sPA4gVA2 gVA3 gVA4

Valid
(1b)

sPA Tag
(4b)

ATLB
Set id (18b)

INVTBL Entry
4B

Figure 4: 𝐼𝑁𝑉𝑇𝐵𝐿 and ATLB Interaction

Guest OS

ATLB

L2 TLB

L2 $

Target Core (C’)

1

4

ATLB Write
by software

ATLB Write

L3 $

gVA-sPA1

L2 TLB

gVA-sPA1

L2 $

PTW

Hardware

ATLB Set (gVA-sPA1)

Directory

INVTBL

Software

L2$
Controller

2 ATLB Read

3 Filter by
VMID

Coherence
messages sent

5

Initiator Core (C)

Physical
memory

Figure 5: ATTC operation for guest side updates

2.4 Handling Guest and Host Updates
The ATLB acts as point of coherence if all the address translation
changes can be reflected as updates into the ATLB. In this section,
we describe the hardware and software support needed to ensure
this.

2.4.1 Handling Guest PTE Changes. Guest-initiated translation
changes are straightforward to implement: the guest OS must inval-
idate the affected ATLB locations. Invalidating an entry will trigger
coherence actions across the caches and upper-level TLBs result-
ing in removing all stale copies of the invalidated translations. A
subsequent access to the affected 𝑔𝑉𝐴 will result in a 2D page walk
restoring the translation into the ATLB.

Consider a guest page table mapping𝑇𝑔 whichmaps guest virtual
address 𝑔𝑉𝐴 to guest physical address 𝑔𝑃𝐴1, and the host page
table mapping 𝑇ℎ which maps guest physical address 𝑔𝑃𝐴1 to host
physical address 𝑠𝑃𝐴1. In virtualized environments, TLBs store the
mapping 𝑔𝑉𝐴 − 𝑠𝑃𝐴1, which we denote by 𝑇𝑡𝑙𝑏 . When the guest
OS initiates a guest page table update on Core 𝐶 , it updates the
𝑔𝑉𝐴 − 𝑔𝑃𝐴1 mapping to 𝑔𝑉𝐴 − 𝑔𝑃𝐴2. This update has resulted in
the TLB entry 𝑔𝑉𝐴 − 𝑠𝑃𝐴1 becoming stale. Suppose another core
𝐶 ′ ≠ 𝐶 has the translation 𝑔𝑉𝐴− 𝑠𝑃𝐴1 resident on its private TLBs.
Further, let us assume that this translation is also resident in private
data caches of both 𝐶 and 𝐶 ′. Translation coherence necessitates
that all of these stale translations be invalidated.

Figure 5 provides an overview of the sequence of events that
take place in order to achieve hardware coherence when a guest

initiates page table changes. Below, we refer to the steps (indicated
by numbered black circles) shown in the diagram.

• Step 1: Guest OS issues a write to the ATLB: The OS
calculates the ATLB address 𝐴 corresponding to the affected
𝑔𝑉𝐴 using Equation 1. Any mapping from 𝑔𝑉𝐴 to any of
one of the numerous host physical addresses must reside
at this fixed location 𝐴 owing to the property of the ATLB
addressing scheme.

• Step 2: Hardware Page Table Walker (PTW) issues a
Read from address 𝐴: The PTW intercepts the OS-issued
write to 𝐴 and issues a read of the ATLB set held at 𝐴.

• Step 3: PTW filters read contents by 𝑉𝑀_𝐼𝐷 : The PTW
uses the𝑉𝑀_𝐼𝐷 of the guest OS that issued the write in Step
1 to invalidate (clear the valid bit of) only those entries in
the ATLB that belong to the issuing OS. This step enforces
security: a guest OS can not accidentally or intentionally
write to ATLB entries that do not belong to it.

• Step 4: PTW issues a Write to address 𝐴: The PTW per-
forms a write to address 𝐴 with the modified contents (with
valid bit of entries that belong to the issuing guest cleared).

• Step 5: TLB Coherence Actions are Taken: The write
to 𝐴 issued by the PTW triggers coherence. As shown in
Figure 5, the write to 𝐴 is a hit in the private L2 data cache
of the initiator core. By writing to 𝐴, any cached copies of
𝐴 residing in other data caches are evicted through normal
data cache coherence. Further, as 𝐴 falls in the ATLB address
range, the L2 cache controller generates coherence messages
to private TLBs and they invalidate affected entries. See
figure 6 for a summary of steps highlighting the interaction
between the OS and the underlying hardware. More details
of these steps are discussed in Section 2.5.

2.4.2 Handling Host PTE Changes. When the host initiates a page
table update (due to page migration, page compaction etc), then a
current host page table entry 𝑔𝑃𝐴−𝑠𝑃𝐴 becomes stale2. The hyper-
visor writes to the 𝐼𝑁𝑉𝑇𝐵𝐿 using the host physical page (𝑠𝑃𝐴) to
invalidate it. Following the “pointers” stored at that location (in our
design, each 𝐼𝑁𝑉𝑇𝐵𝐿 entry stores up to four pointers), the hard-
ware PTW performs writes to the ATLB addresses to invalidate any
translations that map to the now-stale 𝑠𝑃𝐴. As before, either impre-
cise (all contents in the matching set) or precise (entries that map
to given 𝑠𝑃𝐴) invalidations could be carried out. In our evaluation,
we used precise invalidations. As discussed above in Section 2.4.1,
these writes to ATLB locations initiate coherence updates across
the cache and TLB hierarchies.

2.5 OS Support
ATTC proposes to use the ATLB uniformly as the point of coherence
for both guest and host-initiated page table updates. In order for
this scheme to work, the guest OS and hypervisor must ensure the
following:

(1) Whenever the guest OS makes a (guest) page table modifica-
tion, it must perform a write to the corresponding ATLB location
even if the location does not presently contain the affected translation.
This is necessary to initiate coherence operations across the chip,
2More than one entry may become stale, and the inverse-table based ATLB updates
must be performed for every modified host page table entry.

5

ATTC steps for guest side PTE updates ATTC steps for host side PTE updates

1. Guest OS: ATLB Write
2. PTW: ATLB Read (to match for

VM_ID, and to get host physical
address)

3. Check for VM_ID match
4. PTW: ATLB Write to VM_ID

matching entry.
5. L2$ Controller: Coherence

messages sent

1. Hypervisor: INVTBL Read
2. Hypervisor: Identify ATLB pointers

for each valid ATLB ptr (upto 4)
1. Hypervisor: ATLB Write
2. PTW: ATLB Read
3. ATLB set invalidation
4. PTW: ATLB Write
5. L2$ Controller: Coherence

messages sent

Operation by SW Hardware logic

Figure 6: ATTC Steps for guest/hypervisor initiated Changes

as private TLBs and data caches may still be holding the affected
translation. The ATLB write performed by the guest OS is inter-
cepted by the hardware PTW to issue a DRAM read, filter the read
response by VM_ID of the issuing guest, and to clear the matching
entry. The column on the left in Figure 6 outlines this. This is a
total of one DRAM read and one DRAM write.

