Workload Char acterization of Java Server Applications on Two Power PC
Pr ocessor slJ

Pattabi Seshadri and Lizy K. John
Dept of Electrical and Computer Engr
The University of Texas at Austin
{seshadri,ljohn} @ece.utexas.edu

Abstract

Java has become fairly popular on commercial
serversin recent years. However, the behavior of Java
server applications has not been studied extensively.
We characterize two Java server benchmarks,
SPECjbb2000 and VolanoMark 2.1.2, on two IBM
PowerPC architectures, the RS64-1l1 and the
POWERS3-1I, and compare them to more traditional
workloads as represented by selected benchmarks from
SPECint2000. We find that our Java server
benchmarks have generally the same characteristicson
both platforms: in particular, high instruction cache,
ITLB, and BTAC (Branch Target Address Cache) miss
rates. These benchmarks also exhibit high L2 miss
rates due mostly to data loads. Instruction cache and
L2 misses are seen to be the primary contributors to
CPI.

1. Introduction

Java, originally used extensively for web client
software, is an emerging paradigm for server
applications becuse of its portability and enhanced
seaurity features. However, while Java server
applications are @ming into wide use, their behavior is
not yet well understood. Java client appli cations have
been studied [17,9,15], but Java server applications
differ significantly from client workloads, particularly
in their nead to maintain many concurrent client
connedions. Sincein the airrrent version of Java, 1/0
multi plexing, polli ng, and signals are not avail able, the
only method available to Java programmers to
maintain a large number of client connedions is
threads. One or more separate threads are aeated to

Alex Mericas
IBM Corporation
mericas@us.ibm.com

handle ech client connection [12]. Therefore
performance in the presence of a large number of
concurrent threads is vital to a Java server appli cation.
This distinct characteristic of Java server appli cations
could lead to differences with Java client workloads in
terms of branch behavior, cache behavior, and other
metrics that contribute to owerall performance

The aim of this qudy is to characterize the impact
of multithreaded Java server applications on modern
procesor microarchitedures. To thisend, we compare
multithreaded Java server benchmarks with seleded
benchmarks from SFECint200Q a suite of more
“traditional” workloads. We run these benchmarks on
two IBM PowerPC microarchitedures, the RS64-III
and the POWER3-II.

2. Related Work

Commercial workloads have been increasing in
importance and efforts have been made to understand
their behavior [2,11,8,7,16,1]. Most of these studies
have been focused on applications written in C or C++,
in particular OLTP, DSS and web server appli cations.

Java has also been a popular subjed of research.
The majority of Java studies use SHECjvm98
[17,9,15], which is a client benchmark suite.
SFECjvm98 has been observed to have as much as
31% kernel activity due for the most part to a TLB
serviceroutine, which indicates a high TLB missrate.
SFECjvm running on an interpreter has also been
observed to have poor ILP and insensitivity to wider
issue width [9]. However, it has better instruction
cache performancethan some C/C++ applications[15].

Commercia Java servers are eamerging workloads
and thus research has just begun on their behavior.
Most of the research in this area has been on the dfed

0 O 20011EEE Reprinted with permisgon from “W orkload Characterization of Multit hreaded Java Servers on
Two PowerPC Processors’ by Pattabi Seshadri and Alex Mericas, Proceedings of the Fourth Annual Workshop on
Workload Characterization, Austin, Texas, Decenber 2001, pp. 36-44.

of multithreading. Cain and Rajwar [6] studied branch
prediction and cache behavior in SFECjbb2000 and
TPC-W with the full-system simulation of a coarse-
grained multithreaded processor. They found
destructive interference between threads that degraded
performance Luo and John [10] studied the impact of
multit hreading in Java server benchmarks on a Pentium
Pro machine. They did see mnstructive interferencein
the ingtruction stream and branch prediction behavior,
but these benefits were eventually overcome by
increasing resource stals as the number of threads
grew large.

This paper focuses on the differences between Java
server applications and more “traditional” workloads
(represented by SFECint2000. We use two popular
IBM PowerPC platforms that represent the state of the
art in microprocesor design. Several performance
metrics, such as cache behavior, branch behavior,
dispatch behavior, CPl components, etc., are studied.