(2) Whenever the host OS makes a (host) page table modification,
it must invalidate the ATLB locations pointed to by the entry in
the 𝐼𝑁𝑉𝑇𝐵𝐿 that correspond to the old system physical address.
In addition, the 𝐼𝑁𝑉𝑇𝐵𝐿 entry itself must also be invalidated. The
host performs a write to the 𝐼𝑁𝑉𝑇𝐵𝐿 entry at the old host physical
address. This triggers the hardware PTW to access and invalidate
stale translations from the ATLB. The PTW uses the ATLB pointers
to compute their addresses and to write to them. As the 𝐼𝑁𝑉𝑇𝐵𝐿
maintains up to 4 pointers (in our 4-way associative design), up to
4 DRAM writes occur. These actions are outlined in the right hand
column of Figure 6.

There is little performance overhead associated with these op-
erating system initiated writes. Guest- and host-initiated page ta-
ble changes result in up to 5 DRAM accesses. Thus, these opera-
tions take a few hundred CPU cycles to complete. As compared to
software-IPI messages that initiate TLB shootdowns, these software
operations are 10𝑋 to 100𝑋 cheaper.

In all scenarios, it may be observed that the resulting TLB invali-
dations are invisible to victim cores. There are no IPIs generated,
and there is no need for software to track the occupancy of transla-
tion entries in virtual or physical cores.

2.6 Hardware Overhead
ATTC introduces the 𝐼𝑁𝑉𝑇𝐵𝐿 as a DRAM-based cache of pointers
to ATLB locations. Its organization and storage capacity are similar
to the ATLB (in the range 4MB – 32MB, depending on anticipated
workloads’ footprints). Being DRAM-based, this storage overhead
is negligible3.

On the logic side, ATTC adds ATLB and 𝐼𝑁𝑉𝑇𝐵𝐿 range checks
to detect writes to ATLB locations and to issue invalidate messages
to private TLBs. Private TLBs add logic to receive these messages
and to use the ATLB set address from these messages to invalidate
matching TLB entries. ATTC also extends the hardware page table
walker to intercept writes to the ATLB in order to ensure VM-
specific read-modify-writes.

3A 32MB 𝐼𝑁𝑉𝑇𝐵𝐿 adds less than 0.2% overhead in a system with a physical memory
of 16GB.

Processor Values
Num Cores/Freq 8/4 GHz
L1 D-Cache 32KB, 8 way, 4 cycles
L2 Unified Cache 256KB, 4 way, 12 cycles
L3 Unified Cache 8MB, 16 way, 42 cycles
MMU Values
L1 TLB (4KB) 64 entry, 9 cycles, 4 way
L1 TLB (2MB) 32 entry, 9 cycles, 4 way
L2 Unified TLB 1536 entry, 17 cycles, 12 way
DDR Values
Type DDR4-2133
tCAS-tRCD-tRP 14-14-14
Replacement policy CLOCK Replacement
ATLB 16 MB, 4 way, 16B block
INV-TBL 4 MB, 4 way, 4B block
NVM (only in sim) Values
Latency 2x DRAM
Migration Threshold 10
Shootdown Parameters Values
Initiator Latency (Virtualized) 48000 cycles
Victim latency (Virtualized) 10300 cycles
Initiator Latency (Native) 16200 cycles
Victim latency (Native) 3500 cycles

Table 2: Simulation Parameters

3 EVALUATION
We evaluate ATTCś performance on a cycle-accurate simulation
framework that models the operation of a multicore Skylake pro-
cessor. The simulation methodology, configuration parameters and
workload details are provided below.

3.1 Simulation Methodology
In order to evaluate a scheme such as ours, we need a simulator
model to capture system-level effects. Shootdown events are costly
but infrequent and inherently require exploration over large time-
scales. Therefore, we use a combination of a detailed simulator
coupled with memory access traces that also capture events per-
taining to TLB accesses (TLB invalidations, page migrations etc.).
This type of trace/ftrace/PIN-based simulation we use is similar to
the approach in recent works involving TLBs/shootdowns [6, 27,
34, 41, 44].

We use a cycle accurate simulator modeling memory instructions
in detail. The simulator models the cache and TLB hierarchy of a
Chip MultiProcessor (CMP) using the parameters as described in
Table 2. Simulation parameters for eg. average page walk cost, TLB
shootdown cost (detailed discussion below) etc. are obtained from
real world measurements using ftrace and performance counters.
In order to obtain these we use QEMU [10] 3.1 as virtualization
platform with KVM [21] support. The system also has Intel VT-x
with support for Extended Page Tables. The guest system is Ubuntu
19.04 (Linux kernel v5.0.0.17) .

3.2 Calibrating TLB Shootdown Parameters
based on Intel System

The shootdown latencies listed in Table 2 are determined with real
system measurements on a state-of-the-art Intel processor with
and without virtualization. To collect this data, we use the Linux

6

Benchmark Avg num of
victim cores

Ferret 4.1

Freqmine 7.24

wordcount 7.67

dedup 6.45

vips 7.88

Average 6.67

Fer
re

t

Fre
qm

ine

W
or

dc
ou

nt

Ded
up

Vips

Ave
ra

ge
0

10000
20000
30000
40000
50000
60000
70000

Initiator Latency

C
yc

le
s

Fer
re

t

Fre
qm

ine

W
or

dc
ou

nt

Ded
up

Vips

Ave
ra

ge
0

2000
4000
6000
8000

10000
12000
14000

Victim Latency

C
yc

le
s

(a) (b) (c)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Native Virtualized Native Virtualized

(d)

0 page invalidation 1 page invalidation
>1 page invalidation complete flush

Figure 7: (a) Latency on initiator core (b) Latency on victim core (c) Avg. number of victim cores per shootdown (d) Page
invalidations per shootdown

ftrace utility which provides a breakdown of the time spent in each
shootdown activity on both the initiator and the victim core.

Figure 7(a) plots the average cycles spent by the initiator core in
a TLB shootdown in native and virtualized modes. This includes
the cost of IPI delivery, TLB invalidation, and the busy-wait state.
On average, we observe that in the native case the initiator core
spends 16.2K cycles servicing a TLB shootdown. In the virtualized
case, the cost per shootdown on the initiator core is seen to be
48K cycles (about 3.2x compared to native). These average cycle
numbers are used as the simulation parameters in Table 2 for the
initiator overheads.

Figure 7(b) plots overheads for the victim core. This includes the
cost of remote TLB invalidation and entry into and exit from the
interrupt service routine. For the native case, victim core spends, on
average, 3.5K cycles. For the virtualized case, we observe a latency
of 10.3K cycles, approximately 2.9x compared to the native case.
This experiment yielded the values for the simulation parameters
in Table 2 for the victim core.

To further validate the chosen simulator overhead parameters, a
few more measurements were done on the Intel SkyLake platform.
We measured the average number of victim cores that receive and
handle IPI requests in each of the workloads. The table in Figure 7(c)
suggests that the workloads in which TLB shootdowns target a
larger number of victim cores tend to show greater initiator-side
overheads. This is not surprising as the initiator must wait for all the
victim cores to acknowledge processing of the invalidation requests.
Initially we were concerned about the difference in overhead cycles
for Ferret in Figures 7(a) and 7(b) relative to other benchmarks.
However as shown in Figure 7(c), in Ferret, an IPI goes to less than
4.1 cores on average as against > 6.6 across other benchmarks.
Naturally the overheads are less if fewer cores are receiving the
IPIs.

We also validated our assumptions on imprecise invalidations
using experiments on the SkyLake processor. Figure 7 (d) plots the
fractions of different types of shootdown events that Linux issues
depending on the number of PTE entries that are modified. Single
page invalidations are the most common action (> 66% on average),
followed by other types such as multipage invalidation or complete
TLB flushes. Zero page invalidations represent inefficiencies while
issuing IPIs due to imprecise tracking of TLB entries. It is evident
that there is potential to obtain performance benefits by optimizing
the cost of the single-page and multi-page invalidations.

3.3 Simulation Details
A modified PIN tool is used to generate a trace of timed memory
accesses to feed into the simulator. In addition to this, the PIN
tool also generates a shootdown trace using the Linux pagemap,
capturing page remaps and changes in permissions. The shootdown
trace is used by the simulator to account for coherence related
overheads. The first 10B instructions of each benchmark are skipped
while collecting the PIN trace. Not all page remaps/permission
changeswill result in individual shootdown events (owing to several
linux optimizations such as batching, lazy TLB shootdown etc.).
Injecting shootdown activity (such as stalling the initiator/victim
core) in the simulator by looking at the perf trace of the workload
results in accurate simulations. Note that these Linux optimizations
are accounted for in the overheads reported in Figure 1 and are also
accounted for in our simulations.

For the front-end, the simulator models the Reorder Buffer (ROB)
in which all instructions other than memory instructions are retired
with a fixed schedule. Memory access instructions are simulated
in detail to account for cache and TLB performance. ATLB and
𝐼𝑁𝑉𝑇𝐵𝐿 are assumed to reside on DRAM (their system parameters
are in Table 2). For shootdowns initiated due to host page migra-
tions, we conservatively use a penalty of 500 cycles to perform the
𝐼𝑁𝑉𝑇𝐵𝐿 and ATLB accesses, assuming that all the four pointers
to ATLB entries (given that our 𝐼𝑁𝑉𝑇𝐵𝐿 associativity is four) are
followed and respective entries invalidated. For shootdowns due to
guest changes, we simulate the required writes to ATLB addresses
incurring DRAM cycles. In ATTC, since each page table remap is
implemented as a guest OS write to the ATLB our simulator initi-
ates coherence activity at each remap event seen in the input trace.
The overall time taken by ATTC for coherence due to guest- or
host-initiated page table changes is estimated as a sum of ATLB
read + write and 𝐼𝑁𝑉𝑇𝐵𝐿 lookup and write. This is a maximum
of 5 DRAM accesses (when the host initiates page table updates)
amounting to an estimated 500 cycles on average (sensitivity study
on this parameter presented later).

The performance improvement is calculated by using normalized
IPC (calculated as sum of instructions executed across cores divided
by total number of clock ticks across cores) over the baseline IPC.

3.4 Memory Migration Policy
We investigate the benefits ofATTC on an emerging hybrid memory
organization where a fast DRAM acts as a first level of physical
memory and a large NVM acts as the second level. We use a paging

7

Name Suite input threads Data Footprint (MB)
Dedup PARSEC native 12 105
Facesim PARSEC native 16 99
Vips PARSEC native 12 32

Blackscholes PARSEC native 8 204
Bodytrack PARSEC native 12 11
Freqmine PARSEC native 12 636
Ferret PARSEC native 12 93

Fluidanimate PARSEC native 12 375
FT NAS Size C 12 583
UA NAS Size C 12 428

Wordcount Phoenix word_100MB 8 85

Table 3: Workload details

policy similar to recent work [6]. All pages are initially assumed
to reside in NVM. The OS (or the hypervisor) decides to migrate
a page to DRAM when memory accesses to that page exceed a
threshold value. Since, the guest and the hypervisor may decide to
migrate pages independently, we use a static proportion of guest
vs host migration shootdowns of 25% - 75% of all shootdowns for
our analysis (given that most of the migrations are caused by the
hypervisor updates [44]) and perform a sensitivity study over this
ratio in section 4. DRAM capacity is assumed to be 95% of the
memory footprint of a workload in order to create a realistic mildly
congested scenario that causes migrations not just for cold misses
in the DRAM but also for conflict misses that occur during the
course of execution.

3.5 Workloads
We chose a subset of PARSEC [13], Phoenix [39] and NAS [7] paral-
lel benchmark suites for our study. Workload details can be found
in Table 3. Our workloads include programs with high guest side
shootdown overheads (for eg. wordcount), those with high migra-
tion induced host side shootdown overheads (for eg. FT, Freqmin,
blackscholes) and some which show overheads for both the cases
(for eg. dedup). This allows us to draw a meaningful conclusion
and bring out the effectiveness of ATTC in various scenarios.

4 RESULTS
This section presents simulation results for ATTC for a diverse
set of benchmarks. We compare ATTC with three configurations:
POMTLB [41], HATRIC [44] and Ideal. POMTLB refers to a system
with a large addressable TLB as in [41] which has the addressable
TLB component of ATTC but still incurs IPI based shootdown. Ideal
refers to an ideal configuration wherein TLB shootdowns occur in
zero time. Among other state-of-the-art hardware based-coherence
schemes, only HATRIC supports virtualization and hence we com-
pare ATTC’s performance only against HATRIC. All results are
normalized with respect to the conventional kvmtlb baseline.