3. Methodology

This sdion describes the hardware platforms and
benchmarks used in this gudy as well as the methods
used to colled performance monitor data.

3.1. Platforms

We use two IBM PowerPC microarchitedures for
our study: the RS64-111 and the POWERS3-II. Both are
current microprocessor architedures, but they differ in
many significant ways.

The RS64-111 [4,5] isa 64-bit, superscalar, in order,
speallative eeaution machine and is targeted
spedfically for commercial applications. It has one
single o/cle integer unit, one multiple oscle integer
unit, one four stage pipelined floating point unit, one
branch unit, and one load/store unit. The RS64-11 can
fetch, dispatch, and retire up to four instructions per
cycle and has a five stage pipdline. It does not predict
branches dynamically like the POWERS3-II, but rather
prefetches up to eight instructions from the branch
target into a branch target buffer during normal
exeadution, predicts the branch not taken, continues to
fetch from the instruction stream and then, once the
branch is resolved in the dispatich stage, either
continues fetching from the airrent instruction stream
with no penalty or flushes the ingtructions after the
branch and begins fetching from the branch target
buffer, with a penalty of at most one and often zero
cycles. The RS64-1ll has a 128B, two way set

asociative L1 ingtruction cache, a 128K B, two way set
assciative data cache, and a 4MB, four way set
associative unified L2 cache. It dso has a 512 entry
four way set associative unified TLB and a 64 entry
instruction effedive to real addresstrandation buffer
(IERAT) that alows fast address translation without
the use of the TLB. The procesor clock is 500Mhz.

The POWERS3-1I [13,14] is a 64-bit, superscalar, out
of order, speaulative exeaution machine. It has two
single o/cle integer units, one multiple o/cle integer
unit, one branch/condition register unit, two load/store
units, and two three stage pipelined floating point
units. It can fetch, dispatch, and retire up to four
ingtructions in the same gycle. It has a 256 entry
branch target addresscache (BTAC), which workslike
a branch target buffer, and a 2048 entry, 2 bits per
entry branch history table for dynamic branch
prediction. The POWER3-1l has a 64KB, 128 way set
asociative, four way interleaved L1 instruction cache,
a 64KB, 128 way set associative, four way interleaved
L1 data cache, and a 8MB, four way set associative
unified off-chip L2 cache. It also has a 256 entry two
way set associative instruction TLB and two 256 entry
two way set asociative data TLBs. The POWERS3-1I
is designed with separate buses to memory and L2 for
greater memory bandwidth. The POWERS3-Il also
employs a data prefetching mecdhanism that deteds
sequential data access patterns and prefetches cache
lines to match these patterns. The processor clock is
450MHz.

Both of these processors are deployed in IBM p-
series ystems. The RS64-111 system we use in the
experiment is the M80 and the POWER3-1I system we
use is the 44p-170 bath of which are onfigured as
uniprocesor systems. Both systems have 2 GB of
main memory and run AIX 4.3.3 and the IBM JDK
version 1.18.

3.2. Benchmarks

In this gudy, we characterizeVolanoMark 2.1.2 and
SFECjbb200Q bath of which are Java server
benchmarks.

VolanoMark 2.1.2 [20] is a Java server benchmark
that simulates a chat server environment, asill ustrated
in Figwe 1. The VolanoMark server accets
connections from the dat client, which simulates a
spedfiable number of chat users by creating a number
of chat rooms. Each chat room contains a number of
usersthat continuously send messagesto the server and
wait for the server to send the messages to ather users

in the room. The VolanoChat server creates two
threads for each client connedion.