Performance in Virtualized Systems: Figure 8 shows the sim-
ulation results for the virtualized environment. ATTC outperforms
the kvmtlb baseline, with average performance improvements of
35.7%. It also outperforms HATRIC by approximately 7.4%. Com-
pared to HATRIC, ATTC’s gains are a result of eliminating guest-
side shootdown overheads. In HATRIC, both application-inherent
shootdowns (due to data sharing between threads) and guest-side

0

0.5

1

1.5

2

2.5

No
rm

ali
ze

d
IP

C
(w

rt
ba

se
lin

e)

POMTLB HATRIC ATTC Ideal

Figure 8: ATTC Performance Improvement in virtualized sys-
tem - (kvmtlb baseline)

0

5

10

15

20

25

30

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

SP
M

I

%
of

 to
ta

l s
ho

ot
do

wn

Guest Shootdown - Program Guest Shootdown - Migration
Host shootdown migration SPMI

Figure 9: Types of shootdowns incurred during simulation,
and Shootdowns per million instructions (SPMI)

page migrations result in IPIs. By avoiding these IPIs, ATTC elimi-
nates more than 99% of the TLB shootdown overheads and remains
within 1% of the ideal IPC.

It may also be observed that ATTC improves performance well
above the gains achieved by an addressable TLB alone (as exempli-
fied in the POMTLB case). While POMTLB brings about 4% improve-
ment by reducing page walk latencies, it does not reduce/eliminate
IPIs or their shootdown overheads.

Performance differences between the benchmarks can be ex-
plained using the breakdown of different types of shootdowns
executed by the simulator and the shootdown intensity expressed
in shootdowns per million instructions (SPMI) in Figure 9. Higher
SPMI values indicate higher opportunities and are seen to result in
higher improvements in both ATTCand HATRIC. For eg. Freqmine
which accesses pages from a lot of different locations and has high
off-chip BW requirements, has very high SPMI but ATTC is able
to save more than 99% of the overhead and improve performance
by 2.04x. ATTC is equally effective for both guest and host initi-
ated shootdowns, whereas HATRIC can only handle one. For eg.,
wordcount which has many guest updates due to parallel map re-
duce operation has 60% guest shootdowns, and ATTC yields 7.4%
improvement over HATRIC.

False invalidation due to partial tag match: As mentioned
in section 2.2, writes to ATLB set address initiates invalidation
requests to be issued to both data caches and local TLBs of the
victim core. Stale ATLB entries are precisely invalidated from data
caches (through cache coherencec protocols) but for local TLBs,
invalidations are performed by a partial tag match because of the
reconstruction of partial 𝑔𝑉𝐴 from ATLB set index. Our measure-
ments indicate that occurrence of false invalidations is almost zero.
A major reason for this is the large size of the ATLB. For eg. given

8

our indexing scheme in equation 1, using a 16MB ATLB enables
us to extract and compare 14 bits of partial 𝑔𝑉𝐴 tag in local TLBs.
For many workloads this granularity is enough to avoid any false
invalidations.

ATTC Latency Sensitivity: In our experiments, we used a
penalty of 5 DRAMRead-Modify-Write operations for host-initiated
DRAM accesses to the 𝐼𝑁𝑉𝑇𝐵𝐿 and the ATLB. In highly congested
or bandwidth-limited systems, DRAM access latencies may be
worse. It is also possible that the ATLB or the 𝐼𝑁𝑉𝑇𝐵𝐿 is organized
differently (block size, associativity) requiring additional DRAM
accesses to read/write these cache sets. To cover this large design
space, we perform a sensitivity study of ATTC performance as in-
validation penalties are set to 1000, 2000, and 5000 cycles (instead
of the 500 cycles assumed in prior simulations). Results in Figure 10
indicate that ATTC continues to provide substantial improvements
even at higher invalidation penalties. Intuitively, this is expected as
the baseline IPI scheme incurs a very large overhead (over 48, 000
cycles on average, per shootdown as reported in Figure 7) and even
the costlier ATTC memory accesses do not degrade its performance
by a significant amount as compared to the baseline.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

No
rm

al
ize

d
IP

C
(w

rt
ba

se
lin

e)

1K cycles 2K cycles 5K cycles

Figure 10: 𝐼𝑁𝑉𝑇𝐵𝐿 and ATLB access latency sensitivity. We
observe that ATTC continues to provide gains.

ATLB Hit Ratio: Next, we analyze the hit ratio for ATLB .It is
important that ATLB exhibit high hit ratio since every miss in ATLB
is accompanied by an insertion of (sPA – ATLB set ptr) inverse map-
ping in 𝐼𝑁𝑉𝑇𝐵𝐿, in addition to insertion of (gVA – sPA) mapping
in ATLB by the Page Table Walker. High hit ratio would ensure that
maintenance of ATLB and 𝐼𝑁𝑉𝑇𝐵𝐿 is not very costly. Intuitively,
given the large size ofATLB translation requests should rarely incur
misses after the initial application startup time. Our experiments
confirm this intuition. As shown in figure 11, we observe that hit
ratio is high, 93.1% on average. Several of the workloads show >
99% hit ratio. The low hit ratio for blackscholes was seen to be from
cold start misses.

Performance in systems with only DRAM: Although, ATTC
is motivated by prohibitively high shootdown overheads in hybrid
memory systems, it also provides performance gains in systems
with only one level of main memory i.e DRAM (no NVM). Figure 12
plotsATTC improvements for systemwith only DRAM. For this con-
figuration, programs only incur guest-side shootdown overheads,
due to page remaps by the guest OS. ATTC is able to effectively
reduce this cost and improve performance by 5% on average.

Performance in Native Systems: While ATTC is primarily
motivated by the overheads of shootdowns in virtualized systems,

0

20

40

60

80

100

120

%
 H

its

ATLB Hit ratio

Figure 11: ATLB Hit ratio

0

0.2

0.4

0.6

0.8

1

1.2

1.4

No
rm

al
ize

d
IP

C
(w

rt
ba

se
lin

e)

ATTC DRAM Only

Figure 12: ATTC performance in systems with DRAM only
(no NVM)

it is equally applicable to native environments. In native environ-
ments, theATLB stores𝑉𝐴−𝑃𝐴 translations. It should be noted that
for native environments, there is no need of a separate 𝐼𝑁𝑉𝑇𝐵𝐿
and coherence may be enforced by simply using the ATLB. Figure
13 shows the performance of ATTC in native systems. We com-
pare ATTCwith three configurations: POMTLB, HATRIC/UNITD
and Ideal. ATTC improves performance by 12.8% on average, over
the baseline and performs similar to contemporary schemes - HA-
TRIC/UNITD.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

No
rm

al
ize

d
IP

C
(w

rt
ba

se
lin

e)

POMTLB HATRIC/UNITD ATTC Ideal

Figure 13: ATTC Performance improvement - Native
Sensitivity to varying proportion of guest side shootdowns:

ATTC and HATRIC both support virtualization, however, funda-
mentally they differ in their support for simultaneous guest and
host updates.We perform a sensitivity study varying the percentage
of total guest side migration-induced shootdowns below. Figure 14
compares ATTC with HATRIC for three different fractions (0%, 25%
and 50%) of page table changes initiated by the guest. As expected,
HATRIC and ATTC behave comparably where there are no or very
few guest-initiated page table changes. However, when the guest
OS initiates non-trivial fractions of page table changes (such as

9

0

0.5

1

1.5

2

2.5

0
25

%
50

% 0
25

%
50

% 0
25

%
50

% 0
25

%
50

% 0
25

%
50

% 0
25

%
50

% 0
25

%
50

% 0
25

%
50

% 0
25

%
50

% 0
25

%
50

% 0
25

%
50

% 0
25

%
50

%

Dedup Facesim Vips Blk.sch. Bodytrack UA Freqmine FT Ferret Fld.anm. Wordcount Average

No
rm

ali
ze

d I
PC

 (w
rt

ba
se

lin
e)

HATRIC ATTC

Figure 14:When fraction of guest-initiated page table changes are small, HATRIC and ATTC have similar performance. ATTC improvements
are more pronounced with increased guest updates.

for benchmarks wordcount or dedup),ATTC outperforms HATRIC
due to its ability to address both guest and host initiated changes
uniformly via the ATLB.

5 OTHER CONSIDERATIONS
Consistency, Memory Ordering: ATTC does not rely on any spe-
cific memory ordering mechanism and can be overlayed on top
of existing software models with minimal changes. For e.g., in the
baseline KVM system, all hypervisor updates to page tables are se-
rialized under a single kvm-mmu-lock. ATTC uses the same locking
mechanism to enforce ordering, but instead of sending IPIs, ATLB
writes are issued. ATTC only needs to ensure that writes to the
ATLB initiated by the hypervisor are architecturally committed
before releasing the lock. If a system does not guarantee this, writes
to ATLB can be followed by a suitable fence instruction. Moreover,
across VMs, simultaneous writes to the same set of the ATLBmight,
at worst, result in issuing multiple invalidation requests. Given that
shootdowns are infrequent, this scenario is extremely unlikely.

Coherence when Dirty/Access bits are Updated: This is han-
dled similar to guest translation changes. If properties of a guest
page are modified (such as changes to dirty/permissions bits), the
guest OS should perform a write to the corresponding ATLB loca-
tion whenever it updates the guest page table.

Handling Updates to Intermediate Levels of Page Tables:
Similar to HATRIC and UNITD which require that intermediate
level updates are reflected as writes to the last level PTEs, ATTC
requires that the OS (or hypervisor) “reflect” intermediate level up-
dates by writing to corresponding ATLB entries of all guest pages
whose translations are modified. The cost of this update is similar
to prior schemes.

Support for TLB Flush Operations: In some cases such as
when a process is terminated, Linux issues a TLB flush in order to
efficiently invalidate all TLB entries. While this can be efficiently
implemented for small TLBs, it poses a challenge for the large
ATLB (time duration for executing the primitive, as well as issue
of invalidating useful entries belonging to other VMs). We identify
three possible solutions that we outline below: (i) using background
DMA4 operations, the OS could wipe out the ATLB contents (ii) the
hardware page-table walker could be enhanced to perform read-
modify-writes to shoot-down VM-specific entries from the ATLB
4Direct Memory Access

(iii) the ATLB entries could be enhanced to keep a “time-stamp” that
could be used to lazily invalidate entries.

Synonyms:Multiple𝑔𝑉𝐴s can map to the same 𝑠𝑃𝐴 (e.g., shared
libraries). If the 𝑠𝑃𝐴 changes, then all the affected 𝑔𝑉𝐴s should be
invalidated. This is supported in ATTC by using a set associative
organization of the 𝐼𝑁𝑉𝑇𝐵𝐿. The maximum synonym count is lim-
ited to the associativity of the 𝐼𝑁𝑉𝑇𝐵𝐿 organization (4 in our case).
By increasing the associativity, a higher number of synonyms can
be supported. At run-time, if synonyms exceed this limit, inserting
a new entry to 𝐼𝑁𝑉𝑇𝐵𝐿 is similar to inserting a new cache block
to a set and will result in evicting an older entry (and this eviction
would trigger coherence by writing to the corresponding ATLB
entry following the pointers). For some pages (such as the zero
page), the synonym count can be very high and it can be expensive
to maintain inverse mappings for such pages. In such cases, the
hypervisor may decide to track only those pages in the 𝐼𝑁𝑉𝑇𝐵𝐿
that are anticipated to be migrated. Pages that are expected to be ac-
cessed frequently may be allocated on DRAM to begin with thereby
not requiring any migration.

Support for Large Pages: While the discussion so far focused
on small (4KB) pages, the scheme can be extended to support large
pages. ATLB supports large pages by using a second addressable
cache. Thus, ATTC can be extended to issue coherence messages
triggered by writes to both the small and large page ATLB caches.
The 𝐼𝑁𝑉𝑇𝐵𝐿 will require an extra bit per entry indicating whether
the ATLB pointer is to the small pages cache or the large one.

Security: In general, the security considerations for ATTC need
to be studied in the context of virtualization and address translation
hardware support (L1, L2 TLBs, MMU caches etc). Recent works
such as [20] have proposed various forms of isolation between
guests, the hypervisor and the hardware. Here, we discuss how
we ensure security of the ATLB and the 𝐼𝑁𝑉𝑇𝐵𝐿. Since the ATLB
is a shared structure, an untrusted VM could access and modify
contents that belong to other VMs, breaching confidentiality and
integrity.

Table 4 summarizes the access permissions granted to guest
processes, guest OSes and the hypervisor for accessing ATLB and
𝐼𝑁𝑉𝑇𝐵𝐿. ATTC enforces security by disallowing all reads and
writes from guest OS to the ATLB and the 𝐼𝑁𝑉𝑇𝐵𝐿. Guest OS-
initiated writes to the ATLB are intercepted by hardware (based

10

ATLB
Reads

ATLB
Write

𝐼𝑁𝑉𝑇𝐵𝐿

Reads
𝐼𝑁𝑉𝑇𝐵𝐿

Writes
Guest Processes No No No No
Guest OSes No Filtered by

VM_ID in
HW

No No

Hypervisor No No Allowed Allowed

Table 4: Access Permissions

on simple address range checks) and appropriate updates are per-
formed by the Page Table Walker. Thus, software writes to ATLB
serve only to trigger ATTC hardware actions and not to actually
directly modify memory contents. ATTC ensures isolation between
guests and isolation of hypervisor from guests: even though the
ATLB is shared, different guests are confined to updating just their
own entries (enforced by hardware using VM_ID). Further, no guest
can access the hypervisor-controlled 𝐼𝑁𝑉𝑇𝐵𝐿. The host physical
address range allocated to the 𝐼𝑁𝑉𝑇𝐵𝐿 is not mapped to any guest.