RO

|US€f||US€f||US€f|

|US€(||US€(||US€(|

client

Figure 1. VolanoM ark

SFECjbb2000 [19] is another Java server
benchmark. As illustrated in Figure 2, it emulates a
threetier client/server system with emphasis on the
middl e tier, the businesslogic engine. The other tiers
are anulated, and thus user emulation and a database
arenot required. SFECjbbis patterned after TPC-Cin

client
threads

Business logic engine
(primary focus of
measurement)

object
trees

Figure 2. SPECjbb2000

that it models a wholesale mmpany with warehouses
that serve a number of districts. The transactions
generated in this g/stem include new orders and order
status requests (bath customer-generated transactions),
as wel as processng orders, entering customer
payments, and chedking stock levels (company-
generated transactions). Each warehouse, which is
represented by 25MB of data stored in binary trees, is
asdgned one active austomer. One thread is created
for each warehouse. SFECjbb is a memory resident
benchmark.

In additi on to these two Java server benchmarks, we
run five SFECint2000 benchmarks [18] on the two
platforms. This alows us to compare the

multithreaded Java server applications to more
traditional workloads. We use 255vortex, 300.twolf,
176.9gcc, 252eon, and 186crafty, which cover a wide
range of application sizes and also contain the only
SFECint2000benchmark written in C++.

3.3. Measurements

We use the hardware performance monitors built
into each microprocesor to make performance
measurements. Each performance monitor has eight
counters that can be programmed to count a variety of
processor events. The list of countable events differs
between the two machines, but many important events
can be ounted on bah. We interface with the
performance monitor using the IBM-suppied
performance monitor APl and pmcount (a utility that
alows the user to interface with the performance
monitor), bath of which are AIX kernd extensions.
Since we only want to colled performance monitor
counts for VolanoMark while dient connedions are
being made and not during server startup or shutdown,
we send signals to a wrapper that makes API calls to
start counting after server startup and stop counting
before server shutdown. Similarly, sincewe only want
to do performance monitoring on SFECjbb during the
two-minute “measurement period,” we instrument the
code for SFECjbb (modifying only Company.java) to
send signals to a wrapper that makes API call s to start
counting at the beginning of the measurement period
and stop counting at the end of the period. While
pmcount is smpler to use, requiring only a list of
events and the exeautable to count for as arguments, it
does not alow this kind of sdedive unting.
However, we do use pmcount for the SFECint
benchmarks, sincewe wunt for the entire workload in
those @ses.

For VolanoMark, we run the dient on a separate
machine. Each chat room has 20 wsers, while the
number of chat roomsis varied from 1 to 40, resulting
in a number of connedions ranging from 20 to 800.
Since VolanoMark creates two threads for every
connedion, this results in a number of connedion
threads ranging from 40 to 160Q For SFECjbb, we
vary the number of warehouses from 1 to 25. One
thread is created for each warehouse.

4. Reaults

Table 1 and Table 2 compare the Java server
benchmarks to the SFECint benchmarks on the RS64-

[l and POWERS-II, respedively. VolanoMark is run
with 1,10, and 30 chat rooms (indicated as vol01,
vol10, and vol30)), and SFECjbbis run with 1, 10, and
25 warehouses (indicated as jbbl, jbbl0, and jbh25).
The metrics colleded are similar to those wlleded by
Bhandarkar et. al. [3].

Table 1. Java serversvs. SPECint2000 (RS64-111)

bmark [oscyc% |CPI |dtarefs/instr |memtrans/1000instr

vol30 4708 179 0 569
_ |voi20 6447 217 037 831
S |voloL 8468 369 03 29
g [jbo2s 037 157 033 49
@ [jbb10 041] 149 0 384
S JjbboL 029 129 0 173
3 [occ 078] 109 039 041
Q |caty 015] 089 0 001
fg eon 015 1% 0& 00
M [twolf 014] 143 03 014
& |vortex 026) 107 041 051

As the tables indicate, VolanoMark spends a high
proportion of its exeaution cycles in kernel mode (os
cyc %). This phenomenon islikely due bath to the fact
that it spends a great deal of time sending and