The guest VM can write to the ATLB in order to trigger invalida-
tions. These writes are filtered by 𝑉𝑀_𝐼𝐷 in hardware in order to
ensure that an untrusted VM can not write to other entries. This
protection mechanism (filtering by a context ID and preventing
writes to select bit-fields) is commonly implemented in pin-muxing
and other memory-mapped IO device accesses (see, for e.g., [5]
which documents access types such as RAZ – Read-as-zero and WI
– Write Ignore). The hypervisor is assumed to be trusted and hence
the hypervisor has read and write privileges to 𝐼𝑁𝑉𝑇𝐵𝐿.

Cache side-channel attacks based on knowing the ATLB or the
𝐼𝑁𝑉𝑇𝐵𝐿 address range could be thwarted by encryption-based
(such as [36, 43]) or random mapping techniques (such as [24]).

6 RELATEDWORK
Virtualization and reducing virtual memory overheads in virtual-
ized environments have been the subject of significant research
activity [3, 6, 8, 9, 11, 14, 16, 17, 26, 30–35, 45]. In order to improve
the translation coherence process, various techniques have been
proposed in both software and hardware. SITE [6] proposes to miti-
gate the overhead of TLB shootdowns by letting TLB entries expire
and invalidate themselves. Oskin et al. [28] propose a scheme for
hardware-assisted TLB shootdown. They introduce a special form
of IPI, called the REMOTE_INVLPG, and an associated microcode
change. The CPU handles a TLB shootdown process entirely in
microcode. This approach eliminates OS interaction on the victim
cores, but still incurs initiator overheads. Amit et al. [4] introduce
Access Based Invalidation System (ABIS). Using access bits in the
PTE, ABIS determines if the entry is cached in a TLB in the CMP.
This information is used to avoid sending IPIs to cores that do not
hold this translation. ABIS requires extensive hardware support
for direct TLB insertion and complex software infrastructure like a
secondary page-hierarchy.

Kumar et al. [22] propose a software-based TLB shootdown
mechanism called Lazy-Translation Coherence that can alleviate
the overhead of the TLB shootdown mechanism by handling TLB
coherence in a lazy manner for page-table update operations that
do not enforce synchronous updates.

Ouyang et al. [29] propose a paravirtual TLB shootdown scheme
named Shoot4U, which eliminates TLB shootdown preemptions in

virtualized environments. It does so by intercepting remote vCPU
TLB flush operations and performing the invalidations directly in
the VMM instead of handling them in the guest environment.

Villavieja et al. [42] proposed DIDI that couples shared TLB direc-
tory with load/store queue support for lightweight TLB invalidation
to eliminate unnecessary IPIs.

Although, all the above mentioned schemes try to eliminate
TLB shootdown penalty to some degree, they still leave TLB shoot-
downs in virtualized environments a high-overhead affair. While
some schemes do not address virtualized environments, some elim-
inate only portion of TLB shootdown overhead and others are very
imprecise or add a significant area and power penalty.

7 CONCLUSION
Translation coherence operations are generally expensive. In partic-
ular, when pages are migrated in a heterogenous memory system,
TLB shootdowns constitute a significant performance penalty. To
solve this problem, we present ATTC, a hardware-based translation
coherence scheme leveraging an addressable TLB, which provides a
system-wide point of coherence. Using a novel inverse table mech-
anism, 𝐼𝑁𝑉𝑇𝐵𝐿, ATTC enables hardware-based TLB coherence
for both guest- and host-initiated page table changes. ATTC elim-
inates almost all of the busy wait overheads (upto 99%) seen in
conventional systems. ATTC achieves a performance improvement
of 35.7% on average over virtualized systems that employ an aggres-
sive kvmtlb baseline without any TLB area penalty. Compared to the
state-of-the-art hardware coherence scheme HATRIC, ATTC yields
7.4% improvement on average. ATTC will be beneficial for native
and homogeneous memory systems as well, but the benefits will
be most pronounced for virtualized systems and for heterogeneous
memory systems.

8 ACKNOWLEDGEMENTS
The researchers are supported in part by National Science Foun-
dation grants 1745813, 1725743 and 1763848. The authors would
also like to thank Texas Advanced Computing Center (TACC) at
UT Austin for providing compute resources. Any opinions, find-
ings, conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of
NSF, or any other sponsors. We are grateful for the feedback from
Abhishek Bhattacharjee, Jayneel Gandhi, Karthik Ganesan and Jim
Mattson.

REFERENCES
[1] Bhattacharjee Abhishek. [n.d.]. Personal Communication.
[2] H. Akinaga and H. Shima. 2010. Resistive Random Access Memory (ReRAM)

Based on Metal Oxides. Proc. IEEE 98, 12 (Dec 2010), 2237–2251. https://doi.org/
10.1109/JPROC.2010.2070830

[3] Hanna Alam, Tianhao Zhang, Mattan Erez, and Yoav Etsion. 2018. Do-It-Yourself
Virtual Memory Translation. Operating Systems Review 52, 1 (2018), 1–12. https:
//doi.org/10.1145/3273982.3273984

[4] Nadav Amit. 2017. Optimizing the TLB Shootdown Algorithm with Page Access
Tracking. In 2017 USENIX Annual Technical Conference (USENIX ATC 17). USENIX
Association, Santa Clara, CA, 27–39. https://www.usenix.org/conference/atc17/
technical-sessions/presentation/amit

[5] ARM. 2015. ARM Glossary. (2015).
[6] Amro Awad, Arkaprava Basu, Sergey Blagodurov, Yan Solihin, and Gabriel Loh.

2017. Avoiding TLB Shootdowns Through Self-Invalidating TLB Entries. In 26th
International Conference on Parallel Architectures and Compilation Techniques
(PACT). IEEE. https://doi.org/10.1109/PACT.2017.38

11

https://doi.org/10.1109/JPROC.2010.2070830
https://doi.org/10.1109/JPROC.2010.2070830
https://doi.org/10.1145/3273982.3273984
https://doi.org/10.1145/3273982.3273984
https://www.usenix.org/conference/atc17/technical-sessions/presentation/amit
https://www.usenix.org/conference/atc17/technical-sessions/presentation/amit
https://doi.org/10.1109/PACT.2017.38

[7] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V.
Venkatakrishnan, and S. K. Weeratunga. 1991. The NAS Parallel Benchmarks:
Summary and Preliminary Results. In Proceedings of the 1991 ACM/IEEE Confer-
ence on Supercomputing (Supercomputing ’91). ACM, New York, NY, USA, 158–165.
https://doi.org/10.1145/125826.125925

[8] Thomas W. Barr, Alan L. Cox, and Scott Rixner. 2011. SpecTLB: A Mechanism for
Speculative Address Translation. In Proceedings of the 38th Annual International
Symposium on Computer Architecture (ISCA ’11). ACM, New York, NY, USA,
307–318. https://doi.org/10.1145/2000064.2000101

[9] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D Hill, and Michael M
Swift. 2013. Efficient virtual memory for big memory servers. In ACM SIGARCH
Computer Architecture News, Vol. 41. ACM, 237–248.