Table 2. Java serversvs. SPECint2000 (POWER3-
)

berk socY% [OP [daarefs/instr [memtrang/1000instr

VoD 411 144 04 600
_ |vo10 5083 159 034 443
g [vaa 627 179 039 659
2 [jbs 033 127 033 53]
S jbb10 039 129 033 399
S [jooor 04d 117 04 174
§ g 094 084 044 030
« | ety 014 074 049 00g
-8 en 013 09 069 00g
W ftwolf 014 121 039 001
o) |vortex 024 07§ 04 049

receving messges over the network and to the fact
that the number of threads in VolanoMark is very
large, requiring the OS to spend a significant amount
of timein thread scheduling routines. The user codeis
concerned mainly with distributing messages, which is
a relatively smple tak. We @n aso see that
VolanoMark exhibits a higher CPI than the SFECint

benchmarks, which is understandable since OS codeis
known to have a higher CPI than user code [8]. Since

SFECjbb2000contains no network component, has far
fewer threads than VolanoMark, and is memory
resident and therefore does not generate many page
faults, it has a very small proportion of cycles gent in
kernd mode. The same is true for the SFECint
benchmarks.

Also, Table 1 and Table 2 show the data references
per instruction and the memory transactions per 1000
ingructions for the Java server and SFECint
workloads. On the average, the Java server workloads
generate less data references per ingtruction than the
SFECint workloads, with some of the SFECint
workloads far excealing them, but the Java server
workloads dgill generate cnsiderably more memory
transactions per instruction, by one to three orders of
magnitude. Thisis an interesting observation that will
be discussd later.

4.1. Dispatch Behavior

Both the RS64-11I and the POWER3-II can dispatch
up to four ingtructions per cycle (dispatch for the
RS64-111 meaning the g/cle in which the instruction is
sent diredly to the exeaution unit, and dspatch for the
POWERS3-1I meaning the g/clein which theinstruction
is ent to the exeaution unit reservation station). From
Figure 3 it seans that our machines have more
difficulty exploiting ILP in the Java server benchmarks
than in the SFECint benchmarks. For amost all of the
Java server benchmarks on the RS64-Il, zero
ingtructions are dispatched for over 50% of the
exeadtion cycles (the lone exception being gbbl).
Only one SFECint benchmark, twolf, has zero
instructions dispatched for over 50% of the exeaution
cycles. On the POWER3-II, the dispatch profile is
similar (we show only the percentage of cycles with
zero ingtructions dispatched because the other counts
were not available on this machine). All of the Java
server benchmarks on the POWERS3-Il have zero
instructions dispatched for more than 60% of the
exeaution cycles, while only twolf crosses this
threshold among the SFECint workloads. The profile
is amogt identical for the percentage of zero-
instructions-retired cycles on the POWER3-II, whichis
reasonable given that pipeline delays are being created
in the dispatch stage.

It should be noted that the dispatch stage in these
machinesis not the stage in which operands are read—
in the POWERS-II, it is the stage in which the
instructions are sent to the reservation stations, and in

wol30

wol10

woll

sjbb25

sjbb10

sjbb1 |

vortex

twolf

0% 20% 40% 60% 80% 100%

@O instr disp @1 instr disp O 2 instr disp 3 instr disp W4 instr disp

(a) Dispatch profile, RS64-111

vol30

vol10

voll

sibb25

sibb10

sibbl

vortex

twolf]

0% 20% 40% 60% 80% 100%

(b) Percentage of zero instructions
retired cycles, POWER3-I1

vol30
voll0
voll
sjbb25
sjbb10

sjbb1

vortex

twolf]

0% 20% 40% 60% 80% 100%

(c) Percentage of zero ingtructions
dispatched cycles, POWER3-I|

Figure 3. Dispatch behavior

the RS64-111 (which, being an in-order machine, hasno
reservation stations) it is the stage in which the

instructions are sent directly to the execution units. In
both machines, operands are read in later stages.
Therefore, delays in dispatch in these machines are not
necessarily due to dependencies between instructions
that limit exploited ILP. Nevertheless, dispatch in the
RS64-111 is staled if the operand read stage (which
directly follows the dispatch stage) is stalled due to
instruction dependencies. In the POWERS-II, dispatch
can be stalled if the execution unit reservation stations
fill, which can occur if dependencies between
instructions prevent instruction issue. Therefore
instruction dependencies do affect dispatch, and the
above dispatch numbers are, to a degree, reflective
(though more so in the RS64-111) of exploited ILP.
These numbers seem to indicate that the processors
cannot exploit as much ILP in the Java server
workloads as they can in the SPECint workloads,
which is, as mentioned above, an observed
characteristic of SPECjvm running on a Java
interpreter..

4.2. Cacheand TLB Performance

As mentioned earlier, the Java server workloads
generate significantly more memory transactions per
instruction than the SPECint workloads. And, as one
might expect from a higher number of memory
accesses per instruction, Figure 4a and Figure 4c show
that the Java server workloads exhibit poorer cache
performance than the SPECint workloads on both
machines, particularly in the instruction cache and L2
cache,

High instruction cache miss rates have also been
observed in server applications written in C or C++
[1,2]. Just-in-Time compiling (which our JDK uses)
might also contribute to higher instruction cache miss
rates for Java applications. With a JT, bytecode is
dynamically compiled into native code, and as a result,
code for consecutively called methods may not lie in
contiguous address spaces. Thus the instruction data
gpatial locality can be expected to be poor, causing
higher instruction cache miss rates. Also, not
surprisingly, theinstruction cache missratesare higher
on the POWERS-II for most of the workloads (sinceits
instruction cache is 64KB as opposed to 128KB for the
RS64- 111), but for vortex and crafty the instruction
cache miss rates are higher on the RS64-111. This
indicates that, for the Java server workloads and the
other SPECint benchmarks, sizeis moreimportant than
associativity for instruction cache performance, while
for vortex and crafty associativity (2 for the RS64-111
and 128 for the POWERS3-I1) is more important than

size for performance Figure 5 shows that the Java
server benchmarks cause more instruction TLB misses
than the SFECint benchmarks on the RS64-I1l, and a
similar pattern is observed for

voi30 [

vol10

voll
A ===—
Sibb10. |
sibb1 | E—
vortex 7&

twolf

gce h;l

oL2
ML1 instruction
[@Ll data

eon p

crafty mm,

0 5 10 15 20 25

(a) Cache misses per 1000instructions,

RS64-11
wizo [T
vol10 7 1]
voll | 1]
sibb2s [T
sibb10 [
sibbt [
vortex 7[|
twolf 7“
1 @12 Id miss
gec 7[' W2 st miss
eon Ol2instr miss
crafty
0 “‘—') 1‘0 1‘5 20
(b) L2 misscomporents per
1000instructions, RS64-111
VoI30 [
vol10 1 ;
voll f=—
Sibh2s |e—
Sibh10. j——
sjbbl 7\?
vortex 7:
twolf | oL =
gcc &I m L1 instruction
eon mLl data
crafty 7:
0 i‘: 1‘0 1‘5 2‘0 2‘5 30

(c) Cache missesper 1000instructions,
POWERS3-II

Figure 4. Cache behavior

vol30

vol10

voll

sjbb25 |
sibb10 |
sibbl | |
vortex 7:
twolf |

gcc @
eon
crafty [l

0.0 0.1 0.2 03 0.4 05
(a) ITLB misses per 1000ingtructions,
RS64-111

I I I
vol30] ‘

vol10 1

voll

sjbb25 |

Sibb10 |

sibb1 |

==
vortex i

twolf |

gce |

eon
crafty [T
0 1 2 3 4 5

(b) TLB misss per 1000
instructions, POWER3-I|

Figure5. TLB behavior

TLB misss on the POWERS3-II (ITLB misscount not
available on POWER3-1l). This TLB performance
data is further evidence that Java server benchmarks
have a large/scattered instruction foatprint. (Note: the
RS64-11l has a much smaler ITLB misses per
instruction count than the POWER3-II's TLB misses
per instruction count because its Instruction Effedive
to Real AddressTable (IERAT), which caches address
tranglations and obviates the use of the ITLB if thereis
a hit, seldom misss.)

Figure 4b shows the components (load miss, store
misses, and instruction mises) of L2 misses for the
RS64-111. (These munts were not available on the
POWERS3-11.) It is clear from this figure that most of
the L2 misss for the Java server workloads are
generated by load references. While twolf shows a

data cache miss rate comparable to Volano, its data
appearsto be L2 resident.