[10] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Pro-
ceedings of the Annual Conference on USENIX Annual Technical Conference (ATEC
’05). USENIX Association, Berkeley, CA, USA, 41–41. http://dl.acm.org/citation.
cfm?id=1247360.1247401

[11] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha Manne. 2008.
Accelerating Two-dimensional PageWalks for Virtualized Systems. In Proceedings
of the 13th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS XIII). ACM, New York, NY, USA,
26–35. https://doi.org/10.1145/1346281.1346286

[12] Abhishek Bhattacharjee, Daniel Lustig, and Margaret Martonosi. 2011. Shared
last-level TLBs for chip multiprocessors.. In HPCA. IEEE Computer Society, 62–63.
http://dblp.uni-trier.de/db/conf/hpca/hpca2011.html#BhattacharjeeLM11

[13] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC Benchmark Suite: Characterization and Architectural Implications. In
Proceedings of the 17th International Conference on Parallel Architectures and
Compilation Techniques (PACT ’08). ACM, New York, NY, USA, 72–81. https:
//doi.org/10.1145/1454115.1454128

[14] Xiaotao Chang, Hubertus Franke, Yi Ge, Tao Liu, Kun Wang, Jimi Xenidis, Fei
Chen, and Yu Zhang. 2013. Improving virtualization in the presence of software
managed translation lookaside buffers. In ACM SIGARCH Computer Architecture
News, Vol. 41. ACM, 120–129.

[15] P. Chi, S. Li, S. H. Kang, and Y. Xie. 2016. Architecture design with STT-RAM: Op-
portunities and challenges. In 2016 21st Asia and South Pacific Design Automation
Conference (ASP-DAC). 109–114. https://doi.org/10.1109/ASPDAC.2016.7427997

[16] Guilherme Cox and Abhishek Bhattacharjee. 2017. Efficient address translation
for architectures with multiple page sizes. In Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming Languages and
Operating Systems. ACM, 435–448.

[17] Jayneel Gandhi, Mark D Hill, and Michael M Swift. 2016. Agile paging: exceeding
the best of nested and shadow paging. In ACM SIGARCH Computer Architecture
News, Vol. 44. IEEE Press, 707–718.

[18] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. 2018. Translation
Leak-aside Buffer: Defeating Cache Side-channel Protections with TLB Attacks.
In USENIX Security Symposium. USENIX Association, 955–972.

[19] F. T. Hady, A. Foong, B. Veal, and D.Williams. 2017. Platform Storage Performance
With 3D XPoint Technology. Proc. IEEE 105, 9 (Sep. 2017), 1822–1833. https:
//doi.org/10.1109/JPROC.2017.2731776

[20] David Kaplan. 2019. Upcoming x86 Technologies for Malicious Hypervisor
Protection, SEV-SNP Slide deck, AMD. (2019). https://static.sched.com/hosted_
files/lsseu2019/65/SEV-SNP%20Slides%20Nov%201%202019.pdf

[21] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori. 2007. kvm:
the Linux virtual machine monitor. In Proceedings of the Linux symposium, Vol. 1.
225–230.

[22] Mohan Kumar Kumar, Steffen Maass, Sanidhya Kashyap, Ján Veselỳ, Zi Yan,
Taesoo Kim, Abhishek Bhattacharjee, and Tushar Krishna. 2018. Latr: Lazy Trans-
lation Coherence. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems. ACM,
651–664.

[23] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting
Phase Change Memory As a Scalable Dram Alternative. In Proceedings of the 36th
Annual International Symposium on Computer Architecture (ISCA ’09). ACM, New
York, NY, USA, 2–13. https://doi.org/10.1145/1555754.1555758

[24] Fangfei Liu and Ruby B. Lee. 2014. Random Fill Cache Architecture. In 47th
Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 2014,
Cambridge, United Kingdom, December 13-17, 2014. 203–215. https://doi.org/10.
1109/MICRO.2014.28

[25] Daniel Lustig, Abhishek Bhattacharjee, and Margaret Martonosi. 2013. TLB
Improvements for Chip Multiprocessors: Inter-Core Cooperative Prefetchers and
Shared Last-Level TLBs. ACM Trans. Archit. Code Optim. 10, 1, Article 2 (April
2013), 38 pages. https://doi.org/10.1145/2445572.2445574

[26] Zoltán Ádám Mann. 2015. Allocation of Virtual Machines in Cloud Data Cen-
ters&Mdash;A Survey of Problem Models and Optimization Algorithms. ACM
Comput. Surv. 48, 1, Article 11 (Aug. 2015), 34 pages. https://doi.org/10.1145/
2797211

[27] Yashwant Marathe, Nagendra Gulur, Jee Ho Ryoo, Shuang Song, and Lizy K John.
2017. CSALT: context switch aware large TLB. In Proceedings of the 50th Annual
IEEE/ACM International Symposium on Microarchitecture. ACM, 449–462.

[28] Mark Oskin and Gabriel H Loh. 2015. A software-managed approach to die-
stacked DRAM. In Parallel Architecture and Compilation hatricPACT), 2015 Inter-
national Conference on. IEEE, 188–200.

[29] Jiannan Ouyang, John R Lange, and Haoqiang Zheng. 2016. Shoot4U: Using
VMM assists to optimize TLB operations on preempted vCPUs. ACM SIGPLAN
Notices 51, 7 (2016), 17–23.

[30] Misel-Myrto Papadopoulou, Xin Tong, André Seznec, and Andreas Moshovos.
2015. Prediction-based superpage-friendly TLB designs. In High Performance
Computer Architecture (HPCA), 2015 IEEE 21st International Symposium on. IEEE,
210–222.

[31] Chang Hyun Park, Taekyung Heo, Jungi Jeong, and Jaehyuk Huh. 2017. Hybrid
tlb coalescing: Improving tlb translation coverage under diverse fragmented
memory allocations. In Proceedings of the 44th Annual International Symposium
on Computer Architecture. ACM, 444–456.