I3 |
wol10 |

woll]

S]bblOi
sjbbl |]
vortex 7:|
twolf 7[|
gee 7\:|
eon |
crafty |
0.00 0.10 0.20 0.30 0.40 0.50 0.60
(a) R4l
vol30 : : : 1
vol10 | ‘ ‘ ‘ 1
voll | ‘ | | 1
sjbb25 | ‘ ‘ ‘ 1
sjbb10 | ‘ ‘ ‘ 1
sjbb1 i—‘_l
vortex 7:|
twolf]
gce 7\:|
eon 7E|
crafty 7:|
0 0.05 0.1 0.15 0.2 0.25
(b) POWER3-II

Figure 6. L2 missratio

Figure 6, which shows the L2 missratios (as opposed
to misses per 1000 instructions) on each machine,
confirms that the Java server benchmarks are putting
more presaire on the L2 than the SFECint benchmarks.
We @annot explain this behavior with certainty, but a
reasonable explanation could be that the Java server
benchmarks have a much larger data footprint than the
SFECint workloads (though we annot obtain the data
set sizefor VolanoMark, we know that each warehouse
in SFECjbb uses 25MB of data, while the SFEC
workloads are for the most part L1 and at worst L2
resident) and therefore generate more capacity L2
mises (hence the much higher number of memory
transactions per instruction seen in Table 1).

4.3. Branch Behavior

Figure 7aindicates that the POWER3-1I" s branch

w0 fE——

w10 |

woll |
sibb2s
sibb10 T
sibbl. | !
—y—1
o —

1 mbr freq

gce IEI

eon §

O btac miss ratio
W br mispred ratio

S
:

0 0.1 0.2 0.3 0.4 0.5

(a) Branch prediction
behavior, POWER3-I|

vol30

vol10

voll

sjbb25

sjbb10
sjbbl

vortex

twolf

L L
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
T T
7 1

5 0.5 0.75

(b) Speaulationfactor, POWER3-I|

vol30

vol10

voll

sjbb25

sjbb10
sjbbl

vortex

twolf]

[[[[
\ \ \ \
\ \ \ \
\ \ \ \
\ \ \ \
\ \ \ \
\ \ \ \
\ \ \ \
\ \ \ \
\ \ \ \
\ \ \ \
f f f f
000 025 050 0.7 0

5 1.00 1.25 1.50

(c) Speaulationfactor, RS64-111

Figure 7. Branch behavior

prediction medianism works as well for the Java server
programs as for the SFECint benchmarks (branch
prediction numbers for RS64-111 not shown becuse it
does not employ dynamic branch prediction). Figure
7b and Figure 7c show that the speaulative factors
(ingtructions dispatched/instructions exeauted) of the

Java server benchmarks are within the range of
SFECint200Q indicating that the two sets of
benchmarks have much the same dfed on speaulative
exeaution. However, the Java server benchmarks (with
the exception of vol30) exhibit, on the average, worse
BTAC (Branch Target Address Cache) performance
than gcc, twolf, and vortex. This could indicate that
the BTAC of the POWER3-1l, which caches branch
target addreses and does not store any target
instructions, does not work very well for Java server
code. Further, eon, which shows BTAC performance
smilar to the Java server benchmarks, is written in
C++ and makes heavy use of virtual functions, which
arealsowidely used in Java. Java programs are known
to have poor branch target predictability dueto indired
branches resulting from virtual function call s and code
interpretation [15].

4.4. CPI Components
Figure 8 compares the Java server benchmarks to
the SFECint benchmarks on the RS64-111 from another

perspedive: CPI components per instruction. (These
events are not countable on the POWERS3-I11.) The

Oother sync
misync
mdtlb miss

mitlb miss

Oierat miss
N Wic miss
mdc miss

l2 miss

1 Oideal cpi

‘ —e—CPI
N}

o P N W A~ O O N ® ©
L

Figure 8. CPI components, RS64-111

dalls in the abowe figure do not comprise a
comprehensive list, but they are the significant
memory access related stalls on the machine. “ldedl
CPI” refers to (total exeaution cycles — storage
latency)/instructions exeauted. “Storage latency” is a
single muntable event on the RS64- 11l that indicates
the non-overlapped total amount of storage related
stalls (i.e. multiple storage related stalls in one o/cle
count as one sal). Thus “ldeal CPI” is an
approximation of CPl in the absence of al storage
related stalls. “lIsync” and “Other sync” dalls are
caused by various gnchronizing PowerPC
instructions. It is clear, as could be predicted from the

earlier discusson of cache misss, that the Java server
benchmarks incur significantly more instruction cache
stals and L2 cache dalls than the SFECint
benchmarks, and further, that these along with ideal
CPI (which isdetermined by internal resource onflicts
that we @nnot count for) are responsible for most of
thetotal CPI. For SFECjbb, data cache miss sall salso
play a large rolein the CPl. In contrast, the SFECint
benchmarks suffer from very little, if any, of the
storage related stall s included in the figure. However,
despite the large number of storage stall cycles for the
Java server benchmarks, Figure 8 shows that the CPIs
of the benchmarks are lower than the sum total of the
CPI components, which indicates the dfediveness of
the RS64-11I's superscalar pipdined architedure in
hiding some of the storage latency.

5. Conclusion

We performed a comparison of two Java server
benchmarks, SFECjbb2000 and VolanoMark2.1.2,
with seleded benchmarks from SFECint2000 on two
IBM PowerPC architedures, the RS64-Ill and the
POWERS3-1I. Wefind that our Java server appli cations
differ from SFECint in severa ways:

= Clearly, ingruction stream behavior is particularly
poar for these Java server workloads. High
instruction cache, ITLB, and BTAC missrates are
observed. These point toward a large or scattered
instruction foatprint. Instruction cache stall smake
up a substantial component of the CPIs of these
workloads, while they are near negligible in the
SFECint workloads.

= Wealso seethat L2 performanceis a major factor
in overal performance for the Java server
workloads. L2 misses per instruction and per L2
reference are significantly higher than those for
SFECint200Q L2 load misses make up the vast
majority of the Java server benchmarks L2
misses, due posshly to a large data foatprint that
causes a higher proportion of L2 capacity misses.
Clearly, if oneisto study the impact of Java server
appli cations on modern procesor architedures, L2
performance must not be negleaed.

= In addition, these Java server workloads have a
high proportion of zero dispatch cycles, suggesting
that ILP is not very easly exploited in these
workloads.

Given the significant differences between our two
PowerPC architedures, the RS64-1I being an in-order

exeaution machine with static branch prediction and
the POWERS-II being a highly aggressve out-of-order
exeaution machine, the fact that the abowe
characteristics were found on bath platforms siggests
that they are real properties of the workload and not
machine-dependent.

6. Acknowledgments

We would like to thank Steve Stevens of the IBM
Austin - PowerPC Performance group for his
encouragement and support, Rick Eickemeyer of IBM
Rochester for his asdstance in caculating CPI
components and advice on performance metrics, and
Steve Kunke and Frank O'Connel of IBM for their
help in understanding the RS64-11l and POWERS3-II
architedures. Thanks aso go to Yue Luo o the
Laboratory for Computer Architedure at the
University of Texas at Austin Department of Eledrical
and Computer Engineaing for his helpful comments
and suggestions.

This dudy was funded by a grant from the IBM
Austin Center for Advanced Studies.

7. References

[1] A. Alimaki, D. J. DeWwitt, M. D. Hill and D. A.
Wood. DBMSs on a Modern Processor: Where
Does Time Go? In Proceedings of the 25" VLDB
Conference, Edinburgh, Scotland, 1999

[2] L.A. Barroso, K. Gharachorloo and E. Bugnion.
Memory System Characterization of Commercial

Workloads. In Proceedings of the 25"
International Symposium on Computer
Architecture, 1998 pp. 3-14.

[3] D. Bhandarkar and J. Ding. Performance

Characterization of the Pentium Pro Processor. In
Proceedings of the Third International Symposium
on High-Performance Computer Architecture,
1997 pp. 288-297.