[32] Binh Pham, Abhishek Bhattacharjee, Yasuko Eckert, and Gabriel H Loh. 2014.
Increasing TLB reach by exploiting clustering in page translations. In High Per-
formance Computer Architecture (HPCA), 2014 IEEE 20th International Symposium
on. IEEE, 558–567.

[33] B. Pham, D. Hower, A. Bhattacharjee, and T. Cain. 2018. TLB Shootdown Mitiga-
tion for Low-Power Many-Core Servers with L1 Virtual Caches. IEEE Computer
Architecture Letters 17, 1 (Jan 2018), 17–20. https://doi.org/10.1109/LCA.2017.
2712140

[34] Binh Pham, Viswanathan Vaidyanathan, Aamer Jaleel, and Abhishek Bhattachar-
jee. 2012. Colt: Coalesced large-reach tlbs. In Proceedings of the 2012 45th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society,
258–269.

[35] Binh Pham, Ján Veselỳ, Gabriel H Loh, and Abhishek Bhattacharjee. 2015. Large
pages and lightweight memory management in virtualized environments: Can
you have it both ways?. In Proceedings of the 48th International Symposium on
Microarchitecture. ACM, 1–12.

[36] Moinuddin K. Qureshi. 2019. New attacks and defense for encrypted-address
cache. In Proceedings of the 46th International Symposium on Computer Ar-
chitecture, ISCA 2019, Phoenix, AZ, USA, June 22-26, 2019. 360–371. https:
//doi.org/10.1145/3307650.3322246

[37] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. 2009.
Scalable High Performance Main Memory System Using Phase-change Mem-
ory Technology. In Proceedings of the 36th Annual International Symposium on
Computer Architecture (ISCA ’09). ACM, New York, NY, USA, 24–33. https:
//doi.org/10.1145/1555754.1555760

[38] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. 2011. Page Placement
in Hybrid Memory Systems. In Proceedings of the International Conference on
Supercomputing (ICS ’11). ACM, New York, NY, USA, 85–95. https://doi.org/10.
1145/1995896.1995911

[39] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. 2007.
Evaluating MapReduce for Multi-core and Multiprocessor Systems. In 2007 IEEE
13th International Symposium on High Performance Computer Architecture. 13–24.
https://doi.org/10.1109/HPCA.2007.346181

[40] Bogdan F Romanescu, Alvin R Lebeck, Daniel J Sorin, and Anne Bracy. 2010.
UNified instruction/translation/data (UNITD) coherence: One protocol to rule
them all. In High Performance Computer Architecture (HPCA), 2010 IEEE 16th
International Symposium on. IEEE, 1–12.

[41] Jee Ho Ryoo, Nagendra Gulur, Shuang Song, and Lizy K John. 2017. Rethinking
TLB designs in virtualized environments: A very large part-of-memory TLB. In
Proceedings of the 44th Annual International Symposium on Computer Architecture.
ACM, 469–480.

[42] Carlos Villavieja, Vasileios Karakostas, Lluis Vilanova, Yoav Etsion, Alex Ramirez,
Avi Mendelson, Nacho Navarro, Adrian Cristal, and Osman S Unsal. 2011. Didi:
Mitigating the performance impact of tlb shootdowns using a shared tlb directory.
In Parallel Architectures and Compilation Techniques (PACT), 2011 International
Conference on. IEEE, 340–349.

[43] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel
Gruss, and Stefan Mangard. 2019. ScatterCache: Thwarting Cache Attacks via
Cache Set Randomization. In 28th USENIX Security Symposium (USENIX Security
19). USENIX Association, Santa Clara, CA, 675–692. https://www.usenix.org/
conference/usenixsecurity19/presentation/werner

[44] Zi Yan, Ján Veselỳ, Guilherme Cox, and Abhishek Bhattacharjee. 2017. Hardware
translation coherence for virtualized systems. In Proceedings of the 44th Annual
International Symposium on Computer Architecture. ACM, 430–443.

[45] Chien-Hua Yen. 2007. SOLARIS OPERATING SYSTEM HARDWARE VIRTUAL-
IZATION PRODUCT ARCHITECTURE. (2007).

12

https://doi.org/10.1145/125826.125925
https://doi.org/10.1145/2000064.2000101
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dl.acm.org/citation.cfm?id=1247360.1247401
https://doi.org/10.1145/1346281.1346286
http://dblp.uni-trier.de/db/conf/hpca/hpca2011.html#BhattacharjeeLM11
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1109/ASPDAC.2016.7427997
https://doi.org/10.1109/JPROC.2017.2731776
https://doi.org/10.1109/JPROC.2017.2731776
https://static.sched.com/hosted_files/lsseu2019/65/SEV-SNP%20Slides%20Nov%201%202019.pdf
https://static.sched.com/hosted_files/lsseu2019/65/SEV-SNP%20Slides%20Nov%201%202019.pdf
https://doi.org/10.1145/1555754.1555758
https://doi.org/10.1109/MICRO.2014.28
https://doi.org/10.1109/MICRO.2014.28
https://doi.org/10.1145/2445572.2445574
https://doi.org/10.1145/2797211
https://doi.org/10.1145/2797211
https://doi.org/10.1109/LCA.2017.2712140
https://doi.org/10.1109/LCA.2017.2712140
https://doi.org/10.1145/3307650.3322246
https://doi.org/10.1145/3307650.3322246
https://doi.org/10.1145/1555754.1555760
https://doi.org/10.1145/1555754.1555760
https://doi.org/10.1145/1995896.1995911
https://doi.org/10.1145/1995896.1995911
https://doi.org/10.1109/HPCA.2007.346181
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://www.usenix.org/conference/usenixsecurity19/presentation/werner

	Abstract
	1 Introduction
	2 ATTC (@C) Design
	2.1 Overview
	2.2 Support for ATTC in Private TLBs
	2.3 The Inverse Mapping Table – INVTBL
	2.4 Handling Guest and Host Updates
	2.5 OS Support
	2.6 Hardware Overhead

	3 Evaluation
	3.1 Simulation Methodology
	3.2 Calibrating TLB Shootdown Parameters based on Intel System
	3.3 Simulation Details
	3.4 Memory Migration Policy
	3.5 Workloads

	4 Results
	5 Other Considerations
	6 Related Work
	7 Conclusion
	8 Acknowledgements
	References

 HistoryItem_V1
 AddMaskingTape

 Range: From page 2 to page 20
 Mask co-ordinates: Horizontal, vertical offset 294.92, 52.50 Width 30.63 Height 27.13 points
 Origin: bottom left

 1
 0
 BL

 2
 SubDoc
 20

 CurrentAVDoc

 294.9234 52.5037 30.63 27.1295

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 11
 12
 11
 11

 1

 HistoryList_V1
 qi2base