[4] JM. Borkenhagen, R. J. Eickemeyer, R. N. Kalla,
and SR. Kunkel. A Multithreaded PowerPC
Processor for Commercial Servers. |BM Journal of
Reseach and Development, Vol. 44, No. 6, 200Q

pp. 885894
[5] J. Borkenhagen and S. Storino. Fourth Generation
64-Bit PowerPC-Compatible Commercial

Processor Design. White Paper, IBM Corporation,
http://www.rs6000.ibm.com/resource/technology/n
star.html, January 1999

[6] HW. Cain, R. Ragwar, M. Marden, and M.H.
Lipasti. An architectural Evaluation of Java TPC-
W. In Proceedings of the Seventh International

(8]

(9

[10]

(11

(12

[13]

(14

(19

[16]

(17

Symposium on High-Performance Computer
Architecture, 2001

Q. Cao, P. Trancoso, J-L. Larriba-Pey, J.
Torrellas, R. Knighten, Y. Won. Detail ed
characterization of a Quad Pentium Pro Server
Running TPC-D. In Proceedings of International
Conference on Computer Design, 1999

K. Kedon, D. A. Patterson, Y. Q. He, R. C.
Raphad, and W. E. Baker. Performance
Characterization of a Quad Pentium Pro SMP
Using OLTP Workloads. In Proceedings of the
25" International Symposium on Computer
Architecture, Barcelona, Spain, June 1998 pp. 15
26.

T. Li, LK. John, N. Vijaykrishnan, A.
Sivasubramaniam, A. Murthy, and J. Sabarinathan,
Using Complete System Simulation to Characterize
SFECjvm98 Benchmarks. In Proceedings of
International Conference on Supercomputing,
200Q pp. 22-33.

Y. Luo and L.K. John. Workload Characterization
of Multithreaded Java Servers. Technical Report
TR-010815-01, Department of Electrical and
Computer Engineering, University of Texas at
Austin, June 2001,
http://www.ece.utexas.edu/projects/ece/l ca.
A.M.G. Maynard, C.M. Donnelly and B.R.
Olszewski. Contrasting characteristics and cache
performance of technicad and multi-user
commercial workloads. In Proceedings of the 6™
International Conference on Architectural Support
for Programming Languages and Operating
Systems. San Jose, October 1994 pp. 145156,

S. Oaks and H. Wong. Java Threads, 2™ Edition,
O'Rellly and Associates, January 1999

F.P. O'Connell and SW. White. POWERS: the
Next Generation of PowerPC Processors. |1BM
Journal of Research and Development, Vol. 44,
No. 6, 200Q pp. 873-884.

M. Papermaster, R. Dinkjian, M. Mayfield, P.
Lenk, B. Ciarfella, F. O'Connell, and R. DuPont.
POWER3: Next Generation 64bit PowerPC
Processor Design. White Paper, IBM Corporation,
1998

R. Radhekrishnan, N. Vijaykrishnan, L.K. John,
and A. Sivasubramaniam, Architectural Issues in
Java Runtime Systems. In Proceedings of the Sxth
International Conference on High Performance
Computer Architecture, January 200Q pp. 387-398
P. Ranganathan, K. Gharachorloo, S.V. Adve and
L.A. Barroso. Performance of Database
Workloads on Shared-Memory Systems with Out-
of-Order Processrs. In Proceedings of the 8
International Conference on Architectural Support
for Programming Languages and Operating
Systems, October 1998 pp. 307-318

B. Rychik and JP. Shen. Characterization of
Value Locality in Java Programs, Workshop on

(18]

[19]
[20]

Workload Characterization, ICCD, September
2000.

P. Seshadri and A. Mericas. Workload
Characterization of Multithreaded Java Servers on
Two PowerPC Processors. In Proceedings of
Fourth Annual Workshop on Workload
Characterization, Austin, Texas, December 2001,

pp. .
SPEC Benchmarks, http://www.spec.org
Volano LLC. VolanoMark benchmark.

http://www.vol ano.com/benchmarks.html

